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Abstract

Networks of neurons in the brain encode preferred patterns of neural activity via their synap-
tic connections. Despite receiving considerable attention, the precise relationship between net-
work connectivity and encoded patterns is still poorly understood. Here we consider this problem
for networks of threshold-linear neurons whose computational function is to learn and store a
set of binary patterns (e.g., a neural code) as “permitted sets” of the network. We introduce a
simple Encoding Rule that selectively turns “on” synapses between neurons that co-appear in
one or more patterns. The rule uses synapses that are binary, in the sense of having only two
states (“on” or “off”), but also heterogeneous, with weights drawn from an underlying synaptic
strength matrix S. Our main results precisely describe the stored patterns that result from the
Encoding Rule – including unintended “spurious” states – and give an explicit characterization
of the dependence on S. In particular, we find that binary patterns are successfully stored in
these networks when the excitatory connections between neurons are geometrically balanced –
i.e., they satisfy a set of geometric constraints. Furthermore, we find that certain types of neural
codes are natural in the context of these networks, meaning that the full code can be accurately
learned from a highly undersampled set of patterns. Interestingly, many commonly observed
neural codes in cortical and hippocampal areas are natural in this sense. As an application,
we construct networks that encode hippocampal place field codes nearly exactly, following pre-
sentation of only a small fraction of patterns. To obtain our results, we prove new theorems
using classical ideas from convex and distance geometry, such as Cayley-Menger determinants,
revealing a novel connection between these areas of mathematics and coding properties of neural
networks.
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1 Introduction

Recurrent networks in cortex and hippocampus exhibit highly constrained patterns of neural ac-
tivity, even in the absence of sensory inputs [32, 48, 33, 11]. These patterns are strikingly similar
in both stimulus-evoked and spontaneous activity [32, 33], suggesting that cortical networks store
neural codes consisting of a relatively small number of allowed activity patterns [48, 11]. What is
the relationship between the stored patterns of a network and its underlying connectivity? More
specifically, given a prescribed set of binary patterns (e.g., a binary neural code), how can one
arrange the connectivity of a network such that precisely those patterns are encoded as fixed point
attractors of the dynamics, while minimizing the emergence of unwanted “spurious” states? This
problem, which we refer to as the Network Encoding (NE) Problem, dates back at least to 1982
and has been most commonly studied in the context of the Hopfield model [26, 27, 5, 24]. A major
challenge in this line of work has been to characterize the spurious states [3, 4, 2, 24, 43].

In this article we take a new look at the NE problem for networks of threshold-linear neurons
whose computational function is to learn and store binary neural codes. Following [47, 23], we
regard stored patterns of a threshold-linear network as “permitted sets” (a.k.a. “stable sets” [16]),
corresponding to subsets of neurons that may be co-active at stable fixed points of the dynamics
in the presence of one or more external inputs. Although our main results do not make any special
assumptions about the prescribed sets of patterns to be stored, many commonly observed neural
codes are sparse and have a rich internal structure, with correlated patterns reflecting similarities
between represented stimuli. Our perspective thus differs somewhat from the traditional Hopfield
model [26, 27], where binary patterns are typically assumed to be uncorrelated and dense [5, 24].

To tackle the NE problem we introduce a simple learning rule, called the Encoding Rule, that
constructs a network W from a set of prescribed binary patterns C. The rule selectively turns
“on” connections between neurons that co-appear in one or more of the presented patterns, and
uses synapses that are binary (in the sense of having only two states – “on” or “off”), but also
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heterogeneous, with weights drawn from an underlying synaptic strength matrix S. Our main result,
Theorem 2, precisely characterizes the full set of permitted sets P(W ) for any network constructed
using the Encoding Rule, and shows explicitly the dependence on S. In particular, we find that
binary patterns can be successfully stored in these networks if and only if the strengths of excitatory
connections among co-active neurons in a pattern are geometrically balanced – i.e., they satisfy a
set of geometric constraints. Theorem 3 shows that any set of binary patterns that can be exactly
encoded as C = P(W ) for symmetric W can in fact be exactly encoded using our Encoding Rule.
Furthermore, when a set of binary patterns C is not encoded exactly, we are able to completely
describe the spurious states, and find that they correspond to cliques in the “co-firing” graph G(C).

An important consequence of these findings is that certain neural codes are natural in the
context of symmetric threshold-linear networks; i.e., the structure of the code closely matches the
structure of emerging spurious states via the Encoding Rule, allowing the full code to be accurately
learned from a highly undersampled set of patterns. Interestingly, using Helly’s theorem [8] we can
show that many commonly observed neural codes in cortical and hippocampal areas are natural
in this sense. As an application, we construct networks that encode hippocampal place field codes
nearly exactly, following presentation of only a small and randomly-sampled fraction of patterns in
the code.

The organization of this paper is as follows. In Section 2 we introduce some necessary back-
ground on binary neural codes, threshold-linear networks, and permitted sets. In Section 3 we
introduce the Encoding Rule and present our Results. The proofs of our main results are given
in Section 4 and use ideas from classical distance and convex geometry, such as Cayley-Menger
determinants [12], establishing a novel connection between these areas of mathematics and neural
network theory. Finally, Sections 5 and 6 contain the Discussion and Appendices, respectively.

2 Background

2.1 Binary neural codes

A binary pattern on n neurons is simply a string of 0s and 1s, with a 1 for each active neuron and
a 0 denoting silence; equivalently, it is a subset of (active) neurons

σ ⊂ {1, . . . , n} def
= [n].

A binary neural code (a.k.a. a combinatorial neural code [18, 40]) is a collection of binary patterns
C ⊂ 2[n], where 2[n] denotes the set of all subsets of [n].

Experimentally observed neural activity in cortical and hippocampal areas suggests that neural
codes are sparse [29, 7], meaning that relatively few neurons are co-active in response to any given
stimulus. Correspondingly, we say that a binary neural code C ⊂ 2[n] is k-sparse, for k < n, if
all patterns σ ∈ C satisfy |σ| ≤ k. Note that in order for a code C to have good error-correcting
capability, the total number of codewords |C| must be considerably smaller than 2n [34, 30, 18], a
fact that may account for the limited repertoire of observed neural activity.

Important examples of binary neural codes are classical population codes, such as receptive field
codes (RF codes) [18]. A simple yet paradigmatic example is the hippocampal place field code (PF
code), where single neuron activity is characterized by place fields [38, 39]. We will consider general
RF codes in Section 3.6, and specialize to sparse PF codes in Section 3.7.
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2.2 Threshold-linear networks

A threshold-linear network [23, 16] is a firing rate model for a recurrent network [20, 22] where the
neurons all have threshold nonlinearity, φ(z) = [z]+ = max{z, 0}. The dynamics are given by

dxi
dt

= − 1

τi
xi + φ

 n∑
j=1

Wijxj + ei − θi

 , i = 1, ..., n,

where n is the number of neurons, xi(t) is the firing rate of the ith neuron at time t, ei is the
external input to the ith neuron, and θi > 0 is its threshold. The matrix entry Wij denotes the
effective strength of the connection from the jth to the ith neuron, and the timescale τi > 0 gives
the rate at which a neuron’s activity decays to zero in the absence of any inputs (see Figure 1).

W
ji

W
ij

e
i
- θ

i
b

i
 = x

i

x
j

e
j
- θ

j
b

j
 =

Figure 1: A recurrent network receiving
an input vector b = (b1, . . . , bn). The fir-
ing rate of each neuron is given by xi =
xi(t), and evolves in time according to equa-
tion (1). The strengths of recurrent connec-
tion are captured by the matrix W .

Although sigmoids more closely match experimen-
tally measured input-output curves for neurons, the above
threshold nonlinearity is often a good approximation
when neurons are far from saturation [20, 45]. Assuming
that encoded patterns of a network are in fact realized
by neurons that are firing far from saturation, it is rea-
sonable to approximate them as stable fixed points of the
threshold-linear dynamics.

These dynamics can be expressed more compactly as

ẋ = −Dx+ [Wx+ b]+, (1)

where D
def
= diag(1/τ1, ..., 1/τn) is the diagonal matrix of

inverse time constants, W is the synaptic connectivity
matrix, b = (b1, ..., bn) ∈ Rn with bi = ei − θi, and [·]+
is applied elementwise. Note that, unlike in the Hopfield
model, the “input” to the network comes in the form of a
constant (in time) external drive b, rather than an initial
condition x(0). We think of equation (1) as describing the fast-timescale dynamics of the network,
and b as representing the effect of an external stimulus. So long as b changes slowly as compared to
the fast network dynamics, the neural responses to individual stimuli are captured by the steady
states of (1) in the presence of a constant input vector b.

In the Encoding Rule (Section 3.1), we assume homogeneous timescales and use D = I (the
identity matrix). Nevertheless, all results apply equally well to heterogeneous timescales – i.e.,
for any diagonal D having strictly positive diagonal. We also assume that −D + W has strictly
negative diagonal, so that the activity of an individual neuron always decays to zero in the absence
of external or recurrent inputs. Although we consider responses to the full range of inputs b ∈ Rn,
the possible steady states of (1) are sharply constrained by the connectivity matrix W . Assuming
fixed D, we refer to a particular threshold-linear network simply as W .

2.3 Permitted sets of threshold-linear networks

We consider threshold-linear networks whose computational function is to encode a set of binary
patterns. These patterns are stored as “permitted sets” of the network. The theory of permitted
(and forbidden) sets was first introduced in [47, 23], and many interesting results were obtained in
the case of symmetric threshold-linear networks. Here we review some definitions and results that
apply more generally, though later we will also restrict ourselves to the symmetric case.
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notation meaning

[n] {1, ..., n}, n = # of neurons

2[n] the set of all subsets of [n]
σ ⊂ [n] a subset of neurons; a binary pattern; a codeword; a permitted set
|σ| # of elements (neurons) in the set σ

C ⊂ 2[n] a prescribed set of binary patterns – e.g., a binary neural code
G(C) the co-firing graph of C; (ij) ∈ G(C)⇔ {i, j} ⊂ σ for some σ ∈ C
X(G), X(G(C)) the clique complex of the graph G or G(C), respectively
supp(x) {i ∈ [n] | xi > 0}, for x ∈ Rn
W an n× n connectivity matrix; the network with dynamics (1)
D fixed diagonal matrix of inverse time constants
P(W ) {σ ⊂ [n] | σ a permitted set of W}; set of all permitted sets of W
A an n× n matrix
Aσ, for σ ⊂ [n] the principal submatrix of A with index set σ
stab(A) {σ ⊂ [n] | Aσ is a stable matrix}
cm(A) Cayley-Menger determinant of A
1 ∈ Rn the column vector with all entries equal to 1
−11T n× n rank 1 matrix with all entries equal to −1

Table 1: Frequently used notation.

Informally, a permitted set of a recurrent network is a binary pattern σ ⊂ [n] that can be
activated. This means there exists an external input to the network such that the neural activity
x(t) = (x1(t), . . . , xn(t)) converges to a steady state x∗ (a stable fixed point) with support σ:

σ = supp(x∗)
def
= {i ∈ [n] | x∗i > 0}.

Definition. A permitted set of the network (1) is a subset of neurons σ ⊂ [n] with the property
that for at least one external input b ∈ Rn, there exists an asymptotically stable fixed point x∗

such that σ = supp(x∗) [23]. For a given choice of network dynamics, the connectivity matrix W
determines the set of all permitted sets of the network, denoted P(W ).

