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Soybean (Glycine max (L.) Merrill) is a major oilseed commodity which partitions 

carbon and nitrogen flux during embryogenesis towards two primary storage reserves, 

protein and oil, at approximately 40% and 20%, respectively in the seed.  This attribute 

makes soybean a valuable feedstock in many food, feed and industrial applications.  Over 

the past decade, a wealth of genomic resources has been established for soybean that will 

aid in elucidating the underlying biology governing the growth and development of the 

crop. This in turn will foster innovative breeding and genetics approaches leading to 

improvements in agronomics and end-use quality.  Loss- and gain-of function mutants 

are powerful resources that complement functional genomics programs.  Here we report 

on the creation of a repository of transgenic soybean events carrying a constitutive 

activation tag delineated by the maize dissociation (Ds) element, along with transposition 

frequency estimates of Ds delineated activation tag and enhancer-trap element induced 

upon stacking with a constitutive maize activator (Ac)-transposase cassette.   To meet this 

goal we produced approximately 587 F1 Ac-stacks with the Ds-activation tag element and 

144 F1 Ac-stacks with the Ds-enhancer trap element.  Among 16 F2 derived populations 

from Ac X Ds-activation stacks we observed 26 unique germinal transpositions with an 

estimated 3.15% transposition frequency. Whereas among 22 F2 derived populations 

from the Ac X Ds-enhancer trap stacks only six unique germinal transpositions were 



detected, translating to an estimated 0.5% transposition frequency.  Based on sequence 

data collected from junctions about the transposed Ds elements it appears that in soybean, 

Ds quite frequently re-inserts at unlinked positions respective to its corresponding launch 

site.  Two germinal mutants characterized, a Ds-enhancer trap and a Ds-activation tag, 

landed in the third intron of a putative cyclic nucleotide binding domain gene, and a 

predicted IMP/GMP specific nucleotidase, wherein the former resulted in a reduction in 

tagged transcript accumulation, while the latter lead to miss-expression of the tagged 

gene.   
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Soybean (Glycine max (L.) Merrill) is a legume crop and member of the family Fabaceae. 

It is one of the most important crops in the world because of its unique carbon flow in the 

seed which goes into approximately 40% protein and 20% oil. So it is widely used for 

food, feed and various industrial purposes all over the world.  In 2011 Soybean was 

grown on 75.0 million acres and the production was estimated to be 3,060 million bushels 

in the US (USDA, 2011). Also, there are wide genomic resources available for soybean 

including detailed physical and genetic maps, SNPs and SSR markers (Shultz et al., 

2006). The soybean genome is predicted to be 1.115 gigabases of which 975 megabases 

has been sequenced and assembled using a whole genome shotgun approach predicting 

46,430 protein-coding genes of high confidence and another ~20,000 genes with low 

confidence (Schmutz et al., 2010). The gene prediction is based on sequence homologies 

and ab-initio methods, and there is a need to assign function to these genes. So there is a 

need to develop an efficient functional genomics tool to complement the genomic 

resources available in soybean. Such a tool should allow us to understand the functioning 

of the desired genes and the data thus available can be used for improvement of soybeans 

for better traits and improved production. This genomics tool would be used to develop a 

repository of soybean mutants harboring mutants tagged for most of the genes of interest. 

There are several genomic tools that have been used to study gene function in various 

crops. One of the most commonly used tools is T-DNA insertional mutagenesis. It 

involves the delivery of T-DNA into the plant genome via agro-bacterium mediated 

transformation (Gelvin, 2003). The T-DNA might occasionally land into a functional 
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gene and thus, disrupt the gene function resulting in a mutant plant. T-DNA tagged 

populations have been successfully developed in various crop species like Arabidopsis 

(Alonso et al., 2003; Azpiroz-Leehman R and Feldmann KA, 1997; Sussman et al., 2000), 

rice (Jeon et al., 2000; Jeong et al., 2002; Sallaud et al., 2004) and Brachypodium 

distachyon (Thole et al., 2012). One drawback is that sometimes there are no visible 

phenotypes (Goebl MG and Petes TD, 1986). To overcome this drawback gene trap and 

enhancer trap elements can be used. The enhancer trap element has a minimal promoter 

which drives the expression of the visual marker gene only when the T-DNA lands in 

proximity to an endogenous gene promoter (Sundaresan et al., 1995). The gene trap 

element does not have a promoter but has one or more splice acceptor sequences and a 

reporter gene usually a visible marker gene like β-glucuronidase  or green fluorescent 

protein (Springer, 2000). When it gets inserted in to the intron of a gene, it forms a fusion 

transcript with the endogenous gene resulting in the expression of the reporter gene. It 

allows us to look at the gene expression patterns even for genes with lethal phenotypes 

(Springer, 2000). These elements can help in gene identification and have been used for 

gene tagging in various plant species like Arabidopsis (Babiychuk et al., 1997; Campisi 

et al., 1999) and rice (Jeon et al., 2000; Sallaud et al., 2004). 

Sometimes the T-DNA would disrupt the gene function but there will be no phenotype 

because of the gene redundancy and this is generally the case in polyploidy plant species. 

On the other hand some gene knockouts maybe lethal like for genes involved in embryo 

development. The gain of function mutants using activation tag elements could be an 
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alternative to this problem (Walden et al., 1994). Activation tag elements can involve the 

use of multiple enhancer elements to increase the expression of nearby genes in a tissue 

specific manner (Jeong et al., 2002; Weigel et al., 2000) or strong promoters like CaMV 

35S promoter to get a constitutive expression (Neff et al., 1999). The over-expression of 

a gene product might lead to obvious phenotypes revealing the function of the gene or the 

pathway involved. Activation tagging has been successfully used as a mutagenesis tool in 

Arabidopsis (Weigel et al., 2000), rice (Jeong et al., 2002), poplar (Busov et al., 2003), 

tomato (Mathews et al., 2003) and tobacco (Ahad et al., 2003). Since soybeans have an 

efficient agrobacterium mediated transformation system (Clemente and LaVallee, 2000; 

Zhang et al., 1999), we can develop a T-DNA tagged repository of mutants with 

enhancer, gene traps and activation tags. But soybean transformation is very a laborious 

and lengthy process and it is practically impossible to have a population of T-DNA 

transformed soybean events large enough to cover the whole genome. The use of T-DNA 

tags along with a transposon based system is a possible solution to this problem. The 

development of an initial T-DNA tagged population with transposons will act as initial 

launch sites for further mutagenesis.  

Transposable elements 

Transposons or transposable elements (TEs) were first discovered by Barbara 

McClintock in maize (McClintock, 1950).  She discovered and characterized the Ac/Ds 

TEs while studying altered pigmentation in aleurone layer of the mutant maize kernels, 

and was awarded the Noble prize for her discovery in 1983. Transposons are DNA 
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fragments that can move from one position in the genome to another and can also 

duplicate in this process. They are a large component of the plant genome accounting up 

to 50 – 80% in some grass species like maize (Meyers et al., 2001). Even though TEs 

form a large portion of the plant genomes, they are mostly inactive due to transposon 

silencing (Lisch, 2009). There are two general classes of TEs, Class II or DNA 

transposons and Class I or retrotransposons. Class I TEs are further characterized into 

long terminal repeat (LTR) and non-LTR retrotransposons (Feschotte et al., 2002). TEs 

make up to ~59% of the Soybean genome consisting of ~42% LTR retrotransposons and 

~17% DNA transposons (Schmutz et al., 2010). 

Class II TEs 

Class II/DNA transposons transpose by a “cut and paste” mechanism. They are 

characterized by terminal inverted repeat sequences (TIRs) that are required for 

recognition by the transposase for transposition although some sub-terminal sequences 

may also be necessary. There are several families of Class II TEs characterized by unique 

TIRs and sequence length of the target site duplication (TSD).  Each family has an 

autonomous and non-autonomous element. The autonomous element encodes for a 

transposase and can transpose independently. The non-autonomous element, on the other 

hand, requires presence of the autonomous element encoding the transposase for its 

transposition (Kunze R et al., 1997). DNA TEs have been observed in many plant species 

like Tam3 in Antirrhinum (Martin et al., 1985), An2 in Petunia(Koes et al., 1995)   but  
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Ac/Ds, En/Spm and Mu from Maize are the most widely studied and commonly used 

DNA transposons for transposon tagging.  

Activator/Dissociation  

As mentioned earlier, Ac/Ds TEs were first discovered by Barbara McClintock in maize. 

