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Deep learning in urban analysis for health  

David William Newton  

College of Architecture, University of Nebraska–Lincoln,  
Lincoln, NE, United States  

Introduction  

Over the last hundred years, the number of people living in urban ar-
eas has increased dramatically, making the link between the design 
of our cities and human health a pressing global issue (United Na-
tions, Department of Economic and Social Affairs, Population Division, 
2019). According to the United Nations, 56.2% of the world’s popula-
tion now resides in cities and the World Health Organization (WHO) 
projects that the number will increase to 66% by 2050. In parallel to 
this massive urbanization of our species, diseases such as obesity, di-
abetes, and high blood pressure have increased significantly among 
urban populations (WHO, 2016). In addition to significant physical 
health problems, urbanization has also been linked to increasing rates 
of mental illness. Analysis by the WHO estimates that mental illnesses, 
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such as depression and anxiety, make up 12% of the global disease 
burden, and this figure is projected to increase as more and more 
world’s population moves into cities. The combined cost to society of 
treating these physical and mental diseases globally is estimated to 
be in the trillions of dollars (WHO, 2016). A key component in miti-
gating the impact of these diseases on society at large is developing a 
better understanding of how the design of the built environment im-
pacts human health. Developing urban analysis methods that allow 
urban planners and designers to better understand this relationship 
is, therefore, crucial to the design of healthier cities.

 The increasing urbanization of our species has also been accompa-
nied by a revolution in information collection, processing, and analy-
sis powered by the integration of global computer networks into the 
fabric of our everyday lives. From the smartphones in our hands to 
the global satellite networks above our heads, a vast informational in-
frastructure generates around 2.5 quintillion bytes of data each day. 
Among this deluge of data, are a multiplicity of data collection technol-
ogies that provide information on the state of the built environment. 
Remote sensing technologies are a major source of such data, which 
use aerial and satellite platforms to observe the surface of the planet 
from a bird’s-eye view. From this vantage point, data in the form of 
aerial photographs, light detection and ranging (LIDAR) images, ra-
dio detection and ranging (RADAR) images, hyperspectral images, and 
thermal images can be captured in real-time documenting the change 
of the built environment over days, months, and years. These image-
based datasets can be extremely large requiring new methods and 
technologies to systematically extract useful information. A variety of 
disciplines, from earth science to epidemiology, have used advances in 
machine learning to automate the analysis of large image-based data-
sets in order to better understand a range of phenomena (Tsagkata-
kis et al., 2019). The allied design fields, however, have largely relied 
on traditional inferential statistical methods—which require signif-
icant amounts of manual labor to extract features from images for 
tasks like regression and classification. These large image-based da-
tasets, therefore, offer a rich and largely untapped resource for the al-
lied design disciplines to better understand the link between human 
health and the built environment in a world that is becoming increas-
ingly urbanized. 
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There has been significant progress in the field of machine learn-
ing in the development of methods capable of working with large im-
age-based datasets for analysis, identification, and prediction tasks. 
Deep learning is a subfield of machine learning that uses layers of ar-
tificial neurons to build mathematical models from datasets that have 
been demonstrated to outperform competing approaches on a num-
ber of these tasks. For example, researchers have trained deep learn-
ing models to accurately identify objects, such as cars, people, exo-
planets, and even skin cancer from photographs. Researchers have 
also begun to explore the use of remote sensing datasets, such as sat-
ellite imagery, in order to build models of natural and man-made land-
scapes that can aid in understanding and predicting phenomena as 
diverse as geological disasters and poverty (Liu and Wu, 2016; Piag-
gesi et al., 2019). Their application in the realm of urban analysis has 
been more limited, but some of the areas they have been used to ana-
lyze include: identifying urban land use (Zhang et al., 2019); predict-
ing urban growth ( Jaad and Abdelghany, 2020); and estimating hu-
man health measures, such as obesity (Maharana and Nsoesie, 2018). 
Their application in understanding the link between human health 
and the built environment has been especially limited, but existing 
research has demonstrated their potential for both estimating health 
measures, as well as identifying correlations between the visual fea-
tures in the built environment and health. 

