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Neurons in the brain represent external stimuli via neural codes. These codes often

arise from stimulus-response maps, associating to each neuron a convex receptive field.

An important problem confronted by the brain is to infer properties of a represented

stimulus space without knowledge of the receptive fields, using only the intrinsic

structure of the neural code. How does the brain do this? To address this question,

it is important to determine what stimulus space features can - in principle - be

extracted from neural codes. This motivates us to define the neural ring and a

related neural ideal, algebraic objects that encode the full combinatorial data of a

neural code. We find that these objects can be expressed in a ”canonical form” that

directly translates to a minimal description of the receptive field structure intrinsic

to the neural code. We consider the algebraic properties of homomorphisms between

neural rings, which naturally relate to maps between neural codes. We show that

maps between two neural codes are in bijection with ring homomorphisms between

the respective neural rings, and define the notion of neural ring homomorphism, a

special restricted class of ring homomorphisms which preserve neuron structure. We

also find connections to Stanley-Reisner rings, and use ideas similar to those in the

theory of monomial ideals to obtain an algorithm for computing the canonical form

associated to any neural code, providing the groundwork for inferring stimulus space

features from neural activity alone.
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Chapter 1

Introduction

Building accurate representations of the world is one of the basic functions of the

brain. It is well-known that when a stimulus is paired with pleasure or pain, an

animal quickly learns the association. Animals also learn, however, the (neutral)

relationships between stimuli of the same type. For example, a bar held at a 45-degree

angle appears more similar to one held at 50 degrees than to a perfectly vertical one.

Upon hearing a triple of distinct pure tones, one seems to fall “in between” the other

two. An explored environment is perceived not as a collection of disjoint physical

locations, but as a spatial map. In summary, we do not experience the world as a

stream of unrelated stimuli; rather, our brains organize different types of stimuli into

highly structured stimulus spaces.

The relationship between neural activity and stimulus space structure has, nonethe-

less, received remarkably little attention. In the field of neural coding, much has been

learned about the coding properties of individual neurons by investigating stimulus-

response functions, such as place fields [1, 2], orientation tuning curves [3, 4], and other

examples of “receptive fields” obtained by measuring neural activity in response to

experimentally-controlled stimuli. Moreover, numerous studies have shown that neu-
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ral activity, together with knowledge of the appropriate stimulus-response functions,

can be used to accurately estimate a newly presented stimulus [5, 6, 7]. This paradigm

is being actively extended and revised to include information present in populations

of neurons, spurring debates on the role of correlations in neural coding [8, 9, 10].

In each case, however, the underlying structure of the stimulus space is assumed to

be known, and is not treated as itself emerging from the activity of neurons. This

approach is particularly problematic when one considers that the brain does not have

access to stimulus-response functions, and must represent the world without the aid

of dictionaries that lend meaning to neural activity [11]. In coding theory parlance,

the brain does not have access to the encoding map, and must therefore represent

stimulus spaces via the intrinsic structure of the neural code.

How does the brain do this? In order to eventually answer this question, we must

first tackle a simpler one:

Question: What can be inferred about the underlying stimulus space from neural

activity alone? I.e., what stimulus space features are encoded in the intrinsic structure

of the neural code, and can thus be extracted without knowing the individual stimulus-

response functions?

Recently we have shown that, in the case of hippocampal place cell codes, certain

topological features of the animal’s environment can be inferred from the neural code

alone, without knowing the place fields [11]. As will be explained in the next section,

this information can be extracted from a simplicial complex associated to the neural

code. What other stimulus space features can be inferred from the neural code? For

this, we turn to algebraic geometry. Algebraic geometry provides a useful framework

for inferring geometric and topological characteristics of spaces by associating rings of

functions to these spaces. All relevant features of the underlying space are encoded in
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the intrinsic structure of the ring, where coordinate functions become indeterminates,

and the space itself is defined in terms of ideals in the ring. Inferring features of a

space from properties of functions – without specified domains – is similar to the task

confronted by the brain, so it is natural to expect that this framework may shed light

on our question.