For threshold-linear networks of the form (1), it has been previously shown that permitted sets
of W correspond to stable principal submatrices of −D+W [23, 16]. Recall that a stable matrix is
one whose eigenvalues all have strictly negative real part. For any n×n matrix A, the notation Aσ
denotes the principal submatrix obtained by restricting to the index set σ; if σ = {s1, ..., sk}, then
Aσ is the k × k matrix with (Aσ)ij = Asisj . We denote the set of all stable principal submatrices
of A as

stab(A)
def
= {σ ⊂ [n] | Aσ is a stable matrix}.

With this notation we can now restate our prior result, which generalizes an earlier result of [23]
to non-symmetric networks.

Theorem 1 ([16, Theorem 1.2]1). Let W be a threshold-linear network on n neurons (not neces-
sarily symmetric) with dynamics given by equation (1), and let P(W ) be the set of all permitted
sets of W . Then

P(W ) = stab(−D +W ).

1Note that in [16, Theorem 1.2], permitted sets were called “stable sets.” See also [23] for an earlier proof specific
to the symmetric case.
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Theorem 1 implies that a binary neural code C can be exactly encoded as the set of permitted
sets in a threshold-linear network if and only if there exists a pair of n × n matrices (D,W ) such
that C = stab(−D + W ). From this observation, it is not difficult to see that not all codes are
realizable by threshold-linear networks. This follows from a simple lemma.

Lemma 1. Let A be an n×n real-valued matrix (not necessarily symmetric) with strictly negative
diagonal and n ≥ 2. If A is stable, then there exists a 2 × 2 principal submatrix of A that is also
stable.

Proof. We use the formula for the characteristic polynomial in terms of sums of principal minors:

pA(X) = (−1)nXn + (−1)n−1m1(A)Xn−1 + (−1)n−2m2(A)Xn−2 + ....+mn(A),

where mk(A) is the sum of the k × k principal minors of A. Writing the characteristic polynomial
in terms of symmetric polynomials in the eigenvalues λ1, λ2, ..., λn, and assuming A is stable, we
have m2(A) =

∑
i<j λiλj > 0. This implies that at least one 2×2 principal minor is positive. Since

the corresponding 2× 2 principal submatrix has negative trace, it must be stable.

Combining Lemma 1 with Theorem 1 then gives:

Corollary 1. Let C ⊂ 2[n]. If there exists a pattern σ ∈ C such that no order 2 subset of σ belongs
to C, then it is not realizable as C = P(W ) for any threshold-linear network W .

Here we will not pay attention to the relationship between the input to the network b and the
corresponding permitted sets that may be activated, as it is beyond the scope of this paper. In
prior work, however, we were able to understand with significant detail the relationship between a
given b and the set of resulting fixed points of the dynamics [16, Proposition 2.1]. For completeness,
we summarize these findings in Appendix D.

Permitted sets of symmetric threshold-linear networks

In the remainder of this work, we will restrict attention to the case of symmetric networks. With this
assumption, we can immediately say more about the structure of permitted sets P(W ). Namely,
if W is symmetric then the permitted sets P(W ) have the combinatorial structure of a simplicial
complex.

Definition. An (abstract) simplicial complex ∆ ⊂ 2[n] is a set of subsets of [n] = {1, . . . , n} such
that the following two properties hold: (1) for each i ∈ [n], {i} ∈ ∆, and (2) if σ ∈ ∆ and τ ⊂ σ,
then τ ∈ ∆.

Lemma 2. If W is a symmetric threshold-linear network, then P(W ) is a simplicial complex.

In other words, if W is symmetric then every subset of a permitted set is permitted, and every
superset of a set that is not permitted is also not permitted. This was first observed in [23],
using an earlier version of Theorem 1 for symmetric W . It follows from the fact that P(W ) =
stab(−D+W ), by Theorem 1, and stab(A) is a simplicial complex for any symmetric n×n matrix
A having strictly negative diagonal (see Corollary 7 in Appendix A). The proof of this fact is a
straightforward application of Cauchy’s interlacing theorem (Appendix A), which applies only to
symmetric matrices.

We are not currently aware of any simplicial complex ∆ that is not realizable as ∆ = P(W ) for
a symmetric threshold-linear network, although we believe such examples are likely to exist.
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3 Results

Theorem 1 allows one to find all permitted sets P(W ) of a given network W . Our primary interest,
however, is in the inverse problem.

NE problem: Given a set of binary patterns C ⊂ 2[n], how can one construct a network
W such that C ⊆ P(W ), while minimizing the emergence of unwanted spurious states?

Note that spurious states are elements of P(W ) that were not in the prescribed set of patterns to
be stored; these are precisely the elements of P(W ) \ C. If C ⊂ P(W ), so that all patterns in C are
stored as permitted sets of W but P(W ) may contain additional spurious states, then we say that
C has been encoded by the network W . If C = P(W ), so that there are no spurious states, then we
say that C has been exactly encoded by W .

We tackle the NE problem by analyzing a novel learning rule, called the Encoding Rule. In
what follows, the problem is broken into four motivating questions that address (1) the learning
rule, (2) the resulting structure of permitted sets, (3) binary codes that are exactly encodable, and
(4) the structure of spurious states when codes are not encoded exactly. In Section 3.6 we use
our results to uncover “natural” codes for symmetric threshold-linear networks, and illustrate this
phenomenon in the case of hippocampal PF codes in Section 3.7.

3.1 The Encoding Rule

Question 1: Is there a biologically plausible learning rule that allows arbitrary neural codes to be
stored as permitted sets in threshold-linear networks?

In this section we introduce a novel encoding rule that constructs a network W from a pre-
scribed set of binary patterns C. The rule is similar to the classical Hopfield learning rule [26]
in that it updates the weights of the connectivity matrix W following sequential presentation of
binary patterns, and strengthens excitatory synapses between co-active neurons in the patterns.
In particular, the rule is Hebbian and local; i.e., each synapse is updated only in response to the
co-activation of the two adjacent neurons, and the updates can be implemented by presenting only
one pattern at a time [26, 20]. A key difference from the Hopfield rule is that the synapses are
binary: once a synapse (ij) has been turned “on,” the value of Wij stays the same irrespective of
the remaining patterns.2 A new ingredient is that synapses are allowed to be heterogeneous: in
other words, the actual weights of connections are varied among “on” synapses. These weights are
assigned according to a predetermined synaptic strength matrix S, which is considered fixed and
reflects the underlying architecture of the network. For example, if no physical connection exists
between neurons i and j, then Sij = 0 indicating that no amount of co-firing can cause a direct exci-
tatory connection betwen those neurons. On the other hand, if two neurons have multiple points of
physical contact, then Sij will be greater than if there are only a few anatomical contacts. There is,
in fact, experimental evidence in hippocampus for synapses that appear binary and heterogeneous
in this sense [42], with individual synapses exhibiting potentiation in an all-or-nothing fashion, but
having different “thresholds” for potentiation and heterogeneous synaptic strengths.

Here we describe the Encoding Rule in general, with minimal assumptions on S. Later, in
Sections 3.4 and 3.5, we will investigate the consequences of various choices of S on the network’s
ability to encode different types of binary neural codes.

2The learning rule in [47] also had binary synapses in this sense.
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Encoding Rule. This is a prescription for constructing (i.e., “learning”) a network W from a set
of binary patterns on n neurons, C ⊂ 2[n] (e.g., C is a binary neural code). It consists of three steps:
two initialization steps (Steps 1-2), followed by an update step (Step 3).

Step 1: Fix an n × n synaptic strength matrix S and an ε > 0. We think of S and
ε as intrinsic properties of the underlying network architecture, established prior to
learning. Because S contains synaptic strengths for symmetric excitatory connections,
we require that Sij = Sji ≥ 0 and Sii = 0.

Step 2: The networkW is initialized to be symmetric with effective connection strengths
Wij = Wji < −1 for i 6= j, and Wii = 0. (Beyond this requirement, the initial values of
W do not affect the results.)

Step 3: Following presentation of each pattern σ ∈ C, we turn “on” all excitatory
synapses between neurons that co-appear in σ. This means we update the relevant
entries of W as follows:

Wij := −1 + εSij if i, j ∈ σ and i 6= j.

Note that the order of presentation does not matter; once an excitatory connection has
been turned “on,” the value of Wij stays the same irrespective of remaining patterns.

To better understand what kinds of networks result from the Encoding Rule, observe that any
initial W in Step 2 can be written as Wij = −1 − εRij , where Rij = Rji > 0 for i 6= j and
Rii = −1/ε, so that Wii = 0. Assuming a threshold-linear network with homogeneous timescales,
i.e. fixing D = I, the final network W obtained from C after Step 3 satisfies,

(−D +W )ij =


−1 + εSij , if (ij) ∈ G(C)
−1, if i = j

−1− εRij if (ij) /∈ G(C),
(2)

where G(C) is the graph on n vertices (neurons) having an edge for each pair of neurons that
co-appear in one or more patterns of C. We call this graph the co-firing graph of C. In essence, the
rule allows the network to “learn” G(C), selecting which excitatory synapses are turned “on” and
assigned to their predetermined weights.

Consequently, any matrix −D +W obtained via the Encoding Rule thus has the form

−11T + εA,

where −11T denotes the n × n matrix of all −1s and A is a symmetric matrix with zero diagonal
and off-diagonal entries Aij = Sij ≥ 0 or Aij = −Rij < 0, depending on C. It then follows from
Theorem 1 that the permitted sets of this network are

P(W ) = stab(−11T + εA).

Furthermore, it turns out that P(W ) for any symmetric W is of this form, even if −D +W is not
of the form −11T + εA.

Lemma 3. If W is a symmetric threshold-linear network (with D not necessarily equal to the
identity matrix I), then there exists a symmetric n × n matrix A with zero diagonal such that
P(W ) = stab(−11T +A).

8



The proof is given in Appendix B (Lemma 14).
In addition to being symmetric, the Encoding Rule (for small enough ε) generates “lateral

inhibition” networks where the matrix −D + W has strictly negative entries. In particular, this
means that the matrix D −W is copositive – i.e., xT (D −W )x > 0 for all nonnegative x except
x = 0. It follows from [23, Theorem 1] that for all input vectors b ∈ Rn and for all initial conditions,
the network dynamics (1) converge to an equilibrium point. This was proven by constructing a
Lyapunov-like function, similar to the strategy in [15].3

3.2 Main Result

Question 2: What is the full set of permitted sets P(W ) stored in a network constructed using the
Encoding Rule?

Our main result, Theorem 2, characterizes the full set of permitted sets P(W ) obtained using
the Encoding Rule, revealing a detailed understanding of the structure of spurious states. Recall
from Lemma 3 that the set of permitted sets of any symmetric network on n neurons has the form
P(W ) = stab(−11T+εA), for ε > 0 and A a symmetric n×n matrix with zero diagonal.4 Describing
P(W ) thus requires understanding the stability of the principal submatrices (−11T + εA)σ for each
σ ⊂ [n]. Note that these submatrices all have the same form: −11T + εAσ, where −11T is the all
−1s matrix of size |σ| × |σ|. Proposition 1 (below) provides an unexpected connection between the
stability of these matrices and classical distance geometry.5 We will first present Proposition 1, and
then show how it leads us to Theorem 2.

For symmetric 2×2 matrices of the form −11T + εA =

[
−1 −1 + εA12

−1 + εA12 −1

]
, with ε > 0,

it is easy to identify the conditions for the matrix to be stable. Namely, one needs the determinant
to be positive, so A12 > 0 and ε < 2/A12. For 3× 3 matrices, the conditions are more interesting,
and the connection to distance geometry emerges.