The application of deep learning to urban health analysis is, there-
fore, in its early stages, but offers new and promising capabilities in 
using large image-based datasets to better understand the built envi-
ronment and its effects on human health. This chapter will introduce 
and explore some of these capabilities, providing the allied design 
fields with a roadmap of this emerging area of research, its potentials, 
and current challenges. The chapter begins with a brief overview of 
existing research related to urban morphology and health, in which 
precedent work using traditional methods as well as deep learning 
are introduced. Next, research is presented demonstrating methods 
for the use of discriminative and generative deep learning processes 
for both urban health estimation and analysis. The chapter then con-
cludes with a discussion of key challenges and directions for future 
work in this emerging field of research.  
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Urban morphology and health 

Existing research in urban planning and health has established a va-
riety of links between the physical characteristics of the built envi-
ronment and human health. In terms of physical health measures, 
previous research has found significant correlations between char-
acteristics of urban morphology, such as density and street network 
pattern, to rates of obesity (Lopez- Zetina et al., 2006; Marshall et al., 
2014). These characteristics have also been found to be linked to in-
creased rates of diabetes (Marshall et al., 2014) and asthma (McCon-
nell et al., 2006). The work done so far suggests that neighborhoods 
and cities that are more walkable tend to be correlated with improved 
health outcomes for the diseases mentioned. 

There has also been a growing body of work that has discovered sig-
nificant correlations between urban morphology and mental health. 
Research looking at how urban density effects mental health has found 
a positive correlation between high rates of urbanization and high 
rates of mental illness (Peen et al., 2010). Street network proximity 
has been linked to neurological diseases such as non-Alzheimer’s de-
mentia, Parkinson’s disease, Alzheimer’s disease, and multiple scle-
rosis (Yuchi et al., 2020). In contrast, proxies for lower density, such 
as access to green spaces, water features, natural views, and natural 
light, have been found to correlate to low rates of anxiety and depres-
sion (Braubach, 2007; May et al., 2009; Garrett et al., 2019). 

The picture that emerges from this growing body of work is that 
the physical characteristics of our neighborhoods and cities have 
significant correlations with health. The nature of these correla-
tions is still being studied, and it is important not to confuse corre-
lation with causation, but the evidence suggests an important link 
that requires more investigation. The majority of existing research 
in this area has primarily used traditional inferential statistical ap-
proaches to discover correlations (Hoisington et al., 2019; Renalds 
et al., 2010). These approaches, however, have a limited ability to 
efficiently analyze large image-based datasets, such as those from 
remote sensing platforms. 
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Deep learning in urban analysis for health 

In order to address some of the shortcomings of traditional statis-
tical methods, there is a growing body of research investigating the 
use of deep learning in combination with remote sensing datasets 
to discover and better understand correlations between urban mor-
phology and human health. This research can be broadly categorized 
into two categories: discriminative deep learning and generative 
deep learning approaches. Deep learning models are comprised of 
layers of artificial neurons—with each neuron being a simple math-
ematical function mapping inputs to an output. These simple build-
ing blocks can be connected to one another in networks in order to 
create models capable of representing any mathematical function. 
The organization of multiple layers of artificial neurons into a net-
work to accomplish a particular task is referred to as creating a deep 
learning architecture. There are a large variety of architectures for 
both discriminative and generative deep learning that has been de-
veloped and validated by the research community with new archi-
tectures being developed every day. 

Discriminative deep learning processes use labeled datasets to build 
models for classification and regression tasks. In cases where an input 
dataset is correlated with an output dataset, these processes can ap-
proximate a function that maps inputs to outputs given enough data 
examples and training time. Generative deep learning processes work 
in a different way and use large unlabeled datasets to learn the prob-
ability distribution that underlies an input dataset. This distribution 
can then be sampled to generate new data instances. Generative pro-
cesses require less data preparation than discriminative processes 
because they work with unlabeled data. Discriminative and gener-
ative processes can build models from many types of large datasets 
(e.g., images, drawings, text, 3D models, sounds, etc.). This flexibil-
ity, coupled with their ability to work with images, makes them use-
ful to disciplines whose data tends to be image-based, or heteroge-
neous, in nature. 
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Applications of discriminative deep learning in urban health 
analysis 