Here we introduce the neural ring, an algebro-geometric object that can be asso-

ciated to any combinatorial neural code. Much like the simplicial complex of a code,

the neural ring encodes information about the underlying stimulus space in a way that

discards specific knowledge of receptive field maps, and thus gets closer to the essence

of how the brain might represent stimulus spaces. Unlike the simplicial complex, the

neural ring retains the full combinatorial data of a neural code, packaging this data

in a more computationally tractable manner. We find that this object, together with

a closely related neural ideal, can be used to algorithmically extract a compact, min-

imal description of the receptive field structure dictated by the code. This enables

us to more directly tie combinatorial properties of neural codes to features of the

underlying stimulus space, a critical step towards answering our motivating question.

Although the use of an algebraic construction such as the neural ring is quite

novel in the context of neuroscience, the neural code (as we define it) is at its core

a combinatorial object, and there is a rich tradition of associating algebraic objects

to combinatorial ones [12]. The most well-known example is perhaps the Stanley-

Reisner ring [13], which turns out to be closely related to the neural ring. Within

mathematical biology, associating polynomial ideals to combinatorial data has also

been fruitful. Recent examples include inferring wiring diagrams in gene-regulatory

networks [14, 15] and applications to chemical reaction networks [16]. Our work also

has parallels to the study of design ideals in algebraic statistics [17].

From a data analysis perspective, it is useful to consider the codes as related to
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one another, not merely as isolated objects. A single code can give rise to a host of

relatives through natural operations such as adding codewords or dropping neurons.

Understanding how these relationships translate to structural information will allow

us to extract information from multiple codes simultaneously. From an algebraic

perspective, relationships between neural rings stem from ring homomorphisms. We

characterize the set of homomorphisms between neural rings, relating each to a code

map via the pullback.

The organization of this dissertation is as follows. In Chapter 2, we discuss in

greater depth the type of neural codes which motivate this work, and explore some

previous results which give partial answers to our open questions. In Chapter 3,

we introduce our main object of study, the neural ring, an algebraic object which

stores information from neural codes. We investigate some of its properties, and in

Chapter 4 we determine a preferred “canonical” presentation that allow us to extract

stimulus space features. In Chapter 5, we give two variations on an algorithm for

obtaining this canonical form. In Chapter 6, we consider the primary decomposition

of the neural ideal and its interpretations. Finally, in Chapter 7, we consider the

maps which relate one neural ring to another, and the relationship between these

maps and the functions which relate one neural code to another. Much of Chapters

1-6 appears in our recent paper [18]; however, substantial changes have been made

to the algorithm for obtaining the canonical form. Finally, in the appendix, we show

all possible examples on 3 neurons, to show the wide variety of possibilities on even

a small set of neurons, and present Matlab code for some of our algorithms.
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Chapter 2

Neural Codes

In this chapter, we introduce the basic objects of study: neural codes, receptive field

codes, and convex receptive field codes. We then discuss various ways in which the

structure of a convex receptive field code can constrain the underlying stimulus space.

These constraints emerge most obviously from the simplicial complex of a neural code,

but (as will be made clear) there are also constraints that arise from aspects of a neural

code’s structure that go well beyond what is captured by the simplicial complex of

the code. First, we give a few basic definitions.

Definition. Given a set of neurons labelled {1, . . . , n} def
= [n], we define a neural code

C ⊂ {0, 1}n as a set of binary patterns of neural activity. An element of a neural code

is called a codeword, c = (c1, . . . , cn) ∈ C, and corresponds to a subset of neurons

supp(c)
def
= {i ∈ [n] | ci = 1} ⊂ [n].

Similarly, the entire code C can be identified with a set of subsets of neurons,

supp C def
= {supp(c) | c ∈ C} ⊂ 2[n],



6

where 2[n] denotes the set of all subsets of [n]. Because we discard the details of the

precise timing and/or rate of neural activity, what we mean by neural code is often

referred to in the neural coding literature as a combinatorial code [19, 20].

For simplicity’s sake, we will henceforth dispense with vector notation and reduce

to the simpler binary notation; e.g., the codeword (1, 0, 1) will be written 101.

Example. Consider the code C = {000, 100, 010, 110, 001}. Here, we have supp(C) =

{∅, {1}, {2}, {1, 2}, {3}}. As a neural code, we interpret this as a set of activity

patterns for 3 neurons, where we have observed the following:

- At some point, no neurons were firing (∅).

