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 We have reported that microRNAs (miRNAs, miRs) in bovine milk regulate 

human genes. In milk, many miRNAs are encapsulated in exosomes, thereby conferring 

protection against degradation and a pathway for intestinal transport of miRNAs. We 

hypothesized that the uptake of bovine exosomes in human intestinal colon carcinoma 

Caco-2 cells and rat primary small intestinal IEC-6 cells is mediated by endocytosis. 

Transport studies were carried out using fluorophore-labeled exosomes purified from 

bovine milk. The transport of bovine exosomes exhibited saturation kinetics at 37°C 

(Km= 55.5±48.6 µg/200 µL, Vmax= 0.083±0.057 ng exosomal protein x 81,750 cells−1 x 

hr−1) and decreased by 60% if transport was measured at 4°C in Caco-2 cells, consistent 

with carrier-mediated transport. Inhibitors of vesicle trafficking and carbohydrate 

competitors caused a 62-85% and 61-83% decrease, respectively, in exosome transport, 

consistent with cellular transport of bovine exosomes by endocytosis that depends on 

surface glycoproteins in Caco-2 cells. Similar patterns were observed in IEC-6 cells. 

When milk exosomes at a concentration of five times the Km were added to the upper 

chamber in transwell plates, Caco-2 cells accumulated miR-29b in the lower chamber, 

whereas reverse transport was minor.  We conclude that the uptake of bovine milk 



 

 

exosomes is mediated by endocytosis and depends on cell and exosome surface 

glycoproteins in human and rat intestinal cells.
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Extracellular Vesicles  

 

. Extracellular vesicles (EVs) are secreted by the plasma membrane (1) and range 30-1000 

nm in size (2). They are released from many cell types, such as epithelial cells (3), tumor 

cells (4), and neurons (5). Post-transciption modications (6), intercellular communcation 

(7), and exchange of genetic material in both eukaryote and prokarytoic cell types (8, 9) 

are just a few of the notable functional capablities of EVs. These membrane inclosed 

vesicles are spherical in shape (10), and when mounted for negative staining to be viewed 

by transmission electron microscopy (TEM), they appear cup-shapped (1, 11).  

 

History and Mechanism of Action 

 

 EVs are found in many biologial fluids, such as urine (12, 13), blood (14), salvia 

(15), and breast milk  (16). The major catergories of EVs include exosomes, 

microvesicles, and apopotoic bodies (Table 1). Table 1 summarizes the main differences 

between them.  

  In 1967, Peter Wolf visualized EVs with electron microscopy and described the 

vesicles as platlet dust while doing coagulation  research (17). By 1971 one of Wolf’s 

collegues used electron micrographs to visualize EVs from pig plasma which he 

described as having a “heterogenous granular“ apppearance (18) . Using 

ultracentrfiguation, George et al. in 1982 analyzed the microvesicles populations in the 

resulting pellets of human sera and plasma with an immunoelectrophoretic assay. They 
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discovered circulating micropartices originate from elsewhere in the human body, not just 

blood platelets as initially thought (19). Research progress has discovered a role for EVs 

in intracellular and extracellular communication (1, 7), immune response (7, 20, 21) and 

the delivery of exogenous compounds to recepient cells (8, 22, 23). For the purposes of 

this review, the primary focus will be exosomes. 

 

Table 1. Characteristics of different eukaryotic types of 

 cell derived extracellular vesicles 

Vesicles: Exosome  Microvesicles 

(Ectosomes) 

 

 

 Apoptotic bodies 

Diameter 

(nm) 

 

30-150   100-1,000    50-5000 

Density 

(g/ml) 

 

1.13-1.19   Unknown   Unknown 

Formation 

 

Exocytosis of 

MVBs  

 Budding of 

plasma 

membrane 

  Release from 

dying/apoptotic 

cells 

Morphology  

(TEM) 

Cup-shaped  Irregular 

shape 

  Heterogeneous  

 

Origin  Endosomes  Plasma 

membrane 

  Blebs released from 

cells undergoing 

apoptosis 

Protein 

Enrichment 

C81, CD63, CD9, 

LAMP1, Alix, 

TSG101  

 MMP2, 

Annexin V, 

integrins, 

selectins, 

CD40 ligands 

 

  Histones, Annexin 

V 

Adapted from (1, 11, 24-33) 
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Exosomes 

 

 
 The literature is well established that many cell types shed small vesicles into the 

extracelluar space. Exosomes are a type of extracellular vesicles that are secreted from 

various cells types by multivesicular bodies (MVBs) fusing with the plasma membrane 

(25, 32, 33). Endosomal exosome biogensis occurs by the inward budding of the plasma 

membrane into multivesicular bodies (MVBs). Johnston et al. proposed the term exosome 

be given to EVs that originate from MVBs (34). According to the International Society 

for Extracellular Vesicles, the term exosomes is the most popular word used to classify 

any type of extracellular vesicle (35). 

