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Nonlinear processes of high-order harmonic generation (HHG) produced by ultrashort

few-cycle laser pulses possess interesting features which HHG produced by long pulses

of many cycles may not have. First, HHG spectra produced by ultrashort pulses are

extremely sensitive to the driving pulse waveform, which can be controlled by laser

parameters such as carrier-envelope phases (CEPs), time delays or frequency chirps.

Second, HHG spectra produced by ultrashort pulses can exhibit broad uneven peaks

which are different from usual odd-ordered harmonic peaks that long pulses produce.

Based on the high sensitivity on pulse waveform of HHG spectra produced by

ultrashort pulses, we investigate for a two-color few-cycle pulse how HHG can be

enhanced by the use of time delays or frequency chirps. Both a numerical and an

analytic method are employed to calculate HHG spectra from a single H atom. For

the time delay case, our results show that a time delay between the two-color, few-

cycle pulses can increase the intensity of an HHG spectrum by an order of magnitude

(or more) compared to the no-time-delay case at the cost of a reduction in the HHG

plateau cutoff energy. For the frequency chirp case, we show how changing signs of

chirps in each of the two component few-cycle pulses leads to drastic changes in the

HHG spectra. Both time-frequency analyses from the numerical method and a semi-

classical interpretation from the analytic method provide clear physical explanations

of how HHG spectra are changed by those time delays and chirp signs.



Based on the broad uneven peaks in HHG spectra produced by ultrashort pulses,

we investigate how the duration of an isolated attosecond pulse can be minimized

by carefully selecting frequencies in an HHG spectrum and provide a solution for

the attochirp problem in generating attosecond pulses. Specifically, three frequency-

selection categories are studied: a single spectral range between cutoffs, a single spec-

tral range across cutoff and a striped-frequency range. Our results show that among

all three categories the striped-frequency range produces the shortest and strongest

attosecond pulses for a broad HHG spectrum with transform-limited duration.
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Chapter 1

Introduction

Since first discovered in the late 80s [1, 2], high-order harmonic generation (HHG)

has been an important research topic of light-matter interaction with strong fields in

atomic, molecular, optical and plasma physics [3,4]. The term strong fields refers here

to the regime in which the electron-ion interaction and the laser-electron interaction

have competing strengths. When intense laser fields shine onto a gas target (usually a

noble gas), extreme ultraviolet (XUV) or soft X-ray photons can be emitted through

the nonlinear process of high-order harmonic generation, during which the radiated

photons have energies that are many orders (tens, hundreds or even thousands) of

the driving laser frequency.

An intuitive picture of HHG is the classical dipole radiation: incoming laser fields

oscillate and drive electrons in an atom so that the electron-ion dipole system radiates

high-order harmonics. A valuable description of HHG is the semiclassical three-step

model [5–8]: ionization, propagation and recombination. First, when an oscillating

driving laser field reaches its peak (or valley), the field strength is so strong that

the Coulomb potential of the target, e.g., an atom, is bent into a barrier and thus

electrons in the atom can ionize through quantum tunneling. Second, ionized electrons

are driven by the laser fields, moving away and then coming back to the ion with high

kinetic energies acquired in the laser fields. Third, returning electrons recombine with
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the atomic core and release all the kinetic energies in terms of high-harmonic photons.

A typical high-harmonic spectrum exhibits the iconic plateau-cutoff feature that

consists of three regions: (i) an intensity falloff of typically the first few harmonic

orders by several orders of magnitude, (ii) a plateau where radiation intensity of high-

harmonic photons stays about the same across a wide frequency range and (iii) a cutoff

where radiation intensity suddenly drops significantly beyond a maximum energy (or

the cutoff energy). From the three-step model that we have mentioned earlier, it is

understandable that the cutoff energy of HHG Ecut is determined by the maximum

energy Emax that electrons can gain in the driving laser fields: Ecut = Emax + Ip,

where Ip is the ionization potential of the target. 1 It can be shown from classical

estimations that the maximum energy Emax is directly related to the driving laser

intensity ILaser and its wavelength λLaser [5–7]:

Emax ≈ 3Up ∝ ILaserλ
2
Laser , (1.1)

where Up is the ponderomotive energy. Therefore, the energy range of emitted high-

harmonic photons can be controlled by adjusting the driving laser parameters.

Due to its attractive ability of up-converting photon energies to extremely high or-

ders in a tunable way, HHG has been considered a promising table-top light source for

coherent XUV and soft X-ray light, including the important byproduct of attosecond

pulses [4]. However, one major drawback of HHG is its low efficiency in the conversion

process (e.g., ∼ 10−6 for the 800 nm driving wavelength [12, 13]) that although the

driving laser is intense (1014±1 W/cm2) the radiated high-harmonic photons are too

weak for many applications [14].

Various studies have been carried out on how to enhance HHG yields either for a

1Historically, it is the discovery of the HHG cutoff law [9–11] that lead to the proposal of the
three-step model.
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single atom system or for a gas ensemble of atoms. For a single atom system, from

the three-step model one realizes that driving-laser properties are crucial to HHG

and indeed fine tuning driving pulses, e.g., by using two-color fields or shaping the

pulse waveform, has been demonstrated to enhance HHG yields and cutoff energies

significantly [15–19]. For a gas ensemble of atoms (typically of the size on the order

of cm or mm), individual atom may not experience the same laser fields for any given

time, which introduces additional phases during HHG with respect to each other.

Therefore, phase matching of high-harmonic photons emitted from different atoms is

an important issue for obtaining bright HHG. Good phase matching conditions can

be achieved by, for example, adjusting gas pressure [13,20], or fine tuning interaction

geometry like the tightness and location of laser focusing, gas medium length and

high-harmonic detection angle [21–24]. More recently, in addition to gas medium,

HHG produced from solids [25–29] and nano-structures [30–32] are also being explored

which can be an alternative solution to the low efficiency problem of HHG.

In this dissertation, we investigate HHG produced from a single H atom with

ultrashort driving laser pulses that have only a few optical cycles. One advantage of

using ultrashort driving pulses is that one can generate brighter and more energetic

HHG [33, 34]. In general, higher driving laser intensities produce stronger HHG

spectra until a saturation intensity is reached when too much ionization in the gas

medium happens and HHG yields do not increase for higher laser intensities. The

saturation intensity is higher for shorter driving pulses owing to less ionization for

short pulses. Another advantage of producing HHG with ultrashort driving pulses

is that one can obtain isolated attosecond pulses which are important in the field of

attosecond science [4,35,36]. Therefore, the driving lasers for HHG have evolved into

shorter and shorter pulses: from continuous-wave like picosecond (or sub-picosecond)

lasers [37, 38] to many-cycle lasers of tens of femtosecond duration [13, 33, 39] and to
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few-cycle lasers of sub-ten femtosecond [40–43].