- Each neuron fired alone at some point ({1}, {2}, and {3}).

- At some point, neurons 1 and 2 fired together, while 3 was silent ({1, 2}).

Definition. A set of subsets ∆ ⊂ 2[n] is an (abstract) simplicial complex if σ ∈ ∆

and τ ⊂ σ implies τ ∈ ∆. We will say that a neural code C is a simplicial complex if

supp C is a simplicial complex. In cases where the code is not a simplicial complex,

we can complete the code to a simplicial complex by simply adding in missing subsets

of codewords. This allows us to define the simplicial complex of the code as

∆(C) def
= {σ ⊂ [n] | σ ⊆ supp(c) for some c ∈ C}.

Alternatively, ∆(C) can be defined as the smallest simplicial complex that contains

supp C.

Example. Our code in the previous example, C = {000, 100, 010, 110, 001} is a sim-

plicial complex.
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However, the code D = {000, 100, 010, 110, 011} is not, because the set {2, 3} is in

supp(D), but its subset {3} is not. We can take the simplicial complex of the code D

by adding in the necessary subsets, to obtain ∆(D) = {000, 100, 010, 110, 011, 001}.

2.1 Receptive field codes (RF codes)

Neurons in many brain areas have activity patterns that can be characterized by re-

ceptive fields.1 Abstractly, a receptive field is a map fi : X → R≥0 from a space of

stimuli, X, to the average firing rate of a single neuron, i, in response to each stimu-

lus. Receptive fields are computed by correlating neural responses to independently

measured external stimuli. We follow a common abuse of language, where both the

map and its support (i.e., the subset Ui ⊂ X where fi takes on positive values) are

referred to as “receptive fields.” Convex receptive fields are convex subsets of the

stimulus space, for X ⊂ Rd.

Definition. A subset B ⊂ Rn is convex if, given any pair of points x, y ∈ B, the

point z = tx+ (1− t)y is contained in B for any t ∈ [0, 1].

The paradigmatic examples are orientation-selective neurons in visual cortex [3, 4]

and hippocampal place cells [1, 2].

Orientation-selective neurons have tuning curves that reflect a neuron’s preference

for a particular angle . When an animal is presented with stimuli in the form of bars

at a certain angle, these neurons have a marked preference for one particular angle.

The neuron fires at higher and higher rates as the angle of the bars approaches the

preferred angle, producing a tuning curve (see Figure 1A).

1In the vision literature, the term “receptive field” is reserved for subsets of the visual field; we
use the term in a more general sense, applicable to any modality.
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Place cells are neurons that have place fields ; i.e., each neuron has a preferred

(convex) region of the animal’s physical environment where it has a high firing rate

(see Figure 1B). When the animal occupies that particular region, the neuron fires

markedly more frequently; when the animal is in any other area. the neuron’s firing

rate is comparatively very low.

Both tuning curves and place fields are examples of receptive fields. In both cases,

the receptive field for each neuron is convex (an interval of angles about the preferred

angle, or a place field) but not all receptive fields are convex. Grid cells are another

type of neuron with a receptive field, very like place cells, but their receptive field

consists of a set of distinct regions which form a triangular grid, and thus in this case

the receptive field is not convex, or even connected [21].

1

4

2 3

5

0  0  1  0  1codeword

activity pattern

1 2 3 4 5

1  1  1  0  0codeword

activity pattern

BA

Figure 2.1: Receptive field overlaps determine codewords in 1D and 2D RF codes. (A)
Neurons in a 1D RF code have receptive fields that overlap on a line segment (or circle, in the
case of orientation-tuning). Each stimulus on the line corresponds to a binary codeword.
Gaussians depict graded firing rates for neural responses; this additional information is
discarded by the RF code. (B) Neurons in a 2D RF code, such as a place field code,
have receptive fields that partition a two-dimensional stimulus space into non-overlapping
regions, as illustrated by the shaded area. All stimuli within one of these regions will
activate the same set of neurons, and hence have the same corresponding codeword.