 Exosomes range 30-150 nm in sizes and mediate the transfer of microRNA 

between cells (30, 31, 36). Raposo et al. demonstrated B cell lymphocyte exosomes play 

a role in extracelluar commication by eliciting specific T cell responses (1). Dedendritic 

cell-derived exosomes can diminish the establishment of murine tumors, reinforcing their 

role in immune response (7). Numerous other studies have demonstrated the role of 

exosomes in cell to cell signaling activities (37, 38). 

Composition  

 Exosomes are enriched in proteins, and as a result have been associated with 

specific proteins for indication of their presence. Identification of exosomes became more 

appart when proteins that are involved with MVB biogensis were detected in exosomes 

(7, 39). Currently, over 4,500 proteins have been identified in exosomes (40). Eight major 

proteins have been identifited from murine dendritic derived exosomes, with heat shock 

cognate protein 73 (hsc73) being adundant and shown to accumulate in the endocytic 
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compartments of a murine spleen-derived cell line (41). According to ExoCarta, CD63 is 

among the top 25 proteins that are often identified in exosomes (42). Other proteins 

commonly used to identify exosomes include heat shock 70kDA protein 8 (HSPA8), 

CD9, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-actin (ACTB), CD81 

and annexin A2 (ANXA2) (40). Though exosomes are enriched in many proteins, 

additional research is needed to distinguish between exosomes and microvesicles if trying 

to obtain pure isolates.  

 The lipid content of exosomes has not been studied as intensely as protein. Thus 

far, studies that focus on exosomes secreted from cells contain saturated fatty acids, 

cholesterol (43, 44),  posphytileserine, and sphingomyelin (44, 45).  

Transportation of Exosomes  

 The research suggests that cellular uptake of exosomes is mediated by an 

endocytosis-dependent process (46-48) including phagocytosis (49), receptor-mediated 

endocytosis (50), micropinocytosis (51) and macropinocytosis (see Figure 1.1) (52). 

According to Tan et al., mescnehymal stem cell released exosomes from an endocytosed 

lipid raft, suggesting their endosomal origin (53).  
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Figure 1.1 Simplified uptake pathways for extracellular vesicles 

[Figure source: Review by Mulcahy et al., 2014] (52) 

 How milk exosomes cross the intestinal muscosa needs further exploration, but 

one can infer that it might be similar to human EVs. Recently, an independent laboratory 

suggested that milk exosomes enter the mouse circulation intact by crossing the intestinal 

mucosa without re-packaging (54). Exosomes secreted by mast cells that contain mRNA 

and miRNA can be transferred to nearby cells and be operational (8, 55).  

  Rab proteins are small cytostolic GTPases that are known to control important 

steps in vesicle formation and trafficking (56). As a result, exosomes of endosomal origin 

contain proteins that are involved in membrane transport and fusion processes (see Figure 

1.2 B) (57). A group of the Rab proteins have been shown to be involved in exosome 

secretion. For instance, Rab35 is involved in transporting proteolipid protein from a 
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murine oligodendroglial cell MVBs to exosomes (58). The negative dominant mutant of 

Rab35 decreased exosomes release in an erythroleukemia cell line (59). Knock down of 

five Rab proteins: Rab27, Rab2b, Rab5a, Rab9a, and Rab27A, in HeLa cells inhibited 

exosomes secretion dramatically demonstrating their important role in exosomes 

secretion (60).   

 By using inhibitors of transport processes, researchers can gain insight on 

exosomes methods of entry and secretion from cells. According to Escrevente et al., 

treatment of ovarian tumor cells with the inhibitor cytochalasin D, resulted in a 36 +/- 

13% reduction in cell uptake of isolated labeled SKOV3 cell exosomes (61). A study 

using a transwell system treating Caco-2 cells with 10 uM of cytochalsin D caused nearly 

complete depolymerization of actin stress fibers (62). Guanine nucleotide exchange 

protein (BIG2) is a factor involved in ADP-ribosylation (63, 64). Brefeldin A has been 

shown to target ADP-ribosylation factor that is responsible for coat proteins associated 

with clathrin-coated vesicles (65).  
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Figure 1.2. Exosomes composition and extracellular vesicles origin of exosomes (a), 

ectosomes (b), and apoptotic bodies (c). 

 (B) Exosomes are composed RAB proteins, annexins ,adhesion molecules and 

tetraspanins, cytoskeletal proteins, and miRNA. Membranes are enriched in raft lipids 

such a cholesterol, spingolipids, and ceramide. Abbreviations: ALIX- apoptosis-linked 

gene 2-interacting protein X, ERM- ezrin radixin moesin, HSP70-Heat shock protein 70, 

TSG101- tumor susceptibility gene 101, ICAM- intercellular cell adhesion molecule. 

Figure adapted from Mittelbrunn et al., 2012 (57). 