Lemma 4. Consider the 3× 3 matrix −11T + εA, for a fixed symmetric A with zero diagonal: −1 −1 + εA12 −1 + εA13

−1 + εA12 −1 −1 + εA23

−1 + εA13 −1 + εA23 −1

 .
There exists an ε > 0 such that this matrix is stable if and only if

√
A12,

√
A13, and

√
A23 are valid

edge lengths for a nondegenerate triangle in R2.

In other words, the numbers
√
Aij must satisfy the triangle inequalities

√
Aij <

√
Aik +

√
Ajk for

distinct i, j, k. This can be proven by straightforward computation, using Heron’s formula and the
characteristic polynomial of the matrix. The upper bound on ε, however, is not so easy to identify.

Remarkably, the above observations completely generalize to n×n matrices of the form −11T +
εA, and the precise limits on ε can also be computed for general n. This is the content of Proposi-
tion 1, below. To state it, however, we first need a few notions from distance geometry.

Definition. An n×nmatrix A is a (Euclidean) square distance matrix if there exists a configuration
of points p1, ..., pn ∈ Rn−1 (not necessarily distinct) such that Aij = ‖pi−pj‖2. A is a nondegenerate

3Note that threshold-linear networks do not directly fall into the very general class of networks discussed in [15].
4In fact, any P(W ) of this form can be obtained by perturbing around any rank 1 matrix – not necessarily

symmetric – having strictly negative diagonal (Proposition 3, in Appendix B).
5Distance geometry is a field of mathematics that was developed in the early 20th century, motivated by the

following problem: find necessary and sufficient conditions such that a finite set of distances can be realized from a
configuration of points in Euclidean space. The classical text on this subject is Blumenthal’s 1953 book [12].
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square distance matrix if the corresponding points are affinely independent; i.e., if the convex hull
of p1, ..., pn is a simplex with nonzero volume in Rn−1.

Clearly, all square distance matrices are symmetric and have zero diagonal. Furthermore, a 2 × 2
matrix A is a nondegenerate square distance matrix if and only if the off-diagonal entry satisfies
the additional condition A12 > 0. For a 3×3 matrix A, the necessary and sufficient condition to be
a nondegenerate square distance matrix is that the entries

√
A12,

√
A13, and

√
A23 are valid edge

lengths for a nondegenerate triangle in R2 (this was precisely the condition in Lemma 4). For larger
matrices, however, the conditions are less intuitive. A key object for determining whether or not
and n× n matrix A is a nondegenerate square distance matrix is the Cayley-Menger determinant:

cm(A)
def
= det

[
0 1T

1 A

]
,

where 1 ∈ Rn is the column vector of all ones. If A is a square distance matrix, then cm(A) is
proportional to the square volume of the simplex obtained as the convex hull of the points {pi}
(see Lemma 11 in Appendix A). In particular, cm(A) 6= 0 (and hence |cm(A)| > 0) if A is a
nondegenerate square distance matrix, while cm(A) = 0 for any other (degenerate) square distance
matrix.

Proposition 1. Let A be a symmetric n×n matrix with zero diagonal, and ε > 0. Then the matrix

−11T + εA

is stable if and only if the following two conditions hold:

(a) A is a nondegenerate square distance matrix, and

(b) 0 < ε < |cm(A)/det(A)|.

Proposition 1 is essentially a special case of Theorem 4 – our core technical result – whose statement
and proof are given in Section 4.1. The proof of Proposition 1 is then given in Section 4.2. To
our knowledge, Theorem 4 is novel and connections to distance geometry have not previously been
used in the study of neural networks or, more generally, the stability of fixed points in systems of
ODEs.

The ratio |cm(A)/ det(A)| has a simple geometric interpretation in cases where condition (a) of
Proposition 1 holds. Namely, if A is an n× n nondegenerate square distance matrix (with n > 1),

then |cm(A)/ det(A)| = 1

2ρ2
, where ρ is the radius of the unique sphere circumscribed on any set of

points in Euclidean space that can be used to generate A (see Remark 1 in Appendix C). Moreover,
since |cm(A)| > 0 whenever A is a nondegenerate square distance matrix, there always exists an
ε small enough to satisfy the second condition, provided the first condition holds. Combining
Proposition 1 together with Cauchy’s interlacing theorem yields:

Lemma 5. If A is an n× n nondegenerate square distance matrix, then

0 <

∣∣∣∣ cm(Aσ)

det(Aσ)

∣∣∣∣ ≤ ∣∣∣∣ cm(Aτ )

det(Aτ )

∣∣∣∣ if τ ⊆ σ ⊆ [n].

Given any symmetric n× n matrix A with zero diagonal, and ε > 0, it is now natural to define
the following simplicial complexes:

geomε(A)
def
= {σ ⊆ [n] | Aσ a nondeg. sq. dist. matrix and

∣∣∣∣ cm(Aσ)

det(Aσ)

∣∣∣∣ > ε}, and

geom(A)
def
= lim

ε→0
geomε(A) = {σ ⊆ [n] | Aσ a nondeg. sq. dist. matrix}.

10



Lemma 5 implies that geomε(A) and geom(A) are simplicial complexes. Note that if σ = {i}, we
have Aσ = [0]. In this case, {i} ∈ geom(A) and {i} ∈ geomε(A) for all ε > 0, by our convention.
Also, geomε(A) = geom(A) if and only if 0 < ε < δ(A), where

δ(A)
def
= min

{∣∣∣∣ cm(Aσ)

det(Aσ)

∣∣∣∣}
σ∈geom(A)

.

If A is a nondegenerate square distance matrix, then δ(A) = |cm(A)/ det(A)|.
To state our main result, Theorem 2, we also need a few standard notions from graph theory.

A clique in a graph G is a subset of vertices that is all-to-all connected.6 The clique complex of G,
denoted X(G), is the set of all cliques in G; this is a simplicial complex for any G. Here we are
primarily interested in the graph G(C), the co-firing graph of a set of binary patterns C ⊂ 2[n].

Theorem 2. Let S be an n×n synaptic strength matrix satisfying Sij = Sji ≥ 0 and Sii = 0 for all
i, j ∈ [n], and fix ε > 0. Given a set set of prescribed patterns C ⊂ 2[n], let W be the threshold-linear
network (equation (2)) obtained from C using S and ε in the Encoding Rule. Then,

P(W ) = geomε(S) ∩X(G(C)).

If we further assume that ε < δ(S), then P(W ) = geom(S) ∩X(G(C)).
In other words, a binary pattern σ ⊂ [n] is a permitted set of W if and only if Sσ is a nonde-

generate square distance matrix, ε < |cm(Sσ)/det(Sσ)|, and σ is a clique in the graph G(C).

The proof is given in Section 4.2. Theorem 2 answers Question 2, and makes explicit how P(W )
depends on S, ε, and C. One way of interpreting this result is to observe that a binary pattern σ ∈ C
is successfully stored as a permitted set of W if and only if the excitatory connections between the
neurons in σ, given by S̃σ = εSσ, are geometrically balanced – i.e.,

• S̃σ is a nondegenerate square distance matrix, and

• |det(S̃σ)| < |cm(S̃σ)|.

The first condition ensures a certain balance among the relative strengths of excitatory connections
in the clique σ, while the second condition bounds the overall excitation strengths relative to
inhibition (which has been normalized to −1 in the Encoding Rule).

We next turn to an example that illustrates how this theorem can be used to solve the NE
problem explicitly for a small binary neural code. In the following section, Section 3.4, we address
more generally the question of what neural codes can be encoded exactly, and what is the structure
of spurious states when a code is encoded inexactly.

3.3 An example

Suppose C is a binary neural code on n = 6 neurons, consisting of maximal patterns

{110100, 101010, 011001, 000111},

corresponding to subsets {124}, {135}, {236}, and {456}, together with all subpatterns (smaller
subsets) of the maximal ones, thus ensuring that C is a simplicial complex. This is depicted in
Figure 2A, using a standard method of illustrating simplicial complexes geometrically. The four
maximal patterns correspond to the shaded triangles, while patterns with only one or two co-active
neurons comprise the vertices and edges of the co-firing graph G(C).7

6For recent work encoding cliques in Hopfield networks, see [25].
7In this example, there are no patterns having four or more neurons, but these would be illustrated by tetrahedra

and other higher-order simplices.
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Figure 2: An example on n = 6 neurons. (A) The simplicial complex C consists of 4 two-dimensional facets
(shaded triangles). The graph G(C) contains the 6 vertices and 12 depicted edges; these are also included
in C, so the size of the code is |C| = 22. (B) A configuration of points p1, ..., p6 ∈ R2 that can be used to
exactly encode C. Lines indicate triples of points that are collinear. From this configuration we construct
a 6 × 6 synaptic strength matrix S, with Sij = ‖pi − pj‖2, and choose 0 < ε < δ(S). The geometry of the
configuration implies that geom(S) does not contain any patterns of size greater than 3, nor does it contain
the triples {123}, {145}, {246}, or {356}. It is straightforward to check that C = geom(S) ∩X(G(C)). (C)
Another solution for exactly encoding C is provided by choosing the matrix S with Sij given by the labeled
edges in the figure. The square distances in Sij were chosen to satisfy the triangle inequalities for shaded
triangles, but to violoate them for empty triangles.

Without Theorem 2, it is difficult to find a network W that encodes C exactly – i.e., such that
P(W ) = C. This is in part because each connection strength Wij belongs to two 3 × 3 matrices
that must satisfy opposite stability properties. For example, the subset {124} must be a permitted
set of P(W ) while {123} is not permitted, imposing competing conditions on the entry W12. In
general, it may be difficult to “patch” together local ad-hoc solutions to obtain a single matrix W
having all the desired stability properties.

Using Theorem 2, on the other hand, we can easily construct many exact solutions for encoding
C as a set of permitted sets P(W ). The main idea is as follows. Consider the Encoding Rule
with synaptic strength matrix S and 0 < ε < δ(S). Applying the rule to C yields a network with
permitted sets

P(W ) = geom(S) ∩X(G(C)).

The goal is thus to find S so that C = geom(S) ∩ X(G(C)). From the co-firing graph G(C), we
see that the clique complex X(G(C)) contains all triangles depicted in Figure 2A, including the
“empty” (non-shaded) triangles: {123}, {145}, {246}, and {356}. The matrix S must therefore
be chosen so that these triples are not in geom(S), while ensuring that {124}, {135}, {236}, and
{456} are included. In other words, to obtain an exact solution we must find S such that Sσ is
a nondegenerate square distance matrix for each σ ∈ {{124}, {135}, {236}, {456}}, but not for σ
corresponding to an empty triangle.

Solution 1. Consider the configuration of points p1, ..., p6 ∈ R2 in Figure 2B, and let S be the 6×6
square distance matrix with entries Sij = ‖pi−pj‖2. Because the points lie in the plane, the largest
principal submatrices of S that can possibly be nondegenerate square distance matrices are 3× 3.
This means geom(S) has no elements of size greater than 3. Because no two points have the same
position, geom(S) contains the complete graph with all edges (ij). It remains only to determine
which triples are in geom(S). The only 3 × 3 principal submatrices of S that are nondegenerate
square distance matrices correspond to triples of points in general position. From Figure 2B (left) we
see that geom(S) includes all triples except {123}, {145}, {246}, and {356}, since these correspond to
triples of points that are collinear (and thus yield degenerate square distance matrices). Although
C 6= X(G(C)) and C 6= geom(S), it is now easy to check that C = geom(S) ∩ X(G(C)). Using
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Theorem 2, we can conclude that C = P(W ) exactly, where W is the network obtained using the
Encoding Rule with this S and any 0 < ε < δ(S).