Ac, also called Activator, is an autonomous element, and Ds the non-autonomous element. 

Ds or Dissociation is a truncated version of Ac formed by internal deletions or 

substitutions thus losing its ability to encode the transposase (McClintock, 1950). Ac is 

characterized by 11bp TIRs and eight bp TSD on transposition. Since its discovery and 

the first successful cloning of the waxy gene locus in maize (Shure et al., 1983) , the 

Ac/Ds system has served as a gene cloning tool across various plant species. The 

germinal excision frequencies of Ac are very low in maize (Brutnell, 2002) but it has 

been shown to actively transpose in heterologous plant systems (Baker et al., 1986; Enoki 

et al., 1999; Van Sluys et al., 1987; Yoder et al., 1988) with excision frequencies of 0-

70% (Bancroft et al., 1992; Briza et al., 2000; Jones et al., 1990; Nakagawa et al., 2000).  

The frequency of unique germinal Ds re-insertions varies from 0.37% in tobacco (Biezen, 

1996), 0-20% (Nakagawa et al., 2000) to 41% (Kolesnik et al., 2004) in rice, 4% in 

Arabidopsis (Bancroft et al., 1992), up to 6% in tomato (Briza et al., 2000; Carroll et al., 

1995) and 11.8 to 17.1% in barley (Singh et al., 2006). 

A unique feature of these transposable elements is that Ac/Ds transpose preferentially to 

linked sites in maize (~60%) (Dooner and Belachew, 1989; Greenblatt, 1984) and the 

same phenomenon has been observed in other crops like tobacco (58-70%)(Biezen, 1996; 
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Dooner et al., 1991; Jones et al., 1990), Arabidopsis (68%) (Bancroft and Dean, 1993b), 

tomato (~50%) (Carroll et al., 1995; Osborne et al., 1991) and rice (~80%) (Nakagawa et 

al., 2000). Whereas in tomato, the preferential linked transposition was not as distinct; 

the frequency of Ac transposition to linked and unlinked sites was found to be similar 

(Healy et al., 1993; Osborne et al., 1991). In rice, the Ac/Ds population was screened for 

only unlinked transposition and a germinal transposition frequency of 41% was observed 

(Kolesnik et al., 2004). Even in maize, some studies show that Ac transpositions to un-

linked sites is up to 50% (Dooner and Belachew, 1989) and this property of Ac/Ds to 

transpose to unlinked sites along with linked transposition has been used for genome-

wide mutagenesis (Vollbrecht et al., 2010).  This suggests that the Ac/Ds transposon 

system can be used as a great tool for local as well as whole genome mutagenesis. 

Moreover, the Ds transposition has been observed to be preferential to the gene rich 

regions in rice (72%) (Kolesnik et al., 2004), Arabidopsis (55%) (Parinov et al., 1999) 

and barley (86%) (Singh et al., 2006).  A high copy number of Ac has been correlated to 

low excision frequency in maize but it was observed to have a positive correlation in 

Arabidopsis (Bancroft and Dean, 1993a), tobacco (Jones et al., 1989). In Arabidopsis, 

high expression of Ac was also correlated to higher excision frequencies (Long et al., 

1993b).  Ac/Ds TEs can be used along with gene trap and enhancer trap elements as a tool 

for functional genomics (Chin et al., 1999; Jeon et al., 2000; Sundaresan et al., 1995). 

Gain of function mutants can also be obtained by using an activation tagged transposon 

system (Jeong et al., 2002; Suzuki et al., 2001). 
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This system has been successfully used for gene tagging in tobacco (Briza et al., 2000; 

Fitzmaurice et al., 1999), Arabidopsis (Bancroft et al., 1992), rice (Chin et al., 1999; 

Nakagawa et al., 2000), barley (Cooper et al., 2004), and tomato (Meissner et al., 2000) . 

The Ac/Ds system has been very successful in gene cloning in these plants like the albino 

mutant gene ALB3 in Arabidopsis (Long et al., 1993a), the TMV resistance gene N in 

tobacco (Dinesh-Kumar et al., 1995),the  ABA2 gene involved in ABA biosynthesis in 

Nicotiana plurnbaginifolia (Marin et al., 1996), and the Cf-9 gene in tomato for 

resistance to Cladosporium fulvurn (Jones et al., 1994) to name a few. In rice, more than 

60,000 Ds harboring lines have been developed use gene traps and enhancer traps 

providing a valuable resource for rice functional genomics (An et al., 2005).  A large 

database of over 28,000 Ds insertion lines is available in Arabidopsis (Ito et al., 2005; 

Kuromori et al., 2004). Similarly, a database has been developed for maize and other 

crops and the aim is to generate Ds insertion lines that would serve as initial launch pads 

for further mutagenesis.  

Enhancer/Suppressor-mutator 

Enhancer/Suppressor-mutator (En/Spm) is another DNA TE that has been widely used 

for transposon tagging as a mutagenesis tool. It is a member of the CACTA transposable 

element superfamily characterized by 13 bp TIRs terminating with the sequence CACTA 

and three bp TSD. It was discovered in maize independently by Peterson (Peterson, 1953) 

and McClintock (McClintock, 1954) who named the autonomous element as Enhancer 

and Suppressor-mutator, respectively. Inhibitor/defective Spm (I/dSpm) represents the 
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non-autonomous element. The Spm transcript is alternatively spliced to give four 

transcripts designated tnpA-D, where tnp-A and tnp-D are necessary for transposition 

(Kunze R et al., 1997). The transposition of En/I has also been shown to linked sites in 

maize. En/Spm TEs are mobile in heterologous plant systems like tobacco (Masson and 

Fedoroff, 1989), potato (Frey et al., 1989), and Arabidopsis (Cardon et al., 1993). The 

two component En/I system has been successfully used for transposon tagging in 

Arabidopsis (Aarts et al., 1995). It has also been used as an activation tagging tool in 

Arabidopsis (Marsch-Martinez, 2011; Marsch-Martinez et al., 2002). A number of maize 

gene have been cloned using this system and also in other plants like the MS2 male 

sterility gene in Arabidopsis (Aarts et al., 1993). 

Mutator 

The maize Mutator (Mu) transposable element is the most active and mutagenic 

transposon among the plant transposons. The transposition frequencies of Mu can be as 

high as 100% (Alleman and Freeling, 1986) and it has been used to clone many maize 

genes (Bensen et al., 1995; Walbot, 2000). It was discovered by Robertson in maize in 

1978 (Robertson, 1978) and since then has been used for cloning several genes in maize 

like the bz2 allele (McLaughlin and Walbot, 1987) and the Ae1 locus (Stinard et al., 

1993).It is a DNA transposon and has more than eight classes of transposons 

characterized by ~220bp TIRs each class with unique internal sequences with a nine bp 

TSD (Chomet et al., 1991). The autonomous mobile elements are called MuDR which 

has two genes mudrA and mudrB (Lisch, 2002). The non-autonomous Mu elements are 
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formed by deletions or re-arrangements of the internal gene sequences. One of the 

features of Mutator is the duplicative transposition, so when an active Mutator plant is 

crossed with a non-Mutator plant up to three fold increase in Mu elements can occur for a 

low copy number stock and almost same numbers of Mu elements are present in the 

progeny for a high copy number stock (Kunze R et al., 1997). When a low copy number 

of Mu is used, the transposition frequencies are similar as in Ac (Walbot, 2000). The high 

copy number and transposition frequency is desirable for mutagenesis but it might pose a 

problem for analyses like assignment of phenotypes to a mutant gene. Unlike Ac/Ds and 

En/I, Mutator transposes to unlinked sites, so it can be used for whole genome 

mutagenesis. The Mutator element has been found to be transcriptionally inactive when 

transformed in rice. Thus, the epigenetic regulation of Mutator elements needs to be 

studied further before it can be used in any heterologous plant system (Diao and Lisch, 

2006). 

Class I TEs 

Class I TEs or retrotransposons are abundant in plant genomes and have played a huge 

role in the evolution process (Bennetzen, 1996). These elements are different from Class 

II TEs in that they transpose via a RNA intermediate and thus “copy and paste".  They 

are classified into two categories based on their structure and mechanism as LTR and 

non-LTR retrotransposons. LTR retrotransposons are characterized by long terminal 

repeats in direct orientation. They are sub-divided into Ty1-copia and the Ty3-gypsy 

groups.  Like DNA TEs, they have an autonomous element which has two genes gag and 
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pol; and non-autonomous elements which lack these genes. The gag gene codes for a 

capsid-like protein and the pol gene codes a polyprotein which is broken down into a 

protease, reverse transcriptase, RNase H and integrase enzymes (Feschotte et al., 2002). 

