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This thesis begins with an overview of the state-of-the-art in tandem mass 

spectrometry (MS/MS) analysis of glycopeptides. In this introduction, the primary focus 

is on utilization of different ion dissociation techniques for MS/MS to obtain structural 

information of N-glycopeptides. This includes a discussion of the importance of 

complementary MS/MS methods to attain complete structural characterization of N-

glycopeptides. Emerging methods involving the use of a single ion dissociation technique 

for complete glycopeptide connectivity analysis were also presented. Next, the 

application of collision-induced dissociation (CID) to provide both amino acid sequence 

and monosaccharide connectivity for model N-glycopeptides was discussed in detail. 

Implementation of varying collision energies to generate energy-resolved breakdown 

curves suggested unique ranges of collision energies allowed glycan and peptide 

fragments to be obtained. An online collision energy modulation was demonstrated to 

allow both glycan and peptide fragments to be gathered in a single CID spectrum. 

Finally, the role of proton mobility in dictating the energy-resolved CID behaviors of N-

glycopeptides was examined. Energy-resolved CID studies in the context of different 

precursor ion proton mobilities suggested the possibility that peptide and glycan cleavage 

products could be deliberately accessed at predictable collision energies. 
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Chapter 1 

Tandem Mass Spectrometry of Glycopeptides: A Brief Overview 

Portions of this chapter have appeared in:  

V. Kolli, K. N. Schumacher, and E. D. Dodds, Bioanalysis 7: 113-131 (2015). 
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Introduction 

Unlike the other building blocks of a cell, oligosaccharides are able to form 

branched structures of high complexity, and are thus considered among the most 

analytically challenging for structural characterization.1 These challenges in structure 

determination become compounded when these oligosaccharides (or, glycans) occur in 

glycosylation, a post translational modification (PTM) of proteins.2 Glycosylation plays 

significant roles in the functions of glycoproteins, and aberrant glycosylation can result 

from or lead to various diseases including cancer, neurodegenerative disorders, 

congenital disorders of glycosylation, and others.3-5 Understanding the compositional and 

structural features of glycoproteins in their full molecular complexity is essential to 

improving our understanding of their biological functions. 

In general, glycosylation can be classified into the N- and O-linked types based on 

the site of glycan attachment to the polypeptide chain. If glycans are attached to the side 

chain of an asparagine residue in the context of an NXS or NXT sequon (with X being 

any amino acid other than proline), this is termed as N-linked glycosylation. On the other 

hand, if glycans are attached to the side chain of a serine or threonine residue, this is 

termed O-linked glycosylation.6 Several analytical methods have been implemented to 

characterize both N-linked and O-linked protein glycosylation. Among these methods, 

mass spectrometry (MS) stands out as a promising approach, partly due to recent 

advances in instrumentation to perform tandem mass spectrometry (MS/MS) analysis.7-10 

These MS/MS methods can be implemented probe the structures of the glycoproteins by 

bringing about informative fragmentation processes. Due to their large structures and 

compositional heterogeneity, direct MS analysis of intact glycoproteins is seldom 
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performed. Currently, most work to characterize glycoproteins is done on simplified or 

isolated substructures of glycoproteins. Depending on the focus of interest, the MS based 

approaches for glycoprotein characterization can be broadly classified into three 

categories: glycomic approaches, proteomic approaches, or glycoproteomic approaches 

(Figure 1.1).11 Among these three approaches, the work described in this thesis falls 

within the scope of glycoproteomic approaches, which consider both the glycan and 

peptide substructures, as well as their covalent connectivity. Such information is lost in 

the glycan-centered and protein-centered approaches. To thoroughly analyze intact 

glycopeptides, extensive research efforts have been directed towards development of 

MS/MS strategies which provide information on both the peptide and the glycan.  

Figure 1.1. Graphical summary of different approaches to glycoprotein analysis. Broadly categorized, 

these include glycomics (characterization of glycans released from glycoproteins), proteomics 

(identification of glycoproteins based on analysis of their non-glycosylated proteolysis products), and 

glycoproteomics (characterization of site-specific connectivity between glycans and proteins through 

analysis of glycosylated proteolysis products). The work presented in this thesis is focused on 

glycoproteomics. 
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Overview of Glycan and Peptide Fragmentation 

The basic scheme for MS/MS analysis involves mass selection of the target of 

interest. Subsequently, the precursor ions can be subjected to fragmentation using a 

variety of methods. Based on the location and type of cleavage, the resulting fragments 

can be labelled according to standard systems of nomenclature (Figure 1.2). In the case 

of glycans, the Domon and Costello nomenclature is followed for labelling the 

fragments.12 According to this nomenclature, B and Y fragments are obtained when the 

glycosidic bond is cleaved, while C and Z fragments are obtained through cleavage of the 

adjacent bond on the other side of the glycosidic oxygen. Lastly, A and X fragments can 

be seen when cross-ring cleavages takes place. A, B, and C fragments retain the non-

reducing end, while X, Y, and Z fragments retain the reducing end. Also, for A and X 

Figure 1.2. Nomenclature for peptide (top) and glycan (bottom) fragments. 
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fragments, the location of cross ring cleavages are shown as superscripts prior to the A or 

X letter.12 Similarly for peptides, Roepstorff and Fohlman nomenclature is 

implemented.13 Here, b and y fragments represents the cleavage of the peptide amide 

bond, c and z fragments are from bond breakage between backbone N-Cα linkages, and 

lastly a and x fragments arise from cleavage of the bond linking the Cα- carbonyl carbon. 

Also, a, b, and c fragments will retain the N-terminus, while x, y, and z ions will contain 

the C-terminus.13 A brief overview of the various MS/MS techniques that result in these 

fragments follows. 

 

Application of MS/MS Methods to Glycopeptides 

Overview. The detection of putative glycopeptides by MS is usually followed by 

MS/MS in order to confirm the monosaccharide and amino acid composition, and to 

ascertain the monosaccharide connectivity and polypeptide sequence. While a 

glycopeptide MS/MS experiment would ideally reveal all of these features, the structural 

information actually obtained may or may not furnish this level of detail. Indeed, the 

information obtained in MS/MS experiments depends greatly upon the nature of the 

glycopeptide precursor ion (e.g., composition, charge carrier, charge state, etc.) and the 

nature of the applied dissociation method (e.g., vibrational activation, electron capture / 

electron transfer reactions, electronic excitation, etc.).11 These considerations have been 

detailed in the context of glycopeptide analysis elsewhere.11 The following will provide a 

brief discussion of recent developments and emerging strategies in the area of 

glycopeptide MS/MS analysis. 
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Use of complementary MS/MS methods. A variety of MS/MS methods are 

commonly applied to biomolecule analysis.14 Most prevalent among currently available 

techniques are those ion dissociation methods based upon either collisional vibrational 

activation, or electron capture / electron transfer reactions.15-17 Since these methods lead 

to structurally informative fragmentation processes through fundamentally different 

mechanisms, the outcomes of these MS/MS methods often yield complementary 

information. This complementarity has proven useful for proteomic analysis.18-19 

Likewise, in the context of glycosylated peptide analysis, this orthogonality can be 

exploited in order to gain highly informative MS/MS data. It is now well known that, 

while vibrational activation / dissociation methods such as collision-induced dissociation 

(CID) and infrared multiphoton dissociation (IRMPD) most readily lead to preferential 

cleavage of glycosidic bonds, electron capture dissociation (ECD) and electron transfer 

dissociation (ETD) lead to selective scission of N-C bonds along the polypeptide 

backbone.20-23 As a result, a number of glycopeptide analysis workflows have been 

devised in order to exploit multiple complementary MS/MS methods and thus gather 

more detailed structural information on glycopeptide ions. For instance, Alley et al. 

demonstrated a method based on LC-MS/MS with alternating CID and ETD events 

which was shown to allow extensive characterization of model glycopeptides.24 In a 

similar fashion, Perdivara et al. and Darula et al. combined CID and ETD in order to 

characterize tryptic O-glycopeptides from biological mixtures.25-26 Analysis of N-

glycopeptides was carried out by Cooper and coworkers using an LC-MS/MS method in 

which the observation of carbohydrate oxonium ions following CID was used to trigger 

ETD of the same precursor ion 27. In this way, CID and ETD were not simply alternated 
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during the entire LC-MS/MS run; rather, ETD was only carried out if the CID spectrum 

yielded evidence that a given precursor ion was a glycopeptide. CID neutral loss products 

can also be used to trigger ETD for only those analytes likely to be glycosylated.28 

Though not widely applied to glycopeptide analysis currently, we note that some 

previously reported hybrid MS/MS approaches have significant potential to extend the 

usefulness of MS/MS experiments that yield complementary structural information for 

glycopeptides.29-34 

Use of a single MS/MS method. While the combination of two MS/MS methods 

can be highly informative regarding overall glycopeptide connectivity, significant effort 

has also been aimed at gaining extensive glycopeptide connectivity data using a single 

MS/MS technique. For example, photodissociation methods for MS/MS have achieved 

some success in this regard.35-36 Irradiation of trapped ions with infrared photons to bring 

about IRMPD is one such method 37. Studies by Adamson and Hakansson as well as 

Bindila et al. demonstrated the ability of IRMPD to yield significant information on both 

the glycan and peptide moieties of N-linked and O-linked glycopeptides, respectively.38-39 

Lebrilla and coworkers also found IRMPD to effectively cleave both the carbohydrate 

and peptide groups of N- and O-glycopeptides, with their studies focused on the 

precursor ion characteristics (e.g., composition, charge carrier, charge polarity) which 

tended to predispose a given precursor ion to one type of cleavage or the other.40-41 

Irradiation of precursor ions with ultraviolet photons to result in ultraviolet 

photodissociation (UVPD) has also found increased application to biomolecule MS/MS 

analysis in recent years.42-43 The work of Zhang and Reilly as well as Madsen and 

Brodbelt have established that UVPD yields concurrent fragmentation information on 
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both the glycan and the peptide for N-linked and O-linked glycopeptides, respectively.44-

45 In addition to photodissociation methods, certain CID-based strategies are being 

developed with the goal of gathering both the monosaccharide connectivity and amino 

acid sequence of glycopeptides. Such approaches are based on the observation that the 

applied collision energy dictates the dominant fragment ion types appearing in a CID 

spectrum. Thus, CID is capable of gaining broader use as a means of accessing peptide 

sequence ions in addition to the more frequently noted glycan fragmentation products. In 

the chapters that follow, work towards realizing these capabilities is presented.  
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Abstract 

Tandem mass spectrometry (MS/MS) of glycopeptides stands among the principal 

analytical approaches for assessing protein glycosylation in a site-specific manner. The 

aims of such experiments are often to determine the monosaccharide connectivity of the 

glycan, the amino acid sequence of the peptide, and the site of glycan attachment. This 

level of detail is often difficult to achieve using any single ion dissociation method; 

however, precedent does exist for use of collision-induced dissociation (CID) to establish 

either the connectivity of the oligosaccharide or the sequence of the polypeptide 

depending upon the applied collision energy. Unfortunately, the relative energy 

requirements for glycan and peptide cleavage have not been thoroughly characterized 

with respect to specific physicochemical characteristics of the precursor ions. This report 

describes case studies on the energy-resolved CID pathways of model tryptic 

glycopeptides derived from Erythrina cristagalli lectin and bovine ribonuclease B. While 

glycopeptide ions having disparate physical and chemical characteristics shared strikingly 

similar qualitative responses to increasing vibrational energy deposition, the absolute 

collision energies at which either glycan or peptide fragmentations were accessed varied 

substantially among the precursor ions examined. Nevertheless, these data suggest that 

the energy requirements for peptide and glycan cleavage may be somewhat predictable 

based on characteristics of the precursor ion. The practical usefulness of these 

observations was demonstrated through implementation of online collision energy 

modulation such that both glycan and peptide fragmentation were captured in the same 

spectrum, providing near-exhaustive glycopeptide characterization in a single 
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experiment. Overall, these results highlight the potential to further extend the capabilities 

of CID in the context of glycoproteomics. 