Solution 2. Let S be the symmetric matrix defined by the following equations for i < j: Sij = 1
if i = 1; S24 = S35 = 1; S23 = S26 = S36 = 32; and Sij = 52 if i = 4 or 5. Here we’ve only
assigned values corresponding to each edge in G(C) (see Figure 2C); remaining entries may be
chosen arbitrarily, as they play no role after we intersect geom(S) ∩X(G(C)). Note that S is not
a square distance matrix at all, not even a degenerate one. Nevertheless, Sσ is a nondegenerate
square distance matrix for σ ∈ {{124}, {135}, {236}, {456}}, because the distances correspond to
nondegenerate triangles. For example, the triple {124} has pairwise distances (1, 1, 1), which satisfy
the triangle inequality. In contrast, the triple {123} has pairwise distances (1, 1, 3), which violate the
triangle inequality; hence, S{123} is not a square distance matrix. Similarly, the triangle inequality
is violated for each of {145}, {246}, and {356}. It is straightforward to check that, among all cliques
of X(G(C)), only the desired patterns in C are also elements of geom(S), so C = geom(S)∩X(G(C)).

3.4 Binary neural codes that can be encoded exactly

Question 3: What binary neural codes can be encoded exactly as C = P(W ) for a symmetric
threshold-linear network W?

Question 4: If encoding is not exact, what is the structure of spurious states?

From Theorem 2, it is clear that if the set of patterns to be encoded happens to be of the
form C = geom(S)∩X(G(C)), then C can be exactly encoded as P(W ) for small enough ε and the
same choice of S. Similarly, if the set of patterns has the form C = geomε(S) ∩X(G(C)), then C
can be exactly encoded as P(W ) using our Encoding Rule (Section 3.1) with the same S and ε.
Can any other sets of binary patterns be encoded exactly via symmetric threshold-linear networks?
The next theorem assures us that the answer is “No.” This means that by focusing attention on
networks constructed using our Encoding Rule, we are not missing any binary neural codes that
could arise as P(W ) for other symmetric networks.

Theorem 3. Let C ⊂ 2[n] be a binary neural code. There exists a symmetric threshold-linear
network W such that C = P(W ) if and only if C is a simplicial complex of the form

C = geomε(S) ∩X(G(C)), (3)

for some ε > 0 and S an n × n matrix satisfying Sij = Sji ≥ 0 and Sii = 0 for all i, j ∈ [n].
Moreover, W can be constructed using the Encoding Rule on C, using this choice of S and ε.

The proof is given in Section 4.2. Theorem 3 allows us to make a preliminary classification of binary
neural codes that can be encoded exactly, giving a partial answer to Question 3. To do this, it is
useful to distinguish three different types of S matrices that can be used in the Encoding Rule.

• universal S. We say that a matrix S is “universal” if it is an n × n nondegenerate square
distance matrix. In particular, any principal submatrix Sσ is also a nondegenerate square
distance matrix, so if we let 0 < ε < δ(S) = |cm(S)/ det(S)| then any σ ∈ C has corresponding
excitatory connections εSσ that are geometrically balanced (see Section 3.2). Furthermore,
geomε(S) = geom(S) = 2[n], and hence geomε(S)∩X(G(C)) = X(G(C)), irrespective of S. It
follows that if C = X(G) for any graph G, then C can be exactly encoded using any universal
S and any 0 < ε < δ(S) in the Encoding Rule.8 Moreover, since C ⊂ X(G(C)) for any code

8Note that if C = X(G) is any clique complex with underlying graphG, then we automatically know thatG(C) = G,
and hence X(G(C)) = X(G) = C.
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type of C that can be exactly C that can be spurious states
S matrix encoded: C = P(W ) encoded: C ⊂ P(W ) P(W ) \ C

universal S any clique complex all codes cliques of G(C)
X(G) that are not in C

k-sparse any k-skeleton Xk(G) all k-sparse codes cliques of G(C) of size ≤ k,
universal S of a clique complex (|σ| ≤ k for all σ ∈ C) that are not in C

specially- C is of the form depends on S cliques of G(C) that are
tuned S geom(S) ∩X(G) in geom(S) but not in C

Table 2: Classification of S matrices, together with encodable codes and spurious states. Note: the above
assumes using the Encoding Rule on the code C with synaptic strength matrix S and 0 < ε < δ(S).
Additional codes may be exactly encodable for other choices of ε.

C, it follows that any code can be encoded – albeit inexactly – using a universal S in the
Encoding Rule. Finally, the spurious states P(W ) \ C can be completely understood: they
consist of all cliques in the graph G(C) that are not elements of C.

• k-sparse universal S. We say that a matrix S is “k-sparse universal” if it is a (degenerate)
n × n square distance matrix for a configuration of n points that are in general position9 in
Rk, for k < n−1 (otherwise S is universal). Let 0 < ε < δ(S). Then, geomε(S) = geom(S) =
{σ ⊂ [n] | |σ| ≤ k + 1}; this is the k-skeleton10 of the complete simplicial complex 2[n]. This
implies that geomε(S)∩X(G(C)) = Xk(G(C)), where Xk denotes the k-skeleton of the clique
complex X:

Xk(G(C)) def
= {σ ∈ X(G(C)) | |σ| ≤ k + 1}.

It follows that any k-skeleton of a clique complex, C = Xk(G) for any graph G, can be encoded
exactly. Furthermore, since any k-sparse code C satisfies C ⊆ Xk(G(C)), any k-sparse code
can be encoded using this type of S matrix in the Encoding Rule. The spurious states in this
case are cliques of G(C) that have size no greater than k.

• specially-tuned S. We will refer to all S matrices that do not fall into the universal or k-
sparse universal categories as “specially-tuned.” In this case, we cannot say anything general
about the codes that are exactly encodable without further knowledge about S. If we let
0 < ε < δ(S), as above, Theorem 3 tells us that the binary codes C can be encoded exactly
(via the Encoding Rule) are of the form C = geom(S) ∩ X(G(C)). Unlike in the universal
and k-sparse universal cases, the encodable codes depend on the precise form of S. Note that
the example code C discussed in Section 3.3 was not a clique complex nor the k-skeleton of
a clique complex. Nevertheless, it could be encoded exactly for the “specially-tuned” choices
of S exhibited in Solution 1 and Solution 2 (see Figure 2B,C).

9This guarantees that all k × k principal submatrices of S are nondegenerate square distance matrices.
10The k-skeleton ∆k of a simplicial complex ∆ is obtained by restricting to faces of dimension ≤ k, which corre-

sponds to keeping only elements σ ⊂ ∆ of size |σ| ≤ k + 1. Note that ∆k is also a simplicial complex.
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A summary of what codes are encodable and exactly encodable for each type of S matrix is shown
in Table 2, under the assumption that 0 < ε < δ(S) in the Encoding Rule.

We end this section with several technical Remarks, along with some open questions for further
mathematical investigation.

Remarks

1. Fine-tuning? It is worth noting here that solutions obtained by choosing S to be a degenerate
square distance matrix, as in the k-sparse universal S or the specially-tuned S of Figure 2B, are not
as fine-tuned as they might first appear. This is because the ratio |cm(Sσ)/ det(Sσ)| approaches
zero as subsets of points {pi}i∈σ used to generate S become approximately degenerate, allowing
elements to be eliminated from geomε(S) because of violations to condition (b) in Proposition 1,
even if condition (a) is not quite violated. This means the appropriate matrices do not have
to be exactly degenerate, but only approximately degenerate (see Remark 2 in Appendix C). In
particular, the collinear points in Figure 2B need not be exactly collinear for Solution 1 to hold.

2. Controlling spurious cliques in sparse codes. If the set of patterns C ⊂ 2[n] to be encoded
is a k-sparse code, i.e. if |σ| ≤ k < n for all σ ∈ C, then any clique of size k + 1 or greater in G(C)
is potentially a spurious clique. We can eliminate these spurious states, however, by choosing a
k-sparse universal S in the Encoding Rule. This guarantees that geomε(S) does not include any
element of size greater than k, and hence P(W ) ⊆ Xk−1(G(C)).

3. Uniform S. To use truly binary synapses, we can choose S in the Encoding Rule to be the
uniform synaptic strength matrix having Sij = 1 for i 6= j and Sii = 0 for all i ∈ [n]. In fact, S is a
nondegenerate square distance matrix, so this is a special case of a “universal” S. Here δ(S) turns
out to have a very simple form:

δ(S) = |cm(S)/ det(S)| = n

n− 1
.

Similarly, any k×k principal submatrix Sσ, with |σ| = k, satisfies δ(Sσ) =
k

k − 1
. This implies that

geomε(S) is the k-skeleton of the complete simplicial complex on n vertices if and only if

k + 2

k + 1
< ε <

k + 1

k
.

It follows that for this choice of S and ε (note that ε > δ(S)), the Encoding Rule yields P(W ) =
Xk(G(C)), just as in the case of k-sparse universal S. If, on the other hand, we choose 0 < ε ≤
1 < δ(S), then geomε(S) = geom(S) = 2[n], then we have the usual properties for universal S (c.f.
[47]).

4. Matroid complexes. In the special case where S is a square distance matrix, geom(S) is
a representable matroid complex – i.e., it is the independent set complex of a real-representable
matroid [41]. Moreover, all representable matroid complexes are of this form, and can thus be
encoded exactly. To see this, take any code C having G(C) = Kn, the complete graph on n vertices.
Then X(G(C)) = 2[n], and the Encoding Rule (for ε < δ(S)) yields

P(W ) = geom(S).

Note that although the example code C of Section 3.3 is not a matroid complex (in particular, it
violates the independent set exchange property [41]), geom(S) for the matrix S given in Solution 1
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(Figure 2B) is a representable matroid complex, showing that C is the intersection of a representable
matroid complex and the clique complex X(G(C)).

5. Open questions. Can a combinatorial description be found for all simplicial complexes that
are of the form geomε(S) or geom(S), where S and ε satisfy the conditions in Theorem 3? For such
complexes, can the appropriate S and ε be obtained constructively? Does every simplicial complex
C admit an exact solution to the NE problem via a symmetric network W? I.e., is every simplicial
complex of the form geomε(S) ∩X(G(C)), as in equation (3)? If not, what are the obstructions?
More generally, does every simplicial complex admit an exact solution (not necessarily symmetric)
to the NE problem? We have seen that all matroid complexes for representable matroids can be
exactly encoded as geom(S). Can non-representable matroids also be exactly encoded?

3.5 Spurious states and “natural” codes

Although it may be possible, as in the example of Section 3.3, to precisely tune the synaptic
strength matrix S to exactly encode a particular neural code, this is somewhat contrary to the
spirit of the Encoding Rule, which assumes S to be an intrinsic property of the underlying network.
Fortunately, as seen in Section 3.4, Theorem 2 implies that certain “universal” choices of S enable
any C ⊂ 2[n] to be encoded. The price to pay, however, is the emergence of spurious states.

Recall that spurious states are permitted sets that arise in P(W ) that were not in the prescribed
list C of binary patterns to be encoded. Theorem 2 immediately implies that all spurious states lie
in X(G(C)) – i.e., every spurious state is a clique of the co-firing graph G(C). We can divide them
into two types:

• Type 1: spurious subsets. These are permitted sets σ ∈ P(W ) \ C that are subsets of
patterns in C. Note that if C is a simplicial complex, there will not be any spurious states of
this type. On the other hand, if C is not a simplicial complex, then type 1 spurious states are
guaranteed to be present for any symmetric encoding rule, because P(W ) = stab(−D +W )
is a simplicial complex for symmetric W (Lemma 2).