Discriminative deep learning approaches have been most widely used 
by existing research in urban health analysis. They have been used 
in conjunction with aerial, satellite, and point-of-view images for a 
variety of classification and regression tasks involving demograph-
ics, health, and well-being. For example, they have been used to train 
models that can estimate the population of census blocks from sat-
ellite images using classification (Robinson et al., 2017). They have 
also been applied to regression tasks to estimate the rate of poverty 
in developing countries using daytime and nighttime satellite images 
of those countries ( Jean et al., 2016). In terms of health measures, 
researchers have trained discriminative models on satellite images of 
cities to estimate rates of obesity (Maharana and Nsoesie, 2018). Re-
searchers have also used street view and point-of-view images to es-
timate a broader spectrum of wellness metrics related to unemploy-
ment, education, income, and wellbeing (Suel et al., 2019). 

Convolutional neural networks (CNNs) are a deep learning archi-
tecture developed for working with images and are the main architec-
ture used by this precedent research. CNNs work by taking image data 
as an input and passing that data through a series of neural layers. As 
the images move through each layer, image data is progressively ab-
stracted into sets of visual features that provide a compressed rep-
resentation of the image data that can be used for classification, re-
gression, or generative tasks. The layers at the beginning of the model 
extract low-level features (i.e., edges, corners, etc.) while the layers 
toward the end of the model extract high-level features (i.e., roads, 
buildings, etc.). CNNs learn which features best define an image for a 
particular task and how to extract those features from the image data 
through a training process involving feeding example images into the 
model along with the desired model output (e.g., a desired classifica-
tion or regression value), calculating the error, and then using an op-
timization algorithm to adjust the weights associated with the CNN’s 
mathematical model. This supervised learning process is done itera-
tively until the model reaches peak accuracy. 

There are a large variety of CNN architectures to choose from de-
pending on the task at hand. Previous research involving the use of 
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satellite images for health analysis has primarily used the visual geom-
etry group (VGG) family of CNN architectures (Simonyan and Zisser-
man, 2016). There are, however, a number of other architectures that 
offer increased accuracy in image recognition tasks that could also be 
chosen (e.g., Inception, Xception ResNet). Training these CNN models, 
however, poses a challenge. Discriminative deep learning models re-
quire prodigious amounts of data for their training. These models are 
often trained on datasets that contain millions of data samples in or-
der to reach peak accuracy in classification, or regression tasks. This 
can pose a challenge when working with smaller datasets. 

In order to address this challenge, researchers have developed two 
methods that are fundamental to any deep learning training process: 
data augmentation and transfer learning. Data augmentation increases 
the size of the training dataset by creating new data instances from 
existing instances. In the case of an image dataset, this is done by tak-
ing an existing image from the dataset and applying operations (e.g., 
scaling, rotation, distorting, adding noise, etc.) to it that modify the 
image from its original state. The new modified image can then be 
used as a new training example. This simple trick seems dubious but 
has been demonstrated to improve model accuracy significantly and 
is used extensively by precedent research in urban health analysis. 

Transfer learning is the other primary method used when working 
with small datasets (i.e., datasets in the hundreds to thousands of data 
points). Transfer learning saves significant computation time by re-
purposing deep learning models trained for one task for another sim-
ilar task. This is done by using available deep learning models trained 
on millions of data points and then retraining only a small part of that 
model for the desired classification, or regression task that is simi-
lar but different from the task the model was originally trained for. 
Transfer learning has demonstrated impressive capabilities and allows 
the analytic insights developed from one dataset to be transferred to 
other datasets. Precedent work in urban health analysis has made use 
of this method extensively. 

Figure 1 shows an example of discriminative deep learning archi-
tecture using transfer learning for an urban health regression task 
involving estimating the rate of overweight adults based on satel-
lite images of US census tracts—which are typically about the scale 
of a neighborhood. In the figure, the Xception CNN architecture is 
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pictured. Xception is an architecture that is pretrained on the Ima-
geNet database, which is an image database of over 14 million images 
spanning more than 20,000 object categories. The original architec-
ture is comprised of 14 convolutional blocks (each block is made up 
of several neural layers) and a layer at the end that outputs a classifi-
cation value. In order to adapt the model for estimating rates of obe-
sity, the final layer of the original model is removed and replaced by a 
new layer that will output a regression value instead of a classification 
value. As Figure 1 shows, the model takes satellite images of census 
tracts as an input, extracts features through its convolutional blocks, 
and then outputs a regression value estimating the rate of overweight 
adults in the census tract. 