The non-LTR transposons are further classified into long interspersed nuclear elements 

(LINEs) and short interspersed nuclear elements (SINEs). The LINE element is 

autonomous and encodes for an ORF1, a gag-like protein, an endonuclease and a reverse 

transcriptase. SINEs are non-autonomous and act as parasites on the transposition 

machinery of LINEs (Feschotte et al., 2002).  

Several retrotransposons have been reported in various plant species like Ta1 in 

Arabidopsis (Voytas and Ausubel, 1988), BARE1 in barley (Manninen and Schulman, 

1993), and PDR1 and Tps12 in petunia (Pearce et al., 2000). Tnt1, a LTR retrotransposon, 

was the first active retrotransposon discovered and isolated from tobacco (Grandbastien 

et al., 1989). The Tnt1transposition was found to be activated by fungal extracts in tissue 

culture (Melayah et al., 2001). It has been used for tagging in Arabidopsis (Lucas et al., 

1995), Medicago (Tadege et al., 2008) and lettuce (Mazier et al., 2007). New 

retrotransposons Tto1, 2 and 3 belonging to the copia-like group of LTR retrotransposons 

were discovered in tobacco by Hirochika and were found to be activated in tissue culture 

conditions (Hirochika, 1993). Tto1 was found to transpose actively in rice plants 

(Hirochika et al., 1996). In addition; Tos10, Tos17and Tos19 are the most active 

retrotransposons from rice and have also been shown to be activated under tissue culture 

conditions (Hirochika, 1997).  Most of the retrotransposons transpose to unlinked sites 
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with a preference for certain genes, the transposon insertions are at a high frequency but 

stable and a large number of insertions can be obtained; all these factors make them 

suitable for gene tagging (Kumar and Bennetzen, 1999; Kumar and Hirochika, 2001). 

Moreover, they have been shown to be activated by certain stress responses like tissue 

culture or viral infection which can be used to control their transposition activity 

(Wessler, 1996). A repository of Tos17 insertion lines has developed for mutagenesis in 

rice and a large scale characterization has been done (Piffanelli et al., 2007). A miniature 

inverted repeat transposable element mPing from rice has been recently used for 

mutagenesis in soybean (Hancock et al., 2011). mPing has been shown to transpose 

preferentially to the 5’ untranslated region of the genes in rice and was shown to enhance 

the expression of certain stress inducible genes (Naito et al., 2009). 

A wide range of Class I and Class II TEs are present in plant genomes. Their unique 

feature of transposition to a different location in the genome makes them suitable to use 

as a gene tagging tool and to cut down the labor involved in T-DNA insertional gene 

tagging. The transposition activity has been tested for most of them in native and 

heterologous plant genomes and they have been used to tag genes and generate stable 

mutations. Retrotransposons can be difficult to monitor because of high copy number and 

the requirement of specific stress conditions like tissue culture for transposition. So we 

decided to use the two element Ac/Ds transposon system for mutagenesis in soybean 

since it has been widely studied and successful in other plant species, the simplicity of the 

“cut and paste” mechanism, and its tendency for both local and whole genome 



13 

 

mutagenesis. A repository of transgenic soybean plants carrying the Ds-delineated 

enhancer traps and activation tags were developed to serve as initial launch pads for 

transposition and further mutagenesis. The long term goal of this project is to develop a 

repository of mapped germinal Ds transposition events covering the whole soybean 

genome to serve as a functional genomics tool for soybeans.  
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CHAPTER 2 

MONITORING DS TRANSPOSITION IN THE SOYBEAN 
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ABSTRACT 

Soybean (Glycine max (L.) Merrill) is a major oilseed commodity which partitions 

carbon and nitrogen flux during embryogenesis towards two primary storage reserves, 

protein and oil, at approximately 40% and 20%, respectively in the seed.  This attribute 

makes soybean a valuable feedstock in many food, feed and industrial applications.  Over 

the past decade, a wealth of genomic resources has been established for soybean that will 

aid in elucidating the underlying biology governing the growth and development of the 

crop. This in turn will foster innovative breeding and genetics approaches leading to 

improvements in agronomics and end-use quality.  Loss- and gain-of function mutants 

are powerful resources that complement functional genomics programs.  Here we report 

on the creation of a repository of transgenic soybean events carrying a constitutive 

activation tag delineated by the maize dissociation (Ds) element, along with transposition 

frequency estimates of Ds delineated activation tag and enhancer-trap element induced 

upon stacking with a constitutive maize activator (Ac)-transposase cassette.   To meet this 

goal we produced approximately 587 F1 Ac-stacks with the Ds-activation tag element and 

144 F1 Ac-stacks with the Ds-enhancer trap element.  Among 16 F2 derived populations 

from Ac X Ds-activation stacks we observed 26 unique germinal transpositions with an 

estimated 3.15% transposition frequency. Whereas among 22 F2 derived populations 

from the Ac X Ds-enhancer trap stacks only six unique germinal transpositions were 

detected, translating to an estimated 0.5% transposition frequency.  Based on sequence 

data collected from junctions about the transposed Ds elements it appears that in soybean, 

Ds quite frequently re-inserts at unlinked positions respective to its corresponding launch 
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site.  Two germinal mutants characterized, a Ds-enhancer trap and a Ds-activation tag, 

landed in the third intron of a putative cyclic nucleotide binding domain gene, and a 

predicted IMP/GMP specific nucleotidase, wherein the former resulted in a reduction in 

tagged transcript accumulation, while the latter lead to miss-expression of the tagged 

gene.   
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INTRODUCTION 

Soybean (Glycine max (L.) Merrill) is major global feedstock for protein and oil that are 

incorporated in a multitude of food, feed and industrial applications.  In addition to its 

value as a commodity, soybean is an attractive legume model due to the wealth of 

genomics resources developed over the past decade, including over 50,000 SNP and 

33,000 SSR markers (Soybase.org), complementing genetic maps (Choi et al., 2007; 

Shoemaker et al., 2008), along with a fully sequenced genome (Schmutz et al., 2010) and 

a reliable transformation system (Parrott and Clemente, 2004). 

The soybean genome is predicted to encode for 46,430 genes with relative high 

confidence, with an approximate 20,000 gene predictions at a reduced level of confidence 

(Schmutz et al., 2010).  Assigning function to the respective gene predictions will greatly 

enhance our understanding of the biology underlying soybean, and aid in translating this 

information to application through soybean breeding and genetics approaches targeting 

agronomic and composition improvements.  

Loss- and gain- of function mutants are powerful tools in functional genomics programs. 

Loss-of-function mutants can be achieved through chemical means such as exposure to 

EMS, and fast neutrons, or via T-DNA insertional mutagenesis (Kuromori et al., 2009). 

Two limitations associated with loss-of-function approaches are; due to gene redundancy 

a phenotype may be masked, and/or homozygousity of a mutant allele of a critical gene 

may lead to lethality.  On the other hand, gain-of-function approaches (Tani et al., 2004; 

Kondou et al., 2010) are designed to induce miss-expression of a tagged gene, that often 
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result in dominant mutations thereby permitting display of a phenotype when the tagged 

allele is heterozygous.  

Development of large a repository of T-DNA tagged soybean mutants that mirrors the 

insertional collection established for Arabidopsis (Feldmann, 1991; Walden, 2002) or rice 

(An et al., 2003) would be a challenge to create due to the current state-of-the-art of 

soybean transformation (Parrott and Clemente, 2004).  To circumvent the need to 

produce large numbers of transgenic events an alternative approach is to couple tagging 

elements with transposons.  To this end the two component maize activator 

(Ac)/dissociation (Ds) system has been exploited in a number of heterologous plant 

systems including tobacco (Fitzmaurice et al., 1999), Arabidopsis (Bancroft et al., 1992; 

Ito et al., 2005), rice (Chin et al., 1999; Nakagawa et al., 2000; Kolesnik et al., 2004), 

barley (Cooper et al., 2004; Singh et al., 2006) and tomato (Meissner et al., 2000).   