Besides common features of the HHG plateau and cutoff, high-harmonic spectra

produced with ultrashort pulses have different behaviors from HHG produced with

long pulses of many cycles. For example, long-pulse HHG spectra typically exhibit

odd harmonic peaks that are narrower and evenly spaced with a spacing of double

the driving laser frequency, whereas short-pulse HHG spectra exhibit Airy peaks that

are wider with uneven spacing. Since the latter peaks can be described analytically

by Airy functions [44, 45] and thus we call them Airy peaks. Figure 1.1 illustrates

harmonic peaks and Airy peaks in HHG spectra produced by long or short driving

pulses. The mechanisms for harmonic and Airy peaks in HHG spectra are different:

harmonic peaks come from inter-cycle interference of electron trajectories ionized

from consecutive half cycles of a long (or few-cycle) laser pulse 2 [45, 46], whereas

Airy peaks come from sub-cycle interference between short and long trajectories 3

ionized within one half cycle of a short pulse [45].

One key feature of HHG produced by ultrashort pulses is that the high-harmonic

spectrum is very sensitive to the driving laser pulse shape. For example, the carrier-

envelope phase (CEP) can change cutoff positions of short-pulse HHG [48]. We show

in Chapter 3 that the non-equivalence of a phase shift and a time delay between two

short pulses can greatly affect HHG spectra and thus time delays between two-color

few-cycle pulses can be used to enhance HHG [49]. Moreover, we show in Chapter 4

2See, e.g., Eq. (32) in Ref. [46], where the dipole moment d(t) of electrons ionized during con-
secutive half cycles may cancel each other for even order harmonics provided that dipole moments
from consecutive half cycles have equal magnitude due to the symmetry in the electric fields.

3Here the short and long trajectories are special trajectories of ionized electrons during HHG.
It can be shown with classical mechanics that electrons born (or ionized) during one half cycle of a
sinusoidal electric field will either return or not return to the atomic core depending on at what time
the electrons are born. For the returning electrons with a kinetic energy Ek lower than the maximum
Emax, there are two trajectories associated with any given Ek (see, e.g., Fig. 6 in Ref. [47]). One of
these two trajectories has a shorter traveling time (the short trajectory) and the other has a longer
traveling time (the long trajectory).
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Figure 1.1: Illustration of HHG spectra produced by short and long driving pulses.
Short-pulse HHG in Panel (a) exhibits Airy peaks that are wider with uneven spacing,
whereas long-pulse HHG in Panel (b) exhibits odd harmonic peaks that are narrower
and evenly spaced.

that short-pulse HHG can be enhanced by sculpting the pulse waveform with a fre-

quency chirp [50]. Another key feature of HHG produced by ultrashort pulses is that

the high-harmonic spectrum exhibits Airy peaks that come from interference between

short and long trajectories within one laser cycle [45]. We demonstrate in Chapter 5

that carefully selecting high-harmonic frequencies of a short-pulse HHG spectrum

can significantly reduce the duration and increase the intensity of isolated attosec-

ond pulses. The two methods that we use to calculate HHG spectra are described

in Chapter 2. Finally, in Chapter 6 we summarize results of generating high-order

harmonics and isolated attosecond pulses with ultrashort laser fields, provide con-

clusions regarding enhancing HHG and minimizing attosecond pulse duration, and

outline potential future investigations.
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Chapter 2

Methods for Calculating High-order-harmonic Spectra

High-order harmonic generation has been observed from various gas targets such as

atoms [1, 2], molecules [51–54] and ions [55, 56]. For a general system that captures

essential physics we investigate in this dissertation, an H atom suffices our purpose.

Two methods are used to calculate HHG spectra produced from a single H atom

with linearly polarized laser fields. One is a numerical method that solves the time-

dependent Schrödinger equation (TDSE) of an one-electron system. Another is an

analytic method that provides closed-form formulations and clear physical interpre-

tations that are consistent with the three-step model. Unless otherwise specified,

atomic unites (a.u.) are used in this chapter where the electron mass me, electron

charge |e| and reduced Planck constant ~ are set to unity.

2.1 Numerical method by solving TDSE

For an H atom interacting with a laser field F (t) that is linearly polarized along the

z-axis, the dimensionless HHG spectrum S(Ω) is obtained from the Fourier transform

of the time-dependent dipole acceleration along the z-axis D̈z(t):

S(Ω) ≡ 1

2π~c3

∣∣∣∣∫ ∞
−∞

D̈z(t)e
iΩtdt

∣∣∣∣2 , (2.1)
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where Ω is the photon energy, ~ is the reduced Planck constant and c is the speed

of light. The factor ~c3 in the denominator of Eq. (2.1) clearly indicates that S(Ω)

is dimensionless, which is consistent with the dimensionless analytic HHG spectrum

ρ(Ω) that will be discussed in the next section. The time-dependent dipole acceler-

ation along the z-axis D̈z(t) [57] is obtained from the electron wavefunction Ψ(r, t):

D̈z(t) ≡ 〈Ψ(r, t)|−z̈|Ψ(r, t)〉 = 〈Ψ(r, t)|∂V (r)

∂z
|Ψ(r, t)〉+ F (t) , (2.2)

where V (r) = −1/r is the atomic potential for an H atom. The wavefunction Ψ(r, t)

satisfies the TDSE for an H atom interacting with a linearly polarized laser field F (t)

along the z-axis:

i
∂

∂t
Ψ(r, t) =

[
p2

2
+ V (r) + zF (t)

]
Ψ(r, t) . (2.3)

The electric field F (t) is independent of spacial coordinates because the dipole ap-

proximation is applicable: the driving laser wavelength λLaser is much larger than the

typical excursion distance xe an electron travels in such systems, i.e., λLaser � xe. In

order to avoid any static field component of a short pulse [58, 59], the electric field

F (t) is derived via the time derivative of the vector potential A(t):

F (t) = −1

c

∂A(t)

∂t
. (2.4)

The TDSE is solved in spherical coordinates using a time-dependent generalized

pseudospectral method [60, 61], in which the wavefunction is expanded in Legendre

polynomials and the time propagation is done with a second-order split-operator
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technique. Specifically, the wavefunction Ψ(r, t) can be written as [60]

Ψ(ri, θj, t) =
L∑
l=0

Gl(ri, t)Pl (cos θj) . (2.5)

Notice that the azimuth angle dependence of the wavefunction is dropped due to

the symmetry of our problem: the initial state is the ground state of an H atom

(m = 0) and the laser field is linearly polarized. Pl is the Legendre polynomial which

is equivalent to the spherical harmonic Y m=0
l . Gl is obtained by the Gauss-Legendre

quadrature

Gl(ri, t) =
L+1∑
k=1

wkPl (cos θk) Ψ(ri, θk, t) , (2.6)

where wk is the quadrature weight and cos θk is the kth zero of the Legendre polyno-

mial PL+1, i.e., PL+1 (cos θk) = 0. Moreover, the radial part of the wavefunction Ψ is

also expanded in Legendre polynomials with Lobatto quadrature. The second-order

split-operator technique for the time propagation is [60]

Ψ(r, t+ ∆t) = (2.7)

exp

(
−iH0

∆t

2

)
exp

[
−iHI

(
r, t+

∆t

2

)
∆t

]
exp

(
−iH0

∆t

2

)
Ψ(r, t) +O(∆t3) ,

where H0 = p2/2 + V (r) and HI = zF (t). The convergence of TDSE calculation is

monitored by adjusting the basis size and the grid density in both space and time.