• Type 2: spurious cliques. These are permitted sets σ ∈ P(W ) \ C that are not of the first
type. Note that, technically, the type 1 spurious states are also cliques in G(C), but we will
use the term “spurious clique” to refer only to spurious states that are not spurious subsets.

Perhaps surprisingly, some common neural codes have the property that the full set of patterns
to be encoded naturally contains a large fraction of the cliques in the code’s co-firing graph. In such
cases, C ≈ X(G(C)), or C ≈ Xk(G(C)). These neural codes therefore have very few spurious states
when encoded using a universal or k-sparse universal S, even though S has not been specially-tuned
for the given code. We will refer to these as natural codes for symmetric threshold-linear networks,
because they have two important properties that make them particularly fitting for these networks:

P1. Natural codes can be encoded exactly or nearly-exactly, using any universal or k-sparse uni-
versal matrix S in the Encoding Rule, and

P2. Natural codes can be fully encoded following presentation of only a small (randomly-sampled)
fraction of the patterns in the code.

In other words, not only can natural codes be generically encoded with very few spurious states,
but they can also be encoded from a highly undersampled set of codewords. This is because the
network naturally “fills in” the missing elements via spurious states that emerge after encoding only
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part of the code. In the next two sections, we will explain why RF codes are “natural” in this sense,
and illustrate the above two properties with a concrete application of encoding two-dimensional
PF codes, an important example of RF codes.

3.6 Receptive field codes are natural codes

RF codes are binary neural codes consisting of activity patterns of populations of neurons that fire
according to receptive fields.11 Abstractly, a receptive field is a map fi : S → R≥0 from a space of
stimuli S to the average firing rate fi(s) of a single neuron i in response to each stimulus s ∈ S.
Receptive fields are computed from experimental data by correlating neural responses to external
stimuli. We follow a common abuse of language, where both the map and its support (i.e., the
subset Ui ⊂ S where fi takes on strictly positive values) are referred to as “receptive fields.” If
the stimulus space is d-dimensional, i.e. S ⊂ Rd, we say that the receptive fields have dimension
d. The paradigmatic examples of neurons with receptive fields are orientation-selective neurons in
visual cortex [9] and hippocampal place cells [35]. Orientation-selective neurons have tuning curves
that reflect a neuron’s preference for a particular angle. Place cells are neurons that have place
fields [38, 39]; i.e., each neuron has a preferred (convex) region of the animal’s physical environment
where it has a high firing rate. Both tuning curves and place fields are examples of low-dimensional
receptive fields, having typical dimension d = 1 or d = 2.

1 4

2

3

5

0  0  1  0  1  1codeword

activity pattern

6

Figure 3: Two-dimensional receptive fields
for 6 neurons. The RF code C has a code-
word for each overlap region. For exam-
ple, the shaded region corresponds to the
binary pattern 001011; equivalently, we de-
note it as σ = {3, 5, 6} ∈ C. The corre-
sponding coarse RF code also includes all
subsets, such as τ = {3, 5}, even if they are
not part of the original RF code.

The elements of a RF code C correspond to subsets of
neurons that may be co-activated in response to a stim-
ulus s ∈ Rd (see Figure 3). Here we define two variations
of this notion, which we refer to as RF codes and coarse
RF codes.

Definition. Let {U1, ..., Un} be a collection of convex
open sets in Rd, where each Ui is the receptive field cor-
responding to the ith neuron. To such a set of receptive
fields, we associate a d-dimensional RF code C, defined as
follows: for each σ ∈ 2[n],

σ ∈ C if and only if
⋂
i∈σ

Ui \
⋃
j /∈σ

Uj 6= ∅.

This definition was previously introduced in [18, 19]. A
coarse RF code is obtained from a RF code by including
all subsets of codewords, so that for each σ ∈ 2[n],

σ ∈ C if and only if
⋂
i∈σ

Ui 6= ∅.

Note that the codeword σ = {3, 5, 6} in Figure 3
corresponds to stimuli in the shaded region, and not to
the full intersection U3 ∩ U5 ∩ U6. Moreover, the subset
τ = {3, 5} ⊂ σ is not an element of the RF code, since U3 ∩U5 ⊂ U6. Nevertheless, it often makes
sense to also consider such subsets as codewords; for example, the cofiring of neurons 3 and 5 may
still be observed, as neuron 6 may fail to fire even if the stimulus is in its receptive field. This is
captured by the corresponding coarse RF code.

11In the vision literature, the term “receptive field” is reserved for subsets of the visual field; we use the term in a
more general sense, applicable to any modality.
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Coarse RF codes carry less detailed information about the underlying stimulus space [17, 19],
but turn out to be more “natural” in the context of symmetric threshold-linear networks because
they have the structure of a simplicial complex.12 This implies that coarse RF codes do not yield
any Type 1 spurious states – the spurious subsets – when encoded in a network using the Encoding
Rule. Furthermore, both RF codes and coarse RF codes with low-dimensional receptive fields
contain surprisingly few Type 2 spurious states – the spurious cliques. This follows from Helly’s
theorem, a classical theorem in convex geometry:

Helly’s theorem [8]. Suppose that U1, ..., Uk is a finite collection of convex subsets of Rd, for
d < k. If the intersection of any d+ 1 of these sets is nonempty, then the full intersection

⋂k
i=1 Ui

is also nonempty.

To see the implications of Helly’s theorem for RF codes, we define the notion of Helly completion.

Definition. Let ∆ be a simplicial complex on n vertices, and let ∆d = {σ ∈ ∆ | |σ| ≤ d + 1}
denote its d-skeleton. The Helly completion is the largest simplicial complex, ∆̄d, on n vertices that
has ∆d as its d-skeleton.

In other words, the Helly completion of a d-dimensional simplicial complex ∆d is obtained by adding
in all higher-dimensional faces in a way that is consistent with the existing lower-dimesional faces. In
particular, the Helly completion of any graph G is the clique complex X(G). For a two-dimensional
simplicial complex, ∆2, the Helly completion includes only cliques of the underlying graph G(∆2)
that are consistent with ∆2. For example, the Helly completion of the code in Section 3.3 does
not include the 3-cliques corresponding to empty (non-shaded) triangles in Figure 3A. With this
notion, Helly’s theorem can now be reformulated as:

Lemma 6. Let C be a coarse d-dimensional RF code, corresponding to a set of place fields {U1, ..., Un}
where each Ui is a convex open set in Rd. Then C is the Helly completion of its own d-skeleton:
C = C̄d.

This lemma indicates that low-dimensional RF codes – whether coarse or not – have a relatively
small number of spurious cliques, since most cliques in X(G(C)) are also in the Helly completion
C̄d for small d. In particular, it implies that coarse RF codes of dimensions d = 1 and d = 2 are
very natural codes for symmetric threshold-linear networks.

Corollary 2. If C is a coarse one-dimensional RF code, then it is a clique complex: C = C̄1 =
X(G(C)). Therefore, C can be exactly encoded using any universal S in the Encoding Rule.

Corollary 3. If C is a coarse two-dimensional RF code, then it is the Helly completion of its own
2-skeleton, C = C̄2, which can be obtained from knowledge of all pairwise and triple intersections of
receptive fields.

For coarse two-dimensional RF codes, the only possible spurious cliques are therefore spurious
triples and the larger cliques of G(C) that contain them. The spurious triples emerge when three
receptive fields Ui, Uj and Uk have the property that each pair intersect, but Ui ∩Uj ∩Uk = ∅. For
generic arrangements of receptive fields, this is relatively rare, allowing these codes to be encoded
nearly exactly using any universal S in the Encoding Rule. In the next section, we illustrate this
phenomenon in the case of two-dimensional place field codes.

12In topology, this simplicial complex is called the nerve of the cover {U1, . . . , Un} (see [13, 17]).
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3.7 Encoding sparse place field codes in threshold-linear networks

As seen in the last section, Helly’s theorem sharply limits the number of spurious cliques that
result from encoding low-dimensional RF codes. Here we illustrate this phenomenon explicitly in
the case of sparse place field codes (PF codes). In particular, we find that PF codes can be encoded
nearly exactly from a very small, randomly selected sample of patterns. The near-exact encoding
of PF codes from highly undersampled data shows that they are “natural” codes for symmetric
threshold-linear networks, as defined in Section 3.5.

PF codes. Let {U1, ..., Un} be a collection of convex open sets in Rd, where each Ui is the place field
corresponding to the ith neuron [38, 39]. To such a set of place fields we associate a d-dimensional
PF code, C, defined as follows: for each σ ∈ 2[n], σ ∈ C if and only if the intersection

⋂
i∈σ Ui is

nonempty.
Note that in this definition, PF codes are coarse RF codes. PF codes are experimentally observed

in recordings of neural activity in rodent hippocampus [35]. The elements of C correspond to subsets
of neurons that may be co-activated as the animal’s trajectory passes through a corresponding set
of overlapping place fields. Typically d = 1 or d = 2, corresponding to the standard “linear track”
and “open field” environments [36]; it has also been hypothesized that some animals possess d = 3
place fields [46].

It is clear from Corollary 2 above that one-dimensional PF codes can be encoded exactly – i.e.,
without any spurious states – using any universal S matrix in the Encoding Rule. Two-dimensional
PF codes have no Type 1 spurious states, but may have Type 2 spurious cliques. For sparse PF
codes, however, the spurious cliques can be further restricted (beyond what is expected from Helly’s
theorem) by choosing a k-sparse universal S.

Near-exact encoding of sparse PF codes. Consider a two-dimensional PF code C that is
k-sparse, so that no more than k neurons can co-fire in a single pattern – even if there are higher-
order overlaps of place fields. Experimental evidence suggests that the fraction of active neurons is
typically on the order of 5− 10% [6], so we make the conservative choice of k = n/10 (our results
improve with smaller k). In what follows, S was chosen to be k-sparse universal and ε so that
0 < ε < δ(S), in order to control spurious cliques of size greater than k. We also assume the
worst-case-scenario of P(W ) = Xk−1(G(C)), providing an upper bound on the number of spurious
cliques resulting from our Encoding Rule. What fraction of the stored patterns are spurious? This
can be quantified by the following error probability,

Perror
def
=
|P(W ) \ C|
|P(W )|

=
|Xk−1(G(C))| − |C|
|Xk−1(G(C))|

,

which assumes all permitted sets are equally likely to be retrieved from among the stored patterns
in P(W ). For exact encoding, Perror = 0, while large numbers of spurious states will push Perror

close to 1.
To investigate how “exactly” two-dimensional PF codes are encoded, we generated random k-

sparse PF codes with circular place fields, n = 80-100 neurons, and k = n/10 (see Appendix D).
Because experimentally observed place fields do not have precise boundaries, we also generated
“jittered” codes, where spurious triples were eliminated from the 2-skeleton of the code if they did
not survive after enlarging the place field radii from r0 to r1 by a jitter ratio, (r1 − r0)/r0. This
has the effect of eliminating spurious cliques that are unlikely to be observed in neural activity, as
they correspond to very small regions in the underlying environment. For each code and each jitter
ratio (up to ∼ 0.1), we computed Perror using the formula above. Even without jitter, the error
probability was small, and Perror decreased quickly to values near zero for 10% jitter (Figure 4A).
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Figure 4: PF encoding is near-exact, and can be achieved by presenting a small fraction of patterns. (A)
Perror was computed for randomly generated k-sparse PF codes having n = 80, 90 and 100 neurons and
k = n/10. For each jitter ratio, the average value of Perror over 100 codes is shown. (B) For n = 90, 100 and
110 neurons, k-sparse PF codes with jitter ratio 0.1 were randomly generated and then randomly subsampled
to contain a small fraction (≤ 5%) of the total number of patterns. After applying the Encoding Rule to
the subsampled code, the number of encoded cliques was computed. In each case, the fraction of encoded
cliques for the subsampled code (as compared to the full PF code) was averaged over 10 codes. Cliques were
counted using Cliquer [37], together with custom-made Matlab software.