 

Isolation of Extracellular Vesicles  

 The initial process used to isolate EVs was based on differential centriguation to 

remove vesicles larger than EVs (1, 7, 34). The final ultracentifugation step typically 

includes a G-force of at least 100,000 x g to pellet the exosomes (66). Centrifuge runs as 

high as 140,000 g has been used to sediment exosomes as well (67). To ensure that 

aggregates aren’t formed, some researchers use a sucrose cushion, where the aggrages 

sink though the sucrose, and the lipid containing EVs float on the correct density. 
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Exosomes float in sucrose gradients between the density of 1.13-1.19 g/mL (26). Though 

because this method is tedious, it’s losing popularity for exosome isolation since more 

convenient methods are currently being developed. Iodizanol Optiprep™  (Axis-Shield 

PoCAS) has recently been used with differnetial centrifugation to obtain more pure 

exosomes (68). Recent reports also suggest improved separation from apopototic bodies 

and viruses (69). Anti-body coated beads (HansaBioMed) and polymer based precipation 

kits (exoquick) are other methods that have become available for isolation of extracellular 

vesicles. An in-depth investigation of all methods of isolation for EVs is needed, as there 

is currently no gold standard recommendation for pure isolation of EVs.  

 

MicroRNA  

MicroRNAs are 19 to 25 nucleotides long (70, 71) noncoding RNAs, that typically bind 

to the 3’ UTR of target mRNAs leading to mRNA break down or translational delay (72, 

73). In the nucleus, microRNA is encoded by its own genes and transcribed by RNA 

polymerase II or RNA polymerase III (73, 74), followed by cleavage of the miRNA 

transcript by a complex called Drosha (75). The hairpin loop miRNA structure is then 

transported into the cytoplasm where the premature miRNA is further processed by dicer 

(76, 77), resulting in double stranded mature miRNA. The mature miRNA typically bind 

to the 3’ UTR of target mRNAs leading to mRNA break down or translational delay (72, 

73) (see Figure 1.3) (78). 
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Figure 1.3 The biogenesis of MicroRNA [Figure source: Joshi et al., 2011] (78) 

 Many mammalian microRNAs are found in introns or exons of long noncoding 

transcripts (73). Though the majority of human miRNAs are found 8937 intracellularly, 

they are also present in extracellular fluids such as cell culture supernatants (8, 55), urine 

(79), saliva (80), and milk (81). Extracellular miRNA in the plasma and serum has been 

found directly bound to Argonaute2 as part of the RISC complex (RNA induced silencing 

complex), which makes them resistant to degradation by exonucleases (82). In the 

plasma, miRNA has been shown to be delivered to cells by with high-density lipoproteins 

(83). 
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 A pivotal study in 2007 revealed that exosomes from MC/9, BMMC, and HMC-1 

cells contained a large amount of RNA, and miRCURY LNA Array detected 121 

microRNAs (8).  Many miRNAs can be found encapsulated in exosomes in human serum 

and saliva (84). MicroRNAs have also been detected in exosome originating from cells 

(55, 85, 86) and from malignant tumors (55). 

Bovine MicroRNA 

 In milk, many miRNAs are encapsulated in extracellular vesicles, such as 

exosomes, thereby conferring protection against degradation and a pathway for intestinal 

transport of miRNAs. MiR-29b is moderately abundant in cow’s milk, and plays a role in 

bone health (87). MiR-200c is highly abundant in cow’s milk, and plays a role in cancer 

prevention by causing dependent loss of transcription factor ZEB1 (88). MiR-29b 

stimulates osteoblast differentiation (89, 90), impairs osteoclast differentiation and as a 

result, promotes bone health through increasing bone mineral density (91). Recent studies 

have been conducted isolating exosomes from human and bovine milk that contain 

miRNA (92-94), as well as plants. Baier et al. was able to detect increased levels of miR-

200c and miR-29b after consumption of cow’s milk in human plasma (92).  

 

Other Dietary MicroRNA 

  The first report of plant miRNAs having the potential to modulate human genes 

was 3 years ago. Zang et al. high in rice, which contains miR-168a, could be detected in 

the human and animal sera (95). Thus far, other researchers have not been able to 

replicate their results (92, 96-99). In contrast to mammalian microRNAs, plant miRNAs 

are methylated at the 3’-terminal ribose by methyl transferase HEN1 (100). 
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 Farmer et al. recently showed that miR-2911 from honeysuckle was detected in 

mouse sera and urine after consumption (101). Human subjects fed broccoli sprouts had 

no detectable increase in broccoli borne miR-824 and miR-167a in human blood (92). 

Continued research in the microRNA research field is needed to confirm if dietary 

microRNAs can affect human health in physiological relevant concentrations. 
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Abstract 

We have reported that microRNAs (miRNAs, miRs) in bovine milk regulate human 

genes. In milk, many miRNAs are encapsulated in exosomes, thereby conferring 

protection against degradation and a pathway for intestinal transport of miRNAs. We 

hypothesized that the uptake of bovine exosomes in human intestinal colon carcinoma 

Caco-2 cells and rat primary small intestinal IEC-6 cells is mediated by endocytosis. 