A receptive field code (RF code) is a neural code that corresponds to the brain’s

representation of the stimulus space covered by the receptive fields. When a stimulus

lies in the intersection of several receptive fields, the corresponding neurons may co-
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fire while the rest remain silent. The active subset σ of neurons can be identified with

a binary codeword c ∈ {0, 1}n via σ = supp(c). Unless otherwise noted, a stimulus

space X need only be a topological space. However, we usually have in mind X ⊂ Rd,

and this becomes important when we consider convex RF codes.

Definition. Let X be a stimulus space (e.g., X ⊂ Rd), and let U = {U1, . . . , Un} be

a collection of open sets, with each Ui ⊂ X the receptive field of the i-th neuron in a

population of n neurons. The receptive field code (RF code) C(U) ⊂ {0, 1}n is the set

of all binary codewords corresponding to stimuli in X:

C(U)
def
= {c ∈ {0, 1}n | (

⋂
i∈supp(c)

Ui) \ (
⋃

j /∈supp(c)

Uj) 6= ∅}.

If X ⊂ Rd and each of the Uis is also a convex subset of X, then we say that C(U)

is a convex RF code.

Our convention is that
⋂
i∈∅ Ui = X and

⋃
i∈∅ Ui = ∅. This means that if

⋃n
i=1 Ui (

X, then C(U) includes the all-zeros codeword corresponding to an “outside” point not

covered by the receptive fields; on the other hand, if
⋂n
i=1 Ui 6= ∅, then C(U) includes

the all-ones codeword. Figure 1 shows examples of convex receptive fields covering

one- and two-dimensional stimulus spaces, and examples of codewords corresponding

to regions defined by the receptive fields.

Returning to our discussion in the Introduction, we have the following question: If

we can assume C = C(U) is a RF code, then what can be learned about the underlying

stimulus space X from knowledge only of C, and not of U? The answer to this

question will depend critically on whether or not we can assume that the RF code is

convex. In particular, if we don’t make any assumptions about the receptive fields

beyond openness, then any code can be realized as a RF code in any dimension. Thus,
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without some kind of assumption like convexity, the answer to the above question is

“nothing useful.”

Lemma 1. Let C ⊂ {0, 1}n be a neural code. Then, for any d ≥ 1, there exists a

stimulus space X ⊂ Rd and a collection of open sets U = {U1, . . . , Un} (not necessarily

convex), with Ui ⊂ X for each i ∈ [n], such that C = C(U).

Proof. Let C ⊂ {0, 1}n be any neural code, and order the elements of C as {c1, . . . , cm},

where m = |C|. For each c ∈ C, choose a distinct point xc ∈ Rd and an open neighbor-

hood Nc of xc such that no two neighborhoods intersect. Define Uj
def
=
⋃
j∈supp(ck) Nck ,

let U = {U1, . . . , Un}, and X =
⋃m
i=1 Nci . Observe that if the all-zeros codeword is in

C, then N0 = X \
⋃n
i=1 Ui corresponds to the “outside point” not covered by any of

the Uis. By construction, C = C(U).

Although any neural code C ⊆ {0, 1}n can be realized as a RF code, it is not true

that any code can be realized as a convex RF code. Counterexamples can be found

in codes having as few as three neurons.

Lemma 2. The neural code C = {0, 1}3 \ {111, 001} on three neurons cannot be

realized as a convex RF code.

p p

p p

1

1

2

212 UU U U

1 2

Figure 2.2: Two cases in the
proof of Lemma 2.

Proof. Assume the converse, and let U = {U1, U2, U3}

be a set of convex open sets in Rd such that C = C(U).

The code necessitates that U1∩U2 6= ∅ (since 110 ∈ C),

(U1∩U3)\U2 6= ∅ (since 101 ∈ C), and (U2∩U3)\U1 6= ∅

(since 011 ∈ C). Let p1 ∈ (U1∩U3) \U2 and p2 ∈ (U2∩U3) \U1. Since p1, p2 ∈ U3 and

U3 is convex, the line segment ` = (1− t)p1 + tp2 for t ∈ [0, 1] must also be contained

in U3.
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Every point in ` is in U3. However, as there are no points in U1 ∩ U2 ∩ U3 or in

U3\(U1∪U2), then all points on ` are in either U1 or U2 but no point may be in both.

Thus U1∩`, U2∩` are disjoint nonempty open sets which cover `, thus they disconnect

`. But as ` is a line segment, it should be connected in the subspace topology. This

is a contradiction, so no such realization can exist.