Encoding full PF codes from highly undersampled sets of patterns. To investigate what
fraction of patterns is needed to encode a two-dimensional PF code using the Encoding Rule, we
generated randomly subsampled codes from k-sparse PF codes. We then computed the number
of patterns that would be encoded by a network if a subsampled code was presented. Perhaps
surprisingly, network codes obtained from highly subsampled PF codes (having only 1-5% of the
patterns) are nearly identical to those obtained from full PF codes (Figure 4B). This is because
large numbers of “spurious” states emerge when encoding subsampled codes, but most correspond to
patterns in the full code. The spurious states of subsampled PF codes can therefore be advantageous,
allowing networks to quickly encode full PF codes from only a small fraction of the patterns.

The results summarized in Figure 4 confirm the fact that sparse PF codes are natural codes,
as they satisfy both properties P1 and P2 outlined in Section 3.5. These codes can be encoded
nearly exactly because they have very few spurious states. The spurious cliques are limited by two
factors: the implications of Helly’s theorem (Section 3.6) and their sparsity, enabling the choice of
a k-sparse universal S that automatically eliminates spurious cliques of size greater than k.

4 Proofs

To the best of our knowledge, all proofs in this section are original, as are the results presented
in Theorems 2, 3, and 4. Theorem 4 is our core technical result, which we state and prove in
Section 4.1. It appears to be closely related to some relatively recent results in convex geometry,
involving correlation matrices and the geometry of the “elliptope” [21]. Our proof, however, relies
only on classical distance geometry and well-known facts about stable symmetric matrices; these
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are summarized in Appendix A. The key new insight that allows us to connect stability of matrices
of the form −11T + εA to Cayley-Menger determinants is Lemma 7. In Section 4.2 we give the
proofs of Proposition 1, Theorem 2 and Theorem 3, which all rely on Theorem 4.

4.1 Statement of Theorem 4 and its proof

The statement of Theorem 4 uses the following definition and some new notation.

Definition. A Hebbian matrix A is an n × n matrix satisfying Aij = Aji ≥ 0 and Aii = 0 for all
i, j ∈ [n].

The name reflects the fact that these are precisely the types of matrices that arise when synaptic
weights are modified by a Hebbian learning rule. We also need the notation,

Rn×
def
= {v ∈ Rn | vi 6= 0 for all i ∈ [n]}

for the set of vectors with all nonzero entries. Note that for v ∈ Rn×, −vvT is a symmetric n × n
rank 1 matrix with strictly negative diagonal. Next, given any v ∈ Rn and any n× n matrix A,

Av
def
= diag(v)Adiag(v)

denotes the matrix with entries Avij = vivjAij . We are now ready to state Theorem 4.

Theorem 4. Let A be a Hebbian matrix and ε > 0. For v ∈ Rn×, consider the perturbed matrix

M = −vvT + εAv.

The following are equivalent:

1. A is a nondegenerate square distance matrix.

2. There exists an ε > 0 such that M is stable.

3. There exists a δ > 0 such that M is stable for all 0 < ε < δ.

4. 0 < −cm(A)

detA
<∞; and M is stable if and only if 0 < ε < −cm(A)

detA
.

The rest of this section is devoted to proving Theorem 4. A cornerstone of the proof is the
following lemma, which allows us to connect perturbations of rank 1 matrices to Cayley-Menger
determinants.

Lemma 7 (determinant lemma). Let u, v ∈ Rn. For any real-valued n×n matrix A and any t ∈ R,

det(−uvT + t diag(u)Adiag(v)) = det(diag(u) diag(v))
(
tn detA+ tn−1cm(A)

)
.

In particular, if u = v ∈ Rn× and t > 0, then

sgn(det(−vvT + tAv)) = sgn (t detA+ cm(A)) ,

where sgn : R→ {±1, 0} is the sign function. Moreover, taking u = v = 1 ∈ Rn yields:

det(−11T + tA) = tn detA+ tn−1cm(A).
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Proof of Lemma 7. Note that for any n× n matrix A, t ∈ R, and u, v ∈ Rn, we have

det(−uvT + tdiag(u)Adiag(v)) = det(diag(u) diag(v)) det(−11T + tA),

where −11T is as usual the rank 1 matrix of all −1s. It thus suffices to show that

det(−11T + tA) = tn detA+ tn−1cm(A),

where cm(A) is the Cayley-Menger determinant of A.
Let w, z ∈ Rn, and let Q be any n× n matrix. We have

det

[
1 zT

w Q

]
= det(Q− wzT ),

where we have used the well-known formula for computing the determinant of a 2×2 block matrix.13

On the other hand, the usual cofactor expansion along the first row gives

det

[
1 zT

w Q

]
= det(Q) + det

[
0 zT

w Q

]
.

Therefore,

det(−wzT +Q) = det(Q) + det

[
0 zT

w Q

]
.

In particular, taking w = z = 1 ∈ Rn (the column vector of all ones) and Q = tA, we have
det(−11T + tA) = det(tA) + cm(tA) = tn detA+ tn−1cm(A).

Finally, to prove Theorem 4 we will need the following technical lemma.

Lemma 8. Fix v ∈ Rn×, and let A be an n×n Hebbian matrix. If (−1)ncm(A) ≤ 0, then −vvT +tAv

is not stable for any t > 0. In particular, if there exists a t > 0 such that −vvT + tAv is stable,
then (−1)ncm(A) > 0.

For its proof, we will need a simple convexity result.

Lemma 9. Let M,N be real symmetric n × n matrices so that M is negative semidefinite (i.e.,
all eigenvalues are ≤ 0) and N is strictly negative definite (i.e., stable, with all eigenvalues < 0).
Then tM + (1− t)N is strictly negative definite (i.e., stable) for all 0 ≤ t < 1.

Proof. M and N satisfy xTMx ≤ 0 and xTNx < 0 for all x ∈ Rn, so we have xT (tM+(1−t)N)x < 0
for all nonzero x ∈ Rn if 0 ≤ t < 1.

The proof of Lemma 8 relies on Lemmas 7 and 9, which we have just proven, and also on some
well-known results from classical distance geometry that are collected in Appendix A. These include
facts about stable symmetric matrices (Cauchy’s interlacing theorem, Corollary 6, and Lemma 10)
as well as facts about square distance matrices (Lemma 12, Proposition 2, and Corollary 8). These
facts are also used in the proof of Theorem 4.

13The formula det

[
A B
C D

]
= det(A) det(D−CA−1B) applies so long as A is invertible. It follows from observing

that

[
I 0

−CA−1 I

] [
A B
C D

]
=

[
A B
0 −CA−1B +D

]
.
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Proof of Lemma 8. Since A is symmetric, so areAv and−vvT+tAv for any t. Hence, if any principal
submatrix of −vvT + tAv is unstable then −vvT + tAv is also unstable, by Corollary 6. Therefore,
without loss of generality we can assume (−1)|σ|cm(Aσ) > 0 for all proper principal submatrices
Aσ, with |σ| < n (otherwise, we use this argument on a smallest principal submatrix such that
(−1)|σ|cm(Aσ) ≤ 0). By Lemma 12, this implies that Aσ is a nondegenerate square distance matrix
for all σ such that |σ| < n, and so we know by Proposition 2 that (−1)|σ| detAσ < 0 and that each
Aσ such that 1 < |σ| < n has one positive eigenvalue and all other eigenvalues negative.

We prove the lemma by contradiction. Suppose there exists a t0 > 0 such that −vvT + t0A
v is

stable. Applying Lemma 9 with M = −vvT and N = −vvT +t0A
v, we have that −vvT +(1−t)t0Av

is stable for all 0 ≤ t < 1. It follows that −vvT + tAv is stable for all 0 < t ≤ t0. Now Lemma 10
implies that (−1)n det(−vvT + tAv) > 0 for all 0 < t ≤ t0. By Lemma 7, this is equivalent to
having (−1)n(t detA + cm(A)) > 0 for all 0 < t ≤ t0. By assumption, (−1)ncm(A) ≤ 0. But, if
(−1)ncm(A) < 0, then there would exist a small enough t > 0 such that (−1)n(t detA+cm(A)) < 0.
Therefore we conclude that cm(A) = 0 and hence (−1)n detA > 0.

Next, let λ1 ≤ ... ≤ λn ≤ λn+1 denote the eigenvalues of the Cayley-Menger matrix CM(A) =[
0 1T

1 A

]
, and observe that A, A[n−1], and CM(A[n−1]) are all principal submatrices of CM(A).

Since everything is symmetric, Cauchy’s interlacing theorem applies. We have seen above that
A[n−1] has one positive eigenvalue and all others negative, so by Cauchy interlacing λn+1 > 0 and
λn−2 < 0. Because cm(A) = detCM(A) = 0, then CM(A) must have a zero eigenvalue, while
detA 6= 0 implies that it is unique. We thus have two cases.

Case 1: Suppose λn−1 = 0 and thus λn > 0. Since we assume (−1)n−1cm(A[n−1]) > 0, the n×n
matrix CM(A[n−1]) must have an odd number of positive eigenvalues, but by Cauchy interlacing
the top two eigenvalues must be positive, so we have a contradiction.

Case 2: Suppose λn = 0 and thus λn−1 < 0. Then by Cauchy interlacing A has exactly one
positive eigenvalue. On the other hand, the fact that (−1)n detA > 0 implies that A has an even
number of positive eigenvalues, which is a contradiction.

We can now prove Theorem 4.

Proof of Theorem 4. We prove (4)⇒ (3)⇒ (2)⇒ (1)⇒ (4).
(4) ⇒ (3) ⇒ (2) is obvious.
(2) ⇒ (1): Suppose there exists a t > 0 such that −vvT + tAv is stable. Then, by Corollary 6

and Lemma 8, (−1)|σ|cm(Aσ) > 0 for all principal submatrices Aσ. By Lemma 12 it follows that
A is a nondegenerate square distance matrix.

(1) ⇒ (4): Suppose A is a nondegenerate square distance matrix. By Lemma 12 we have
(−1)|σ|cm(Aσ) > 0 for all Aσ, while Proposition 2 implies (−1)|σ| det(Aσ) < 0 for all Aσ with

|σ| > 1. This implies that for |σ| > 1 we have − cm(Aσ)

det(Aσ)
> 0 (by Corollary 8), and that if ε > 0,

(−1)|σ| (εdet(Aσ) + cm(Aσ)) > 0 ⇔ ε < − cm(Aσ)

det(Aσ)
.

Applying now Lemma 7,

(−1)|σ| det(−vvT + εAv)σ > 0 ⇔ ε < − cm(Aσ)

det(Aσ)
.