Transport studies were carried out using fluorophore-labeled exosomes purified from 

bovine milk. The transport of bovine exosomes exhibited saturation kinetics at 37°C 

(Km= 55.5±48.6 µg/200 µL, Vmax= 0.083±0.057 ng exosomal protein x 81,750 cells−1 x 

hr−1) and decreased by 60% if transport was measured at 4°C in Caco-2 cells, consistent 

with carrier-mediated transport. Inhibitors of vesicle trafficking and carbohydrate 

competitors caused a 62-85% and 61-83% decrease, respectively, in exosome transport, 

consistent with cellular transport of bovine exosomes by endocytosis that depends on 

surface glycoproteins in Caco-2 cells. Similar patterns were observed in IEC-6 cells. 

When milk exosomes at a concentration of five times the Km were added to the upper 

chamber in transwell plates, Caco-2 cells accumulated miR-29b in the lower chamber, 

whereas reverse transport was minor.  We conclude that the uptake of bovine milk 

exosomes is mediated by endocytosis and depends on cell and exosome surface 

glycoproteins in human and rat intestinal cells.  

 

Key words: endocytosis; epithelial cell; extracellular vesicles; milk exosomes; bovine 

milk exosomes; uptake    
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INTRODUCTION  

The literature is well established that many cell types shed small vesicles into the 

extracellular space. Evidence suggests that exosomes mediate the transfer of microRNA 

(miRNA) between cells (1, 2). Our lab is the first to show that humans absorb meaningful 

quantities of mircoRNA-29b (miR-29b) and miR-200c from nutritionally relevant 

amounts of cow’s milk (3). Baier et al. also showed these miRNAs can affect expression 

in vitro, and that endogenous synthesis does not compensate for dietary miRNA loss in 

mice (3). MiR-29b is moderately abundant in cow’s milk, and plays a role in bone health 

(4) by repressing runt-related transcription factor 2 (RUNX2) inhibitors (5, 6), and as a 

result increases bone mineral density (7). MiR-200c is highly abundant in cow’s milk, 

and plays a role in cancer prevention by inhibiting the transcription factor zinc finger E-

box binding homebox 1 (ZEB1), thereby limiting epithelial-to-mesenchymal transition 

(8, 9).  

 Mature microRNAs (miRNAs) are small noncoding RNAs that typically bind to 

the 3’ UTR of target mRNAs, leading to mRNA break down or translational delay (10, 

11). The emerging evidence of human miRNAs modulating human genes has sparked an 

interest in dietary miRNAs to see if they also play a role in human health. Many 

microRNAs in milk are protected against degradation (12) by encapsulation in exosomes 

(13, 14). In 2007, it was discovered that exosomes carry mRNA and miRNA (15). In this 

study it was demonstrated that a human mast cell line expressed mouse specific proteins 

after treatment with mouse exosomal mRNA. This important finding indicated that 

mRNA transported via the exosomes is translated and may hold importance in overall 



   26 

 

 

cell function (15). The aim of our study was to determine mechanisms of milk exosome 

cellular uptake. This study can help provide further evidence if food miRNAs protected 

by exosomes can gain entry into human colon carcinoma Caco-2 and rat IEC-6 primary 

small intestinal cells. Cow’s milk contains 245 microRNAs (16) and bioinformatics 

predictions suggest that 175 of those might interact with 11,199 human transcripts 

(unpublished data). 

 In this study we describe studies of human colon carcinoma Caco-2 cells (Caco-2) 

as a model system for studies of the uptake into human colon cells. We speculate that 

milk exosomes are absorbed in the small intestine, therefore we also use a rat small 

intestine epithelial cell (IEC-6) as a model as well. We hypothesize the uptake of bovine 

exosomes in human intestinal colon carcinoma Caco-2 cells and rat primary small 

intestinal IEC-6 cells is mediated by endocytosis. Here we will characterize the uptake 

kinetics of milk exosomes into Caco-2 and IEC-6 cells.  

 

METHODS AND MATERIALS  

 

Cell cultures. Human colon carcinoma Caco-2 cells were purchased from American Type 

Culture Collection and were used from passage 52-72 for experiments cultured in 

Dulbecco’s Modified Eagle Medium (DMEM) containing 1% non-essential amino acids, 

10% fetal bovine serum (FBS), 1% L-glutamine, 100,000 U/L penicillin and 100 mg/L 

streptomycin. In select experiments, Caco-2 cells were cultured for 2 days in exosome-

depleted media obtained by ultracentrifugation of FBS at 120,000 x g for 6 hours. Cell 

media was replaced with fresh media every 2 to 3 days. Transport studies were conducted 
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at 75% confluence in 96-well plates and at 100% confluence in transwell plates. IEC-6 

primary rat small intestinal cells were obtained from ATCC at passage 14, and cultured 

as described for Caco-2 cells except that culture media contained 0.1 unit/mL bovine 

insulin and that no transwell studies were conducted due to the IEC-6 cells’ inability to 

form a tight monolayer. 