2.2 Analytic description of HHG produced by few-cycle pulses

For the analytical description of HHG spectra produced by few-cycle pulses [45,62,63],

the dimensionless harmonic spectrum ρ(Ω) is obtained by coherently adding a handful

(typically 2 or 3 for calculations in this dissertation) of amplitudes corresponding to
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ionized electron trajectories (labeled by j and k) from different half-cycles of the laser

pulse 1:

ρ(Ω) =
∑
j,k

sjk cos(ϕj − ϕk)Aj(E)Ak(E), (2.8)

where the harmonic photon energy Ω and the returning electron energy E satisfy the

relation:

Ω = E + |E0|. (2.9)

Here E0 is the ground-state energy of the electron, which equals E0 = −1/2 for the

hydrogen atom. [The phase ϕ in Eq. (2.8) is defined in Eq. (2.13) and the sign factors

sjk = ±1 are defined in Eq. (2.24).] Each amplitude Aj(E) equals the square root of

a product of three factors representing the three steps of high harmonic generation:

the ionization factor Ij, the propagation factor Wj(E), and the recombination factor

σ(r)(E):

Aj(E) ≡
√
IjWj(E)σ(r)(E) . (2.10)

The calculation of eachAj(E) amplitude begins by finding an appropriate classical

trajectory that starts at t
(j)
i (the ionization time), and ends at t

(j)
r (the recombination

time). These times satisfy equations for a closed trajectory along which an electron

with zero initial velocity gains a maximum classical energy, E (cl)
max(j):

∫ t
(j)
r

t
(j)
i

A(t)dt− (t(j)r − t
(j)
i )A(t

(j)
i ) = 0 , (2.11a)

A(t(j)r )− A(t
(j)
i ) + cF (t(j)r )(t(j)r − t

(j)
i ) = 0 , (2.11b)

where the first equation (2.11a) describes the closed trajectory (over which the elec-

1The formulation of ρ(Ω) in Eq. (2.8) originates from a similar expression as Eq. (2.1): ρ(Ω) =

Ω4

~c3

∣∣∣∫∞−∞Dz(t)eiΩtdt
∣∣∣2. Here Dz(t) is the dipole moment along the z-axis which results in the factor

Ω4 in the numerator.
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tron returns to its starting point), and the second equation (2.11b) gives the maximum

energy acquired by the electron (cf. Eq. (2) in Ref. [62]). Here A(t) is the vector po-

tential and F (t) is the laser electric field. The classical energy, E (cl)
max(j), is calculated

in terms of the change in momentum:

E (cl)
max(j) =

1

2c2
[A(t(j)r )− A(t

(j)
i )]2 . (2.12)

The phase, ϕj, of the jth amplitude is evaluated by integrating the classical action

along the trajectory (cf. Eq. (55) in Ref. [45]):

ϕj = Ωt(j)r −
∫ t

(j)
r

t
(j)
i

{
1

2c2
[A(t)− A(t

(j)
i )]2 − |E0|

}
dt . (2.13)

The ionization factor for an electron in the 1s-state of the H atom by laser-induced

tunneling is (cf. Eq. (75) in Ref. [45])

Ij =
4

π
γ̃2
jΓst(F̃j)

Γst(F̃j) = C2
10

1

F̃j
e
− 2

3F̃j

, (2.14)

where Γst is the tunneling rate for a bound atomic electron in a static electric field, and

C10 is the coefficient of the electron’s wave function at large (asymptotic) distances

(cf. Eq. (26) in Ref. [45]). For the 1s-state of the H atom, C10 = 2. Also, F̃j is the

magnitude of the electric field at the ionization time,

F̃j = |F (t
(j)
i )| , (2.15)
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and the effective instantaneous Keldysh parameter γ̃j is defined as

γ̃j ≡ ω
√

2|E0|/F̃j, (2.16)

where ω is the carrier frequency of the laser field. Combining Eqs. (2.14) and (2.16),

the ionization factor can be written as

Ij =
16ω̄2

π

1

F̃ 3
j

e−2/(3F̃j) . (2.17)

It is important to note that the intensity of the HHG spectrum is largely determined

by the ionization factor, which is very sensitive to the strength of the electric field F̃j

at the time of ionization.

The propagation factor Wj(E) is given by (cf. Eqs. (62)-(65), (70), and (72) in

Ref. [45]):

Wj(E) =
πΩ

2ω̄2

√
2E

Ai2(ξj)

∆t3jζ
2/3
j

, (2.18)

where Ai(ξ) is the Airy function, and

∆tj = t(j)r − t
(j)
i , (2.19)

ξj =
E − E(j)

max

ζ
1/3
j

, (2.20)

E(j)
max = E (cl)

max(j)− F (t
(j)
r )

F (t
(j)
i )
|E0| , (2.21)

ζj =
F (t

(j)
r )2

2

[
F (t

(j)
r )

F (t
(j)
i )
− Ḟ (t

(j)
r )

F (t
(j)
r )

∆tj − 1

]
. (2.22)

Ḟ is the time derivative of the electric field F (t). The cutoff energy, E
(j)
cut, of the

HHG spectrum generated upon recombination of the electron traveling along the jth
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trajectory is encoded in the corresponding propagation factor and is largely deter-

mined by the electron’s maximum classical energy, E (cl)
max(j), acquired along the jth

trajectory (cf. Eq. (74) in Ref. [45]):

E
(j)
cut = |E0|+ E (cl)

max(j)

− F (t
(j)
r )

F (t
(j)
i )
|E0| − 1.019ζ

1/3
j .

(2.23)

Note that the sign factors sjk in the summation in Eq. (2.8) are determined by the

signs of the Airy functions in Eq. (2.18):

sjk = (−1)j−ksign[Ai(ξj)Ai(ξk)] , (2.24)

where sign[x] = +1(−1) if x > 0(x < 0).

Finally, the recombination factor, σ(r)(E), is given by the photorecombination

cross section of an electron to the 1s ground-state of the H atom (cf. Eq. (34.62) in

Ref. [64]):

σ(r)(E) = 32πα3

exp

[
−4

p
arctan(p)

]
p2(1 + p2)2(1− e−2π/p)

, (2.25)

p =
√

2E ,

where α is the fine-structure constant. Note that the energy dependence of the

recombination factor depends only on the target and not on the laser field. Since

our calculations are for the H atom in all cases, the recombination factor remains the

same, and thus does not contribute to differences in the calculated HHG spectra.
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2.3 Trajectory correspondence for HHG with few-cycle pulses

To demonstrate the correspondence between trajectory contributions and HHG-spectrum

regions for the analytic description of HHG, we perform a sample analytic calcula-

tion and confirm this correspondence with a time-frequency analysis of numerically

calculated HHG spectrum.