Figure 2 illustrates the impossibility of such a realization. There are really only

two possibilities. Case 1: ` passes through U1 ∩ U2 (see Figure 2, left). This implies

U1 ∩ U2 ∩ U3 6= ∅, and hence 111 ∈ C, a contradiction. Case 2: ` does not intersect

U1∩U2. Since U1, U2 are open sets, this implies ` passes outside of U1∪U2 (see Figure

2, right), and hence 001 ∈ C, a contradiction.

2.2 Stimulus space constraints arising from

convex RF codes

It is clear from Lemma 1 that there is essentially no constraint on the stimulus space

for realizing a code as a RF code. However, if we demand that C is a convex RF code,

then the overlap structure of the Uis sharply constrains the geometric and topological

properties of the underlying stimulus space X. To see how this works, we first consider

the simplicial complex of a neural code, ∆(C). Classical results in convex geometry

and topology provide constraints on the underlying stimulus space X for convex RF

codes, based on the structure of ∆(C). We will discuss these next. We then turn to

the question of constraints that arise from combinatorial properties of a neural code

C that are not captured by ∆(C).



12

2.2.1 Helly’s theorem and the Nerve theorem

Here we briefly review two classical and well-known theorems in convex geometry and

topology, Helly’s theorem and the Nerve theorem, as they apply to convex RF codes.

Both theorems can be used to relate the structure of the simplicial complex of a code,

∆(C), to topological features of the underlying stimulus space X.

Suppose U = {U1, . . . , Un} is a finite collection of convex open subsets of Rd,

with dimension d < n. We can associate to U a simplicial complex N(U) called the

nerve of U . A subset {i1, .., ik} ⊂ [n] belongs to N(U) if and only if the appropriate

intersection
⋂k
`=1 Ui` is nonempty. If we think of the Uis as receptive fields, then

N(U) = ∆(C(U)). In other words, the nerve of the cover corresponds to the simplicial

complex of the associated (convex) RF code.

Helly’s theorem. Consider k convex subsets, U1, . . . , Uk ⊂ Rd, for d < k. If the

intersection of every d+1 of these sets is nonempty, then the full intersection
⋂k
i=1 Ui

is also nonempty.

A nice exposition of this theorem and its consequences can be found in [22]. One

straightforward consequence is that the nerve N(U) is completely determined by its

d-skeleton, and corresponds to the largest simplicial complex with that d-skeleton. For

example, if d = 1, then N(U) is a clique complex (fully determined by its underlying

graph). Since N(U) = ∆(C(U)), Helly’s theorem imposes constraints on the minimal

dimension of the stimulus space X when C = C(U) is assumed to be a convex RF

code. For example, if we have some collection of codewords, and there are three

neurons (or more) where each pair of neurons is seen to fire together but there is no

word where all fire together, then the minimal dimension of the stimulus space where

this code could be realized as a convex receptive field code is 2.

Nerve theorem. The homotopy type of X(U)
def
=
⋃n
i=1 Ui is equal to the homotopy
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type of the nerve of the cover, N(U). In particular, X(U) and N(U) have exactly the

same homology groups.

The Nerve theorem is an easy consequence of [23, Corollary 4G.3]. This is a pow-

erful theorem relating the simplicial complex of a RF code, ∆(C(U)) = N(U), to

topological features of the underlying space, such as homology groups and other ho-

motopy invariants. In [11], this theorem is used in the context of two-dimensional RF

codes (specifically, place field codes for place cells in rat hippocampus) to show that

topological features of the animal’s environment could be inferred from the observed

neural code, without knowing the place fields. Note, however, that the similarities

between X(U) and N(U) only go so far. In particular, X(U) and N(U) typically

have very different dimension. It is also important to keep in mind that the Nerve

theorem concerns the topology of X(U) =
⋃n
i=1 Ui. In our setup, if the stimulus space

X is larger, so that
⋃n
i=1 Ui ( X, then the Nerve theorem tells us only about the

homotopy type of X(U), not of X. Since the Ui are open sets, however, conclusions

about the dimension of X can still be inferred.