The training of the model involves freezing a set number of neural 
layers and only training a select set of layers in the model. This se-
lective training is what saves time and finding which layers to train 
is a key problem. This choice is often made based on how similar the 
desired dataset is to the original dataset for which the model was 
trained. In the example given in Figure 1, satellite images are signifi-
cantly different than the ImageNet database used to train the original 
Xception architecture. ImageNet features close-up elevational views 
of various objects (e.g., people, plants, animals, furniture, etc.) and 
not views from above. In order to address this issue, multiple op-
tions are normally tested. For example, one test might explore how 
well a minimally modified version of the Xception architecture can 
perform by only training the last layer. This option saves the most 
computation time but assumes that the low and high-level image 
features learned from ImageNet will be relevant for analyzing sat-
ellite images of cities. The second test might explore the hypothesis 
that the low-level image features learned from ImageNet are useful 
but that the high-level features are not relevant. Therefore, this ap-
proach might train the last two convolutional blocks of the Xception 
architecture as well as the last layer. The third test might explore 
the hypothesis that both high-level and a proportion of low-level fea-
tures may not be relevant for satellite image analysis for a particu-
lar health measure. Therefore, convolutional blocks 6 through 14, as 
well as the final layer, may be trained. As more layers are trained, 
more computational resources and time for that training are neces-
sary. In the example, because aerial views are significantly different 
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than elevational views, the third architecture demonstrated the low-
est error in estimating rates of overweight adults but required the 
largest computational resources. 

The existing research presented in this section establishes the effi-
cacy of discriminative methods for estimating some health and well-
being measures but there are still a number of areas that require ad-
ditional study in order to realize the full potential of these processes 
for urban health analysis. These areas include the following: devel-
oping a greater understanding of which health measures can best be 
estimated with these processes; creating methods for training these 
models more efficiently: and developing techniques to identify spe-
cific visual features that correlate with health measures. The next sec-
tion will address this last issue in more detail.  

Analyzing deep learning models to find correlations 

Deep learning models are often referred to as “black-box” models be-
cause their inner workings remain obscured behind hundreds of thou-
sands, and sometimes millions, of parameters. The development of 
analytic methods to address this problem is currently a pressing prob-
lem for disciplines working with deep learning because such methods 
would allow insight into the learned correlations between dataset fea-
tures and estimation values. Previous research in this area has used 
the visualization of individual CNN layers to identify correlated fea-
tures. This approach has been used extensively in work using satel-
lite images to estimate health ( Jean et al., 2016; Maharana and Nsoe-
sie, 2018) but has significant drawbacks. Specifically, these methods 
rely heavily on visual interpretation to identify features of interest and 
provide little information on how combinations of features might be 
correlated with outcomes. 

Researchers in the field of machine learning have developed a vari-
ety of methods to identify possible correlations between dataset fea-
tures and predicted outcomes in deep learning models. Zeiler and 
Fergus (2014) have developed a quantitative method involving de-
convolution that highlights the portion of an image that is being acti-
vated by a particular neural unit. Nguyen et al. (2019) have used opti-
mization techniques to find images that cause the highest and lowest 
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activation of different neural layers. Gatys et al. (2016) have used the 
calculation of Gram matrices to find the neural layers most activated 
by a given set of images. The identified layers can then be visualized 
as images called feature maps that can be interpreted by an analyst 
to identify key visual features.  

Figure 2 shows an example of this last approach. In the example, a 
dataset of satellite images of census tracts from the state of California 
is first subdivided into image sets that represent high and low inci-
dence for three different health measures: obesity, asthma, and heart 
disease (Newton, 2021). The average Gram matrix is then calculated 
for each high and low incidence image set. This is done by calculating 
the Gram matrix for each individual census tract image from the first 
convolutional block of the Xception architecture for each set and then 
averaging those individual Gram matrices together. Figure 2 shows 
visualizations of the average Gram matrix calculated for each health 
measure. These matrices serve as a kind of spectrograph for the satel-
lite images present in each high and low incidence set and allow each 
health measure to be compared. For example, obesity and heart dis-
ease show a similar pattern of activation for high incidence images, 
while asthma is noticeably different. 