Consider a two-color few-cycle pulse with no time delay between its two component

pulses, described by the following time-dependent vector potential:

A(t) = − c

ω1

f1(t) sin(ω1t+ φ1)− c

ω2

f2(t) sin(ω2t+ φ2) . (2.26)

where ω1 and ω2 are the carrier frequencies of the two pulses, φ1 and φ2 are the carrier

envelope phases (CEPs), and f1(t) and f2(t) are the pulse envelopes which we assume

are Gaussian shape with maxima at t = 0:

fi(t) = Fie
−2 ln 2 t2/τ2i (i = 1, 2) , (2.27)

in which Fi is the electric field strength of the ith pulse component and τi is the

full width at half maximum (FWHM) of the intensity profile of the ith component.

Note that for a two-color pulse, the definition of the effective instantaneous Keldysh

parameter γ̃j in Eq. (2.16) needs to be modified:

γ̃j ≡ ω̄
√

2|E0|/F̃j, (2.28)

where ω̄ ≡ max(ω1, ω2).

For the sample calculation we consider a fundamental frequency and its second

harmonic: λ1 = 2πc/ω1 = 1600 nm and λ2 = 2πc/ω2 = 800 nm. The two component
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Figure 2.1: Calculated HHG spectra from (a) the analytic method and (b) the nu-
merical method with a short laser pulse described in Eq. (2.26).

pulses have comparable peak intensities, with 6×1013 W/cm2 for ω1 (F1 = 0.041 a.u.)

and 4× 1013 W/cm2 for ω2 (F2 = 0.034 a.u.). They both have short pulse durations:

τ1 = 8.0 fs (1.5T1) and τ2 = 5.6 fs (2.1T2), where Ti ≡ 2π/ωi is the period for each

carrier frequency. Their CEPs are φ1 = 0 and φ2 = 1.6π.

The calculated HHG spectra, either ρ(Ω) in Eq. (2.8) from the analytic method

or S(Ω) in Eq. (2.1) from the numerical method, are shown in Fig. 2.1. Both the

analytic and the TDSE HHG spectra have a two plateau structure and agree quanti-

tatively on the cutoff energies of each plateau. The quantitative disagreement in the

HHG intensities in the high energy plateau region between the analytic and TDSE

results is due to significant non-tunneling ionization contributions to the TDSE re-

sults (discussions about the applicability of the analytic method is presented in the

next section).

The analytic HHG spectrum in Fig. 2.1(a) is calculated by first solving Eqs. (2.11a)
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and (2.11b) for the ionized electron trajectories corresponding to the laser field derived

from Eq. (2.26) and plotted in Fig. 2.2(b). Our calculations show that there are three

major contributions to the HHG spectra (i.e., three trajectories with large ionization

factors Ij), one from each of three half-cycles. For each of these three trajectories,

we present the ionization and recombination times, the cutoff energies, the ionization

factors, and the effective Keldysh parameters in Table 2.1.

Table 2.1: Numerical values of t
(j)
i and t

(j)
r [cf. Eqs. (2.11a) and (2.11b)], E

(j)
cut

[cf. Eq. (2.23)], Ij [cf. Eq. (2.17)], and γ̃j [cf. Eq. (2.16)] for trajectories that re-
turn during three half-cycles of the pulses in Fig. 2.2(b).

j t
(j)
i (fs) t

(j)
r (fs) E

(j)
cut (eV) Ij γ̃j

1 -4.76 -2.34 38.6 2.37(-6) 1.6

2 -2.69 1.11 87.6 3.10(-7) 1.8

3 0.586 2.82 46.7 1.89(-3) 0.89

Comparing the cutoff energies E
(j)
cut in Table 2.1 with the cutoff positions in the

analytic HHG spectrum in Fig. 2.1(a), one sees clearly that the lower energy (higher

intensity) plateau comes from the trajectory j = 3 and the higher energy (lower

intensity) plateau comes from the trajectory j = 2. Contributions from the trajectory

j = 1 is invisible in the spectrum because of its much lower ionization factor compared

to the trajectory j = 3.

This trajectory correspondence can be also obtained from the TDSE spectrum

through a time-frequency analysis. We use the Gabor transform [65] for our time-

frequency analysis: the dipole acceleration, D̈z(t) [Eq. (2.2)], is multiplied by a Gaus-

sian window function before being Fourier transformed. Our time-frequency analysis

result for the TDSE spectrum in Fig. 2.1(b) is plotted in Fig. 2.2(a), showing the

correspondence between the recombination times and the harmonic energies.

One sees in Fig. 2.2(a) that there are clearly three main bursts of high harmonics,
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Figure 2.2: Time-frequency analysis. Panel (a): Time-frequency results for the TDSE
spectrum in Fig. 2.1(b). Numbers label three high-harmonic bursts. Intensities of
the harmonic photons are plotted on a color-coded log scale shown at the right of the
figure. Panel (b): The electric field F (t) derived from Eq. (2.26). Numbers label three
half-cycles where high-harmonic photons are emitted upon recombination around the
end of each half-cycle when the electric field is close to zero.

labeled as 1, 2, and 3 in the figure, which appear around times -2.5, 1.2, and 3 fs.

The electric fields are also plotted in Fig. 2.2(b) for easier comparison. From the

energy distribution, one can tell that it is the second burst that contributes to the

higher energy plateau in the spectrum and that the third burst contributes to the

lower energy plateau in the spectrum.

Notice that the three bursts shown in the time-frequency analysis results in Fig 2.2

have a one-to-one correspondence with the three trajectory contributions from ana-

lytic calculations: the jth trajectory contribution in Table 2.1 corresponds to the jth
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burst in Fig. 2.2(a). For example, the third trajectory from analytic calculations in

Table 2.1 has a return time of 2.8 fs, a cutoff energy of 46.7 eV, and the highest

ionization factor, which all agree very well with the numerical results from TDSE

calculations for burst 3 in the time-frequency analysis shown in Fig. 2.2.

In conclusion, this trajectory correspondence from analytic calculations provides

clear interpretations of half-cycle contributions to HHG spectra produced by few-

cycle driving pulses, which will be used to explain many of the HHG results in later

chapters.

2.4 Applicability of the Analytic Description

First, the analytic description is applicable in the tunneling regime, i.e., for instanta-

neous Keldysh parameters γ̃j < 1. For example, the lower intensity of the high-energy

HHG plateau predicted by the analytic result in Fig. 2.1(a) as compared to the TDSE

result in Fig. 2.1(b) is due to the fact that the relevant instantaneous Keldysh pa-

rameter, γ̃2, is much larger than 1, as shown in Table 2.1. Our TDSE calculations,

evidently, account for the ionization step exactly, taking into account all processes

leading to ionization, while the analytic analysis, which is valid in the tunneling

regime, only accounts for ionization by tunneling. Thus the TDSE results may be

expected to produce higher HHG yields owing to the larger ionization rates in those

calculations.