 

Introduction 

The site-specific analysis of protein glycosylation in complex biological samples 

stands among the grand challenges facing modern post-genomic science.1-5 Accordingly, 

there exists a strong demand for glycoproteomic capabilities to facilitate determination of 

site-specific glycosylation in biological mixtures. This interest has been motivated in 

large part by a continually expanding appreciation of protein-modifying oligosaccharides 

as they pertain to numerous biological processes (e.g., fertilization; immune recognition; 

host-pathogen interaction; etc.) and human disease states (e.g., cancer; congenital 

disorders of glycosylation; neurodegenerative disorders, etc.).6-17 While protein 

glycosylation analyses are often carried out with either a “glycocentric” (i.e., 

compositional and structural analysis of glycans released from glycoproteins) or a 

“proteocentric” (i.e., identification of deglycosylated glycoproteins with indirect 

glycosylation site localization) outlook, the loss of molecular detail imposed by glycan 

release limits the specificity and potential for biological resolution that can be furnished 

by such analyses.18 In order to map specific oligosaccharide structures to their 

corresponding sites of protein attachment, the analytical scheme must preserve the 

oligosaccharide-polypeptide connectivity until such a time that the chosen approach can 

characterize the linkage. 

One means of addressing this task entails the adaptation of bottom-up methods for 

mass spectrometry (MS) based proteomics to characterize glycopeptides.19-21 While 
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advantageous in terms of directness (glycan release is avoided, thus attachment sites need 

not be merely inferred), this approach is subject to a number of analytical challenges.22, 23 

The acquisition and subsequent interpretation of informative tandem mass spectrometry 

(MS/MS) data for glycopeptide ions stand among the most pressing of these challenges. 

Significant effort has been made to maximize the information content of glycopeptide ion 

dissociation spectra, including those obtained through vibrational activation / dissociation 

methods such as collision-induced dissociation (CID)24, 25 and infrared multiphoton 

dissociation (IRMPD);26, 27 ion-electron and ion-ion reactions resulting in electron 

capture dissociation (ECD)28, 29 or electron transfer dissociation (ETD);30, 31 and 

irradiation with ultraviolet photons in order to achieve ultraviolet photodissociation 

(UVPD).32, 33 One useful outcome of these investigations has been the observation of a 

high degree of complementarity between the vibrational activation / dissociation spectra 

and the electron capture / transfer dissociation spectra of glycopeptide ions. A number of 

researchers have noted that while CID and IRMPD tend to preferentially cleave the 

oligosaccharide moiety, ECD and ETD characteristically result in cleavage of only the 

polypeptide backbone.34-38 This general behavior has proven very valuable, as application 

of two complementary methods can enable thorough characterization of glycopeptide 

composition and structure.39-43 Unsurprisingly, a number of other glycopeptide ion 

dissociation pathways have been observed which do not fall within the domain of strictly 

complementarity vibrational activation / dissociation and electron transfer / capture 

dissociation.44-47 This includes numerous examples of vibrational activation / dissociation 

methods providing information not limited to the carbohydrate group, but extending to 

the amino acid sequence of the peptide group as well. For example, fragmentation of 
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glycopeptide amino acid chains has been noted in IRMPD,26, 27, 48, 49 low-energy beam-

type CID,50-54 and high-energy beam-type CID.55-57 As noted in these studies, the energy 

required to achieve scission of the peptide backbone is generally much greater than that 

necessary for cleavage of the glycan group. These energy-resolved fragmentation 

channels are of significant analytical utility; however, the various dissociation pathways 

have not been thoroughly studied with respect to specific physical and chemical 

characteristics of glycopeptide precursor ions. In particular, the present understanding of 

factors which dictate the energetic requirements for peptide backbone fragmentation is 

not well developed, despite even relatively recent energy-resolved CID studies of 

glycopeptides (which did not investigate the fragmentation of the peptide group).25, 58 

This type of understanding would be of great practical use, as it could conceivably allow 

precursor ion characteristics to inform the setting of CID collision energies such that 

glycan or peptide cleavages are more deliberately accessed. If well characterized, the 

diverse fragmentation pathways of glycosylated peptide ions can be highly advantageous 

in increasing the density of structural information yielded by MS/MS. Moreover, as 

essentially all MS/MS instruments are capable of CID, the ability to extract maximum 

structural information regarding both the oligosaccharide and the polypeptide using low-

energy vibrational activation / dissociation alone is particularly appealing. 

 The research reported here is focused upon a detailed study of the energy-resolved 

CID characteristics of tryptic glycopeptides chosen as models for this study due to their 

disparate characteristics. The first of these was a 17 amino acid glycopeptide carrying a 

seven monosaccharide paucimannosidic glycan (i.e., containing the trimannosyl core with 

added fucose and xylose residues). The second was a six amino acid glycopeptide 
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carrying a seven monosaccharide high mannose glycan (i.e., containing the trimannosyl 

core with added mannose residues). These model glycopeptides, each harboring two 

basic amino acid side chains, were studied as their doubly protonated and triply 

protonated precursor ions. This allowed the energy requirements of the various 

fragmentation pathways to be evaluated both in the presence and absence of readily 

mobile protons. Although there were considerable quantitative differences in the absolute 

collision energies at which different dissociation channels were accessed, these 

experiments revealed a striking concordance with respect to qualitative trends in the 

energy-resolved CID behaviors of these analytes. In all cases, Y-type fragmentations of 

the oligosaccharide group comprised the lowest-energy dissociation pathways; however, 

with increasing vibrational energy deposition these primary fragment ions gave rise to 

secondary product ions dominated by the Y1 fragment (peptide plus reducing terminal 

monosaccharide) and ultimately a collection of tertiary fragments including the Y0 

fragment (complete glycan loss) and an abundance of peptide b and y fragments. Despite 

the quantitative differences in energy-resolved CID of the precursor ions examined, these 

data suggest that key dissociation characteristics may be somewhat predictable based on 

characteristics of the precursor ion. Finally, these observations enabled the design and 

implementation of a multi-energy CID experiment which permitted different energy-

resolved dissociation channels to be captured in a single information-rich CID spectrum 

which yielded both the glycan connectivity and the amino acid sequence. In summary, 

the present results suggest means of taking more complete advantage of CID capabilities 

for glycopeptide structure characterization. 
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Materials and Methods 

Chemicals. Bovine ribonuclease B (BRB), ammonium bicarbonate, urea, 

dithiothreitol, iodoacetamide, proteomics grade trypsin, imidazole, and formic acid were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Erythrina cristagalli lectin (ECL) 

was obtained from Vector Labs (Burlingame, CA, USA). HPLC grade acetonitrile was 

acquired from Fisher Scientific (Fair Lawn, NJ, USA). HPLC grade water was purchased 

from Burdick & Jackson (Muskegon, MI, USA). 

Sample preparation. For each glycoprotein of interest, a 50 µL aliquot of 2 µg/µL 

glycoprotein solution in 8 M urea and 50 mM NH4HCO3 (pH 7.5) was treated with 10 µL 

of 450 mM dithiothreitol in 50 mM NH4HCO3 (pH 7.5). This mixture was incubated for 

1 h at 55°C for disulfide bond reduction. A 10 µL portion of 500 mM iodoacetamide in 

50 mM NH4HCO3 (pH 7.5) was then added. This was followed by incubation for 1 h in 

the dark at ambient temperature for thiol acetamidation. The urea content of the sample 

was then diluted to < 2 M by addition of 175 µL 50 mM NH4HCO3 (pH 7.5). A 5 µL 

aliquot of 0.5 µg/µL of trypsin was next added, and this solution was allowed to incubate 

for 18 hours at 37°C. The digest was subsequently vacuum centrifuged using a Speed 

Vac SC110 (Thermo Savant, Holbrook, NY, USA) to reduce the volume of the solution 

to approximately 10 µL. The digest was reconstituted to a total volume of 100 µL by 

addition of 0.1% formic acid. To enrich the glycosylated fraction of tryptic peptides, solid 

phase extraction was performed using zwitterionic hydrophilic interaction liquid 

chromatography (ZIC-HILIC) in a pipette tip format (Protea Biosciences, Somerset, NJ, 

USA). Each ZIC-HILIC tip was wetted with water, equilibrated with 80% acetonitrile / 

0.1% formic acid, then loaded with a portion of the reconstituted digest in 80% 
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acetonitrile (i.e., 4 µL of reconstituted digest plus 16 µL acetonitrile). Each tip was then 

washed with 80% acetonitrile / 0.1% formic acid. Finally, elution was performed using 

0.1% formic acid. 

Mass spectrometry. All analyses were conducted using a Synapt G2 HDMS 

quadrupole time of flight (Q-TOF) hybrid mass spectrometer (Waters, Manchester, UK). 

The instrument was fitted with a home-built static nanoflow electrospray ionization 

(nESI) stage which delivered the capillary potential by means of a platinum wire placed 

in contact with a small portion of analyte solution contained in a borosilicate emitter. 