The axes of the matrix show identification numbers for the spe-
cific neural layers (i.e., feature maps) in the first convolutional block. 
Bright colors in the Gram matrix represent combinations of feature 
maps that are most active on average for a particularly high or low 
incidence set. These feature maps can then be visualized and inter-
preted to identify specific built and natural environment features that 
are correlated with high and low incidence rates. Gram matrices can 
be calculated from any convolutional block in the CNN architecture, 
and the choice of where to do this is an important one. For this ex-
ample, the first convolutional block was chosen because it allowed 
for easier visual interpretation. The downside to this choice is that 
the neural layers at this level are involved with identifying low-level 
image features (e.g., edges, corners, etc.) and not high-level features 
(e.g., objects composed of several low-level features like street net-
work grids, etc.). 

In Figure 3, the most active feature map combinations identified 
from the average Gram matrices for both high and low incidence 
rates of overweight adults are shown (Newton, 2021). The highest 
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Figure 2 Gram matrices. (A) Shows average Gram matrices of low and high inci-
dence census tracts for overweight health measures. (B) Shows average Gram ma-
trices for asthma. (C) Shows average Gram matrices for heart disease. 
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activating feature maps for high disease incidence are feature maps 
30 and 24. Figure 3 shows visualizations of these feature maps as well 
as overlaid analysis. Visual analysis of feature map 30 reveals that it 
activates most when detecting proxies for buildings and streets—such 
as north-south edges and the roofs of buildings—especially lighter 

Figure 3 Gram matrix analysis. A sample census tract image with a high rate of over-
weight adults is used as the input to the CNN model. The most active feature maps 
identified by the Gram matrix analysis are shown for both high and low disease in-
cidences. Qualitative analysis is overlaid on the feature maps to identify specific vi-
sual features that are activating the model. Brighter pixel values indicate more ac-

tivation in that area of the image.  
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roofing materials often associated with larger commercial and resi-
dential buildings. In contrast, feature map 24 activates in relation to 
the space in-between buildings, specifically darker elements in the 
exterior landscape of the census tract, such as asphalt surfaces (e.g., 
streets and parking lots), vegetation, and shadows. The highest ac-
tive feature maps for low incidence are feature maps 24 and 22 as 
shown in Figure 3. Feature map 24 is the most active for both high 
and low incidence rates. Feature map 22 has a similar activation be-
havior as 24, responding to exterior spaces. This activation pattern, 
therefore, focuses more on exterior space than what was seen in the 
high incidence case. These results indicate the CNN model is most 
responsive toward proxies for walkability, such as streets, shadow 
patterns along streets, and parking lots. These results are consistent 
with precedent research in urban planning and health that has found 
similar correlations between walkability and obesity, but this method 
provides a new way of identifying these correlations (Li et al., 2009; 
Marshall et al., 2014). 

This example demonstrates a deep learning-driven mixed meth-
ods approach to identify correlations between satellite image features 
and disease incidence and also its limitations. The first major limi-
tation involves the selection of where in the CNN model to calculate 
the Gram matrices and retrieve the feature maps. In this research, 
the first convolutional block was chosen because, at that stage in the 
model, images can still be readily interpreted through visual examina-
tion. The first blocks of the CNN model have neural layers that learn to 
find low-level features. While using these early layers from the anal-
ysis allows the feature maps produced by these layers to be human-
readable, the feature maps at this stage have learned only very basic 
representations. This makes developing insight about how high-level 
features (e.g., street grid patterns, park distribution patterns, build-
ing density differences, etc.) are correlating with specific outcomes 
more difficult and subject to a greater level of interpretation. This is-
sue relates to another limitation, which is the degree of interpreta-
tion needed to interpret the activation patterns at work in the feature 
maps identified by the Gram matrices. Identifying the image features 
that are activating a particular feature map requires a careful assess-
ment of the feature maps on a pixel-by-pixel basis. For some feature 
maps, the activations can be straightforward to interpret, but others 
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require a greater degree of subjective judgment. Developing more ro-
bust quantitative methods for the analysis of CNN models to identify 
these features is, therefore, a pressing issue that has become the fo-
cus of an area of research called explainable, or interpretable, artifi-
cial intelligence. Recent work in this area has shown significant im-
provements over previous work (Linardatos et al., 2021), and with 
new developments occurring each year, robust tools to address this 
issue seem within reach.   