In heterologous plants germinal transposition of the maize Ds element has varied, for 

example, reports have communicated 0.37% in tobacco (Van Der Biezen et al., 1996), up 

to 41% in rice (Nakagawa et al., 2000; Kolesnik et al., 2004), 4% in Arabidopsis 

(Bancroft et al., 1992), 6% in tomato (Carroll et al., 1995; Briza et al., 2000) and up to 

17% in barley (Singh et al., 2006).  In its native genomic context the Ds element tends to 

transpose to linked positions relative to its point of origin (Dooner and Belachew, 1989), 

this tendency can be exploited as a regional mutagenesis tool (Knapp et al., 1994; Ahem 

et al., 2009).  As similar pattern of linked transposition of  Ds is also observed in 

heterologous systems (Jones et al., 1990; Osborne et al., 1991; Bancroft and Dean, 1993; 

Nakagawa et al., 2000).  However, the Ds element also transposes to unlinked positions, 
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both in its native context (Dooner and Belachew, 1989; Vollbrecht et al., 2010) and 

heterologous systems (Healy et al., 1993; Kolesnik et al., 2004). Therefore, the Ac/Ds 

transposon system can provide a route to create stocks of regional and global genetic 

mutants in plants.  Moreover, unlike the other approaches being explored to create 

populations of legume mutants such as chemical mutagens (Bolon et al., 2011), the 

retrotransposon Tnt1 (d'Erfurth et al., 2003), and the miniature inverted repeat element 

mPing (Hancock et al., 2011), Ds will transpose at a reduce frequency per genome, 

therefore, simplifying hypothesis testing due to the lower number of insertions per 

genome, which may require backcrossing to “clean-up” potential confounding effects 

imparted by non-target insertions.  Conversely, Ds repositories will require significantly 

larger numbers than collections established from other mutagen approaches, with similar 

numbers of tag alleles.     

In the study communicated herein, we monitored the transposition frequencies of two Ds 

elements, one that harbors an activation tag, and a second that carries enhancer trap 

element (Sundaresan et al., 1995), in soybean with the aim to access the impact of insert 

size within the Ds termini on frequency of transposition along with pattern of reinsertion 

in the soybean genome.     
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RESULTS 

Soybean transformations with CsVMV activation tag (pPTN999) 

We have established approximately 500 transgenic soybean events harboring the T-DNA 

element carrying the Ds-delineated CsVMV activation tag, and collected corresponding 

T2 populations. Junction fragments have only been captured on a small subset of these 

events to date (Table 1).  Given the selection steps during the transformation process 

requires expression of the herbicide resistance trait, i.e. bar gene; it is likely that the 

majority of the launch sites for the Ds-activation tag reside in a transcriptionally active 

region of the chromosome.           

Monitoring Ds transposition in soybean 

Three soybean events harboring Ds-delineated enhancer trap elements (pPTN335) 

(Mathieu et al., 2009) were selected for stacking with Ac-transposase (pPTN398).  The 

first event designated 456-1, has a single locus with the T-DNA element carrying the Ds-

delineated enhancer trap residing on chromosome 15, upstream of the seed hydrophobic 

protein HPS1.5 (Gijzen et al., 1999). The second Ds-delineated enhancer trap event is 

referred to as 457-10, and carries two T-DNA loci one on chromosome 7, and the other 

on chromosome 8, with the latter residing within a lypoxygenase gene (glyma08g20190).  

Based on the molecular data obtained from this event it appears that the transgenic locus 

on chromosome 7 is missing a region proximal to the right border (RB), including a 

portion of the GUS gene while the enhancer trap T-DNA in glyma08g20190 is intact 

(Data not shown). The third is referred to as 455-5, where junction information has not 

been ascertained.    
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A Ds-delineated activation tag (pPTN999) event designated 770-4 carries a T-DNA 

launch site on chromosome 11, tagging a putative type III effector avr factor (Table 1).  

The selected Ds parents, 456-1, 457-10, 455-5 and 770-4(or its genetic clone 770-3) were 

crossed with Ac-transposase event 545-19 or 543-14 (only enhancer trap events).   A total 

of 16 F2 populations were genotyped from the 770-4 (or its genetic clone 770-3) (Table 2) 

along with 22 F2 populations from 455-5, 457-10 or 456-1 (Table 3).    PCR primer set 

1/2 (Supplemental Table S1, Supplemental Fig S1) was used to monitor for transposition, 

in which the absence of a product, due to product size limitation >7.0 kb, would imply no 

Ds transposition in enhancer trap stacks; while the amplification of an approximately 1.1 

kb product would indicate movement, and the PCR product capturing the footprint.  With 

respect to Ds-activation tag Ac stack, employing primer set 11/12 (Supplemental Table 

S1 and Figure S1) in the PCR screen would result in either 793 bp product or an 

approximately 2.0 kb product reflecting a transposition, or lack thereof, respectively 

(Supplemental Fig S2).     

As can be seen in Table 3, among the 22 F1 plants screened, a footprint was observed in 

19 of the 22 based on observed PCR product with primer set 1/2 (Table S1, Supplemental 

Fig S2). Among the 1155 F2 individuals screened footprints were observed in 304 (26%), 

with only 6 unique germinal transpositions observed (Table 3).  A confirmatory Southern 

blot analysis on two of the six germinal transpositions is shown in Fig 1.  The parental 

event 456-1 displays a GUS hybridizing band, with the 5’ GUS probe, at approximately 

6.5 kb (Fig 1A), and the same size signal in F2 individuals, except F2-80 where the 

hybridization band resides at approximately 2.7 kb.  When re-probed with the bar ORF, 
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the expected 3.0 kb fragment (Fig 1B) is observed in the parent and non-transposed 

alleles reflecting the Eco RV fragment within the binary vector pPTN335 (Supplemental 

Fig S1), along with that contained in the Ac-transposase binary pPTN398.  Sequence 

analysis on the junction fragment captured from the re-insertion in F1-11/F2-80 (Fig 1A) 

revealed that the transposed enhancer trap landed in a non-coding region on chromosome 

13 (Table 4), reflecting an unlinked transposition, which can explain the absence of a 

second bar hybridizing signal (Fig 1B).     

Figures 1C&D show the clonal germinal transpositions in five of 10 F2 individuals 

derived from 457-10 X Ac stack, wherein the parent used in the cross 457-10 carries two 

transgenic loci; one that that resides on chromosome 8, in a lipoxygenase 

(glyma08g20190) and the other in chromosome 7 in a non-coding region, that is missing 

a region proximal to the RB including one of the Ds termini, along with a portion of the 

GUS ORF, hence, a non-transposable element. Figure 1C displays the hybridization 

signals observed using the 5’ GUS probe.  The approximate 1.5 kb fragment represents 

the locus residing in glyma08g20190, while that present above the 13 kb the transposed 

Ds-enhancer trap.  In Fig 1D the membrane is re-probed with the bar ORF. The bar 

signal associated with the Ac T-DNA element is highlighted.   The bar signal that resides 

at 2.0 kb represents the footprint of the transposition out from the launch site in 

glyma08g20190, while the F2 individuals that display the 3 kb signal carry the truncated 

enhancer trap element in chromosome 7.   For example, individual F2-47 still has Ac, 

carries a re-insertion of the enhancer trap that transposed from chromosome 8, and 

harbors the truncated enhancer trap T-DNA on chromosome 7, along with a footprint.  In 
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the case of F2-41, the Ac T-DNA is present, as is the re-insertion of the Ds-enhancer trap 

element, and the corresponding footprint, but the truncated T-DNA on chromosome 7 

segregated away.  Sequence information gathered from the junction fragment captured 

from F2-24, carrying the same clonal insertion as shown in Fig 1C revealed the Ds-

enhancer trap transposed from chromosome 8 to chromosome 6 and landed in the third 

intron of a potassium gated ion channel (glyma06g08110) (Table 4).   

A summary of the Ds transpositions monitored from the Ac stacks with the Ds-delineated 

activation tag (pPTN999; Fig S1B) is shown in Table 2.  Among the 16 F1 individuals all 

had a footprint present based on the amplification of the 793 bp PCR product using 

primer set 11/12 (Supplementary Table S1 and Figure S1).  From the 16 F1 plants a total 

of 826 F2 individuals were screened, of which 437 (53%) displayed a Ds excision, based 

on presence of a footprint (Table 2). Among these, 26 unique re-insertions were 

confirmed based on Southern blot analysis. This corresponds to an estimated 3.15% 

germinal transposition frequency.   