Second, the analytic analysis is valid for harmonics with energies close to the high-

energy HHG plateau cutoff. Since the analytic HHG spectrum ρ(Ω) only includes

trajectories with the maximum energies [cf. Eqs. (2.11a) and (2.11b)] in each half-

cycle, the HHG yields are in general less accurate for harmonics with energies far from

the high energy HHG cutoff. This explains the discrepancy in the shape of the second
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Figure 2.3: Comparison of analytic and TDSE HHG spectra for two-color laser pulses
of 1600 nm (1.2× 1014 W/cm2, 5.3 fs) and 800 nm (8× 1013 W/cm2, 3.8 fs) having no
time delay with φ1 = 0 and φ2 = 1.2 π. The solid (red) line is the analytic result, ρ(Ω),
and the dashed (blue) line is the TDSE result, S(Ω). Note that ρ(Ω) is multiplied by
an overall constant factor of 32.2.

(higher energy) plateau in Figs. 2.1(a) and 2.1(b) between 50 eV and 65 eV: namely,

the energies of the oscillation minima in the TDSE results disagree increasingly from

those in the analytic results as the energy decreases below the plateaus cutoffs.

In order to demonstrate the accuracy of the analytic analysis with regard to the

TDSE results, one must increase the field intensities (and/or use longer wavelengths)

so that the instantaneous Keldysh parameter remains small for both plateaus. As

an example, we have carried out HHG calculations for the following two-color laser

fields: 1600 nm (1.2 × 1014 W/cm2, 5.3 fs) and 800 nm (8 × 1013 W/cm2, 3.8 fs)

having no time delay with φ1 = 0 and φ2 = 1.2π. For these fields the instantaneous

Keldysh parameter for the trajectory responsible for the low energy HHG plateau

is γ̃ = 0.83, while that for the trajectory responsible for the high energy plateau is

γ̃ = 0.89, i.e., both are now in the transitional regime (γ̃ < 1), in which the tunneling

ionization rates are reasonably accurate [66]. The corresponding analytic results are

shown in Fig. 2.3 and compared with results of TDSE calculations. Except for an
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overall constant multiplicative factor, the analytic results are in extraordinarily good

agreement with the TDSE calculations for the HHG spectrum over a wide energy

range from about 60 eV to 130 eV.
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Figure 5.6: Illustration of a dispersion-free optical setup for selecting striped frequen-
cies of every other Airy peak in the spectrum. G1 and G2 are soft-X-ray gratings.
M1 and M2 are parabolic mirrors. SM is a spatial mask to block unwanted frequen-
cies. Note that gratings are placed at the focuses of mirrors and multi-layer optics or
grazing incidence is required for good reflectivity.

by a structured spatial mask SM so that unwanted frequencies are blocked, and

finally a second grating G2 combines the Airy-peak frequencies and generate a single

attosecond pulse. Parabolic mirrors are located at one focal length from the gratings.

This setup ensures no dispersion, i.e., equal paths for different frequencies. Note that

for good reflectivity, either a multi-layer coating or a grazing incidence is required

which is not illustrated in Fig. 5.6. A quick estimation of the angle spread from

the grating tells us that the spatial separation of Airy-peak frequencies at the mask

is much larger than the soft-X-ray wavelength, which allows the mask to work as a

frequency filter without angular dispersion through diffraction.

5.5.2 Robustness of striped-frequency pulses

When selecting a striped-frequency range of every other Airy peak in the spectrum,

we have selected ‘perfect’ Airy peaks with full widths from valley to valley and require
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Figure 5.7: Robustness of striped-frequency pulses. Dashed (red) lines in all panels
plot the ‘ideal’ SFP of odd Airy peaks (meaning that full-width odd peaks are selected
with no additional phases), which is a re-plot of the pulse in Fig. 5.5(b). Solid (blue)
lines show the striped-frequency pulse of odd Airy peaks when (a) peaks of full widths
at half maximum are selected and (b) a linear chirp of 586 asec2 is added.

that there is no additional phase added when selecting the frequencies (see the window

function ω(Ω) in Eq. (5.7)). To test the robustness of this method that accounts

for imperfection in experiments, we carry out calculations of the striped-frequency

pulse produced from all odd Airy peaks when (a) selecting partial Airy peaks and

(b) adding a linear chirp or random phases in the spectrum. Our results show that

the striped-frequency pulses can be rather robust for moderate imperfection.

When only a portion of the Airy peaks are selected instead of full peaks from min-

imum to minimum, the pulse duration of SFP is not affected but the peak intensity

decreases and the side bands are less suppressed compared to the central peak. As

an example, Fig. 5.7(a) shows the striped-frequency pulse when half widths (or full

widths at half maximum) of the odd Airy peaks are selected. For convenient com-
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parison, the SFP of odd peaks in Fig. 5.5(b) is re-plotted as dashed lines in Fig. 5.7.

Comparing to the perfect SFP of full-width odd peaks, one sees that the SFP of

half-width odd peaks exhibits the same pulse duration of 52 asec, while the peak

intensity drops nearly half. In fact, the less portion of Airy peaks are selected, the

weaker the SFP will be with stronger side bands. We also carried out calculations

when oversize Airy peaks are selected, i.e., Airy peaks with widths extended to their

neighbors. Striped-frequency pulses of oversize Airy peaks behave very similarly to

that of undersized Airy peaks. This can be understood in a way that the spectral am-

plitude has opposite signs for adjacent peaks (positive or negative) and thus oversize

Airy peaks result in partial ‘cancellation’ of the effective widths which are similar to

undersized Airy peaks.

If a linear chirp is introduced when selecting striped frequencies of an HHG spec-

trum, the pulse duration of the SFP increases, the peak intensity decreases and the

side bands are less suppressed. As an example, Fig. 5.7(b) shows the striped-frequency

pulse when a linear chirp of δ = 1 a.u. (586 ases2) is introduced to the spectral am-

plitude (i.e., the window function in Eq. (5.7) changes to eiδΩ
2
). Compared to the

striped-frequency pulse where no additional phases are added to the spectrum, the

SFP with a linear chirp exhibits a slightly longer pulse duration of 55 asec as com-

pared to 52 asec and a lower peak intensity where side bands are also less suppressed.