Samples of approximately 10 µL purified digest or purified digest spiked to include 10 

mM in imidazole (to enhance the abundance of lower charge states produced by nESI) 

were placed into nESI emitters using a 10 µL syringe (Hamilton, Reno, NV, USA). The 

emitters were fashioned in-house from 1.5 - 1.8 x 100 mm Corning Pyrex melting point 

capillaries (Corning, NY, USA) using a vertical micropipette pipette puller (David Kopf 

Instruments, Tujunga, CA, USA). Ionization by nESI was conducted using a capillary 

potential of 1.0 - 1.4 kV, a sampling cone voltage of 15 - 35 V, and an extraction cone 

voltage of 2 - 4 V. Source temperature was maintained at 80°C. Precursor ions of interest 

were quadrupole selected and subjected to CID such that the trap region stacked ring ion 

guide of the instrument served as the collision cell. Argon was used as the collision gas at 

a pressure of approximately 5.0 x 10-3 mbar within the collision cell. Collision energy 

was modulated by adjusting the static DC offset (U) between the collision cell and the 

stacked ring ion guide of the ion source region. Direct infusion spectra were acquired for 

approximately one minute. 
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Data handling. Spectrum acquisition and analysis was performed in MassLynx 

4.1 (Waters), and further data processing and visualization were carried out using 

SigmaPlot 10.1 (Systat, Chicago, IL, USA) and using custom routines written and 

implemented in IGOR Pro 6.3 (WaveMetrics, Lake Oswego, OR, USA). Where practical, 

product ions resulting from cleavage of the carbohydrate group were assigned according 

to the nomenclature of Domon and Costello.59 Occasionally, glycan fragmentations or 

combinations thereof could not be unambiguously or conveniently assigned using these 

formalisms. In such instances, the fragments were assigned by indicating monosaccharide 

losses from the precursor. Product ions involving scission of the peptide were assigned in 

accord with the nomenclature of Roepstorff and Fohlman.60 When naming and referring 

to product ions, lower case letters were used to specify peptide fragmentation, while 

upper case letters were used to indicate oligosaccharide cleavage. For the sake of clarity, 

product ions resulting from small neutral losses (e.g., H2O, NH3) from the precursor or 

other fragments were assigned but not labelled in the spectra presented below. Glycan 

structures were diagrammed using the monosaccharide symbology of Varki et al.61 

Peptide sequences were presented using standard one-letter amino acid notation, while 

monosaccharide names were abbreviated as follows: GlcNAc, N-acetylglucosamine; 

Man, mannose; Fuc, fucose; Xyl, xylose.  

 

Results and Discussion 

CID of ECL glycopeptide ions. Upon nESI-MS analysis, the ZIC-HILIC purified 

tryptic digests of ECL yielded a major peak corresponding to the glycopeptide ion 

[SKPAQGYGYLGVFNNSK + GlcNAc2 Man3 Fuc1 Xyl1 + 3H]3+ (monoisotopic m/z = 
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1000.8). This glycopeptide was an attractive model analyte for our initial studies because, 

as discussed below, the MS/MS behavior of this analyte has been well-studied by others 

in the past (particularly, with respect to the complementarity of vibrational activation 

methods and electron capture / transfer methods for glycopeptide analysis). The ion was 

quadrupole selected and subjected to CID at a variety of collision energies. As shown in 

Figure 2.1a-b, at a collision energy of U = 17.5 V the CID spectrum is dominated by Y-

type glycosidic cleavages of the carbohydrate moiety. Sequential loss of individual 

monosaccharides occurred in various orders, ultimately resulting in a major fragment ion 

which corresponded to the Y1α+Y1β double cleavage product (i.e., the peptide group plus a 

single remaining GlcNAc residue linked to the asparagine side chain). Not unexpectedly, 

the CID spectrum of this glycopeptide ion closely resembled the vibrational activation / 

dissociation spectra obtained by other researchers using IRMPD,35 ion trap CID,37 and 

beam-type CID in a Q-TOF.38 It should be pointed out that the studies cited above were 

conducted on two variants of the target glycopeptide: one in which the residue two 

positions N-terminal of the glycosylation site was isoleucine, and another in which the 

isoleucine residue was replaced by a valine residue. Although this substitution of one 

aliphatic residue for another is unlikely to significantly affect the overall dissociation 

behavior of these glycopeptide variants, we note here that the present studies have been 

carried out using the valine-containing variant. In line with expectations, some very 

dissimilar CID results were obtained at somewhat higher collision energies. As depicted 

in Figure 2.1c-d, at a collision energy of U = 37.5 V the spectrum changed dramatically 

in both overall appearance and in information content. Under these conditions, the base 

peak of the CID spectrum remained the Y1 α +Y1β fragment, although a number of major 
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ions in the spectrum were assigned as b- and y-type peptide sequence fragments. The 

observed product ions resulted in 56.3% sequence coverage for the peptide backbone, 

owing to six b ions and eight y ions representing cleavage of nine of the 16 peptide amide  

Figure 2.1. CID of the triply protonated ECL glycopeptide. The CID spectrum acquired at U = 17.5 V 

(a) exhibited only glycan cleavage, as shown in the accompanying diagram (b). The CID spectrum 

acquired at U = 37.5 V (c) exhibited mainly peptide fragments following glycan loss, as shown in the 

accompanying diagram (d). 
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bonds. Notably, the CID sequence coverage reported here is quite reasonable when 

compared to those previously reported for this glycopeptide ion by ECD or ETD. 

Hakansson et al. obtained 68.8% sequence coverage by ECD (nine c ions and two z ions 

representing cleavage of 11 out of 16 N-C α  bonds),35 while McLuckey and coworkers 

achieved 75.0% sequence coverage by ETD (11 c ions and 12 z ions representing 

cleavage of 12 out of 16 N-Cα bonds).38 

To more completely delineate the energy-resolved CID behavior of this model 

glycopeptide, the peak areas of the [M+3H]3+ precursor ion and the corresponding 

product ions (or classes of product ions) were plotted as a function of U (Figure 2.2). 

As the collision energy was increased, the precursor ion was depleted and first yielded an 

assortment of Yn glycan fragments, where n > 1. The relative proportion of these primary 

product ions crested at approximately U = 17.5 V, corresponding to the spectrum 

presented in Figure 2.1a. Further increasing the collision energy resulted in diminished 

Figure 2.2. Energy-resolved CID plot for the triply protonated ECL glycopeptide. The normalized peak 

area of each ion or group of ions is plotted as a function of the collision energy, expressed as the applied 

DC offset. Each data point represents the mean of four replicate measurements; error bars, where 

visible, represent the standard deviation. 
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relative abundance of the Yn>1 ions, with concomitant increase in proportion of Y1 

fragments, including Y1α, Y1β, and the Y1α +Y1β double cleavage product. As the collision 

energy was elevated to U > 32.5 V, the continued diminution of Yn>1 fragments was 

accompanied by declining abundance of Y1 fragments. These reductions coincided with 

the production of a modest fraction of the Y0 fragment (i.e., loss of the entire 

oligosaccharide) and a substantial abundance of b- and y-type peptide fragments. This 

region of the energy-resolved CID plot corresponds to the spectrum given in Figure 2.1c. 

At U = 40.0 V, peptide b and y ions accounted for approximately 50% of the integrated 

peak area of the CID spectrum. Further increasing the collision energy led to loss of ion 

signal. Overall, these energy-resolved CID results confirm that, while only glycan 

fragments are yielded via the lowest energy dissociation pathways, significant 

information regarding the peptide sequence can be obtained as later generations of 

fragment ions evolve at higher collision energies. 

 Because the glycopeptide under investigation included two particularly basic sites 

(the ε amino groups of the two lysine residues), the triply protonated ion discussed above 

contains one readily mobile proton.62, 63 In order to evaluate how the absence of mobile 

protons would influence the dissociation channels of this model glycopeptide, the doubly 

protonated ion [SKPAQGYGYLGVFNNSK + GlcNAc2 Man3 Fuc1 Xyl1 + 2H]2+ 

(monoisotopic m/z = 1500.7) was generated by adding imidazole to the ZIC-HILIC 

enriched glycopeptide preparation. As illustrated in Figure 2.3, the [M+2H]2+ precursor 

ion also yielded CID spectra containing predominantly carbohydrate Y fragments (Figure 

2.3a-b) at lower collision energies (in this example, U = 47.5 V), while relatively high 

collision energies (in this example, U = 65.0 V) brought about glycan loss with 
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subsequent fragmentation of the polypeptide chain (Figure 2.3c-d). In comparing the 

product ion spectra of the [M+2H]2+ ion (i.e., with only partially mobile protons) to those 

of the [M+3H]3+ ion (i.e., with one readily mobile proton), it was found that, at  

Figure 2.3. CID of the doubly protonated ECL glycopeptide. The CID spectrum acquired at U = 47.5 

V (a) exhibited only glycan cleavage, as shown in the accompanying diagram (b). The CID spectrum 

acquired at U = 65.0 V (c) exhibited mainly peptide fragments following glycan loss, as shown in the 

accompanying diagram (d). 
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appropriately chosen collision energies, the two precursors were able to yield much the 

same sequence information. The fragments providing the glycan connectivity were 

equivalently informative for both precursor ion charge states at the relatively low values 

of U, and the same peptide sequence coverage was obtained at the relatively high values 

of U. For the doubly charged precursor, the sequence coverage of 56.3% was obtained 

on the basis of six b ions and nine y ions. Although the two charge states of this 

glycopeptide were able to supply similarly revealing CID spectra, not unexpectedly they 

did so at quite different settings of U. The energy-resolved CID plot for the doubly 

charged precursor ion (Figure 2.4) was generated in the same manner as for the triply 

charged precursor ion. Although shifted to higher energies, the same general behavior 

was observed wherein Yn>1 fragments of the oligosaccharide were the first fragments to 

appear, and as the collision energy was increased these fragments gave way to the Y1 

carbohydrate fragments followed by Y0 glycan loss and finally b and y fragmentation of 

Figure 2.4. Energy-resolved CID plot for the doubly protonated ECL glycopeptide. The normalized 

peak area of each ion or group of ions is plotted as a function of the collision energy, expressed as the 

applied DC offset. Each data point represents the mean of three replicate measurements; error bars, 

where visible, represent the standard deviation. 
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the peptide chain. It is important to note that the increases in U values necessary to 

access the various fragmentation pathways was not solely due to differences in ion 

kinetic energy prior to collision. Applying a linear fit to the inflection point regions of the 

precursor ion survival curves allowed calculation of the U values which corresponded to 

depletion of half the precursor ion signal. These 50% precursor ion survivals occurred at 

U = 14.9 V for the [M+3H]3+ glycopeptide ion and U = 38.8 V for the [M+2H]2+ 

precursor. The precursor ion kinetic energy (Ek) relates to the accelerating potential U 

according to: 

 

where z is the number of charges and e is the fundamental charge. The initial kinetic 

energies resulting in 50% precursor ion survival were therefore 44.7 eV for the [M+3H]3+ 

and 77.6 eV for the [M+2H]2+ ion. These observations are consistent with the mobile 

proton model, and serve to reiterate the critical importance of collision energy setting 

upon the information content of glycopeptide CID spectra, and how dramatically this 

dependence can vary depending on the charge state. 