Figure 2 shows an example of F2 individuals derived from three F1 plants that were 

created by crossing event 770-4, in which Ds-delineated activation tag T-DNA 

(pPTN999; Fig S1B) resides on chromosome 11 (Table 1), with Ac-transposase 

(pPTN398) event 545-19.  Fig 2A displays the hybridization signals when the membrane 

is probed with the CsVMV promoter;  wherein two distinct germinal re-insertions are 

observed in F2 individuals derived from F1-1 including an identical one seen in three F2 

plants (F2-13, F2-16 and F
2
-32), with a differing size signal in F2-34 (Fig 2A).  Likewise 

among 5 F2 individuals shown derived from the F1-6 plant, there are three unique signals 



31 

 

(Fig 2A).  Re-probing the membrane with the bar ORF the Ac-transposase can be seen in 

all the F2 individuals screened except for F2-20, derived from F1-4 (Fig 2B).  Moreover a 

footprint can be seen in only six of the 10 F2 individuals genotyped, suggestive of an 

unlinked transposition.  Indeed sequence data gathered from the re-insertion observed in 

F1-6/F2-31 (Fig 2) reveals that the transposition launched from chromosome 11 (Table 1) 

and re-inserted in chromosome 5 tagging glyma05g08840 (Table 5), thereby confirming 

the unlinked transposition.   

We sequenced 16 footprints left following transposition from the T-DNA element of the 

enhancer trap (pPTN335) (Fig 3).  The data reveled that the excision was not always 

precise with a few base deletions/additions observed (Fig 3).  Moreover, among four 

sequenced Ds re-insertions we observed 8 bp target site duplications, but with varying 

sequences (Fig 4).   

Characterization of Ds-delineated enhancer trap re-insertion into a putative 

potassium gated ion channel (glyma06g08110) 

F3 individuals from a Ds stable lineage, i.e. not harboring the Ac-cassette, derived from 

Ds-delineated enhancer trap stack with Ac (457-10 x 545-19 F1-14/F2-35) in which the 

Ds element transposed from chromosome 8, launch site within a lypoxygenase 

(glyma08g20190), and re-inserted into chromosome 6 within the third intron of 

glyma06g08110 (Table 4) were further characterized.  A Southern blot analysis was 

carried out on seven F3 individuals carrying the stabilized Ds-enhancer trap element in 

glyma06g08110 (Fig 5A), using as a probe the junction fragment captured in from the 

TAIL PCR reaction amplified by primers 17/18 (Supplemental Table S1).  As can be 
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seen in Fig 5A, the hybridization signal shifts from 2.7 kb in control lanes, expected size 

based genomic sequence data, to 9.5 kb in the tagged F3 plants.  This approximate 6.5 kb 

up shift corresponds to the size of the Ds-delineated enhancer trap present in pPTN335 

(Supplemental Fig S1A).  We subsequently conducted targeted PCR reactions using 

primer sets specific for the corresponding junctions, further confirming the location of the 

Ds element in this locus (Data not shown).   

We monitored expression of glyma06g08110 via RT-PCR in leaves, roots and flowers in 

both controls and tagged individuals (Fig 5B) using the primer set 19/20 (Supplemental 

Table S1);  wherein expression was only observed in the latter in control plants, and 

highly reduced in flowers of Ds tagged individuals (Fig 5B).  The reduction in expression 

of glyma06g08110 in flowers in the homozygous lineages carrying the Ds-enhancer trap 

was confirmed via northern blot analysis (Fig 5C). This gene, glyma06g08110 was 

cloned from soybean genome for further analysis using primer set 21/22 (Supplemental 

Table S1). 

The closest homology found to glyma06g08110 in Arabidopsis is the cyclic nucleotide 

gated ion channel 18 (Frietsch et al., 2007), which was implicated to play a role in pollen 

tube growth.   In order to see if this phenotype translated to soybean we monitored pollen 

germination in Ds-tagged lineages along with controls (Fig 5D/E).    As can be seen in 

the images (Fig 5D/E) both pollen tube germination and growth were drastically retarded 

in the tagged lines.  We monitored this phenotype across varying levels of Ca
++

, K
+
 and 

Na
++

 and the only pattern observed was differential germination and growth in the tagged 

lines (Data not shown).   
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Miss-expression induced by a re-insertion of a Ds-delineated activation tag  

Soybean event 770-4 (clone of 770-3) harbors the T-DNA element carrying the Ds-

delineated activation tag (pPTN999) on chromosome 11 (Table 2).  A lineage derived 

from a stack with Ac event 545-19, designated 770-3 x 545-19 F1-6/F242 (Table 5) was 

found with the Ds-activation element re-inserted on chromosome 15 just upstream of 

glyma15g21240.1 a putative cytosolic purine 5’ nucleotidase an enzyme highly active in 

root nodules (Christensen and Jochimsen, 1983).  We monitored expression of 

glyma15g21240.1 in pods, leaves, and root tissues via RT-PCR and northern blot (Fig 6) 

using primer set 15/16 (Supplemental Table S1), with no expression observed in controls, 

and miss-expression in all tissues sampled, demonstrating the predicted constitutive 

expression pattern based on the genetic location of the activation tag (Fig 6).   
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DISCUSSION 

A repository of approximately 500 soybean events that harbor the Ds-delineated 

activation tag element harbored in the binary vector pPTN999 has been established. The 

mapping of a small subset of these (Table 1) reveals that they are positioned across the 

genome and the repository is of sufficient size that there is a reasonable probability that 

there a multiple events positioned per chromosome.  A pattern of re-insertion of Ds 

elements is that it often remobilizes a short distance from its point of origin (Jones et al., 

1990; Osborne et al., 1991; Ahem et al., 2009), hence, with a proper design a Ds-based 

transposon system can be an effective regional mutagen (Knapp et al., 1994; Gidoni et al., 

2003). However, among the set of Ds re-insertions characterized to date all have been to 

unlinked positions in the soybean genome (Tables 4 & 5). Therefore, assembling a 

repository of soybean events carrying Ds-launch sites spaced throughout a specific 

chromosome for targeted regional mutagenesis in and by itself will not suffice.    

In addition, based on the estimated transposition frequencies monitored with the two Ds 

elements evaluated in soybean, the Ds-delineated enhancer trap and Ds-delineated 

activation tag, the size of the genetic element being carried by the transposon impacts 

both excision and re-insertion. The former harbors an approximately 6.5 kb element 

within the Ds termini, while the latter is approximately 500 bp between the Ds-termini. 

With the excisions and re-insertions occurring at higher frequencies with the smaller 

element, 0.5% and 3.15%, for the Ds-delineated enhancer trap and Ds-delineated 

activation tag, respectively.   



35 

 

A number of the F2 individuals genotyped with Ds germinal transpositions carried clonal 

insertions, suggestive of insertions early in development that hit the cell lineage to the 

germline.  We recently monitored F3 and F4 seed derived from lines carrying both Ac and 

Ds-activation tags, from both lower and upper portions of the plants; while transposition 

was still occurring, germinal transposition frequencies were comparable for clonal and 

independent insertions observed from seeds harvested across the various nodes of the 

plant (Data not shown).   

The analysis of a number of Ds excision sites reveal that the region flanking original Ds 

sites is not intact and there are deletions/additions of a few base pairs at the site of Ds 

excision called ‘footprints’ (Baran et al., 1992).  In addition, we observed 8bp target site 

duplication at the site of Ds re-insertions as observed in maize (Muller-Neumann et al., 

1984; Du et al., 2011). Both these features are highly characteristic of Ds transposition in 

its native context, thus suggesting a similar mechanism for transposition in soybean. 

Approximately 58% of the Ds re insertions mapped were in genic regions, either up-

stream or within the gene, demonstrating the tendency of Ds to transpose to gene rich 

regions (Parinov et al., 1999; Kolesnik et al., 2004).  We characterized one such insertion 

in which the Ds-enhancer element landed in the third intron of glyma06g08110, a 

putative potassium gated ion channel, wherein we observed translation of the phenotype 

similar to a T-DNA mutant of a highly homologous gene in Arabidopsis (Frietsch et al., 

2007) in the Ds-tag glyma0608810 (Fig 5), thereby confirming the in silico gene call.     

A second characterized Ds-tag was a re-insertion of the activation tag upstream of a 

putative cytosolic purine 5’ nucleotidase, in this case constitutive expression of the gene 
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(glyma15g21240.1) was induced (Fig 6). This activation tag event is currently being 

phenotyped.  Moreover, we have identified additional Ds-activation tags in which the re-

insertion is positioned within the genic region in orientations such that expression of 

either negative sense or truncated transcripts would be predicted. These are currently 

being characterized further to monitor for a dominant silencing phenotype of the tagged 

gene and/or gene family (Data not shown).   