Applications of generative deep learning for urban health 
analysis 

Generative deep learning processes have been explored less than dis-
criminative processes for urban health analysis by existing research. 
This may be due to the fact that they do not offer straightforward clas-
sification, or regression, values that lend themselves to quick inter-
pretation, but instead can learn the statistical correlations that define 
one type of dataset versus another and can create new data instances 
based on these learned correlations. There are a wide variety of gen-
erative deep learning architectures that have been developed in the 
field of machine learning, such as variational autoencoders and deep 
belief networks. Generative adversarial networks (GANs) proposed by 
Goodfellow et al. (2014) are the most popular deep generative model. 
This popularity is due to their ability to outperform competing ap-
proaches in terms of their flexibility for image generation tasks and 
the quality of produced images. 

GANs work through the competition of two deep neural networks: 
the generator network and the discriminator network. The job of the 
generator network is to create new data instances from noise. The job 
of the discriminator network is to correctly identify the fake images 
being created by the generator network from the real images compris-
ing the training dataset. Both networks are trained together in an it-
erative manner and, if the training process is successful, the genera-
tor will gradually learn to produce new data instances that are good 
enough to fool the discriminator network. Figure 4 shows an exam-
ple of GAN architecture illustrating this deep learning architecture. In 
the figure, the GAN is being trained on a dataset of satellite images of 



D.W. Newton in Artificial Intelligence in Urban Planning & Design (2022)       16

census tracts. The generator network is tasked with learning to gen-
erate completely new images that resemble those in the training set. 
The discriminator network must, therefore, learn to accurately dif-
ferentiate between data instances from the real training set and those 
being artificially created by the generator. 

GANs have been used for a large variety of image generation tasks. 
For example, they have been used to generate images of human faces, 
bedroom layouts, and building facades. They have also been used in 
the creation of designs for new 3D objects like chairs and tables. Their 
application for urban health analysis, however, has been limited. The 
research that has been done in this area can be classified as residing 
in two different categories: (1) approaches that use GAN architectures 
to create completely new data instances for analysis; (2) approaches 
that use GAN architectures for translation between one dataset and 
another for analysis. 

The first category involves training GANs on satellite, aerial, or 
map images of exemplar urban areas in order to create images of 
new urban plans that have been learned from the exemplar dataset. 
These images can then be qualitatively assessed to develop insight into 

Figure 4 GAN architecture. The GAN architecture is comprised of a generator and 
discriminator network that compete against each other. Through this competition, 
the generator learns the probability distribution that underlies a training set of im-
ages and can learn to create new image instances by sampling that distribution.   
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correlations that might underpin the given set of exemplar designs. An 
example of this kind of approach is shown in Figure 5, where a GAN 
is trained on satellite images of census tracts with high rates of anx-
iety in order to generate new census tract designs that may be corre-
lated with that health measure (Newton, 2020). A qualitative visual 
analysis of these generated images reveals urban design features that 
may be correlated with high rates of anxiety. In part (A) of the fig-
ure, large, shaded areas can be seen indicating limited accessibility 
to natural light. In part (B), a dense urban grid is seen within an or-
ange pollution-like haze. In part (C), a diagonal line looking like an 
airport runway or highway interrupts the density of the urban grid. 
The generated images in parts (A)–(C) of Figure 5 are notable in the 
high levels of density they show with no green spaces or natural land-
scapes. In contrast, Figure 6 shows the results of training a GAN on 
census tract images with low levels of anxiety. These images indicate 
that natural landscape features (e.g., green spaces, open land, moun-
tains, water features), access to light, and medium to low density may 
have a meaningful correlation with low anxiety rates. 

The other category of approach involves the use of GANs to train 
models that can translate from one set of exemplar images to another 
set. These translations can then be studied to identify urban design 
features that might be correlated with a particular outcome, such as 
safety, or health. For example, researchers have used this method to 
translate between satellite images of areas with a high incidence of 

Figure 5 High anxiety GAN model. Shows generated samples from a GAN model 
trained on the high incidence of anxiety. Parts (A)–(C) show dense urban fabric with 
no natural spaces and an air pollution-like haze.   
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bicycle accidents to areas of low incidence in order to identify urban 
features (e.g., street design, sidewalk design, etc.) that may be corre-
lated with lower accident rates (Zhao et al., 2019). 