 

Milk exosome isolation and fluorophore conjugation. Skim cow’s milk was purchased 

in a local grocery store. The milk was centrifuged at 13,200 x g and 4°C for 30 minutes to 

remove somatic cells and debris. The supernatant was mixed 1:1 (by volume) with 250 

mM EDTA (pH 7.0) on ice for 15 minutes to precipitate milk casein(17). The suspension 

was ultracentrifuged at 100,000 x g and 4°C for 60 minutes (F37L-8x100 rotor; Thermo 

Scientific, USA) to remove precipitated protein, fat globules, and vesicles larger than 

exosomes. The clear supernatant was ultracentrifuged at 120,000 x g for 90 minutes at 

4°C to collect exosomes. The exosome pellet was re-suspended in a small volume of 

phosphate-buffered saline containing 0.01% sodium azide, filtered twice through a 0.22-

µm membrane filter, and stored at 4°C and -20°C if necessary. The exosomes were 

labeled with the fluorophore, FM 4-64 (Molecular Probes). One microliter of a stock 

solution of FM 4-64 (.986 mM/L) was added to 1 mL of exosome suspension, incubated 

for 15 minutes at 37°C and excess FM 4-64 was removed by ultracentrifugation at 

120,000 x g at 4°C for 90 minutes. 

Absence of aggregation and exosome purity was assessed as recommended by the 

International Society for Extracellular Vesicles (18). Briefly, absence of exosome 
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aggregation was confirmed using transmission electron microscopy (Hitachi H7500, 

Japan) in the Microscopy Core Facility in the University of Nebraska-Lincoln (Fig. 1A). 

ImageJ (http://imagej.nih.gov/ij/index.html) was used to analyze the exosome size 

distribution. Exosome purity and identity was confirmed using whole protein extracts 

from exosomes and gel electrophoresis (10 µg protein/lane) as described previously (19). 

Membranes were probed using mouse anti-bovine CD63 (AbD Serotec, UK) as a marker 

for exosomes, rabbit antiserum to bovine alpha s1-casein as a marker for the animal 

species of exosome origin, and goat anti-bovine histone H3 (Santa Cruz Biotechnology, 

USA) as a negative control (all at 1,000-fold dilutions). Bands were visualized using an 

Odyssey infrared imaging system (Licor, Inc.) and IRDye 800CW-labeled secondary 

antibodies at a 50,000-fold dilution (Fig. 1B).  

 

Transport studies. Caco-2 cells and IEC-6 cells were seeded at a density of 20,000 cells 

and 7,000 cells per well, respectively, in 96-well plates and allowed to adhere for 48 

hours. Transport studies were conducted using FM4-64 labeled exosomes using 3-110 μg 

exosomal protein/well (Caco-2 cells) or 27-652 μg exosomal protein/well (IEC-6 cells) 

and incubating cells for periods of time described in Results; blanks were created using 

solvent. Assays were calibrated by quantifying the fluorescence of a known mass of 

exosomes labeled with FM 4-64. When indicated, cells or exosomes were treated with 

100 μg/mL proteinase K (Caco-2 cells) to remove surface proteins, 10 μg/mL of the 

endocytosis inhibitor cytochalasin D, 20 μg/mL of brefeldin A to inhibit vesicle 

trafficking, and 150 mmol/L of the carbohydrate competitors D-glucose or D-galactose 30 
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minutes before initiation of transport studies and continuing for the duration of transport 

studies. IEC-6 cells did not survive proteinase K treatment. Therefore, surface proteins 

were removed by treating IEC-6 cells and exosomes using 0.105 mmol/L for five and 30 

minutes, respectively, at room temperature. Exosome uptake was analyzed by measuring 

the cell fluorescence at 515 nm (excitation) and 640 nm (emission) using a Biotek 

FLx800 plate reader and Gen5 data analysis software (BioTek, Winooski, VT). 

Fluorescence readings were corrected for cell autofluoresence by subtracting signals 

measured in cells incubated with exosome-depleted media. Transport kinetics were 

modeled using the Michaelis-Menten equation and non-linear regression; modeling was 

conducted using GraphPad Prism 6.0 (GraphPad Software, La Jolla, CA). 

In transwell studies, Caco-2 cells were seeded at a density of 9,000 cells per well 

and 75 μL media in 96-well polycarbonate plates with a pore size of 0.4 μm (EMD 

Millipore, Billerica, MA), and allowed to grow a differentiated monolayer for 21-24 days 

(20). Caco-2 cell monolayer integrity was formally confirmed using the Lucifer Yellow 

(LY) rejection assay according to the manufacturer’s instructions at a final concentration 

of 60 μmol/L (20). LY fluorescence was measured in the transwell apical and basolateral 

chambers after one hour of incubation at 37°C (480 nm excitation, 530 nm for emission). 