From the Ds-delineated activation tag soybean events created, we have established a total 

of 587 F2 populations derived from crosses with the 545-19 event carrying the Ac-

cassette with 45 different pPTN999 events.  Populations from this collection will be sown 

under field conditions to monitor the germinal transposition frequencies induced outside 

a greenhouse environment, which in turn will permit better estimates on, cost and size of 

building a Ds-activation tag soybean repository as a tool in functional genomics programs 

for the crop. To this end two critical components will need to be addressed, a reliable 

high throughput method to map the Ds-insertions and the development of an identity-

preserved storage and distribution system linked to a searchable database.   The former 

can theoretically be achieved by coupling a strategic DNA pooling system with next 

generation sequencing technologies, while the latter will require buy in by the plant 

community.  
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MATERIALS AND METHODS  

Genetic Constructs 

Binary vectors carrying a constitutive Ac-transposase cassette and enhancer trap elements, 

designated pPTN398 and pPTN335, respectively, were previously described (Mathieu et 

al., 2009).  A Ds delineated constitutive activation tag element was assembled by sub-

cloning the cassava vein mosaic virus promoter (CsVMV) (Verdaguer et al., 1998) 

between Ds termini that reside in vector pBBDs/Xho (gift from Cliff Weil, Purdue 

University).  The resultant Ds-delineated CsVMV promoter was subsequently cloned into 

the binary vector pPTN200 (Sato et al., 2004), which carries a bar gene (Thompson et al., 

1987) cassette for selection of transgenic events.  The final Ds-delineated activation tag 

binary vector is referred to as pPTN999.  

Soybean Transformations  

Soybean transformations were carried out using the cotyledonary-node explant coupled 

with Agrobacterium tumefaciens as previously described (Zhang et al., 1999).  Soybean 

genotype ‘Thorne’ (McBlain et al., 1993) was used for transformation. 

Characterization of transgenic events  

Transgenic soybean events harboring the respective Ds-delineated CsVMV activation tag 

(pPTN999), enhancer trap (pPTN335) along with corresponding Ac (pPTN398) stack 

populations, were grown under greenhouse conditions. Southern and northern blot 

analyses were carried out as previously described (Buhr et al., 2002; Eckert et al., 2006). 

All probes were generated through random prime synthesis incorporating dCT
32

P, using 

Prime-It II kit following the manufacturer’s protocol (Agilent technologies Cat# 300385).  
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Stacks, F1 along with subsequently derived populations, of selected pPTN999 events (Ds-

delineated CsVMV activation tag) and pPTN335 (Ds-delineated enhancer trap) were 

genotyped using primer sets 5/6; 7/8; and 9/10 (Supplemental Table S1) to monitor for 

presence of Ac and the corresponding Ds element. Somatic Ds transpositions were 

monitored in F1 and derived populations from the stacks using primer sets 1/2 and 11/12 

(Supplemental Table S1).   

Germinal transpositions in subsequent generations derived from the selected stacks were 

monitored by PCR utilizing primer sets 3/4 and 13/14 (Supplemental Table S1) for 

pPTN335 and pPTN99 stacks, respectively.  While primer sets 5/6 and 9/10 

(Supplemental Table S1) were used to look for re-insertion Ds-delineated elements from 

pPTN335 and pPTN999, respectively.  Southern blot analysis was used to confirm the 

PCR predicted germinal/re-insertion of Ds elements in F2 and F3 individuals.  In the 

confirmatory Southern analysis, total genomic DNA from pPTN335 stacks were digested 

with Eco RV, while the pPTN999 stacks were digested with Eco RI to aid in the 

genotyping of the germinal transpositions, relative to the corresponding launch (i.e. 

parental pPTN335 or pPTN999). The resultant membranes were hybridized with either 

CsVMV promoter (pPTN999) or GUS, 5’ end of ORF, (pPTN335) to monitor for 

germinal re-insertions.  The membranes were stripped and re-probed with the bar ORF 

which would provide insight on linkage with the original launch allele (i.e. “footprint”) 

along with presence of the Ac-transposase in the individual.   

Capturing of junction fragments  
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DNA sequences about the parental T-DNA launch site, and Ds re-insertion lines were 

amplified from genomic DNA by TAIL-PCR (Liu et al., 1995).  Specific and nested 

primers for first and second round PCR used for amplification of junction fragments 

about pPTN335, and pPTN999 T-DNA borders, along with corresponding Ds-insertions 

are listed in Supplemental Table S2.   

An inverse PCR strategy was also employed to capture junction fragments about the Ds-

re-insertion sites for crosses derived from pPTN999 (CsVMV activation tag).  In these 

cases genomic DNA was digested with Alu I, with re-circulation and PCR conditions 

carried as described by Ochman et al. (Ochman et al., 1988).  The first PCR reaction was 

carried out with primer set CsVMV-F: TACGGGAAAAACTATGGAAGTATTATG and 

Ds-RB1b: CGTCCGATTTCGACTTTAACC.  The resultant PCR product was diluted 

50X and a 2µl aliquot was used as a template in a second round of PCR, using Primer set 

CsVMV-F and RBne1b: ATCGTATCGGTTTTCGATTA.   

The derived PCR products from either TAIL-PCR or inverse PCR were gel purified, and 

subsequently cloned into pCR2.1-TOPO (Invitrogen Cat# 45-0641), and sequenced 

(Eurofins MWG Operon).  The sequence junction fragments were blast searched to both 

soybean genome (www.phytozome.net) and Genbank.   

Phenotyping of putative cyclic nucleotide binding domain gene Ds tag line 

A Ds-delineated enhancer trap germinal transposition found within the third intron of a 

putative gated ion channel (glyma06g08110).  Due to its similarity to previously 

phenotype T-DNA tagged Arabidopsis allele (Frietsch et al., 2007), we monitored pollen 

germination of the Ds-enhancer trap tagged soybean line.  The medium used to monitor 
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pollen germination consisted 0.01% H3BO3, 5 mM CaCl2, 5 mM KCl, and 1 mM MgSO4, 

supplemented with 10% sucrose and solidified with 0.01% agar (Boavida and 

McCormick, 2007).  Partially opened soybean flowers were harvested from greenhouse 

grown plants in the early morning.  Petals and sepals were removed, and anthers gently 

blotted onto germination medium to release pollen.  Pollen from 10-15 flowers was 

blotted per plate.  Plates were subsequently placed in a box with moistened paper towels 

to maintain high relative humidity, and incubated at 28°C for 4-6 hours, prior to 

monitoring germination and length.   

Germination and estimated pollen lengths were ascertained using a ZEISS Axioplan 2 

Imaging system, and measurements taken with ZEISS Axiovision 3.0 software.  Total 

pollen counts were ascertained using a Nikon Eclipse Ti inverted microscope across ten 

random fields at 20x magnification. 
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FIGURES 

Figure 1. Southern Blots showing germinal transposition in the F2 generation from 

pPTN335 x pPTN398.  

The genomic DNA was digested with EcoRV. (A) Southern blot on F2 plants from 456-1x545-19 

F1-10 and F1-11. The germinal transposition events, in bold, show a different size band than the 

parent 456-1 when hybridized with the ‘GUS’ probe. (B) The same blot was stripped and 

hybridized with the ‘bar’ probe; the events with transposition do not hybridize suggesting 

unlinked transposition. (C) Southern blot on F2 plants from 457-10x545-19 F1-14. Seven events, 

in bold, show Ds germinal transposition when hybridized with the ‘GUS’ probe. (D) The same 

blot was stripped and hybridized with the ‘bar’ probe, the events with transposition show a 

‘footprint’ of expected size when hybridized with ‘bar’. 
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Figure 2. Southern blots on F2 plants from pPTN999 x pPTN398. 

The genomic DNA from the crosses 770-4 x 545-19 was digested with EcoRI and 

Southern blots were probed with either ‘CsVMV’ or ‘bar’. (A) The germinal 

transposition events, in bold, show a different size band than the parent 770-4 when 

hybridized with the ‘CsVMV’ probe. (B) The events with transposition show a footprint 

of expected size when hybridized with ‘bar’. Some events do not have a footprint 

suggesting unlinked transposition. 
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Figure 3. Analysis of Ds ‘footprints’. 