In addition to Helly’s theorem and the Nerve theorem, there is a great deal known

about ∆(C(U)) = N(U) for collections of convex sets in Rd. In particular, the f -

vectors of such simplicial complexes have been completely characterized by G. Kalai

in [24, 25].

2.2.2 Beyond the simplicial complex of the neural code

We have just seen how the simplicial complex of a neural code, ∆(C), yields constraints

on the stimulus space X if we assume C can be realized as a convex RF code. Consider

the example described in Lemma 2. Nothing from Helly’s theorem expressly said that

C could not be realized in R2; indeed, ∆(C) can be realized easily. Yet we have proven
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it is impossible to realize the code C in any dimension at all. This implies that other

kinds of constraints on X may emerge from the combinatorial structure of a neural

code, even if there is no obstruction stemming from ∆(C).

A B

C D

1

1

1

1

2

2

2

2

3

3

3

3

Figure 2.3: Four arrangements of three convex
receptive fields, U = {U1, U2, U3}, each having
∆(C(U)) = 2[3]. Square boxes denote the stimu-
lus space X in cases where U1 ∪ U2 ∪ U3 ( X.
(A) C(U) = 2[3], including the all-zeros codeword
000. (B) C(U) = {111, 101, 011, 001}, with X =
U3. (C) C(U) = {111, 011, 001, 000}. (D) C(U) =
{111, 101, 011, 110, 100, 010}, and X = U1 ∪ U2. The
minimal embedding dimension for the codes in panels
A and D is d = 2, while for panels B and C it is d = 1.

In Figure 3 we show four

possible arrangements of three

convex receptive fields in the

plane. Each convex RF code

has the same corresponding sim-

plicial complex ∆(C) = 2[3],

since 111 ∈ C for each code.

Nevertheless, the arrangements

clearly have different combina-

torial properties. In Figure 3C,

for instance, we have U1 ⊂

U2 ⊂ U3, while Figure 3A has

no special containment relation-

ships among the receptive fields.

This “receptive field structure”

(RF structure) of the code has impliciations for the underlying stimulus space.

Let d be the minimal integer for which the code can be realized as a convex RF

code in Rd; we will refer to this as the minimal embedding dimension of C. Note

that the codes in Figure 3A,D have d = 2, whereas the codes in Figure 3B,C have

d = 1. The simplicial complex, ∆(C), is thus not sufficient to determine the minimal

embedding dimension of a convex RF code, but this information is somehow present

in the RF structure of the code. Similarly, in Lemma 2 we saw that ∆(C) does not

provide sufficient information to determine whether or not C can be realized as a
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convex RF code; after working out the RF structure, however, it was easy to see that

the given code was not realizable.

2.2.3 The receptive field structure (RF structure) of a

neural code

As we have just seen, the intrinsic structure of a neural code contains information

about the underlying stimulus space that cannot be inferred from the simplicial com-

plex of the code alone. This information is, however, present in what we have loosely

referred to as the “RF structure” of the code. We now explain more carefully what

we mean by this term.

Given a set of receptive fields U = {U1, . . . , Un} in a stimulus space X, there are

certain containment relations between intersections and unions of the Uis that are

“obvious,” and carry no information about the particular arrangement in question.

These relationships are merely a result of unavoidable set relationships. For example,

U1 ∩ U2 ⊆ U2 ∪ U3 ∪ U4 is always guaranteed to be true, because it follows from

U2 ⊆ U2. On the other hand, a relationship such as U3 ⊆ U1 ∪ U2 (as in Figure 3D)

is not always present, and thus reflects something about the structure of a particular

receptive field arrangement.

Let C ⊂ {0, 1}n be a neural code, and let U = {U1, . . . , Un} be any arrangement

of receptive fields in a stimulus space X such that C = C(U) (this is guaranteed to

exist by Lemma 1). The RF structure of C refers to the set of relations among the

Uis that are not “obvious,” and have the form:

⋂
i∈σ

Ui ⊆
⋃
j∈τ

Uj, for σ ∩ τ = ∅.
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In particular, this includes any empty intersections
⋂
i∈σ Ui = ∅ (here τ = ∅). In

the examples in Figure 3, the panel A code has no unusual RF structure relations

and is as general as possible; while panel B has U1 ⊂ U3 and U2 ⊂ U3; panel C has

U1 ⊂ U2 ⊂ U3; and panel D has U3 ⊂ U1 ∪ U2.