 CID of BRB glycopeptide ions. In order to address whether the dissociation 

behaviors observed for the ECL glycopeptide might be generally true of other 

glycopeptides, another model analyte was selected for study. The ZIC-HILIC enriched 

BRB digest exhibited a number of glycopeptide ion signals on nESI-MS analysis. The 

various peaks represented the microheterogeneity of the BRB glycosylation site, as well 

as an assortment of fully and partially tryptic digestion products. Among the most 

abundant signals was the glycopeptide ion [SRNLTK + GlcNAc2 Man5 + 2H]2+ 

(monoisotopic m/z = 968.6). This model glycopeptide serves as an interesting contrast to 

Equation 2.1  = kE ze U
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the ECL glycopeptide, in that they harbor different classes of N-glycans 

(paucimannosidic in the case of the ECL glycopeptide; high mannose in the case of BRB) 

and have polypeptide groups of quite different lengths (17 amino acid residues in the case 

of the ECL glycopeptide; six in the case of the BRB glycopeptide). CID spectra of the 

[M+2H]2+ BRB glycopeptide ion are provided in Figure 2.5. Much as was noted for the 

ECL glycopeptide, at relatively low collision energy only the glycan was cleaved (Figure 

2.5a-b).Conducting CID at U = 30.0 V generated a complete series of Y-type 

oligosaccharide fragmentation products, which provided the complete glycan 

composition for this glycopeptide. This spectrum presented in Figure 2.5a was found to 

be less complex than the analogous spectrum of the ECL glycopeptide (Figure 2.1a) 

owing to the lesser number of monosaccharide masses involved, and the correspondingly 

fewer possible product ion masses arising from oligosaccharide fragmentation. When 

CID was performed at U = 55.0 V, the dissociation spectrum became dominated by 

peptide fragments (Figure 2.5c-d). These higher energy dissociation pathways yielded 

product ions covering 80% of the peptide sequence (three b ions and two y ion 

representing cleavage of four out of five peptide amide bonds). These observations 

reinforce the findings for the ECL glycopeptide, where CID spectra alternately produced 

glycan fragmentation or peptide fragmentation at depending on the applied collision 

energies. In one contrast to the ECL glycopeptide, at elevated collision energies the BRB 

glycopeptide was found to yield cross-ring cleavage of the terminal GlcNAc residue 

(0,2X1). Furthermore, the BRB glycopeptide exhibited some examples of peptide 

fragmentation without complete loss of the glycan. For instance, the 0,2X1+b5 and Y1+b5 

internal fragments were among the most abundant signals in the U = 55.0 V CID 
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spectrum (Figure 2.5c). This highlights the possibility that glycan and peptide 

dissociation channels may take place concurrently under certain circumstances (e.g., 

when a particularly favored peptide backbone cleavage is available). Similar findings 

 

Figure 2.5. CID of the doubly protonated BRB glycopeptide. The CID spectrum acquired at U = 30.0 

V (a) exhibited only glycan cleavage, as shown in the accompanying diagram (b). The CID spectrum 

acquired at U = 55.0 V (c) exhibited mainly peptide fragments following glycan loss, as shown in the 

accompanying diagram (d). 
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have previously been noted in vibrational activation / dissociation of O-glycopeptides 

containing proline residues.27, 64 In those instances, the proline effect65-67 rendered peptide 

fragmentation competitive with glycan loss. 

 The energy-resolved CID behavior of the doubly protonated BRB glycopeptide is 

presented in Figure 2.6. On comparison to the triply protonated ECL glycopeptide ion 

(Figure 2.2), the onset of dissociation for the triply protonated BRB glycopeptide is 

occurred at somewhat higher collision energies, with the 50% precursor ion survival 

being reached at U = 26.2 V (corresponding to Ek = 52.4 eV) for the [M+2H]2+ BRB 

glycopeptide, as compared to U = 14.9 V (corresponding to Ek = 44.7 eV) for the 

[M+3H]3+ ECL glycopeptide. Such differences were not unexpected, given the presence 

of a readily mobile proton in the case of the triply protonated ECL glycopeptide ion, and 

the availability of only partially mobile protons in the case of the doubly protonated BRB 

glycopeptide ion. 

Figure 2.6. Energy-resolved CID plot for the doubly protonated BRB glycopeptide. The normalized 

peak area of each ion or group of ions is plotted as a function of the collision energy, expressed as the 

applied DC offset. Each data point represents the mean of three replicate measurements; error bars, 

where visible, represent the standard deviation. 
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It should be noted that the substantially different molecular weights of the two 

glycopeptides (monoisotopic mass of 2999.3 u for the ECL glycopeptide; 1936.2 u for 

the BRB glycopeptide) and the commensurate disparity in their vibrational degrees of 

freedom also contributes to quantitative differences in the energy-resolved CID behavior. 

Aside from the absolute collision energies at which different kinds of dissociation 

pathways were accessed, the two sets of energy-resolved CID data were in strong 

agreement regarding the initial appearance of Yn>1 glycan fragments followed by Y1 

glycan fragments, which in turn ultimately yielded Y0 fragment ions (complete glycan 

loss) and peptide b and y fragment ions. Interestingly, the energy dependences of various 

dissociation pathways qualitatively mirrored those of the ECL glycopeptide ions. Indeed, 

these energy-resolved CID data were in strong concordance regarding the initial 

appearance of Yn>1 glycan fragments followed by Y1 glycan fragments, which in turn 

ultimately yielded Y0 fragment ions (complete glycan loss) and peptide b and y fragment 

ions. These qualitative similarities in the energy-dependent dissociation behavior is rather 

remarkable, given the significant differences between the glycopeptides in terms of 

structure and composition. 

To again probe the influence of proton mobility on the information content of the 

CID spectra, the [SRNLTK + GlcNAc2 Man5 + 3H]3+ (monoisotopic m/z = 645.7) ion 

was next studied. This ion was observed along with the corresponding doubly charged 

ion upon nESI-MS analysis of the purified BRB digest, although in less abundance. In 

contrast to the BRB [M+2H]2+ ion, this BRB [M+3H]3+ ion has a number of ionizing 

protons which exceeds the number of basic amino acid side chains, and thus has a readily 

mobile proton. As illustrated in Figure 2.7, CID at U = 10.0 V produced only Y-type 
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glycan fragments (Figure 2.7a-b), while at U = 40.0 V peptide b and y ions were 

observed (Figure 2.7c-d). The product ions arising from polypeptide cleavage provided 

60% sequence coverage (three b ions and one y ion representing cleavage of three out of  

Figure 2.7. CID of the triply protonated BRB glycopeptide. The CID spectrum acquired at U = 10.0 V 

(a) exhibited only glycan cleavage, as shown in the accompanying diagram (b). The CID spectrum 

acquired at U = 40.0 V (c) exhibited mainly peptide fragments following glycan loss, as shown in the 

accompanying diagram (d). 
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five peptide bonds). Predictably, the energy-resolved CID plot for the triply protonated 

BRB precursor ion exhibited lower dissociation onset energies as compared to the doubly 

protonated precursor, owing to both the differing charge states (and thus different 

dependence of Ek upon U) as well as the differences in proton mobility (Figure 2.8). 

These considerations notwithstanding, the general observation that glycan connectivity 

and peptide sequence can be differentially accessed at different collision energies again 

held true for this precursor ion. 

Multi-energy CID of the ECL and BRB glycopeptides. The energy-resolved CID 

data discussed above served to suggest the intriguing possibility of capturing 

oligosaccharide and polypeptide sequence information in a single mass spectrum. In 

order to achieve this, online collision energy modulation was applied during direct 

infusion acquisition of CID spectra in order to sample informative dissociation channels  

Figure 2.8. Energy-resolved CID plot for the triply protonated BRB glycopeptide. The normalized peak 

area of each ion or group of ions is plotted as a function of the collision energy, expressed as the applied 

DC offset. Each data point represents the mean of three replicate measurements; error bars, where 

visible, represent the standard deviation. 
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of different energetic requirements. The multi-energy CID spectrum of the [M+3H]3+ 

ECL glycopeptide ion is presented in Figure 2.9. The spectrum exhibited a wealth of 

product ions which collectively resulted in complete coverage of the glycan Y-type ions 

and 56% peptide sequence coverage (six b ions and nine y ions accounting for scission of 

nine of the 16 peptide amide bonds). The multi-energy CID spectrum for the [M+2H]2+ 

ECL glycopeptide ion (Figure 2.10) provided essentially the same information content. 

Also noteworthy is that the multi-energy CID spectra obtained through online collision 

energy modulation compare favorably to the dissociation spectra obtained at a single 

collision energy (cf. Figure 2.1b, Figure 2.1d, and Figure 2.9b). Similarly, multi-energy 

CID of the [M+2H]2+ BRB glycopeptide (Figure 2.11) was revealing of a complete series 

of Y-type glycosidic cleavages as well as 80% peptide sequence coverage. Again, 

Figure 2.9. Multi-energy CID of the triply protonated ECL glycopeptide. The CID spectrum (a) was 

acquired via online switching between two collision energies: U = 17.5 V and U = 37.5 V. These 

correspond to the collision energies applied in Figure 2.1a and Figure 2.1c, respectively. Peak 

assignments are the same as those shown in Figure 2.1a (labeled here with blue circles) and Figure 

2.1c (labeled here with red squares). An abundance of both glycan and peptide fragments were 

observed, as shown in the accompanying diagram (b). 
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comparable connectivity information was obtained upon multi-energy CID analysis of an 

alternative charge state of the analyte (in this case, the [M+3H]3+ BRB glycopeptide ion; 

Figure 2.12).  Furthermore, the multi-energy CID results for the BRB glycopeptide were 

found to be of approximately equivalent information content as was achieved in the 

individual, static collision energy spectra (cf., Figure 2.5b, Figure 2.5d, and Figure 

2.11b). Overall, the modulation of collision energy without interrupting spectrum 

acquisition was found to be a viable approach to obtaining highly informative CID 

spectra which address the structures of both the glycan and peptide moieties. 