In parallel experiments, Caco-2 cells were cultured in exosome-depleted media to which 

milk exosomes were added back to produce either a concentration of 275 μg/100 μL 

exosomal protein in the upper, apical chamber or the lower, basolateral chamber. 

Controls were cultured in exosome-depleted media. Aliquots of media were collected 

from the upper chamber and bottom chamber after two hours of incubation for analysis of 
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miRNAs. Twenty-five attomoles of internal standard (miSPIKE Synthetic RNA, IDT 

Technologies) were added to samples prior to miRNA extraction using the nucleospin 

miRNA plasma kit (Macherey-Nagel). The concentration of miR-29b in transwell 

chambers was measured by quantitative real-time PCR, using miScript II RT kit, miScript 

SYBR Green (Qiagen), and miRNA-specific primers (Table 2) as described previously 

(3). Values were corrected for the internal standard to normalize for extraction efficiency. 

 

Statistics. Homogeneity of variances was assessed using the Brown-Forsythe test (21, 

22). The data variation for IEC-6 cells was heterogenous, i.e., those data were log 

transformed prior to statistical analysis. Statistical significance of differences among 

treatment groups was assessed using one-way ANOVA and Dunnett’s test for post hoc 

comparisons between treatment groups and control. Analyses were performed using 

GraphPad Prism. Differences were considered significant if P<0.05. Results were 

presented as means ± S.D. and represent independent biological replicates. 

 

RESULTS 

 

 

Time course. In Caco-2 cells, exosome uptake at 37°C was linear for up to 120 minutes if 

transport was measured using non-saturating substrate concentrations, i.e., 110 µg 

exosomal protein/200 μL (Fig. 2A): y=0.001159x + 0.01355 (r2=0.969). In IEC-6 cells, 

exosome uptake at 37°C was linear for only up to 60 minutes if transport was measured 

using non-saturating substrate concentrations, i.e., 55 µg/200 µL (Fig. 2B): y=0.003298x 

+ 0.03304 (r2=0.754). Subsequent transport studies were conducted using incubation 
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times of 60 minutes and 30 minutes for Caco-2 cells and IEC-6 cells, respectively. 

 

Transport kinetics. In both Caco-2 and IEC-6 cells, the uptake of bovine exosomes was 

mediated by saturable transport mechanisms. Transport kinetics were modeled using the 

Michaelis-Menten equation. In Caco-2 cells, Km and Vmax were 55.5±48.6 µg exosomal 

protein/200 µL medium and 0.083±0.057 ng exosomal protein x 81,750 cells−1 x hr−1, 

respectively, at 37°C (r2=0.746; Fig. 3A). In IEC-6 cells, Km and Vmax were 152.4 ±39.47 

µg/200 µL and 0.140±0.0133 ng exosomal protein x 36,375 cells−1 x 30 min−1, 

respectively, at 37°C (r2=0.559; Fig. 3B). When the incubation temperature was 

decreased from 37°C to 4°C, the transport rate decreased from 100±56% to 54±13% 

using a substrate concentration of 55.5 µg exosomal protein/200 µL in Caco-2 cells 

(P<0.05; n=3). Likewise, when the incubation temperature was decreased from 37°C to 

4°C, the transport rate decreased from 100±11% to 44±25% using a substrate 

concentration of 153 µg exosomal protein/200 µL in IEC-6 cells (P<0.05; n=3). 

Subsequent transport studies were conducted using substrate concentrations of 55 µg/200 

µL and 153 µg/200 µL in Caco-2 cells and IEC-6 cells, respectively, except for transwell 

studies. 

 

Roles of surface glycoproteins and endocytosis. The uptake of bovine milk exosomes 

into human and rat intestinal cells depended on surface proteins on both exosomes and 

cells. When surface proteins were removed from exosomes or Caco-2 cells were 

treatment with proteinase K, exosome uptake decreased to 32±25% and 18±16% of 
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controls (P<0.05, n=3) (Fig. 4A). These observations are consistent with previous reports 

that the cellular uptake of exosomes is initiated by protein/protein interactions, leading to 

vesicle uptake by endocytosis (23-25). When IEC-6 cells were treated with trypsin, 

exosome uptake decreased to 82±8% of controls (P<0.05, n=3) (Fig. 4C), indicating that 

proteins containing amino lysine and arginine on the cell surface may be involved in 

bovine milk exosome uptake. When Caco-2 cells were treated with inhibitors of 

endocytosis (cytochalasin D), intracellular vesicle trafficking (brefeldin A), or 

carbohydrate competitors the uptake of exosomes decreased to less than 50% of controls 

(Fig. 4B). Carbohydrate competitors were equally effective in decreasing exosome 

uptake into Caco-2 cells. The effects of these inhibitors and competitors were similar in 

IEC-6 cells, although treatments were not statistically significant (P=0.11, n=6) (Fig. 