Figure 7 shows an example using the CycleGAN architecture for an 
analysis task involving depression. Parts (A), (D), and (G) of the fig-
ure show an original satellite image of a California census tract with 
a high incidence of depression. Parts (B), (E), and (H) show a trans-
lation of the original satellite image by the CycleGAN to be more con-
sistent with the image feature present in low incidence images. Parts 
(C), (F), and (I) show a pixel-by-pixel difference between the origi-
nal and the translated image—highlighting the primary features that 
have been changed. A qualitative visual analysis of these GAN trans-
lation results shows changes to a street grid pattern and greenspace 
distribution. 

Comparing the results of both GAN studies to existing research can 
help to validate the potential correlations identified. In terms of anx-
iety, existing research has found that increased levels of urbanization 
and pollution correlated with higher rates of mental illness (Bolton 
et al., 2013; Chen et al., 2018; Peen et al., 2010). Further, correlations 
between anxiety and exposure to natural light and natural views have 
also been identified (Braubach, 2007; May et al., 2009). In relation 
to depression, previous research has also shown a significant corre-
lation between low incidences of depression and access to greens-
paces (Beyer et al., 2014; May et al., 2009; Cohen-Cline et al., 2015; 

Figure 6 Low anxiety GAN model. Shows generated samples from a GAN model 
trained on the low incidence of anxiety. Parts (A)–(C) show census tracts domi-
nated by natural landscapes.  
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Figure 7 Depression GAN model. (A, D, G) shows an original satellite image of a Cal-
ifornia census tract with a high incidence of depression. (B, E, H) shows a transla-
tion of the original satellite image by the CycleGAN to be more consistent with the 
image features present in low incidence images. (C, F, I) shows a pixel-by-pixel dif-
ference between the original and the translated image—highlighting the primary 
features that have been changed.   
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Rautio et al., 2018). The results of these GAN experiments, therefore, 
are consistent with findings from existing research, but limitations 
inherent in this mixed-methods process need to be addressed to bet-
ter verify these results. These limitations mostly stem from the qual-
itative visual analysis used to identify correlations. This process in-
volves a significant degree of subjective interpretation and also does 
not provide detailed information on the nature and degree of the cor-
relation between identified features and health outcomes. Integrat-
ing additional quantitative statistical methods (e.g., Pearson Corre-
lation, etc.) to validate identified correlations is one possible way of 
addressing this issue. Other approaches involve developing quantita-
tive methods of analyzing GAN models that can identify which learned 
visual features generated by a GAN architecture correlate most with 
a specific health outcome. 

Existing research in this area is investigating how generative mod-
els might be used for urban health analysis, but as with discriminative 
deep learning processes, there are still many open questions involv-
ing how these models might be used to identify specific design fea-
tures correlated with health measures, as well as, developing methods 
of building datasets and training models that are the most efficient.   

Challenges, opportunities, and next steps 

The existing research and examples presented demonstrate the poten-
tial efficacy of using deep learning with remote sensing data for ur-
ban health analysis tasks, but there are a number of important chal-
lenges that will need to be addressed by future research in order to 
realize the full potential of this technology to illuminate the links be-
tween the built environment and human health for the design disci-
plines. These challenges reside in four key areas which will be dis-
cussed in more detail below: (1) overcoming the high entry barrier to 
using deep learning; (2) acquiring and prepping the necessary data for 
deep learning; (3) developing efficient methods to train deep learn-
ing models for urban analysis; and (4) moving from an understand-
ing of correlation to one of causation. 

A key challenge in working with deep learning models is over-
coming the high entry barrier needed to effectively train and analyze 
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these models. This challenge is especially acute in the design disci-
plines, where knowledge of programming and machine learning is 
rare. Developing competencies in these areas is therefore key for the 
allied design disciplines if they are to more fully engage the poten-
tials of current and future machine learning technologies for urban 
analysis. There are a large variety of massive open online courses in 
addition to publications introducing machine learning that can work 
as an effective stop-gap to build basic competencies in these areas, 
but a more strategic approach would better position the allied design 
fields to shape the future development and use of these technologies 
in the analysis of the built environment. One example of a more stra-
tegic approach could be integrating core competencies in program-
ming, data science, and machine learning with design curriculums. 
This would give future practitioners and researchers in the allied de-
sign fields the foundation they need to effectively lead discussions 
and develop methods to extract critical insight on human health and 
other factors from the ever-expanding streams of data produced on 
the built environment. 