 

 

Figure 2.10. Multi-energy CID of the doubly protonated ECL glycopeptide. The CID spectrum (a) was 

acquired via online switching between two collision energies: U = 47.5 V and U = 65.0 V. These 

correspond to the collision energies applied in Figure 2.3a and Figure 2.3c, respectively. Peak 

assignments are the same as those shown in Figure 2.3a (labeled here with blue circles) and Figure 

2.3c (labeled here with red squares). An abundance of both glycan and peptide fragments were 

observed, as shown in the accompanying diagram (b). 
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Conclusions   

Although vibrational activation / dissociation MS/MS methods are perhaps best 

known for the ability to provide information on the carbohydrate moiety of 

glycopeptides, these data underscore and extend previous observations that, at 

appropriately chosen collision energies, substantial peptide sequence information can be 

obtained via low-energy beam-type CID. This was found to be true of four model 

glycopeptide ions which were quite dissimilar in a number of other respects (glycan type 

and composition; peptide size and composition), and were each investigated as 

protonated ions having charge states that provided differing proton mobilities. Despite 

these variables, the analyte ions studied herein adhered to strikingly similar energy- 

Figure 2.11. Multi-energy CID of the doubly protonated BRB glycopeptide. The CID spectrum (a) was 

acquired via online switching between two collision energies: U = 30.0 V and U = 55.0 V. These 

correspond to the collision energies applied in Figure 2.5a and Figure 2.5c, respectively. Peak 

assignments are the same as those shown in Figure 2.5a (labeled here with blue circles) and Figure 

2.5c (labeled here with red squares). An abundance of both glycan and peptide fragments were 

observed, as shown in the accompanying diagram (b). 
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resolved CID behaviors from a qualitative standpoint. In each case, Yn>1 carbohydrate 

cleavage was observed as the lowest-energy, first generation dissociation pathway. With 

increasing collision energy, production of the Y1 glycan fragment was observed, which in 

turn gave rise to the Y0 product along with b and y ions. Based on the energy-resolved 

CID precursor and product ion abundance curves, the peptide b and y ions appear to be 

tertiary fragments which, accordingly, have much higher appearance energy thresholds as 

compared to the glycan-related scissions. Our findings in aggregate serve to suggest that 

these dissociation behaviors may be quite general among a diverse range of glycosylated 

peptides bearing different glycan classes and various peptide characteristics.  

Figure 2.12. Multi-energy CID of the triply protonated BRB glycopeptide. The CID spectrum (a) was 

acquired via online switching between two collision energies: U = 10.0 V and U = 40.0 V. These 

correspond to the collision energies applied in Figure 2.7a and Figure 2.7c, respectively. Peak 

assignments are the same as those shown in Figure 2.7a (labeled here with blue circles) and Figure 

2.7c (labeled here with red squares). An abundance of both glycan and peptide fragments were 

observed, as shown in the accompanying diagram (b). 
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The higher energy required to access peptide-informative dissociation channels 

may in part explain why such ions are sometimes not observed. For example, low-energy 

CID in an ion trap would not be expected to yield consecutive fragmentation in single 

MS/MS experiment, since this method only imparts translational energy to the precursor 

ion. Likewise, IRMPD may in some cases be too slow an activation process to provide 

extensive peptide sequence information, even though IRMPD is in principle capable of 

accessing consecutive dissociation products. Although the present findings may be of less 

usefulness in conjunction with these “slow heating”68 vibrational activation methods, 

they can be of immediate analytical utility when analysis is carried out using any low-

energy, beam-type CID instrument, such as tandem quadrupoles, quadrupole time-of-

flight hybrids, and various other hybrid mass spectrometers which enable beam-type 

collisional activation. This includes “higher-energy collisional dissociation” (HCD), 

which is merely a vendor-specific implementation and terminology for low-energy beam-

type CID. 

While qualitatively quite similar, there were some important quantitative 

differences in the energy-resolved CID data among the model glycopeptide ions 

investigated here. Clearly, the composition, charge state, and proton mobility of the 

precursor ion exert great influence on the absolute collision energies at which various 

classes of dissociation products are observed. Accordingly, the ability to collect both 

glycan and peptide information in a multi-energy CID spectrum hinges upon appropriate 

selection of the applied U values. Thus, further study of the energy dependence of 

glycopeptide fragmentation pathways seems warranted. In this respect, some theoretical 

progress has been made towards predicting glycopeptide tandem mass spectra on the 
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basis of a kinetic model; however, thus far this has only been performed from the 

standpoint of ion trap CID under conditions which would not be expected to lead to 

peptide sequence information.69 We are currently pursuing this line of inquiry from an 

experimental standpoint. Based on energy-resolved CID studies of families of 

glycopeptides with key differences in composition and charge state, we find that the 

general conclusions of the present study extend to numerous other glycopeptide analytes, 

and further that it may be possible to predict collision energies that result in specific 

fragment types (indeed, the charge state and degrees of freedom corrected 50% precursor 

ion survival energies seem to correlate well with proton mobility (Table 2.1). 

 

Table 2.1. CID collision energies (U) corresponding to 50% precursor ion survival, and the corresponding 

precursor ion charge states (z) and vibrational degrees of freedom (f). The charge state and degrees of 

freedom corrected 50% precursor ion survival energies are given in the rightmost column, and have each 

been multiplied by a factor of 100 to yield more convenient figures. Within the glycopeptide compositions, 

amino acid residues with basic side chains are shown in bold, while the glycosylated asparagine residue is 

underlined. The number of charge-carrying protons (nH+) are also indicated relative to the number of basic 

amino acid side chains (nB). 

 

 

 

Finally, we note that the development of an enhanced understanding of how CID 

yields peptide information is quite significant given that the alternatives for this task - 

ECD and ETD - are not as widely available on as eclectic an array of MS instruments as 

 Glycopeptide Composition z f 
ΔU 

(V) 

(zΔU/f) 

*100 

nH+>nB 

[SKPAQGYGYLGVFNNSK+GlcNAc2Man3Xyl1Fuc1+3H]3+ 3 1230 14.9 3.63 

[SRNLTK+GlcNAc2Man5+3H]3+ 3 804 5.5 2.05 

nH+=nB 

[SKPAQGYGYLGVFNNSK+GlcNAc2Man3Xyl1Fuc1+2H]2+ 2 1227 38.8 6.32 

[SRNLTK+GlcNAc2Man5+2H]2+ 2 801 26.2 6.54 
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compared to CID. Thus, there is potential for substantial impact of these findings in the 

context of glycoproteomics. The major advantage of ETD is that the peptide backbone 

can be fragmented without elimination of the glycan, thus allowing unambiguous and 

direct assignment of the site of modification. However, in many cases involving N-

glycosylation, loss of the glycan does not preclude site localization owing to the 

specificity of N-glycan attachment to only asparagine residues within the context of NXT 

or NXT consensus sequon (where X is any amino acid residue except proline). For tryptic 

N-glycopeptides which contain only one potential N-glycosylation site, glycan loss at the 

stage of MS/MS does not pose a significant limitation for site localization. Moreover, we 

note that modulating U values to capture spectra at different collision energies can be 

done in a matter of a few milliseconds, making this approach at least as fast (and 

potentially faster) than online switching to ETD. This presents an advantage from the 

standpoint of sampling LC-MS peaks. Overall, these results indicate the possibility of 

some generally applicable principles of energy-resolved glycopeptide ion CID behaviors 

of glycosylated peptide ions, while concomitantly underscoring the need for further study 

of the absolute collision energies necessary to access desired types of fragmentation 

information. The accomplishment of these goals would undoubtedly bring considerable 

analytical benefits to the field of glycoproteomics with regards to maximizing the 

structural information content of glycopeptide CID spectra.  
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Chapter 3 

The Role of Proton Mobility in Determining the Energy-Resolved 

Vibrational Activation / Dissociation Channels of N-Glycopeptide Ions 

Portions of this chapter will appear in: 

V. Kolli, H. A. Roth, G. De La Cruz, G. S. Fernando, and E. D. Dodds (submitted). 
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Abstract 

Site-specific glycoproteomic analysis largely hinges on the use of tandem mass 

spectrometry (MS/MS) to identify glycopeptides. Experiments of this type are usually 

aimed at drawing connections between specific oligosaccharide structures and their 

specific sites of attachment to the polypeptide chain. These determinations inherently 

require ion dissociation methods capable of interrogating both the monosaccharide and 

amino acid connectivity of the glycopeptide. Collision-induced dissociation (CID) shows 

potential to satisfy this requirement, as the vibrational activation / dissociation of 

protonated N-glycopeptides has been observed to access cleavage of either glycosidic 

bonds of the glycan or amide bonds of the peptide in an energy-resolved manner. 

Nevertheless, the relative energy requirement for these fragmentation pathways varies 

considerably among analytes. This research addresses the influence of proton mobility on 

the vibrational energy necessary to achieve either glycan or peptide cleavage in a 

collection of protonated N-glycopeptide ions. While greater proton mobility of the 

precursor ion was found to correlate with lower energy requirements for precursor ion 

depletion and appearance of glycosidic fragments, the vibrational energy deposition 

necessary for appearance of peptide backbone fragments showed no relation to the 

precursor ion proton mobility. These results are consistent with previous observations 

suggesting that peptide fragments arise from an intermediate fragment which is generally 

of lower proton mobility than the precursor ion. Such findings have potential to facilitate 

the rational selection of CID conditions which are best suited to provide either glycan or 

peptide cleavage products in MS/MS based glycoproteomic analysis. 
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Introduction 

Mass spectrometry (MS) based glycoproteomics is an emerging branch of post-

genomic analytical science that lies at the intersection of proteomics and glycomics.1-4 

While glycoproteomic experiments are conducted with widely varied scopes and 

objectives, they are generally aimed at the identification or characterization of 

glycosylated proteins; the compositional or structural determination of protein-linked 

oligosaccharides; and the association of individual oligosaccharide compositions or 

structures with specific sites of attachment to the protein.5-8 Accordingly, a wide 

assortment of MS centered tools are actively applied to glycoproteomics.9-12 In many of 

these approaches, tandem mass spectrometry (MS/MS) of glycosylated proteolytic 

fragments plays a critical role, often serving as the final analytical readout of the 

experiment.13-14  

Although MS/MS analysis of glycopeptides is analytically demanding 

(polypeptide sequence and oligosaccharide connectivity are simultaneously involved), 

these experiments can provide a level of molecular detail not afforded by methods which 

release the glycan from the protein prior to analysis.15-16 Nevertheless, complete 

elucidation of glycopeptide topology requires MS/MS methods capable of providing 

information on both the amino acid sequence and the monosaccharide connectivity. 