Our central goal is to develop a method to algorithmically extract a minimal

description of the RF structure directly from a neural code C, without first realizing

it as C(U) for some arrangement of receptive fields. We view this as a first step

towards inferring stimulus space features that cannot be obtained from the simplicial

complex ∆(C). To do this we turn to an algebro-geometric framework, that of neural

rings and ideals. These objects are defined in Section 3 so as to capture the full

combinatorial data of a neural code, but in a way that allows us to naturally and

algorithmically infer a compact description of the desired RF structure, as shown in

Chapter 4.
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Chapter 3

Neural Rings and Neural Ideals

In this chapter we define the neural ring RC and a closely-related neural ideal, JC.

First, we briefly review some basic algebraic geometry background needed throughout

the following sections.

3.1 Basic algebraic geometry background

The following definitions are standard (see, for example, [26]).

Rings and ideals. Let R be a commutative ring. A subset I ⊆ R is an ideal of R

if it has the following properties:

(i) I is a subgroup of R under addition.

(ii) If a ∈ I, then ra ∈ I for all r ∈ R.

An ideal I is said to be generated by a set A, and we write I = 〈A〉, if

I = {r1a1 + · · ·+ rnan | ai ∈ A, ri ∈ R, and n ∈ N}.
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In other words, I is the set of all finite combinations of elements of A with coefficients

in R.

An ideal I ⊂ R is proper if I ( R. An ideal I ⊂ R is prime if it is proper and

has the following property: if rs ∈ I for some r, s ∈ R, then r ∈ I or s ∈ I. An ideal

m ⊂ R is maximal if it is proper and if for any ideal I such that m ⊆ I ⊆ R, either

I = m or I = R. An ideal I ⊂ R is radical if rn ∈ I implies r ∈ I, for any r ∈ R and

n ∈ N. An ideal I ⊂ R is primary if rs ∈ I implies r ∈ I or sn ∈ I for some n ∈ N.

A primary decomposition of an ideal I expresses I as an intersection of finitely many

primary ideals.

Ideals and varieties. Let k be a field, n the number of neurons, and k[x1, . . . , xn]

a polynomial ring with one indeterminate xi for each neuron. We will consider kn

to be the neural activity space, where each point v = (v1, . . . , vn) ∈ kn is a vector

tracking the state vi of each neuron. Note that any polynomial f ∈ k[x1, . . . , xn] can

be evaluated at a point v ∈ kn by setting xi = vi each time xi appears in f . We will

denote this value f(v).

Let J ⊂ k[x1, . . . , xn] be an ideal, and define the variety

V (J)
def
= {v ∈ kn | f(v) = 0 for all f ∈ J}.

Similarly, given a subset S ⊂ kn, we can define the ideal of functions that vanish on

this subset as

I(S)
def
= {f ∈ k[x1, . . . ., xn] | f(v) = 0 for all v ∈ S}.

The ideal-variety correspondence [26] gives us the usual order-reversing relationships:

I ⊆ J ⇒ V (J) ⊆ V (I), and S ⊆ T ⇒ I(T ) ⊆ I(S). Furthermore, V (I(V )) = V
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for any variety V , but it is not always true that I(V (J)) = J for an ideal J (see

Section 3.5). We will regard neurons as having only two states, “on” or “off,” and

thus choose k = F2 = {0, 1}.

3.2 Definition of the neural ring

Let C ⊂ {0, 1}n = Fn2 be a neural code, and define the ideal IC of F2[x1, . . . , xn]

corresponding to the set of polynomials that vanish on all codewords in C:

IC
def
= I(C) = {f ∈ F2[x1, . . . , xn] | f(c) = 0 for all c ∈ C}.

By design, V (IC) ⊇ C; we will show that in fact V (IC) = C and hence I(V (IC)) = IC.

To see this, define an ideal mv = 〈x1 − v1, ..., xn − vn〉 for every v ∈ Fn2 ; note that

V (mv) = {v}. Then, for a code C ⊂ Fn2 , define the ideal J =
⋂
v∈Cmv. As this

intersection is finite, C = V (J), and thus we have

V (IC) = V (I(C)) = V (I(V (JC))) = V (JC) = C.