When the Ds element is excised from its original position, the excision in not always 

precise and some base pair deletions are observed as shown in the sequencing data below.  
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Figure 4. Target site duplications at Ds re-insertion sites. 

Characteristic 8bp target site duplications (TSD) when the Ds element gets re-inserted 

into a new position in the soybean genome. 
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Figure 5. Characterization of Ds-delineated enhancer trap re-insertion into a 

putative potassium gated ion channel (glyma06g08110), 457-10x545-19 F1-14 F2-35. 

(A) Southern blot for F3 plant probed with the junction fragment from 

Glyma06g08110 proximal to Ds re-insertion site. There is a ~6-5kb shift in 

hybridizing band in the F3 plants due to re-insertion of the Ds element into the 

third intron of  Glyma06g08110 . (B) RT-PCR results showing no expression of 

Glyma06g08110 in the roots and leaf tissue; a reduced expression is observed in 

the GT event. (C) Northern blot on the mRNA of Glyma06g08110 depicting 

reduced gene expression in the GT event. (D) Pollen germination picture for the 

Thorne/Control set with normal pollen growth. (E) Pollen germination in the GT 

event showing reduced pollen germination, pollen abortion, short and kinky 

pollen tubes with occasional normal growing pollen grains. 
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Figure 6. Characterization of Ds-delineated activation tag re-insertion into a 

putative cytosolic purine 5’ nucleotidase, 770-3 x 545-19 F1-6 F2-42. 

Characterization of activation tagged germinal transposition event 770-3x545-19 F1-6 

F2-42 (Mutant) with Ds re-insertion ~500bp upstream of Glyma15g21240. RT-PCR 

results showing enhanced expression of Glyma15g21240 in green pods (A), roots (B) 

and leaf tissue (C). (D) Northern blot for Glyma15g21240 in the leaf tissue showing 

an enhanced expression due to activation tagging. 
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SUPPLEMENTAL FIGURES 

Figure S1.  T-DNA constructs used in the study.  

(A) pPTN335. Ds-delineated enhancer trap element with GUS visual marker gene and 

bar selection marker. (B) pPTN999. Ds-delineated activation tag element harboring 

constitutive Cassava vein mosaic virus promoter and bar selection marker. (C) 

pPTN398. Ac transposase gene driven by the constitutive Cauliflower mosaic virus 

35S promoter and the bar selection marker. E-V and E-I represent restriction sites for 

EcoRV and EcoRI, respectively. Probe a and b represent the probes used for Southern 

blot analysis to screen for Ds germinal transposition in events carrying Ds element 

from pPTN335 and pPTN999, respectively. Probe c was used to screen for 

linked/unlinked transpositions and presence of Ac.  
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Figure S2. Diagrammatic representation of primers used for screening Ds 

transposition.  

If a PCR product is amplified by primers 1 and 2 or 11 and 12, it suggests Ds excision. 

If there is no PCR amplification by primers 3 and 4 or 13 and 14, it suggests germinal 

Ds transposition. Finally PCR amplification by primers 5 and 6 or 9 and 10 confirm 

Ds re-insertion. Primers 7 and 8 are used to check the presence of Ac. The table 

provides the details for the primers used. Tm of 50°C was used for all the primer sets.  
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TABLES 

Table1. Summary of mapped T-DNA events for pPTN999  

 
Event 

Position in 

soybean genome 
Chr # Annotation 

1 770-4  
38,613,755 Gm11  

Upstream of cleavage site for 

pathogenic type III effector avirulence 

factor, Avr  

 2 772-8  14,775,124 Gm13  Non-genic region  

3 774-3  
39,839,827 Gm03  Downstream of proglycinin A1aB1b 

subunit 

4 772-4  5,753,075 Gm19  Non-genic region  

5 772-3  18,832,080 Gm18  Non-genic region  

 6 773-4  
4,883,699 Gm07  

In the 6
th
 exon region of eukaryotic 

translation initiation factor 3 subunit 

(EIF-3)  

7 774-3  45,313,113 Gm02  Non-genic region  

8 777-7 45,313,113 Gm02  Non-genic region  

9 781-15  45,313,113 Gm02  Non-genic region  

10 791-1 49,559,996 Gm19  Non-genic region  

11 778-18 9,577,937 Gm10 Non-genic region  

12 787-12 22,379,591 Gm13 Non-genic region  

13 819-13 37,374,835 Gm13 Non-genic region  

14 817-23 2,138,156 Gm15 Non-genic region  

15 806-19 12,783,219 Gm07  Non-genic region  

16 806-13 41,860,756 Gm13 Non-genic region  

17 835-2 7,986,852 Gm04 Non-genic region  

18 773-7 271,238 Gm03  serine-threonine protein kinase 

19 773-8 14,777,592 Gm02  Non-genic region  

20 775-3 21,508,479 Gm08 Non-genic region  

21 774-6 18,424,743 Gm10 1000 bp upstream of Glyma10g40640-

homeobox protein 

22 781-15 3,662,884 Gm06  Non-genic region  
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Table2. Frequency of Ds excisions and germinal transpositions for pPTN999 x pPTN398 

  Crosses Footprint
a
 

Individual 

F2 plants 

Ds 

excisions 

Unique 

GT
b
 

1 770-3 X 545-19 F1-6 +   91 41 3 

2 770-3 X 545-19 F1-1 +   83 45 1 

3 770-3 X 545-19 F1-2 +   38 20 0 

4 770-3 X 545-19 F1-12 +   87 55 4 

5 770-4 X 545-19 F1-6 +   79 47 5 

6 770-4 X 545-19 F1-1 +   76 39 2 

7 770-4 X 545-19 F1-4 +   99 52 2 

8 770-4 X 545-19 F1-3 +   11 5 0 

9 770-3 X 545-19 F1-5 +   19 10 1 

10 770-4 X 545-19 F1-7 +   25 12 2 

11 770-3 X 545-19 F1-19 +   28 13 0 

12 770-4 X 545-19 F1-2 +   33 18 2 

13 770-3 X 545-19 F1-20 +   32 18 1 

14 770-3 X 545-19 F1-3 +   32 15 2 

15 770-3 X 545-19 F1-13 +   28 16 1 

16 770-3 x 545-19 F1-9 +  65 31 0 

 
TOTAL 

 
826 437 26 

 a – Ds excisions observed in F1 plants 

 b – Germinal Transpositions representing Ds re-insertion in F2 generation 
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Table3. Frequency of Ds excisions and germinal transpositions for pPTN335 x pPTN398 

  Crosses Footprint
a Individual 

F2 plants 

Ds 

excisions 

Unique 

GT
b
 

1 455-5 x 545-19 F1-6    +  69 1 0 

2 456-1 x 545-19 F1-2    +  14 1 0 

3 456-1 x 545-19 F1-3    +  10 3 0 

4 456-1 x 545-19 F1-8    +  67 2 0 

5 456-1 x 545-19 F1-11     +  99 12 2 

6 456-1x545-19 F1-10   +  96 21 0 

7 545-19 x 456-1 F1-8  +  40 17 1 

8 545-19 x 456-1 F1-7  +  51 26 0 

9 545-19 x 456-1 F1-2  +  43 24 0 

10 545-19 x 456-1 F1-14  +  49 25 0 

11 457-10 x 545-19 F1-1    +  10 4 0 

12 457-10 x 545-19 F1-3    +  74 21 0 

13 457-10 x 545-19 F1-14    +  69 16 1 

14 457-10 x 545-19 F1-23    +  120 42 1 

15 457-10 x 545-19 F1-10   +  28 14 1 

16 456-1 x 545-19 F1-12   -  70 0 0 

17 457-10 x 545-19 F1-7    -  15 0 0 

18 543-14x455-5 F1-7   -  50 0 0 

19 543-14 x 457-10 F1-2  +  55 27 0 

20 456-1 x 545-19 F1-10  +  37 17 0 

21 545-19 x 457-10 F1-8  +  56 24 0 

22 543-14 x 457-10 F1-1  +  33 7 0 

  TOTAL   1155 304 6 

 a – Ds excisions observed in F1 plants 

 b – Germinal Transpositions representing Ds re-insertion in F2 generation 
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Table4. Summary of germinal transpositions for pPTN335 x pPTN398 stacks 

 
F2 plant 

Position of the 

Ds re-insertion 
Gene tagged 

Chr 

# 

Position in 

the gene 
Annotation 

1 457-10(14)F2-24 
5,972,419 

Glyma06g08110 06 Intron 3 
Potassium voltage ligand 

ion channel gene 
2 456-1(11)F2-76 38,819,380 Glyma13g37890 13 Exon 1 Cyclin gene 

3 456-1(11)F2-80 59754016 - 18 - In non-genic region 

4 457-10(23)F2-10 - - - - Processing 

5 457-10(10)F2-28 49,758,864 - 02 - In non-genic region 

6 456-1(8)F2-33 9,301,628 - 15 - In non-genic region 

 Numbers in parenthesis () refer to the F1 number. 