While this is frequently accomplished by combining multiple, complementary ion 

fragmentation methods,13-14 several such methods have been shown capable of probing 

both the oligosaccharide and polypeptide moieties of glycopeptides. These include 

ultraviolet photodissociation (UVPD),17-18 infrared multiphoton dissociation (IRMPD),19-

22 and low-energy beam-type collision-induced dissociation (CID).23-26 
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By a wide margin, CID is the most widely available ion dissociation method for 

MS/MS. While a disadvantage of CID is loss of the glycan prior to the onset of peptide 

fragmentation, in most cases this does not hinder the localization of N-glycosylation, 

which only occurs within the context of a consensus sequon (multiple instances of which 

rarely appear on the same proteolytic fragment). Therefore, extending the applicability of 

CID for N-glycopeptide analysis is of significant interest. One barrier towards an 

expanded role for CID in glycoproteomics is that the distinct energetic requirements for 

accessing glycosidic bond cleavages or peptide backbone cleavages are not well 

understood in terms of the physicochemical characteristics of the precursor ions.27-28 

The present work is focused on the relationship between precursor ion proton 

mobility29-30 and optimum collision energies for accessing glycan versus peptide scission. 

Energy-resolved CID studies were conducted on a group of protonated N-glycopeptides 

in which different amino acid compositions and charge states were represented. In 

general, precursor ion proton mobility correlated negatively with the collision energies 

necessary to deplete the precursor ion and provide glycosidic cleavage; however, the 

collision energies needed to achieve peptide fragmentation had no noticeable relationship 

to the proton mobility of the precursor ion. This is consistent with energy-resolved CID 

results that show the peptide fragmentation products arise from an intermediate fragment 

of low proton mobility. On the whole, these findings suggest that, with adequate 

knowledge of the relevant fragmentation processes, CID could be conducted such that the 

monosaccharide connectivity and amino acid sequence of protonated N-glycopeptides are 

deliberately accessed.  
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Materials and Methods 

Reagents and materials. Ammonium bicarbonate, bovine ribonuclease B (BRB), 

dithiothreitol, formic acid, imidazole, iodoacetamide, proteomics grade trypsin, and urea 

were all procured from Sigma-Aldrich (St. Louis, MO, USA). Acetonitrile (HPLC grade) 

and water (HPLC grade) were obtained from Fisher Scientific (Fair Lawn, NJ, USA) and 

Burdick & Jackson (Muskegon, MI, USA), respectively. Zwitterionic hydrophilic 

interaction liquid chromatography (ZIC-HILIC) micropipette tips for solid phase 

extraction (SPE) were acquired from Protea Biosciences (Somerset, NJ, USA). 

Glycopeptide preparation. A 50 µL aliquot of 2 µg/µL BRB glycoprotein 

solution in 8 M urea and 50 mM NH4HCO3 (pH 7.5) was subjected to disulfide bond 

reduction by addition of 10 µL of 450 mM dithiothreitol in 50 mM NH4HCO3 (pH 7.5; 

incubated 1 h at 55°C). The sample was next subjected to thiol alkylation by treatment 

with 10 µL 500 mM iodoacetamide in 50 mM NH4HCO3 (pH 7.5; incubated 1 h at room 

temperature and in the dark). A fresh portion (175 µL) of 50 mM NH4HCO3 (pH 7.5) was 

added to the reduced and alkylated glycoprotein sample such that the total urea 

concentration was reduced to < 2 M. Proteolysis was then performed through addition of 

a 5 µL aliquot of 0.5 µg/µL of trypsin (incubated 18 h at 37°C). The resulting tryptic 

digest was reduced to ~ 10 µL in volume via vacuum centrifugation (Speed Vac SC110, 

Thermo Savant, Holbrook, NY, USA), then reconstituted in 0.1% HCOOH to a final 

volume of ~ 100 µL. Glycopeptides from an aliquot of this solution (4 µL reconstituted 

digest diluted to a total volume of 20 µL with CH3CN) were enriched and purified using 

ZIC-HILIC SPE. Briefly, the SPE micropipette tip was equilibrated with 80% CH3CN / 

0.1% HCOOH, loaded with the sample aliquot described above, washed with 80% 
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CH3CN / 0.1% HCOOH, and finally eluted in 20 µL 0.1% HCOOH. In some cases, 

purified digests were spiked to contain 10 mM imidazole. This was done in order to 

enhance the production of glycopeptide ions with lower charge states for study.  

Mass spectrometry and data analysis. The purified glycopeptide digest was 

prepared for MS analysis by placing a portion of ZIC-HILIC SPE eluate (~ 5-10 µL) into 

a home-pulled glass emitter for nanoelectrospray ionization (nESI). This transfer was 

accomplished using a Hamilton 10 µL taper-tipped syringe (Reno, NV, USA). The nESI 

emitters were prepared from 1.5 - 1.8 x 100 mm melting point capillary tubes (Corning 

Pyrex, Corning, NY, USA) with the aid of a vertical micropipette puller (David Kopf 

Instruments, Tujunga, CA, USA). The filled emitter was then fitted to a custom-built 

holder which made use of a platinum wire to provide the nESI potential directly to the 

analyte solution. This apparatus was then adapted onto the commercial nESI source of a 

Waters Synapt G2 HDMS quadrupole time of flight (Q-TOF) hybrid mass spectrometer 

(Manchester, UK). Ion source conditions for nESI included an emitter potential of 1.0 - 

1.4 kV, a sampling cone potential of 15 - 35 V, an extraction cone potential of 2 - 4 V, 

and a temperature of 80°C. For MS/MS experiments, quadrupole selection of precursor 

ions was followed by CID in the “trap” region of the instrument (a stacked ring ion guide 

containing argon at a pressure of approximately 5.0 x 10-3 mbar). The DC offset (U) 

which determined the kinetic energy of ions entering the collision cell was systematically 

adjusted in order to obtain energy-resolved CID spectra. 

All instrument control and data acquisition was conducted with the use of 

MassLynx 4.1 (Waters). Subsequent data handling and graph generation was performed 

using IGOR Pro 6.3 (WaveMetrics, Lake Oswego, OR, USA) and SigmaPlot 10.1 
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(Systat, Chicago, IL, USA). For schematic purposes, standard one-letter amino acid 

abbreviations were used in diagramming the peptide moiety, while glycan structures were 

diagrammed using the conventions suggested by Varki et al.31 The assignment of 

fragment ions was performed in accord with the formalisms of Domon and Costello (for 

glycan fragments) and Roepstorff and Fohlman (for peptide fragments).32-33 In accord 

with these systems of nomenclature, lower case letters were used to indicate peptide 

fragments, while upper case letters were used to indicate glycan fragments. If multiple 

glycan cleavages (or combinations thereof) could plausibly yield a given product ion 

mass, the fragment ion was assigned by indicating the composition of losses from the 

precursor ion (e.g., [M - Man2]
2+). For simplicity, small neutral losses from precursor or 

fragment ions (e.g., NH3, H2O) were not labeled in the spectra. Monosaccharide names 

were abbreviated as follows: GlcNAc, N-acetylglucosamine; Man, mannose. 

 

Results and Discussion 

Overview. As described above, a set of model glycopeptide analytes was prepared 

by trypsinolysis of BRB with the goal of quantitatively characterizing the influence of 

proton mobility upon the energy-resolved vibrational activation / dissociation pathways 

of selected N-glycopeptides. The presence of several potential tryptic cleavage sites in 

close proximity to the single glycosylation site of BRB, coupled with the tendency of 

glycosylation to sterically interfere with protease action,34-37 resulted in the production of 

glycopeptides with multiple amino acid sequences based on a combination of the fully 

tryptic cleavage product and various partially tryptic cleavage products. Specifically, N-

glycopeptides with the amino acid sequences NLTK, NLTKDR, SRNLTK, and 
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SRNLTKDR were obtained. This provided a group of model glycopeptide analytes which 

encompassed some key variations in sequence, particularly with respect to the number 

and location of basic sites. Protonated glycopeptide ions based on the above peptide 

groups carrying the GlcNAc2Man5 high mannose N-glycan were each studied in two 

charge states by energy-resolved CID, as described in detail below. 

Precursor ion survival curves. MS/MS data were collected via CID for each of 

eight glycopeptide precursor ions: NLTK + GlcNAc2Man5 as the [M+H]+ and [M+2H]2+ 

ions; NLTKDR + GlcNAc2Man5 as the [M+2H]2+ and [M+3H]3+ ions; SRNLTK + 

GlcNAc2Man5 as the [M+2H]2+ and [M+3H]3+ ions; and SRNLTKDR + GlcNAc2Man5 

as the [M+2H]2+ and [M+3H]3+ ions. In these experiments, CID was conducted at various 

applied U values, which were adjusted in 2.5 – 10.0 V increments, depending on the 

analyte. The resulting spectra were used to prepare precursor ion survival curves by 

plotting the percent fractional area of the precursor ion peak as a function of the applied 

collision energy. As depicted in Figure 3.1, this relatively small set of related 

glycopeptide precursor ions (i.e., all bearing the same glycan composition, and all derived 

from the same glycosylation site) exhibited a remarkably broad range of energy-

dependent stabilities, with the applied U resulting in < 20% precursor ion survival 

ranging from approximately 10.0 V – 60.0 V. This underscores a key challenge in the 

interrogation of glycopeptide connectivity by CID; namely, the selection of collision 

energies yielding CID spectra which are most informative of the overall topology of a 

given glycopeptide precursor ion. This is particularly important given the ability of 

vibrational activation / dissociation methods to provide fragments which can be  
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informative of either the oligosaccharide connectivity or the polypeptide sequence, 

depending on the amount of vibrational energy deposited.25-26 

While Figure 3.1 is useful in illustrating the highly varied degrees of precursor 

ion depletion as a function of U (i.e., the instrumental parameter which is most directly 

used to determine the amount of vibrational energy deposited into the precursor ion), 

comparisons between the stabilities of the various precursor ions are difficult to 

rationalize from visual inspection of these data alone. Indeed, the precursor ion survival 

behaviors are dictated by not only the compositions of the analyte ions, but also their 

charge states and number of vibrational degrees of freedom.38-39 To allow more 

meaningful comparisons among the various analytes studied, the initial kinetic energies 

which resulted in 50% depletion of the precursor were calculated and normalized for the 

number of vibrational modes available to the analyte. This was carried out by first 

Figure 3.1. Precursor ion survival curves for each of the glycopeptide ions studied. The sequences of the 

peptide moieties and overall ion charge states are given in the inset. In addition, each glycopeptide 

harbored the GlcNAc2Man5 N-glycan. Amino acid residues with basic side chains are shown in bold, while 

the glycosylated asparagine residue is underlined. Each data point represents the mean of three replicate 

measurements; error bars, where visible, represent the standard deviation. 
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applying a linear fit to the steepest region of each precursor ion survival curve, then 

determining value of U which corresponded to 50% fractional intensity of the precursor 

ion. These values were in turn used to calculate the corresponding initial kinetic energy, 

Ek, (expressed with units of eV) of the precursor ion using Equation 3.1: 

 

Here, z represents the precursor ion charge state expressed as an integer multiple of the 

fundamental charge. These values, which account for the charge state of the precursor 

ion, were further normalized for the number of vibrational degrees of freedom, fv, 

available to the precursor ion. For an analyte composed of n atoms: 

 

The vibrational degrees of freedom normalized initial precursor ion kinetic energy, Ek,n, 

was then defined and calculated according to: 

 

 

where the factor of 102 was applied to provide more convenient values for comparison 

(thus, the values of Ek,n are 102 times the number of electron volts per vibrational mode). 