Moreover, the emission time of the SFP is also shifted to a later time for a positive

linear chirp. The SFP with a negative linear chirp gives similar features as that of a

positive chirp, except that the emission time is shifted to an earlier time.
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5.6 Extension to longer driving wavelength

We have shown how the duration of isolated attosecond pulses can be minimized

by carefully selecting frequencies in the HHG spectrum. For a single spectral range

between cutoffs, the lower-frequency region can produce shorter attosecond pulses

than the higher-frequency region. For a single spectral range that expands beyond

the cutoff, only the cutoff Airy peak should be selected in order to avoid long tails

and generate a short attosecond pulse. For a striped frequency range, one can select

every other Airy peak across the entire HHG spectrum to produce a single pulse with

transform-limited pulse duration. These results can be readily expanded to HHG

spectra produced by longer driving wavelengths to generate even shorter attosecond

pulses. As an example, we carried out calculations when the driving laser wavelength

is doubled from 1500 nm to 3000 nm, and the results are presented in Fig. 5.8.

The analytically calculated HHG spectrum produced by a 3000 nm driving pulse

is plotted in Fig. 5.8(a). Other pulse parameters of the driving laser field are the same

as that in Fig. 5.1(a): a sine-shaped one-cycle Gaussian pulse with a peak intensity

of 2× 1014 W/cm2. One sees that the HHG spectrum from a 3000 nm driving pulse

has a broader plateau (roughly quadrupled) and lower intensities compared to the

spectrum from a 1500 nm driving pulse in Fig. 5.1(b). Similar to the 1500-nm case,

the 3000-nm spectrum in Fig. 5.8(a) also presents three cutoffs from three cycles of

the laser pulse: 132 eV from the post cycle, 399 eV from the main cycle and 440 eV

from the pre cycle.

For a single spectral range between cutoffs, results of the bandwidth scan are

shown in Fig. 5.8(b). When Ω2 is fixed at 399 eV and higher frequencies are selected,

the shortest pulse is 120 asec with a bandwidth of 32 eV, which is the same as the

1500-nm case. When Ω1 is fixed at 137 eV and lower frequencies are selected, the
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Figure 5.8: Panel (a): Calculated analytic HHG spectrum produced by a one-cycle
sine-shaped Gaussian pulse with a carrier wavelength of 3000 nm and a peak inten-
sity of 2 × 1014 W/cm2. Panel (b): Plots of pulse duration ∆t as a function of the
bandwidth ∆Ω for a single spectral range between cutoffs. Inset shows results for
bandwidths covering the whole plateau in Panel (a) from 137 to 399 eV, where the
arrow indicates the bandwidth range shown in (b). Panel (c): Pulse duration vs
spectral bandwidth in a ln-ln plot. Solid green line: the transform-limited case for a
square spectrum. Red dashed line: a single spectral range with Ω1 fixed at 137 eV.
Blue dots: the striped frequency range of odd Airy peaks. The arrow indicates the
minimum pulse that can be generated from a single spectral range. Panel (d): The
striped-frequency pulse of all odd Airy peaks (covering a frequency range of 139–
408 eV) and the minimum pulse from a single spectral range in the low frequency
region of 137–198 eV.

shortest pulse is 69 asec with a bandwidth of 61 eV, which is much shorter than

120 asec from selecting a single spectral range of higher frequencies. Moreover, when

the driving wavelength is doubled from 1500 nm to 3000 nm, the minimum pulse

duration for selecting a single spectral range of lower frequencies is decreased from

99.5 to 69 asec, which is consistent with the 1/
√
λ scaling [107]. The cutoff Airy

peak of the 3000-nm spectrum in Fig. 5.8(a) has the same bandwidth as the cutoff

Airy peak of the 1500-nm spectrum, and, thus, the duration of the attosecond pulse



86

from selecting the cutoff Airy peak is the same as the 1500-nm case (not shown in

the figure). More discussions of scaling properties through analytic analyses with a

trajectory parameter are presented in Sec. 5.7 D.

For a striped frequency range of odd Airy peaks, results for the pulse duration

while scanning the bandwidth are shown in Fig. 5.8(c), which are compared with the

single spectral range case and the transform-limited case. Due to the large spectral

bandwidth, the curves in Fig. 5.8(c) are plotted on a log-log scale. One sees that the

duration of striped-frequency pulses follows closely the straight line of the transform-

limited pulse across the entire HHG plateau, whereas the pulse duration for selecting a

single spectral range stays at the transform-limited level only for a limited bandwidth.

The striped-frequency pulse generated from all odd Airy peaks across the entire

plateau with frequencies ranging from 139 to 408 eV is plotted as the dashed line

in Fig. 5.8(d), which is compared with the minimum pulse generated from selecting

a single spectral range of 137–198 eV. Clearly, the striped-frequency pulse exhibits

a much shorter duration of 12.5 asec (compared to 69.3 asec for the single spectral

range) and a higher intensity with an intensity ratio of 15.8.

5.7 Detailed analyses and discussions on results

In this section, we present more detailed analyses to explain our results about min-

imizing isolated attosecond pulse duration through frequency selections of the HHG

spectrum. Specifically, Part 5.7.1 provides an approximation of the one-cycle HHG

spectral amplitude with an Airy function, which serves as a foundation for later

analyses. Part 5.7.2 presents an analytic formula of the spectral chirp in one-cycle

HHG spectrum which explains the results for a single spectral range between cutoffs.

Part 5.7.3 analyzes results for a single spectral range across cutoff by manually ad-
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justing the Airy peak width. Part 5.7.4 discusses the generation of striped-frequency

pulses by analytically summing electric fields at special times. Part 5.7.5 discusses

scaling properties when, e.g., the driving laser wavelength or intensity is varied by

the use of a single trajectory parameter.

5.7.1 Approximating HHG spectral amplitude with Airy function

First, we show that the spectral amplitude of a one-cycle HHG spectrum (meaning

that only one laser cycle contributes to the HHG spectrum) can be approximated by

an Airy function. For our analytic calculations of HHG, the field of the attosecond

pulse is obtained by Fourier transforming the spectral dipole moment D(Ω) as given

in Eq. (5.5). In general, the spectral dipole moment D(Ω) is a coherent sum of half-

cycle spectral amplitudes Aj(E) from each of the few cycles of a laser pulse. For the

main plateaus of spectra in Figs. 5.1(b) and 5.8(a), only one laser cycle contributes

dominantly to the spectrum. In this case, the spectral dipole moment D(Ω) can be

simply written as

D(Ω) = η
√
σ(r)Ai(x)ei(φ+Ωtr) , (5.9)

where the factor η and the phase φ are trajectory-related constants independent of Ω,

and tr is the return time of the cutoff trajectory, i.e., the trajectory with the maximum

return energy. For the 1500-nm one-cycle pulse in our calculations, tr = 85.5 a.u..

The argument x of the Airy function Ai(x) is a scaled dimensionless ‘energy’:

x =
~Ω− Ecut

εEau

− 1.019 , (5.10)

where Ecut is the cutoff energy and Eau = |e|2/a0 = 27.21 eV (a0 is the Bohr radius).