Another important challenge in working with deep learning for 
urban health analysis involves acquiring the necessary remote sens-
ing and health data to train deep learning models. Accessing qual-
ity health data for deep learning is a challenge due to the cost of 
collecting accurate health data and the security measures that are 
necessary for protecting individual privacy. Existing deep learning 
research involving health data has primarily used bulk anonymized 
data from governmental sources. These datasets are often limited in 
terms of geographic coverage and scale. In the United States, for ex-
ample, health data is usually recorded at the county level, while data at 
smaller scales (e.g., census tract, neighborhood scale, etc.) is often not 
available. In terms of remote sensing datasets, the majority of exist-
ing research uses satellite, or aerial, images. These images, however, 
comprise only one data stream among many other remote sensing 
datasets (e.g., LIDAR images, RADAR images, hyperspectral images, 
thermal images, etc.) that could be useful for urban health analysis. 
There are also nontraditional remote sensing datasets, such as the use 
of social media streams that have demonstrated efficacy for urban 
analysis (Frias-Martinez and Frias-Martinez, 2014). These datasets 
are widely accessible through private (e.g., Google Earth, Bing Maps 
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Imagery, etc.) and public sources (SGS Earth Explorer, NASA Earth-
data Search, DigitalGlobe Open Data Program, etc.). The principal 
challenge in working with this data, therefore, is deciding which data 
streams might be most efficacious for a particular health analysis task 
and also in preparing the data (e.g., removing incomplete/damaged 
data instances, cropping input images consistently, etc.). The field of 
machine learning has attempted to address this problem in relation 
to classification problems through the creation of standardized data-
sets (e.g., ImageNet, MINST, ModelNet, etc.) that are easily accessible 
to the research community. These shared datasets allow researchers 
to save time in data collection and preparation, while also providing 
a more robust ability to directly compare the results of one research 
project to another. Developing standardized datasets for urban health 
analysis is, therefore, crucial for future research in this area. 

The next challenge is that the training of deep learning models 
can be very resource-intensive—requiring large amounts of data and 
computing time. As discussed previously, transfer learning can dra-
matically reduce the amount of data and computing resources needed 
to train a deep learning model by making use of pretrained models 
trained on other image datasets that are similar in scale and view an-
gle to a target image dataset (e.g., aerial images, LIDAR images, etc.). 
The problem is that remote sensing images are often very dissimilar 
in scale and view angle when compared to the images used to train 
available pretrained deep learning models. This dissimilarity makes 
it less efficient for transfer learning. In order to address this issue, a 
library of pretrained deep learning architectures is needed that are 
trained on remote sensing datasets. These pretrained models should 
be provided for different remote sensing data types, such as satellite, 
thermal, and hyperspectral images. 

The last key challenge involves moving from an understanding of 
the correlation between health and the built environment to an un-
derstanding of causation. Establishing causation means demonstrat-
ing that a particular health outcome came as a consequence of some 
design feature in the built environment and not by chance, or due to 
some other hidden factor. This kind of work requires significant mon-
etary investment and, therefore, a renewed sense of urgency by gov-
ernments to prioritize research on the built environment is needed. 
In order to foster this kind of attention, a compelling evidence-based 
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case must first be made correlating the built environment with hu-
man health. Deep learning workflows could provide the means to help 
build this case. 

Addressing these challenges could allow for a new era of public 
health analysis and land use planning. One in which the capabilities 
of deep learning are used to better understand and predict the rela-
tionship between human health and its physical environs from a vari-
ety of data streams generated in our neighborhoods and cities. These 
predictive models could provide significant cost savings for countries 
around the world and help them to better deal with emerging health 
crises, such as pandemics. The stakes are, therefore, very high, and it 
is more pressing than ever that the challenges outlined be addressed 
in order to realize a new data-driven era of planning for our built 
environments.  
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