The values of Ek,n corresponding to the 50% survivals of all precursor ions studied are 

provided in Table 3.1. 

In general, the vibrational energy deposition required to deplete 50% of the initial 

precursor ion population was found to negatively correlate with proton mobility, as 

estimated based on the relative number of charge-carrying protons (nH) and basic amino 

acid residues (nB) present. For each precursor ion studied here, the charge-carrying 

proton(s) could be described as “mobile,” “partially mobile,” or “nonmobile.” These  
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Table 3.1. Potential differences (ΔU) and degrees of freedom normalized initial precursor ion kinetic 

energies (Ek,n) resulting in 50% precursor ion survival of each glycopeptide ion studied. The number of 

charge-carrying protons (nH) is indicated relative to the number of basic amino acid residues (nB), and 

precursor ion charge sates (z) and vibrational degrees of freedom (fv) are given. Within the glycopeptide 

compositions, basic amino acid residues are bolded, and the glycosylated asparagine residue is underlined. 

The “cleavage intensity ratio” (CIR) is also provided for each precursor ion according to Kapp et al.40 

Larger CIR values indicate lower proton mobility, as estimated based upon the precursor ion charge state 

and amino acid composition. 

 

categories, suggested by Kapp et al., were based on empirically determined “cleavage 

intensity ratios” (CIRs) determined according to the relative proportion of fragmentation 

products known to be enhanced in the absence of mobile protons.40 Those authors used 

the prevalence of such fragments as an indicator of proton mobility for a large number of 

peptides studied by CID. Accordingly, CIR values increase with decreasing proton 

mobility. In the present experiments, glycopeptide precursor ions with nH > nB, which 

thus contained a readily mobile proton (with CIRs ranging from 0.73 – 0.90), exhibited 

50% precursor ion survivals at Ek,n values ranging from 1.44 – 4.18. For glycopeptide 

ions with nH = nB, thus rendering the protons partially mobile (with CIRs ranging from 

1.52 – 2.18), the Ek,n values corresponding to 50% precursor ion survival were 

significantly higher on average, ranging from 4.97 – 7.57. Finally, one analyte in which 

 

 
    

50% Precursor 

Ion Survival 

 Glycopeptide Composition CIR z fv ΔU Ek,n 

nH>nB 

[NLTK+GlcNAc2Man5+2H]2+ 0.73 2 693 14.5 4.18 

[SRNLTK+GlcNAc2Man5+3H]3+ 0.90 3 804 5.5 2.05 

[NLTKDR+GlcNAc2Man5+3H]3+ 0.90 3 810 3.9 1.44 

nH=nB 

[NLTK+GlcNAc2Man5+H]+ 2.18 1 690 52.2 7.57 

[SRNLTK+GlcNAc2Man5+2H]2+ 1.56 2 801 26.2 6.54 

[NLTKDR+GlcNAc2Man5+2H]2+
 1.56 2 807 29.8 7.39 

[SRNLTKDR+GlcNAc2Man5+3H]3+ 1.52 3 900 14.9 4.97 

nH<nB [SRNLTKDR+GlcNAc2Man5+2H]2+ 4.58 2 897 41.0 9.14 
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all protons were considered nonmobile (CIR of 4.58) had a 50% precursor ion survival 

occurring at an Ek,n value of 9.14. Taken together, these data demonstrate that the order of 

charge state corrected and vibrational degrees of freedom normalized initial precursor ion 

kinetic energies which brought about 50% precursor ion depletion can be rationalized by 

proton mobility; that is, those precursor ions characterized by lower proton mobility 

required greater vibrational energy deposition per vibrational mode in order to bring 

about unimolecular dissociation processes. Nevertheless, the normalized collision 

energies needed to access an analytically useful degree of precursor ion fragmentation 

varied substantially within this group of glycopeptides which, in many ways, would be 

considered quite similar (all derived from the same glycosylation site, and all bearing the 

same glycan). 

Energy-resolved CID comparisons at various proton mobilities. In order to 

further delineate the role of proton mobility in the vibrational activation / dissociation 

behavior of glycopeptides, energy-resolved breakdown curves were plotted for each 

precursor ion under study. At each collision energy, the total peak areas were determined 

for each of several product ion categories: the precursor ion, [M+nH]n+; the larger Y-type 

glycosidic bond cleavage products, ΣYn>1; the peptide chain with one remaining GlcNAc 

residue attached, Y1; the bare peptide chain, Y0; cross-ring cleavage of the reducing 

terminal GlcNAc residue, 0,2X0; and peptide backbone fragmentation products, Σ(b+y). 

The fraction of the total spectral peak area arising from fragment ions in each of these 

categories were then plotted against collision energy, expressed as the applied ΔU. In 

Figure 3.2, CID breakdown curves are presented for three representative glycopeptide 

ions with differing proton mobilities: [NLTKDR + GlcNAc2Man5 + 3H]3+ (nH > nB); 
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Figure 3.2. Energy-resolved CID breakdown curves for the [NLTKDR + GlcNAc2Man5 + 3H]3+ (a; nH > 

nB), [SRNLTK + GlcNAc2Man5 + 2H]2+ (b; nH = nB), and [SRNLTKDR + GlcNAc2Man5 +2H]2+ (c; nH < 

nB) glycopeptide ions. Additional explanation is provided in the caption to Figure 3.1. 
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[SRNLTK + GlcNAc2Man5 + H]2+ (nH = nB); and [SRNLTKDR + GlcNAc2Man5 + 2H]2+ 

(nH < nB). The energy-resolved CID breakdown curves for the remaining glycopeptide 

ions under study are provided below (Figures 3.3-3.7). As we have previously noted of 

other glycopeptide ions,25-26 the energy-resolved CID behaviors of these precursors were 

found to be qualitatively similar despite significant differences in proton mobility. In 

each case, the precursor ions first dissociated to give rise to Yn>1 glycan fragments. With 

further increases in vibrational energy deposition, the Yn>1 dissociation products 

gradually gave way to an abundance of Y1 ions. Finally, at sufficiently high collision 

energies, a decline in the intensity of Y1 ions was accompanied by the production of 0,2X0, 

Y0, and peptide b and y ions. Indeed, for all of the glycopeptide ions studied here, 

fragment ions of these various types appeared in the same qualitative order with 

increasing collision energy. Nevertheless, there are substantial quantitative differences in 

the energy-resolved CID behaviors of the glycopeptide ions. That is, the specific range of 

Figure 3.3. Energy-resolved CID breakdown curve for the [NLTK + GlcNAc2Man5 + 2H]2+ glycopeptide 

ion. Amino acid residues with basic side chains are shown in bold, while the glycosylated asparagine 

residue is underlined. Each data point represents the mean of three replicate measurements; error bars, 

where visible, represent the standard deviation. 
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ΔU values which yield a given type of fragment ion is widely varied among precursor 

ions of different proton mobilities. 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 3.4. Energy-resolved CID breakdown curve for the [SRNLTK + GlcNAc2Man5 + 3H]3+ 

glycopeptide ion. Amino acid residues with basic side chains are shown in bold, while the glycosylated 

asparagine residue is underlined. Each data point represents the mean of three replicate measurements; 

error bars, where visible, represent the standard deviation. 

Figure 3.5. Energy-resolved CID breakdown curve for the [NLTK + GlcNAc2Man5 + H]+ glycopeptide 

ion. Amino acid residues with basic side chains are shown in bold, while the glycosylated asparagine 

residue is underlined. Each data point represents the mean of three replicate measurements; error bars, 

where visible, represent the standard deviation. 
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To provide a means for quantitative comparison of the vibrational energy required 

to access glycosidic and peptide backbone cleavages, additional Ek,n values were 

Figure 3.6. Energy-resolved CID breakdown curve for the [NLTKDR + GlcNAc2Man5 + 2H]2+ 

glycopeptide ion. Amino acid residues with basic side chains are shown in bold, while the glycosylated 

asparagine residue is underlined. Each data point represents the mean of three replicate measurements; 

error bars, where visible, represent the standard deviation. 

Figure 3.7. Energy-resolved CID breakdown curve for the [SRNLTKDR + GlcNAc2Man5 + 3H]3+ 

glycopeptide ion. Amino acid residues with basic side chains are shown in bold, while the glycosylated 

asparagine residue is underlined. Each data point represents the mean of three replicate measurements; 

error bars, where visible, represent the standard deviation. 
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calculated for the corresponding regions of the energy-resolved CID breakdown curves. 

First, Ek,n values which brought about the maximum total intensity of Yn>1 glycosidic 

fragments were determined by fitting the most abundant three to four points of the ΣYn>1 

curve with a quadratic function (i.e., downward opening parabola), and calculating the 

inflection point of this function. This was taken to represent the approximate value of ∆U 

which provided maximum glycosidic fragmentation. Similarly, the ∆U value at which the 

Σ(b+y) peptide fragments first constituted 20% of the total integrated peak area was 

obtained from a linear fit of the Σ(b+y) line in the energy-resolved CID breakdown plot. 

The 20% intensity was chosen because, while most of the glycopeptides eventually 

yielded peptide b and y ions to comprise approximately 40% or more of the integrated 

peak area (e.g., Figure 3.2b-c), in two cases only about 20% of the peak area could be 

attributed to peptide backbone cleavage products (e.g., Figure 3.2a). Thus, the 20% 

peptide fragment appearance value was used to enable reasonable comparisons among 

the different precursor ions. In the cases of both maximum ΣYn>1 intensity and 20% 

Σ(b+y) intensity, the ∆U values of interest were used to calculate the corresponding Ek,n 

values (cf. Equations 1-3). For each glycopeptide ion under study, these Ek,n values are 

summarized in Table 3.2. 