 These F2 plants come from a population crossed with the Ac event 545-19 
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Table5. Summary of germinal transpositions for pPTN999 x pPTN398 stacks   

 
F2 plant 

Position of the 

Ds re-insertion 
Gene tagged 

Chr  

# 

Position in 

the gene 
Annotation 

1 770-4(1)F2-38 3761366 Glyma09g04980 09  Intron 7 ATP-binding cassette carrier 

2 770-4(1)F2-34 2,391,765 Glyma16g02800 16  Exon 5 PHD-finger protein 

3 770-4(4)F2-20 39,336,655 Glyma03g31420 03  
2048bp -

Upstream 
Cation-transporting ATPase 

4 770-4(6)F2-31 8,720,747 Glyma05g08840 05  Exon 14 lethal(2)denticleless protein 

5 770-4(6)F2-38 36787964 Glyma09g29900 09  Exon 4 

Glutamate 

decarboxylase/sphingosine 

phosphate lyase 

 6 770-4(6)F2-4 4355305 - 04  - In the non-genic region 

7 770-3(1)F2-47 47114995 Glyma11g37380 11  3’-UTR 
Mitotic spindle assembly 

checkpoint protein MAD2 

8 770-3(6)F2-5 31,785,022 - 03  - In the non-genic region 

9 770-3(6)F2-42 19,470,705 
Glyma15g21240

.1 
15  

549bp-

Upstream 

Cytosolic purine 5-

Nucleotidase-related 

10 770-3(12)F2-12 - - -  - Processing 

11 770-3(12)F2-42 - - -  - Processing 

12 770-3(6)F2-4 31785022 - 03  - Non-genic region 

13 770-3(12)F2-16 7390686 Glyma17g09910 17  5’ UTR Unknown gene 

14 770-3(12)F2-20 43143634 Glyma02g37830 02 Exon 1 KIP1-like protein 

15 770-4(6)F2-2 48556553 - 10 - Non-genic region 

16 770-4(6)F2-5 31785022 - 03  - Non-genic region 

17 770-4(4)F2-35 - - -  - Processing 

18 770-3(5)F2-13 - - -  - Processing 

19 770-4(7)F2-11 - - -  - Processing 

20 770-4(7)F2-14 17465305 - 02  - Non-genic region 

21 770-4(2)F2-29 6122262 Glyma10g07430 10  3’UTR CDC2-related kinase 

22 770-4(2)F2-30 - - -  - Processing 

23 770-3(20)F2-12 - - -  - Processing 

24 770-3(3)F2-23 35283492 Glyma19g27930 19  
200bp-

Upstream 

Chalcone and stilbene 

synthases 

25 770-3(3)F2-2 47114995 Glyma14g37810 14  
2,229bp-

Upstream 
Multicopper oxidase 

26 770-3(13)F2-1 1688853 - 04  - Non-genic region 

 Numbers in parenthesis () refer to the F1 number. 

 These F2 plants come from a population crossed with the Ac event 545-19 
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SUPPLEMENTAL TABLES 

TableS1. Primers used in the study 

 Primer Name Oligonucleotide sequence (5' - 3') 
Tm  

(°C) 

Product 

size  

 

Screening for:  

1 pPTN335-RB-R  CAGGCTTTACACTTTATGCTTCC  
50 1076bp 

Ds excision/footprint 

for pPTN335 2 pPTN335-LB-F  ACAATACAACGAATCTCAAGCAATC  

3 PCRGUSREV  CAGACGCGTGGTTACAGTCTTGC  
50 973bp 

pPTN335Ds germinal 

excision/transposition 4 pPTN335-RB-R  CAGGCTTTACACTTTATGCTTCC  

 5 pPTN335-GusF  CAGTAAAGTAGAACGGTTTGTGGTT  

50 411bp GUS sequence 
6 

pPTN335-Gus 

R  
AGAAAAAGCAGTCTTACTTCCATGA  

7 pPTN398-Ac-F  CCATCCTTTGCAACCAAGTT  
50 782bp Ac sequence 

8 pPTN398-Ac-R  GAAGTGGAGGTCGATGGAAA  

9 
CaVMV-

pPTN999-F 

TACGGGAAAAACTATGGAAGTATTAT

G 50 435bp CaVMV sequence 

10 
CaVMV-

pPTN999-R 

ACTTCAAAGAAAATAGCTTACACCAA

A 

11 pPTN999 LB-F GAAATATTTGCTAGCTGATAGTGACC

T 50 793bp 
Ds excision/footprint 

for pPTN999 12 pPTN999 RB-R CCAATATATCCTGTCAAACACTGATA

G 13 pPTN999 LB-F GAAATATTTGCTAGCTGATAGTGACC

T 50 1420bp 
pPTN999Ds germinal 

excision/transposition 14 
CaVMV-

pPTN999-R 

ACTTCAAAGAAAATAGCTTACACCAA

A 

15 
Glyma15g RT-

F1-HN 
GATTATACCATCCAATCTTGGCTCCT 

53 728bp 

RT-PCR, Northern 

blot probe for 770-3 x 

545-19 F1-6 F2-42  16 
Glyma15g RT-

R1-HN 

CTTTGTTCACATTAGTTGCAGCAACA

A 

17 Gm06F1-HN GTTCCTAGGTTGTTTCTTATCTTTCCT 

50 476bp 

Southern blot probe 

for 457-10 x 545-19 

F1-14 F2-35 18 Gm06R1-HN 
TAGAAGTATCTTTCCTTGAAACTGGA

A 

19 Gm06-exon F CTCAAACCTCAACCTACCTTCTTCTAC 
 50 

 463bp 

  

RT-PCR, Northern 

blot probe for 457-10 

x545-19 F1-14 F2-35 20 Gm06-exon R 
GTGGTCTAGAGAAAAATCAGGTTCAT

C 

21 Gm06CNGF-F 
CACCATGTATAGAATATTATCGACGC

CG 50 2079bp 

Cloning full length 

sequence of 

Glyma06g08110 22 Gm06CNGF-R CTAAACTTGTTCGTGGTCTAGAGAAA 
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TableS2. a. Primers for amplification of the T-DNA junction sequence 

335-borderJF-LB 1b GTCGTTTTACAACGTCGTGACTG 

335-borderJF-LB ne1b GTTACCCAACTTAATCGCCTTG 

335-borderJF-RB 1 CTCGAATTCGTAATCATGGTCATAG 

335-borderJF-RBne1 GTAATCATGGTCATAGCTGTTTCCT 

336-borderJF-LB 1  ACCTTCCTTTTCCACTATCTTCACA 

336-borderJF-LBne1   AAGTGACAGATAGCTGGGCAATG 

336-borderJF-RB1 GTAATCATGGTCATAGCTGTTTCCT 

336-borderJF-RBne1  GTCATAGCTGTTTCCTGTGTGAAAT 

999-borderJF-LB2  ATTAGAGTCCCGCAATTATACATTTAATAC 

999-borderJF-LBne2  AATTATACATTTAATACGCGATAGAAAACA 

999-borderJF-RB1  GAAACTAGCTCTACCGTTTCCGTTT 

999-borderJF-RBne1 TACCGTTTTGTATATCCCGTTTCC  

Adaptor-1 CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGGAGGT 

Adaptor -2 /5Phos/ACCTCCCCGG/3AmM/ 

AP1 GGATCCTAATACGACTCACTATAGGC 

AP2 CTATAGGGCTCGAGCGGC 

 

b. Primers for amplification of junction sequences for Ds re-insertions 

335-Dsreinsertion LB1 CGTTTCCGTTTACCGTTTTGTA 

335-Dsreinsertion LBne1 TACCGTTTTGTATATCCCGTTTCC 

335-Dsreinsertion RB1a CCTTATATAGAGGAGGGTCTTGC 

335-Dsreinsertion RBne1a AGGGTCTTGCGGATCTGAAT 
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