Clearly, when the frequency Ω lies below the cutoff, the spectral dipole moment

D(Ω) exhibits the oscillatory features of an Airy function which leads to the Airy
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peaks in the HHG spectrum. When Ω lies beyond the cutoff, the spectral dipole

moment decays exponentially. ε is a dimensionless trajectory parameter which can

be expressed as [45,49]

ε = ζ1/3 , ζ =
F (tr)

2

2F 2
au

[
F (tr)

F (ti)
− Ḟ (tr)

F (tr)
(tr − ti)− 1

]
. (5.11)

Here F is the electric field in Eq. (4.1), ti is the ionization time of the cutoff trajectory

and Fau = |e|/a2
0 = 5.142 GV/cm. For the one-cycle pulses we use in our calculations,

ε = 0.132. For simpler formulation, we also define a scaled dimensionless ‘time’ y:

y =
Eau

~
ε (t− tr) . (5.12)

Substituting Eqs. (5.10) and (5.12) into Eqs. (5.9) and (5.5), we can approximate the

dipole amplitude d(t) in Eq. (5.5) as an Fourier transform of the Airy function d̃(y):

d(t) ∼ εd̃(y) = ε

∫ ∞
−∞

Ai(x)w̃(x)e−ixydx . (5.13)

Note that besides constant factors and overall phases, we have also ignored the factor

Ω2
√
σ(r), which has less pronounced variation with Ω compared to the oscillating

Airy function in the HHG spectrum energy region. Moreover, the phase factor eiΩtr

in Eq. (5.9) simply shifts the pulse in time. Therefore, in order to analyze attosecond

pulses we can just focus on d̃(y) of Eq. (5.13), in which the spectral amplitude of

HHG is approximated by an Airy function Ai(x). In fact, this equation is such a

good approximation that all the features of previous results about attosecond pulses

can be reproduced by this equation.
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5.7.2 Analytic formula of spectral Chirp

We have shown that the spectral amplitude of a one-cycle HHG spectrum (meaning

that only one laser cycle contributes to the HHG spectrum) can be approximated by

an Airy function. The oscillatory part of the Airy function can be represented by a

‘chirped’ sine function with a slowly decaying amplitude as x→ −∞ [117]:

Ai(x) ≈ f(x) ≡
sin
(

2
3
(−x)3/2 + π

4

)
√
π 4
√
−x

for x < −1.019 . (5.14)

We can define a chirp δ(x) of the Airy function as

δ(x) ≡ ϕ′′(x) =
1

2
√
−x

, (5.15)

where ϕ(x) is the argument of the sine function, or the phase of the spectrum:

ϕ(x) =
2

3
(−x)3/2 +

π

4
. (5.16)

The chirp δ(x) in Eq. (5.15) is regarded as the spectral chirp [40]. Substituting x with

Ω according to Eq. (5.10), we obtain the spectral chirp as a function of the frequency:

∆(Ω) =
~2

2E2
auε

2
√

(Ecut − ~Ω)/εEau + 1.019
. (5.17)

From Eq. 5.17 one sees clearly that for a given trajectory parameter ε, the spectral

chirp ∆(Ω) is smaller for lower photon energies. Therefore, the low-frequency region

of the HHG spectrum can afford a wider bandwidth limit during which different

frequencies add up in phase to produce shorter attosecond pulses.
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5.7.3 Cross-cutoff behavior and the cutoff Airy peak

The unusual cross-cutoff behavior of attosecond pulses (e.g., the sudden change of

pulse shape when a single spectral range is extended across the cutoff) is due to the

fact that the cutoff Airy peak is much wider than other Airy peaks. This can be

shown by manually adjusting the width of the cutoff peak. For example, one can

approximate the cutoff peak of the spectral amplitude with a half sine wave f1:

f1(x) = a1 sin
(
−b1x+

π

4

)
for x ∈ [− 3π

4b1

,
π

4b1

] , (5.18)

where x is given by Eq. (5.10). The width of the cutoff peak can be adjusted by

varying the value of b1. Fig. 5.9 shows examples for three values of b1. One sees

in Fig. 5.9(a) and (b) that when b1 = 0.85 the approximated cutoff peak f1 can

reproduce almost exact attosecond pulses as the actual HHG spectrum. When b1 is

increased such that the cutoff peak width is decreased to a comparable width as (or a

much smaller width than) the other Airy peaks, the cross-cutoff behavior disappears

(see Fig. 5.9(c) and (d)). On the other hand, when b1 is decreased such that the cutoff

peak is significantly much wider than the other Airy peaks, the cross-cutoff behavior

will be more pronounced (see Fig. 5.9(e) and (f)).

5.7.4 Analytic analysis of striped-frequency pulse

Since the HHG spectral amplitude can be described by an Airy function (see Eq. (5.13))

and we have seen that a half sine wave can approximate a half cycle of the Airy func-

tion, we can then assign the nth peak (or valley) of the HHG spectral amplitude with

a half sine wave fn:

fn(x) = an sin
(
−bnx+

π

4

)
, (5.19)
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Figure 5.9: Cross-cutoff behavior. Panels (a), (c) and (e) plot the approximated
spectral amplitudes of the first three Airy peaks. Specifically, the cutoff peak is
described by f1 in Eq. (5.18), and the second and third peak is described by the Airy
function Ai(x). Panels (b), (d) and (f) plot corresponding attosecond pulses generated
from spectral amplitudes shown in (a), (c) and (e), respectively. The dashed (blue)
line in Panel (b) is a re-plot of the three-Airy-peak pulse in Fig. 5.4(b), which is
shifted in time according to Eq. (5.12) and scaled in intensity.

where x ∈ [−π/bn(n− 1/4),−π/bn(n− 5/4)] and x is given by Eq. (5.10). Values of

an and bn can be obtained from, e.g., the Airy function:

an =
1√

π 4
√
−αn

and bn =
2

3

√
−αn , (5.20)

where αn are the zeros of Ai′(x), i.e., Ai′(αn) = 0.

Now the Fourier transform of each peak/valley of the HHG spectral amplitude is
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simply the Fourier transform of a half sine wave, which yields

f̂n(y) =
anbn
y2 − b2

n

[
ei

π
bn

(n− 1
4)y + ei

π
bn

(n− 5
4)y
]
einπ , (5.21)

where y is given in Eq. (5.12). Each f̂n can be regarded as the radiated electric fields

originated from an Airy peak in the HHG spectrum. To produce a striped-frequency

pulse from odd or even Airy peaks, one can simply sum the corresponding odd or

even terms of f̂n.

One sees from Eq. (5.21) that at time y = 0 (i.e., at time t = tr) the radiated

electric fields originated from either odd or even Airy peaks (with either odd or even n)

have exactly the same phase. Therefore, when selecting every other Airy peak in the

HHG spectrum, the electric fields add up constructively at time tr and produce a single

pulse with transform-limited duration. Note that since the radiated electric fields f̂n

alternate in sign at time y = 0 between odd and even n, if a phase π can be introduced

to even (or odd) Airy peaks, one can actually use all the Airy peaks (instead of every

other one) to produce a much stronger attosecond pulse (with a quadrupled intensity

compared to the SFP) while the duration is still at the transform-limited level.