Similar to the results for precursor ion survival (cf. Table 3.1), the Ek,n values 

which yielded maximum ΣYn>1 intensity were seen to correlate with the CIR values 

assigned to each peptide moiety. That is, the Ek,n values correlate inversely with proton 

mobility, as expected. For precursor ions with a readily mobile proton (nH > nB), Ek,n 

values ranged from 4.74 – 5.56; for precursor ions with a partially mobile proton (nH = 

nB), Ek,n values ranged from 7.67 – 8.65; and for the precursor ion with no mobile protons 
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Table 3.2. Potential differences (ΔU) and degrees of freedom normalized initial precursor ion kinetic 

energies (Ek,n) resulting in the maximum proportion of glycosidic bond cleavage products (∑Yn>1), and 

those necessary for peptide backbone cleavage products (∑b,y) to constitute 20% of the integrated peak 

area for each glycopeptide ion. Additional explanation is provided in the caption to Table 3.1. 

 

(nH < nB), Ek,n value was 10.30. This underscores the influence of proton mobility upon 

the vibrational energy necessary to achieve the highest proportion of glycosidic scission 

products. Contrastingly, the Ek,n values that produced peptide b and y ions with an 

aggregate of 20% total spectral peak intensity fell in a relatively narrow range. All of 

these Ek,n values ranged from 10.90 – 13.93, with no clear relation to the proton mobility 

of the precursor ion. While initially unexpected, this can be rationalized by noting that, as 

illustrated by the energy-resolved CID breakdown curves (Figure 3.2), the Y0, b, and y 

ions appear to be tertiary products of sequential fragmentation, arising largely from 

further fragmentation of the Y1 ion. This suggests that the vibrational energy required to 

achieve peptide amide bond scission is not a function of the precursor ion proton 

 

 

    
Max ∑Yn>1 

Intensity 

20% ∑(b,y) 

Intensity 

 Glycopeptide Composition CIR z fv ΔU Ek,n ΔU Ek,n 

nH>nB 

[NLTK+GlcNAc2Man5+2H]2+ 0.73 2 693 17.0 4.91 42.9 12.38 

[SRNLTK+GlcNAc2Man5+3H]3+ 0.90 3 804 14.9 5.56 35.3 13.17 

[NLTKDR+GlcNAc2Man5+3H]3+ 0.90 3 810 12.8 4.74 35.2 13.04 

nH=nB 

[NLTK+GlcNAc2Man5+H]+ 2.18 1 690 58.8 8.52 75.2 10.90 

[SRNLTK+GlcNAc2Man5+2H]2+ 1.56 2 801 31.3 7.82 49.9 12.46 

[NLTKDR+GlcNAc2Man5+2H]2+
 1.56 2 807 34.9 8.65 56.2 13.93 

[SRNLTKDR+GlcNAc2Man5+3H]3+ 1.52 3 900 23.0 7.67 34.5 11.50 

nH<nB [SRNLTKDR+GlcNAc2Man5+2H]2+ 4.58 2 897 46.2 10.30 52.4 11.68 
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mobility, but dictated by the proton mobility of the Y1 fragment. As these Y1 fragments 

typically had lower charge states than the precursor ion (as will be shown and further 

discussed below), their proton mobilities were thus lower than those of the corresponding 

precursor ions. As a consequence, the vibrational degrees of freedom normalized initial 

precursor ion kinetic energies that bring about polypeptide b and y ions are quite similar 

among precursor ions – even those with very dissimilar precursor ion survival energies 

and glycosidic fragment appearance energies – because in each case the peptide sequence 

ions originate from an intermediate fragment with no mobile protons. These general 

observations could eventually be of considerable practical usefulness for the deliberate 

production of amino acid sequence information for unknown glycopeptides by CID. 

CID spectrum comparisons at various proton mobilities. With knowledge of 

how the precursor ion characteristics of protonated glycopeptides influence their energy-

resolved CID behaviors, collision energies could be selected such that information on 

either the oligosaccharide connectivity or the polypeptide sequence was intentionally 

accessed. Figure 3.8 provides the CID spectra of the same representative glycopeptide 

ions for which energy-resolved CID breakdown curves were shown in Figure 3.2. In 

these spectra, collision energies chosen to approximate the Ek,n values corresponding to 

maximum ΣYn>1 intensity (cf. Table 3.2). In each case, the CID spectra exhibited 

extensive series of Y-type fragment ions yielding the complete connectivity of the 

oligosaccharide group, down to at least the Y1 (and in one case, Y0) ion. In addition to the 

Y-type dissociation products, a prominent cross-ring cleavage product (0,2X0) was noted in 

the CID spectrum of the [SRNLTKDR + GlcNAc2Man5 + 2H]2+ ion (Figure 3.8c). While 

informative as to the general topology and composition of the glycan, none of these  
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spectra were found to yield any detectable peptide backbone fragmentation. The same 

glycopeptide ions were then interrogated at collision energies consistent with Ek,n values 

known to bring about ≥ 20% Σ(b+y) intensity (cf. Table 3.2); the resulting dissociation 

spectra are provided in Figure 3.9. Under these conditions, each precursor ion could be 

fragmented to yield significant information on the amino acid connectivity, with the 

peptide sequence coverages for the [NLTKDR + GlcNAc2Man5 + 3H]3+, [SRNLTK + 

GlcNAc2Man5 + 2H]2+, and [SRNLTKDR + GlcNAc2Man5 + 2H]2+ glycopeptide ions  

Figure 3.8. CID spectra for the [NLTKDR + GlcNAc2Man5 + 3H]3+ (a; nH > nB), [SRNLTK + 

GlcNAc2Man5 + 2H]2+ (b; nH = nB), and [SRNLTKDR + GlcNAc2Man5 +2H]2+ (c; nH < nB). The applied 

precursor acceleration potentials (ΔU) are indicated, and were chosen to bring about the maximum 

proportion of glycosidic bond cleavage products (cf. Table 3.2). Cleavage maps summarizing the 

fragmentation of each glycopeptide are provided to the right of each spectrum. 
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reaching 100.0%, 80.0%, and 71.5%, respectively. In addition to peptide sequence ions, 

Y2, Y1, Y0, and 0,2X0 cleavages were apparent in the spectra. Strikingly, all of the observed 

peptide sequence ions were singly charged, regardless of the charge state or proton 

mobility of the initial precursor ions. Moreover, at these collision energies the charge 

states of all of the Y1 ions were such that these fragments lacked a mobile proton (singly 

charged in the case of the [NLTKDR + GlcNAc] and [SRNLTK + GlcNAc] Y1 

fragments; doubly charged in the case of the [SRNLTKDR + GlcNAc] Y1 fragment). The 

Figure 3.9. CID spectra for the [NLTKDR + GlcNAc2Man5 + 3H]3+ (a; nH > nB), [SRNLTK + 

GlcNAc2Man5 + 2H]2+ (b; nH = nB), and [SRNLTKDR + GlcNAc2Man5 +2H]2+ (c; nH < nB). The applied 

precursor acceleration potentials (ΔU) are indicated, and were chosen to achieve peptide backbone cleavage 

such that these products constituted approximately 20% of the integrated peak area (cf. Table 2). Cleavage 

maps summarizing the fragmentation of each glycopeptide are provided to the right of each spectrum. 
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tendency of protonated glycopeptide ions is evidently to either lose charge (likely due to 

production of carbohydrate oxonium ions41-42) to render a Y1 fragment with lower proton 

mobility than the precursor, or to retain charge in cases where the initial precursor ion 

had no mobile protons. In all of the cases examined here, this causes the intermediate Y1 

fragment (which eventually gives rise to peptide b and y ions) to harbor only nonmobile 

protons. Thus, protonated glycopeptide ions can behave quite similarly with respect to the 

vibrational mode normalized collision energies which bring about peptide backbone 

fragments, even when they greatly differ in the energetics of precursor ion survival and 

glycan fragment appearance.  

 

Conclusions 

This report elaborates on the relation of precursor ion proton mobility to the 

relative energy requirements for glycan and peptide cleavage in vibrational activation / 

dissociation of representative N-glycopeptides. Both the 50% precursor ion survival 

energies and the energies which resulted in optimum production of glycan fragments 

varied widely among the precursor ions under study, and generally increased with 

decreasing proton mobility. Conversely, the energies at which peptide backbone 

fragments were readily accessed exhibited little or no correlation with the proton mobility 

of the precursor ion. This apparent disconnect is explained by the observation that peptide 

backbone fragments are products of sequential dissociation, and arise largely from the 

intermediate Y1 fragment. For all of the cases studied here, the Y1 fragments were 

produced in charge states that afforded only nonmobile protons, regardless of the charge 

state or proton mobility of the precursor ion. An important consequence of this finding is 
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that the degrees of freedom normalized vibrational energy deposition required to render 

peptide sequence ions was surprisingly similar among the glycopeptide ions studied, even 

when their other energy-resolved CID characteristics were quite disparate. While further 

study is needed in order to determine whether these trends are broadly representative of 

much larger populations of protonated N-glycopeptides, the current results are 

encouraging in that they suggest the potential that glycan cleavage and peptide cleavage 

can be deliberately accessed for putative unknowns based on characteristics such as 

charge state and molecular weight. This, in turn, intimates the possibility of an expanded 

role for CID in glycoproteomic analysis. 
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Brief Summary of This Work 
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The work presented in this thesis emphasizes that the application of energy-

resolved collision-induced dissociation can yield significant coverage of both the 

monosaccharide connectivity and the amino acid sequence of protonated N-linked 

glycopeptide ions. As a general principle, increasing collision energies lead to multiple, 

consecutive generations of product ions that appear in a particular order: Yn>1 glycan 

cleavages (primary fragment ions), Y1 glycan cleavage (secondary fragment ions), and b, 

y peptide cleavages (tertiary fragment ions). This qualitative behavior applies to all 

protonated N-glycopeptides studied here, regardless of charge state, glycan type, or 

peptide composition. However, the quantitative relationships between collision energies 

and fragment ion types did vary considerably among different analyte ions. These 

quantitative differences were explained in part by precursor ion proton mobility. Proton 

mobility of the precursor ion was found to correlate negatively with the collision energies 

required to deplete the precursor ion, and to produce primary fragmentation products 

(Yn>1 glycan fragments). By contrast, the production of peptide b and y ions was found to 

have no relation to precursor ion proton mobility. This is consistent with the observation 

that the peptide b and y cleavages are tertiary fragment ions, arising from the secondary 

Y1 fragment ions. The apparent disconnect between the precursor ion proton mobility and 

the collision energies needed to produce peptide fragmentation is also in accord with the 

observation that Y1 fragment ions generally have lower proton mobilities than their 

respective precursor ions (largely due to loss of charge to carbohydrate oxonium ions). 

Overall, these results suggest the possibility that precursor ion characteristics, including 

proton mobility, can be predictive of the collision energies needed to intentionally access 

glycan or peptide cleavage products. 
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