For |σ| = 1, we have diagonal entries Aσ = Avσ = 0 and (−vvT )σ < 0, so (−1) det(−vvT +εAv)σ > 0
for all ε. Using Lemma 10, we conclude (assuming ε > 0):

−vvT + εAv is stable ⇔ ε < δ,
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where

δ = min

{
− cm(Aσ)

det(Aσ)

}
σ⊆[n]

> 0.

It remains only to show that δ = −cm(A)/ det(A). Note that we can not use Lemma 5 from the Main
Text because that lemma follows from Proposition 1, and is hence a consequence of Theorem 4.

On the other hand, because the matrix −vvT + εAv changes from stable to unstable at ε = δ,
by continuity of the eigenvalues as functions of ε it must be that

det(−vvT + δAv) = 0.

Using Lemma 7 it follows that δ det(A) + cm(A) = 0, which implies δ = −cm(A)/det(A).

4.2 Proofs of Proposition 1, Theorem 2 and Theorem 3

Here we prove our main results from Sections 3.2 and 3.4. We begin with the proof of Proposition 1.

Proof of Proposition 1. Setting v = 1 ∈ Rn× (the column vector of all ones) in Theorem 4 yields a
slightly weaker version of Proposition 1, as the hypothesis in Theorem 4 is that A is Hebbian, which
is more constrained than the Proposition 1 hypothesis that A is symmetric with zero diagonal. To
see why Proposition 1 holds more generally, suppose A is symmetric with zero diagonal but not
Hebbian. Then there exists an off-diagonal pair of negative entries, Aij = Aji < 0, and the 2 × 2
principal submatrix

(−11T + εA){ij} =

(
−1 −1 + εAij

−1 + εAij −1

)
is unstable as it has negative trace and negative determinant. It follows from Cauchy’s interlacing
theorem (see Corollary 6 in Appendix A) that −11T+εA is unstable for any ε > 0. Correspondingly,
condition (a) in Proposition 1 is violated, as the existence of negative entries guarantees that A
cannot be a nondegenerate square distance matrix.

To prove Theorems 2 and 3, we will need the following two corollaries of Proposition 1. First,
recall the definitions for geom(A), geomε(A), δ(A) from Section 3.2. Applying Proposition 1 to
each of the principal submatrices of the perturbed matrix −11T + εA we obtain:

Corollary 4. If A is a symmetric matrix with zero diagonal, and ε > 0, then

stab(−11T + εA) = geomε(A).

For 0 < ε < δ(A), stab(−11T + εA) = geom(A).

Next, recall that X(G) is the clique complex of the graph G.

Corollary 5. Let A be a symmetric n×n matrix with zero diagonal, and ε > 0. Let G be the graph
on n vertices having (ij) ∈ G if and only if Aij ≥ 0. For any n × n matrix S with Sij = Sji ≥ 0
and Sii = 0, if S “matches” A on G (i.e., if Sij = Aij for all (ij) ∈ G), then

geomε(A) = geomε(S) ∩X(G).

In particular, geom(A) = geom(S) ∩X(G).

We can now prove Theorems 2 and 3.
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Proof of Theorem 2. Any network W obtained via the Encoding Rule (equation (2)) has the form
−D+W = −11T + εA, where A is symmetric with zero diagonal and “matches” the (nonnegative)
synaptic strength matrix S precisely on the entries Aij such that (ij) ∈ G(C). All other off-diagonal
entries of A are negative. It follows that

P(W ) = stab(−11T + εA) = geomε(A)

= geomε(S) ∩X(G(C)),

where the last two equalities are due to Corollaries 4 and 5, respectively.

Proof of Theorem 3. (⇐) This is an immediate consequence of Theorem 2.
(⇒) Suppose there exists a symmetric network W with P(W ) = C, and observe by Theorem 1

that P(W ) = stab(−11T + A), for some symmetric n × n matrix A with zero diagonal. By
Corollaries 4 and 5,

C = P(W ) = geomε(A) = geomε(S) ∩X(G),

where ε = 1, G is the graph associated to A (as in Corollary 5) and S is an n × n matrix with
Sij = Sji ≥ 0 and zero diagonal that “matches” A on G. It remains only to show that geomε(S) ∩
X(G) = geomε(S)∩X(G(C)). Since C = geomε(A), any element {ij} ∈ C must have corresponding
Aij > 0, so G(C) ⊆ G and hence X(G(C)) ⊆ X(G). On the other hand, C = C ∩X(G(C)), so we
conclude that C = geomε(S) ∩X(G(C)).

5 Discussion

Understanding the relationship between the connectivity matrix and the activity patterns of a
neural network is one of the central challenges in theoretical neuroscience. We have found that
in the context of symmetric threshold-linear networks, one can obtain an unexpectedly precise
understanding of the binary activity patterns stored by network steady states. In particular, we
have arrived at a complete and precise combinatorial characterization of spurious states, something
that has not yet been achieved in the context of the Hopfield model [3, 4, 2, 24, 43]. Moreover,
we have shown that network solutions to the NE problem can be obtained constructively, using a
simple Encoding Rule. A new concept that emerges from our results is that of geometric balance,
whereby the excitatory synapses between neurons in a stored pattern must satisfy a set of geometric
constraints, ensuring they are appropriately bounded and balanced in their strengths.

As a consequence of our main results, we have discovered that threshold-linear networks natu-
rally encode neural codes arising from low-dimensional receptive fields (such as place fields) while
introducing very few spurious states. Remarkably, these codes can be “learned” by the network
from a highly undersampled set of patterns. Neural codes representing (continuous) parametric
stimuli, such as place field codes, have typically been modeled as arising from continuous attractor
networks whose synaptic matrices have symmetric “Mexican hat”-type connectivity [9, 35]. This
is in large part due to the fact that there is a well-developed mathematical handle on these net-
works [1, 14, 31]. Our work shows that one can have fine mathematical control over a much wider
class of networks, encompassing all symmetric connectivity matrices. It may thus provide a novel
foundation for understanding – and engineering – neural networks with prescribed steady state
properties.
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6 Appendices

6.1 Appendix A: Stable symmetric matrices and square-distance matrices

In this appendix we review some classical facts about stable symmetric matrices and square-distance
matrices that are critical to many of our proofs. Everything in this section is well-known.

6.1.1 Stable symmetric matrices

Here we summarize some well-known facts about the stability of symmetric matrices that we use in
various proofs. The first is Cauchy’s interlacing theorem, which relates eigenvalues of a symmetric
matrix to those of its principal submatrices. Recall that the eigenvalues of a symmetric matrix are
always real.

Theorem 5 (Cauchy’s interlacing theorem [28]). Let A be a symmetric n × n matrix, and let B
be an m×m principal submatrix of A. If the eigenvalues of A are α1 ≤ ...αj ... ≤ αn and those of
B are β1 ≤ ...βj ... ≤ βm, then αj ≤ βj ≤ αn−m+j for all j.

Some immediate consequences of this theorem are:

Corollary 6. Any principal submatrix of a stable symmetric matrix is stable. Any symmetric
matrix containing an unstable principal submatrix is unstable.

Corollary 7. Let A be a symmetric n× n matrix with strictly negative diagonal. Then stab(A) is
a simplicial complex.

Proof. First, recall the definitions of stab(A) and simplicial complex from Section 2.3. We need to
check the two properties in the definition of a simplicial complex. Property (1) holds for stab(A),
because A has strictly negative diagonal. Property (2) follows from Corollary 6.

Another well-known consequence of Cauchy’s interlacing theorem is the following lemma. Here A[k]

refers to the principal submatrix obtained by taking the upper left k × k entries of A.

Lemma 10. Let A be a real symmetric n× n matrix. Then the following are equivalent:

1. A is a stable matrix.

2. (−1)k det(A[k]) > 0 for all 1 ≤ k ≤ n.

3. (−1)|σ| det(Aσ) > 0 for every σ ⊆ [n].

Proof. We prove (1) ⇔ (2). The equivalence between (1) and (3) follows using a very similar
argument.

(⇒) Assume A is stable. Then λ1(A) ≤ ... ≤ λn(A) < 0. By Cauchy’s interlacing theorem,
λ1(A) ≤ λi(A[k]) ≤ λn(A) for all i = 1, ..., k and k = 1, ..., n. Therefore, all eigenvalues of the

matrices A[k] are strictly negative, and hence (−1)k det(A[k]) > 0 for all k.
(⇐) We prove this by induction. The base case is n = 1: indeed, a 1 × 1 matrix A = [a] is

stable if −det(A[1]) > 0, i.e. if a < 0. Now suppose (⇐) of the theorem is true for (n− 1)× (n− 1)
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matrices, and also that (−1)k det(A[k]) > 0, k = 1, ..., n, for an n×n matrix A. This implies A[n−1]

is stable. By Cauchy’s interlacing theorem, the highest eigenvalue λn−1(A[n−1]) lies between the
top two eigenvalues of A:

λn−1(A) ≤ λn−1(A[n−1]) ≤ λn(A).

The stability of A[n−1] thus implies λ1(A) ≤ ... ≤ λn−1(A) < 0. It remains only to check that
λn(A) < 0. For n even, (−1)n det(A[n]) > 0 implies λ1(A)λ2(A) · · ·λn(A) > 0, hence λn(A) < 0.
For n odd, (−1)n det(A[n]) > 0 implies λ1(A)λ2(A) · · ·λn(A) < 0, hence λn(A) < 0. It follows that
A is stable.

6.1.2 Square distance matrices

Recall from Section 3.2 the definitions of square distance matrix, nondegenerate square distance
matrix, and Cayley-Menger determinant. Our convention is that the 1 × 1 zero matrix [0] is a
nondegenerate square distance matrix, as |cm([0])| = 1 > 0. As an example, a 3 × 3 symmetric
matrix A with zero diagonal is a nondegenerate square distance matrix if and only if the off-diagonal
entries Aij are all positive, and their square roots (

√
A12,

√
A13, and

√
A23) satisfy all three triangle

inequalities.
There are two classical characterizations of square distance matrices. The first, due to Menger

[12], relies on Cayley-Menger determinants. The second, due to Schoenberg [44], uses eigenvalues
of principal submatrices. Both are needed for our proof of Theorem 4.

The relationship between Cayley-Menger determinants and simplex volumes is well-known:

Lemma 11. Let p1, .., pk be k points in a Euclidean space. Assume that Aij = ‖pi − pj‖2 is the
matrix of square distances between these points. Then the (k− 1)-dim volume V of the convex hull
of the points {pi}ki=1 can be computed as

V 2 =
(−1)k

2(k−1) ((k − 1)!)2 cm(A). (4)

In particular, if A is a degenerate square distance matrix then cm(A) = 0.

This leads to Menger’s characterization of square distance matrices. Recall that Aσ is the principal
submatrix obtained by restricting A to the index set σ.

Lemma 12. Let A be an n× n matrix satisfying Aij = Aji ≥ 0 and Aii = 0 for all i, j ∈ [n] (i.e.,
A is a Hebbian matrix). Then,

1. A is a square distance matrix if and only if (−1)|σ|cm(Aσ) ≥ 0 for every Aσ.

2. A is a nondegenerate square distance matrix if and only if (−1)|σ|cm(Aσ) > 0 for every Aσ.

Proof. (1) is equivalent to the Corollary of Theorem 42.2 in [12]. (2) is equivalent to Theorem 41.1
in [12].

Schoenberg’s characterization implies that if a matrix is a square distance matrix, then the
determinant of any principal submatrix has opposite sign to that of its Cayley-Menger determinant.