Side bands appear at times when y equals integer multiples of bn, i.e., y = mbn

where m ∈ Z, because the phases of radiated electric fields are locked at these times

regardless of which Airy peak in the HHG spectrum they originate from (meaning

that the phases of f̂n are independent of n). Owing to the attochirp in the HHG

spectrum, bn has different values for different Airy peak n. Therefore, unlike the

pulse at time y = 0, side bands are generated at various times and do not add up

constructively when selecting many odd or even Airy peaks in the HHG spectrum.

As a result of the above two aspects, i.e., the locked phase at time tr and the

suppressed side pulses, a single attosecond pulse is produced with transform-limited
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duration when selecting every other Airy peak across the entire HHG spectrum.

5.7.5 Scaling properties of the trajectory parameter

In this subsection, we discuss important scaling properties of the trajectory parameter

ε as given in Eq. (5.11) and explain the unchanged results in Sec. 5.6 when the driving

wavelength is doubled from 1500 nm to 3000 nm. From Eqs. (5.10), (5.12) and (5.13),

one notices that (i) the attosecond pulse duration is inversely proportional to the

trajectory parameter: ∆t ∝ 1/ε and (ii) the pulse intensity is proportional to ε2.

From Eq. (5.17), one sees that (iii) the spectral chirp is inversely proportional to ε2:

∆ ∝ 1/ε2. All these three factors indicate that a larger trajectory parameter is better

for generating shorter and stronger attosecond pulses.

The value of the trajectory parameter ε depends on the driving laser pulse shape

(see Eq. (5.11)). For a single-color pulse, ε does not depend on the wavelength of

the driving laser, but increases with the driving laser intensity. For example, when

the driving laser wavelength is doubled from 1500 nm to 3000 nm in our calcula-

tions, the trajectory parameter remains unchanged. This is why the shortest pulse

duration stays the same of 120 asec when selecting a single spectral range of the

higher-frequency region although the driving wavelength is doubled. The unchanged

trajectory parameter is also the reason that the spectral bandwidth of the cutoff Airy

peak stays the same when the driving wavelength is doubled. K. T. Kim et al. ob-

served that when the driving laser intensity is increased, the attosecond pulse duration

and the spectral chirp are reduced [118]. Y. Mairesse et al. also observed decreasing

chirp (or decreasing ‘time shift between emissions of two consecutive harmonics’) as

the laser intensity increases [100]. These are examples which are consistent with the

trajectory parameter scaling properties. Thus, maximizing the trajectory parameter

(e.g., by pulse waveform shaping) can serve as an efficient tool for generating shorter
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and stronger attosecond pulses.

5.8 Summary and conclusions

Based on analytic and TDSE calculations of the HHG spectra produced by ultrashort

driving pulses, we present ways to minimize the duration of an isolated attosecond

pulse by carefully selecting frequencies in the HHG spectra without compensating the

attochirp.

Specifically, when selecting a single spectral range between cutoffs (or selecting

plateau frequencies), the low-frequency region can produce shorter attosecond pulses

than the high-frequency region due to smaller spectral chirp for lower frequencies.

For a single spectral range that expands beyond the cutoff, only the cutoff Airy peak

should be selected (or selecting cutoff frequencies) to produce a short attosecond

pulse without long tails. The duration of attosecond pulses produced by selecting

cutoff frequencies is usually much longer than that from selecting plateau frequencies

because the cutoff Airy peak has a smaller bandwidth than the plateau. Lastly,

one can select both plateau and cutoff frequencies across the entire HHG spectrum

to produce a striped-frequency pulse that has the shortest duration and strongest

intensity compared to the other two frequency-selection categories.

We also perform analytic analyses to explain how our strategies work. In addition

to an analytic expression of the spectral chirp and scaling properties of the trajectory

parameter, our analyses show that all the features of the attosecond pulse generation

stem from one source: the (Fourier transform) properties of a chirped oscillating

amplitude, like an Airy function oscillation. Thus, our strategies for attosecond pulse

generation are applicable to a variety of high harmonic spectra produced by short

driving pulses.
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Chapter 6

Final Summary and Outlook

High-order harmonic generation has been considered as a promising candidate for

table-top light sources of XUV to X-ray range with attosecond duration. We have

investigated how HHG spectra can be enhanced by fine tuning the waveform of ul-

trashort driving laser pulses and also provided a possible solution to the attochirp

problem in generating attosecond pulses from HHG.

High-order harmonic generation is very sensitive to the driving laser waveform.

Tiny differences in the laser waveform can lead to large differences in HHG spectra.

There are critical spots in the electric fields that determine the yields and cutoffs

of HHG. A larger electric field strength (or magnitude) at ionization exponentially

increases tunneling rate and hence HHG yields. A larger electric field strength before

recombination increases electron return energy and hence HHG cutoffs. We have

demonstrated how laser parameters, such as CEPs, time delays and frequency chirps,

of two-color short pulses can be used to sculpt driving pulse waveforms at those

critical spots in order to enhance HHG spectra.

HHG attochirp has been a major problem in the quest of generating shorter at-

tosecond pulses. Examining the structures of HHG spectra produced by ultrashort

driving pulses, we have found a possible solution to the attochirp problem that iso-

lated attosecond pulses with transform-limited duration can be generated by filtering
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special frequency stripes in the HHG spectra while compensation of attochirp is not

required at all.

Since filtering HHG frequency stripes in experiments might still not be easy, next,

we can apply our methods and knowledge in optimizing laser waveforms to attosec-

ond pulse generation in search of easier ways to produce short and bright attosecond

pulses. For example, we can investigate effects on HHG attochirp due to laser wave-

forms and find ways to maximize the trajectory parameter of HHG by shaping laser

waveforms.
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Kling, F. Krausz, and M. Lewenstein, “Attosecond physics at the nanoscale,”

Reports on Progress in Physics, vol. 80, p. 054401, may 2017.

[33] J. Zhou, J. Peatross, M. M. Murnane, H. C. Kapteyn, and I. P. Christov,

“Enhanced High-Harmonic Generation Using 25 fs Laser Pulses,” Phys. Rev.

Lett., vol. 76, pp. 752–755, jan 1996.

[34] K. J. Schafer and K. C. Kulander, “High Harmonic Generation from Ultrafast

Pump Lasers,” Phys. Rev. Lett., vol. 78, pp. 638–641, jan 1997.



107

[35] Z. Chang, P. B. Corkum, and S. R. Leone, “Attosecond optics and technology:

progress to date and future prospects [Invited],” J. Opt. Soc. Am. B, vol. 33,

p. 1081, jun 2016.

[36] F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in

attosecond science,” J. Phys. B At. Mol. Opt. Phys., vol. 49, p. 062001, mar

2016.

[37] X. F. Li, A. L’Huillier, M. Ferray, L. A. Lompré, and G. Mainfray, “Multiple-
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