4D). 

 

MiRNA sorting in the intestinal mucosa and reverse transport. When Caco-2 cells were 

provided with exosome-supplemented media (275 µg/100 μL) in the apical chamber and 

incubated for two hours, the concentrations of miR-29b in the basolateral chamber 

increased from 0.018±0.03 fmol/L to 0.094±0.16 fmol/L (P<0.05). When exosomes were 

provided with exosome-supplemented media (275 µg/100 μL) in the basolateral chamber 

and incubated for two hours, no concentration gradient was detected in the two chambers, 

suggesting minimal reverse transport under the experimental conditions: 0.067±0.068 

miR-29b fmol/L in the basolateral chamber compared to 0.066±0.11 fmol/L miR-29b in 

the apical chamber. Caco-2 cells formed a tight monolayer, judged by a Lucifer yellow 
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rejection percentage of 99.7±0.19%. 

 

DISCUSSION 

 Exosomes are found in many biologial fluids. In the past decade, research has been 

focused on but not limited to those found in urine (26, 27), salvia (28), blood  (29, 30 ), 

and breast milk (13, 31). While much has been discovered regarding exosomes, studies 

on mechanisms of intestinal transport of dietary exosomes are lacking. By understanding 

the uptake kinetics of bovine milk exosomes, this study provides the foundation to further 

explore the mechanism of bovine exosomes in regards to human health.  Here we provide 

evidence that bovine milk exosomes are absorbed into human colon carcinoma Caco-2 

cells and IEC-6 RAT small intestinal cells.  

 Evidence continues to emerge surrounding miRNA’s and their role in human 

health (8, 32, 33). The theory of deitary miRNA absorbance into the human intestinal 

muscosa and inducing biological activity in humans continues to gain evidence (3, 34-

36). In contrast to plant microRNAs, many mammalian microRNAs are protected against 

degradation (12) by encapsulation in microvesicles such as exosomes (13, 14, 37). It has 

become a controversial topic in the science community if plant miRNAs can in fact effect 

human gene expression (3, 38-41). In contrary, a recent report suggests that another 

animal product, eggs in nutritionally relevant amounts, can cause a 100% increase in 

plasma miRNAs (36). 

 By using inhibitors of vesicle trafficking and a broad-spectrum proteinase, and by 

measuring uptake at 4°C and 37°C, we provide evidence that uptake of bovine milk 
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exosomes is a carrier-mediated process in human intestinal cells and that glycoproteins 

on the milk exosomes and intestinal cells are involved. High sucrose concentrations have 

been associated with decreased levels of receptor-mediate endocytosis (42). By 

increasing the levels of glucose and galactose, it’s possible that the hyperosmolar state 

decreased the uptake of milk exosomes into Caco-2 cells, indicating bovine milk 

exosomes depend on endocytosis to be taken into the cell. We also think it’s possible that 

glucose and galactose may be acting as carbohydrate competitors with milk exosomes.   

 There are some uncertainties associated with our studies of bovine milk exosomes 

and will need to be revisited in future studies. First, FM4-64 might alter the structure of 

bovine EVs. We are not able to overcome this obstacle at this time. Second, FM4-64 is 

believed to fluoresce intensely when inserted into the outer leaflet of the surface 

membrane (43), so it’s possible that the bovine exosomes are not fully internalized in the 

cell. We find this to be an unlikely possibility due to a study from an independent 

laboratory suggesting that milk exosomes enter the mouse circulation intact by crossing 

the intestinal mucosa without re-packaging (35). We will carry out future studies to 

determine if we also can come to this conclusion. Lastly, it is not yet established if 

surface proteins in human and rat cells can recognize exosomes from other species.  

  Because low Km is associated with a higher affinity, we can conclude bovine 

exosomes is higher in human Caco-2 cells than rat IEC-6 cells. One could speculate that 

the bovine surface glycoproteome is more compatible with human cells than it is with 

rats. Current studies in our laboratory include characterization of the glycoproteins 

involved in bovine milk exosome transportation. In contrast, the capacity for transport is 
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higher in rat IEC-6 cells compared with human Caco-2 cells. One would expect that with 

more cells, the transport rates would be higher. When using half as many IEC-6 cells, the 

differences become more dramatic between transport rates. This makes logical sense 

based on the absorption kinetics of humans absorbing milk microRNA (3). This study out 

of our laboratory provided the evidence to propose that the upper intestine is the primary 

site of milk exosome absorption (3), and we validated it with the IEC-6 cell line in this 

study.  