Proposition 2. Let A be an n× n square distance matrix that is not the zero matrix. Then:

1. A has one strictly positive eigenvalue and n−1 eigenvalues that are less than or equal to zero.
In particular, (−1)|σ| det(Aσ) ≤ 0 for every principal submatrix Aσ.
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2. If A is a nondegenerate square distance matrix, A has no zero eigenvalues and
(−1)|σ| det(Aσ) < 0 for every principal submatrix Aσ with |σ| > 1.

Proof. This Proposition is contained in [21, Theorem 6.2.16]. It can also be proven directly from
Theorem 1 of Schoenberg’s 1935 paper [44].

Corollary 8. If A is an n× n nondegenerate square distance matrix with n > 1, then

−cm(A)

detA
> 0.

6.2 Appendix B: Some more facts about permitted sets of symmetric threshold-
linear networks

This section proves a few additional (and novel) facts about permitted sets in symmetric threshold-
linear networks. These were not included in the main text in order not to disrupt the flow of the
exposition.

Recall from Theorem 1 that the permitted sets P(W ), where W is a threshold-linear network
with dynamics given by equation (1), always have the form

P(W ) = stab(−D +W ).

Here we show that when W is symmetric (like the networks obtained using the Encoding Rule (2)),
P(W ) can always be expressed as stab(−11T + A) or stab(−xyT + B), where −xyT is any rank 1
matrix having strictly negative diagonal, and A,B are square matrices with zero diagonal. In what
follows, we use the notation Rn× and Av defined at the beginning of Section 4.1.

Lemma 13. Let M be a symmetric n× n matrix, and v ∈ Rn×. Then,

stab(Mv) = stab(M).

In other words, a principal submatrix Mv
σ is stable if and only if Mσ is stable.

Proof. By Lemma 10, τ ∈ stab(M) if and only if (−1)|σ| det(Mσ) > 0 for every σ ⊆ τ . Observe
that, since Mv = diag(v)M diag(v), we have sgn(det(Mv

σ)) = sgn(det(Mσ)) for all σ ⊆ [n]. It
follows that τ ∈ stab(Mv) if and only if τ ∈ stab(M).

Lemma 14. For any symmetric threshold-linear network W on n neurons, there exists a symmetric
n× n matrix A with zero diagonal such that

P(W ) = stab(−11T +A).

Proof. Let x ∈ Rn× be the vector such that diag(−xxT ) = diag(−D +W ), and write

−D +W = −xxT + (−D +W + xxT ),

where the term in parentheses is symmetric and has zero diagonal. This can be rewritten as

−D +W = diag(x)(−11T +A) diag(x) = (−11T +A)x,

where
A = diag(x)−1(−D +W + xxT ) diag(x)−1

is a symmetric n×n matrix with zero diagonal. It follows from Lemma 13 that P(W ) = stab(−D+
W ) = stab(−11T +A).
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Lemma 14 implies that all sets of permitted sets P(W ) for symmetric networks W have the
form P(W ) = stab(−11T +A), where A is a symmetric matrix having zero diagonal. The following
Proposition implies that all such codes can also be obtained by perturbing around any rank 1 matrix
with negative diagonal, not necessarily symmetric. Note that if x, y ∈ Rn×, the rank 1 matrix −xyT
has strictly negative diagonal if and only if xiyi > 0 for all i ∈ [n].

Proposition 3. Fix x, y ∈ Rn× with xiyi > 0 for all i ∈ [n]. For any symmetric threshold-linear
network W on n neurons, there exists an n× n matrix B with zero diagonal such that

P(W ) = stab(−xyT +B).

The proof of this Proposition constructs the matrix B explicitly, and relies on the following Lemma.

Lemma 15. Let M be any n× n matrix, and T an n× n invertible diagonal matrix. Then

stab(TMT−1) = stab(M).

Proof. We have (TMT−1)σ = TσMσT
−1
σ . Since conjugation preserves the eigenvalue spectrum, the

statement follows.

Proof of Proposition 3. LetW be a symmetric threshold-linear network on n neurons. By Lemma 14,
there exists a symmetric n×n matrix A with zero diagonal such that P(W ) = stab(−11T +A). It
thus remains only to construct an n× n matrix B with zero diagonal such that

stab(−xyT +B) = stab(−11T +A).

We prove that this can always be done in two steps: first, we prove that it can be done in the
special case x = y, and then we show that B can be constructed in general.

Step 1: Fix x = y ∈ Rn×, and observe that −xxT +Ax = (−11T +A)x, so by Lemma 13 we have
stab(−xxT +Ax) = stab(−11T +A). Letting B = Ax we obtain the desired statement.

Step 2: Fix x, y ∈ Rn× so that xiyi > 0 for all i ∈ [n], and let T be the diagonal matrix with

entries Tii =
√
yi/xi. Then

(T (−xyT )T−1)ij =

√
yi
xi

(−xiyj)
√
xj
yj

= −√xiyi
√
xjyj ,

so T (−xyT )T−1 = −zzT for z ∈ Rn× having entries zi =
√
xiyi. It follows from Step 1 that

stab(−11T +A) = stab(−zzT +Az) = stab(T (−xyT )T−1 +Az). Let

B = T−1AzT.

Then, using Lemma 15, stab(−xyT +B) = stab(T (−xyT +B)T−1) = stab(−11T +A). Since A has
zero diagonal, so do Az and B. Note that B can be obtained explicitly, using the expression for A
in the proof of Lemma 14.

6.3 Appendix C: Remarks on the ratio − cm(A)
det(A)

Remark 1. If A is an n × n nondegenerate square distance matrix for n > 1, then the ratio

− cm(A)

det(A)
has a very nice geometric interpretation:

− cm(A)

det(A)
=

∣∣∣∣ cm(A)

det(A)

∣∣∣∣ =
1

2ρ2
,
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where ρ is the radius of the unique sphere circumscribed on the points used to generate A. This
is proven in [10, Proposition 9.7.3.7], where it is also shown that det(A) 6= 0 not only if A is
a nondegenerate square distance matrix, but also if A is a degenerate square distance matrix
corresponding to n points in general position in Rn−2. Since cm(A) vanishes in this case, we see

that the ratio − cm(A)

det(A)
goes to zero as n points that are initially in general position in Rn−1

approach general position on a hyperplane of dimension n− 2.

Remark 2. The previous remark has important implications for the apparent “fine-tuning” that
is involved in eliminating spurious cliques by arranging points to be collinear, or coplanar, so that
the corresponding principal submatrix Aσ is degenerate (as in Figure 2B). Since −11T + εAσ is
only stable for

0 < ε < − cm(Aσ)

det(Aσ)
=

1

2ρ2
,

where ρ is the radius of the circumscribed sphere, then by making the points {pi}i∈σ corresponding
to Aσ approximately degenerate, ρ can be made large enough so that −11T + εAσ is unstable –
without the fine-tuning required to make Aσ exactly degenerate.

Similarly, exact solutions for k-skeleta of clique complexes, obtained using a k-sparse universal
S which is a degenerate square distance matrix, are also not as fine-tuned as they might first
appear. If, in fact, S is a nondegenerate square distance matrix, corresponding to a configuration
of n points in Rn−1 that approximately lies on a k-dimensional plane, the value of δ(Sσ) will be
very small for any pattern of size |σ| > k + 1; one can thus choose ε large enough to ensure that
geomε(S) = {σ ⊂ [n] | |σ| ≤ k + 1}, as in the case where S is truly degenerate.

Remark 3. It is quite simple to understand the scaling properties of −cm(A)/ det(A). If A is any
n× n matrix, then cm(tA) = tn−1cm(A), while det(tA) = tn det(A), so

− cm(tA)

det(tA)
=

1

t

(
− cm(A)

det(A)

)
,

independent of n. If Aij = ‖pi − pj‖2, for p1, ..., pn ∈ Rn−1, and we scale the position vectors so
that pi 7→ tpi for each i ∈ [n], then A 7→ t2A and we have

− cm(A)

det(A)
7→ 1

t2

(
− cm(A)

det(A)

)
.

This is consistent with the fact that the radius ρ of the circumscribed sphere scales as ρ 7→ tρ in
this case (see Remark 1).

Remark 4. Consider an n × n matrix A satisfying the Hebbian conditions Aij = Aji ≥ 0 and
Aii = 0. If n is large, it is computationally intensive to test whether or not A is a nondegenerate
square distance matrix using the criteria of Lemma 12, which potentially require computing cm(Aσ)
for all σ ⊂ [n].

On the other hand, our results imply that in order to test whether or not a Hebbian matrix A
is a nondegenerate square distance matrix it is enough to check the stability of the matrix

−11T + εA for ε =
1

2

∣∣∣∣ cm(A)

det(A)

∣∣∣∣ .
Here the factor of 1/2 was chosen arbitrarily, and can be replaced with any number 0 < c < 1. For
large n, this is a computationally efficient strategy, as it requires checking the eigenvalues of just
one matrix.
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6.4 Appendix D: Additional supporting text

Relationship between the input b and permitted sets σ ∈ P(W ) that can be activated
by the network

In the following proposition we use the notation that x < y, for vectors x, y ∈ Rn, if and only if
xi < yi for each i ∈ [n]. The symbols > and ≤ are interpreted analogously.

Proposition 4 ([16, Proposition 2.1]). Consider the threshold-linear network W (not necessarily
symmetric) with dynamics given by equation (1), in the presence of a particular fixed input b. Let
σ ⊂ [n] be a subset of neurons, and σ̄ its complement. Then, a point x∗ ∈ Rn with x∗σ > 0 and
x∗σ̄ = 0 is a fixed point if and only if

(i) bσ = (D −W )σx
∗
σ, and

(ii) bσ̄ ≤ −Wσ̄σx
∗
σ,

where Wσ̄σ is the submatrix with rows and columns restricted to σ̄ and σ, respectively. In particular,
if det(D −W )σ 6= 0, then there exists at most one fixed point with support σ and it is given by

x∗σ = (D −W )−1
σ bσ and x∗σ̄ = 0,

provided that (D −W )−1
σ bσ > 0 and properties (i) and (ii) hold. Moreover, if x∗ is a fixed point

and bσ̄ < −Wσ̄σx
∗
σ, then x∗ is asymptotically stable if and only if (−D +W )σ is stable.

This proposition allows one to find candidate inputs b that may activate a given permitted set
σ ∈ P(W ). Suppose −W and D −W are nonnegative and invertible matrices (as in the typical
output of the Encoding Rule), and let σ ∈ P(W ) be a permitted set. Then if bσ > 0 and bσ̄ < 0,
using the above proposition we know that there will be a unique stable fixed point with support σ,
given by x∗σ = (D −W )−1

σ bσ, provided (D −W )−1
σ bσ > 0 (otherwise there is no stable fixed point

with support σ). Note, however, that stable fixed points with other supports are also possible for
the same input b.

Details related to generation of PF codes for Figure 4

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

Figure 5: Gamma distribution used for gen-
erating random place field radii; this fits the
experimentally-observed mean and variability
(see [17, Figure 4B]).

To produce Figure 4, we generated random k-sparse
PF codes with circular place fields, n = 80-100 neu-
rons, and k = .1n. For each code, n place field
centers were selected uniformly at random from a
square box environment of side length 1, and n place
field radii were drawn independently from an exper-
imentally observed gamma distribution (Figure 5).
We then computed the 2-skeleton for each PF code,
with pairwise and triple overlaps of place fields de-
termined from simple geometric considerations. The
full PF code was obtained as the Helly completion
of the 2-skeleton (see Lemma 6). Finally, to obtain
the k-sparse PF code, we restricted the full code to
its (k − 1)-skeleton, thereby eliminating patterns of
size larger than k.
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