Looking forward, the use of milk exosomes may be a promising vehicle for the 

oral delivery of drugs. Exosomes can be harvested from cells, but milk proves 

advantageous due to the large quantities that can be obtained and the practicality when it 

comes to the cost and availability. Cell cultures are often from cancer or mutant cells 

which might run the risk of promoting malignant transformation of cells in subjects 

treated with such vesicles (44).  
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Figure 1 

Electron microscopy and western blot. 

(A) Electron microscopy images: large field image (15,000 x magnification) and single 

exosomes (60,000X magnification).  

(B) Western Blot A: anti-C63 (exosome positive control), B: anti-casein (bovine positive 

control), C: anti-histone H3 (negative control). All samples were run on the same gel but 

the membrane had to be cut to allow for probing with distinct antibodies. 
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Figure 2 

 (A) Exosome uptake into human colon carcinoma Caco-2 cells as a function of time at a 

concentration of 110 µg exosome protein/200 µL medium and temperature of 37°C 

(n=6.) 

 (B) Exosome uptake into rat primary intestinal IEC-6 cells as a function of time at a 

concentration of 55 µg exosome protein/200 µL medium and temperature of 37°C (n=3). 

All panels: Means±SD are reported. 
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Figure 3 
Saturation kinetics of bovine exosome transport in Caco-2 cells.  

(A) Exosome uptake into human colon carcinoma Caco-2 cells as a function of exosome 

protein dose in one hour at 37°C (n=6).  

(B) Exosome uptake into rat primary intestinal IEC-6 cells as a function of exosome 

protein dose in 30 hour at 37°C (n=3). All panels: Means±SD are reported.  
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Figure 4 
Effects of inhibitors of endocytosis and vesicle trafficking, and carbohydrate competitors 

on the uptake of bovine exosomes in human and rat intestinal cells.  

(A) Treatment of bovine exosomes or Caco-2 cells with proteinase K prior to analysis of 

transport rates. (n=3).  

(B) Exosome transport in Caco-2 cells treated with cytochalasin D (Cyt D), brefeldin A 

(BFA), or in the presence of carbohydrate competitors (n=5).  

(C) Treatment of bovine exosomes or IEC-6 cells with trypsin prior to analysis of 

transport rates (n=3).  

(D) Exosome transport in IEC-6 cells treated with Cyt D, BFA, or in the presence of 

carbohydrate competitors (n=6).  

All panels: Means±SD are reported; *p<0.05 vs control. 
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Table 1 

Quantitative PCR Primers Used to Quantify Gene Expression   

microRNA Forward Primer Sequence 5 – 3’ 

miSpike CTC AGG ATG GCG GAG CGG TCT 

miR-29b GTA GCA CCA TTT GAA TCA GTG TT  
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CHAPTER 3 

 

CONCLUSIONS 
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FUTURE STUDIES & CONCLUSION 

 Moving forward our lab is currently conducting a study analyzing phenotypic 

effects potentially due to microRNA provided by the diet. Mice are being fed an exosome 

plus diet, where microRNAs are present, or an exosome minus diet, in which microRNAs 

are depleted through sonication. Plasma and a number of different tissues will be 

analyzed at different stages in life. The success of breeding and offspring survival will be 

analyzed as well.  Our lab will also test feeding human adults soy infant formula and the 

same soy infant formula but supplemented with bovine milk exosomes. We predict the 

miRNA plasma levels will not change following consumption of soy formula alone, but 

when supplemented with bovine exosomes, may result in plasma miRNA increases 

similar to our prior study (1).  

 Many questions remain unanswered about extracellular vesicles, and much 

research is still needed, but so far, the future of extracellular vesicles in drug delivery is 

looking promising (2, 3). A remarkable study recently published created a treatment by 

loading exosomes with a catalase, a potent antioxidant, for the treatment of Parkinson’s 

Disease in mice (2).  A clinical trial currently recruiting participants will access if plant 

exosomes loaded with curcumin can effectively deliver curcumin to colon cancer and 

normal colon mucosa tissues as a dietary supplement (4).  

 Technical aspects of EV research, such as storage, isolation, and other factors are 

being explored to determine the best technique for harvesting and preserving EVs (5-7).  

Mammal and food derived EVs currently have no established nomenclature for 

classification and isolation procedures (8). This study, and many others, is just the 
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beginning of a path that will perhaps lead to improved insight on drug and nutrient 

delivery systems.   

  MicroRNAs have been implicated in many aspects of human health and disease 

including bone health, inflammatory bowel disease, metabolic syndrome (9-12) cancer 

(13), and cystic fibrosis (14-16). Though it is important to note that some miRNAs may 

have adverse effects (17-19). More in-depth studies to determine if dietary microRNAs 

can survive and pass the human gastrointestinal tract are needed. As the great Frenchmen 

Brillat-Savarin once said, “Tell me what you eat, and I will tell you what you are.” This 

may continue to ring true with even deeper meaning than initially thought if dietary 

microRNAs from other species can indeed impact gene expression in humans.  
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