Note that the ideal generated by the Boolean relations,

B def
= 〈x2

1 − x1, . . . , x
2
n − xn〉,

is automatically contained in IC, irrespective of C.

The neural ring RC corresponding to the code C is the quotient ring

RC
def
= F2[x1, . . . , xn]/IC,
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together with the set of indeterminates x1, . . . , xn. We say that two neural rings are

equivalent if there is a bijection between the sets of indeterminates that yields a ring

homomorphism.

Remark. Due to the Boolean relations, any element y ∈ RC satisfies y2 = y (cross-

terms vanish because 2 = 0 in F2), so the neural ring is a Boolean ring isomorphic

to F|C|2 . It is important to keep in mind, however, that RC comes equipped with a

privileged set of functions, x1, . . . , xn; this allows the ring to keep track of considerably

more structure than just the size of the neural code. The importance of using this

presentation will be clear as we begin to extract receptive field information.

3.3 The spectrum of the neural ring

We can think of RC as the ring of functions of the form f : C → F2 on the neural

code, where each function assigns a 0 or 1 to each codeword c ∈ C by evaluating

f ∈ F2[x1, . . . , xn]/IC through the substitutions xi = ci for i = 1, . . . , n. To see this,

note that two polynomials are in the same equivalence class in RC if and only if they

evaluate the same on every c ∈ C. That is, f = g in RC ⇔ f−g ∈ IC ⇔ f(c)−g(c) = 0

for all c ∈ C, i.e., f(c) = g(c) for all c ∈ C. Quotienting the original polynomial ring

by IC ensures that there is only one zero function in RC.

The spectrum of the neural ring, Spec(RC), consists of all prime ideals in RC. We

will see shortly that the elements of Spec(RC) are in one-to-one correspondence with

the elements of the neural code C. Indeed, our definition of RC was designed for this

to be true.

For any point v ∈ {0, 1}n of the neural activity space, let

mv
def
= I(v) = {f ∈ F2[x1, . . . , xn] | f(v) = 0}
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be the maximal ideal of F2[x1, . . . , xn] consisting of all functions that vanish on v. We

can also write mv = 〈x1 − v1, . . . , xn − vn〉 (see Lemma 6 in Section 3.5). Using this,

we can characterize the spectrum of the neural ring.

Lemma 3. Spec(RC) = {m̄v | v ∈ C}, where m̄v is the quotient of mv in RC.

The proof is given in Section 3.5. Note that because RC is a Boolean ring, the maximal

ideal spectrum and the prime ideal spectrum coincide.

3.4 The neural ideal & an explicit set of relations

for the neural ring

The definition of the neural ring is rather impractical, as it does not give us explicit

relations for generating IC and RC. Here we define another ideal, JC, via an explicit

set of generating relations. Although JC is closely related to IC, it turns out that JC

is a more convenient object to study, which is why we will use the term neural ideal

to refer to JC rather than IC.

For any v ∈ {0, 1}n, consider the function ρv ∈ F2[x1, . . . , xn] defined as

ρv
def
=

n∏
i=1

(1− vi − xi) =
∏

{i | vi=1}

xi
∏

{j | vj=0}

(1− xj) =
∏

i∈supp(v)

xi
∏

j /∈supp(v)

(1− xj).

Note that ρv(x) can be thought of as a characteristic function for v, since it satisfies

ρv(v) = 1 and ρv(x) = 0 for any other x ∈ Fn2 . Now consider the ideal JC ⊆

F2[x1, . . . , xn] generated by all functions ρv, for v /∈ C:

JC
def
= 〈{ρv | v /∈ C}〉.
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We call JC the neural ideal corresponding to the neural code C. If C = 2[n] is the

complete code, we simply set JC = 0, the zero ideal. JC is related to IC as follows,

giving us explicit relations for the neural ring.

Lemma 4. Let C ⊂ {0, 1}n be a neural code. Then,

IC = JC + B =
〈
{ρv | v /∈ C}, {xi(1− xi) | i ∈ [n]}

〉
,

where B = 〈{xi(1− xi) | i ∈ [n]}〉 is the ideal generated by the Boolean relations, and

JC is the neural ideal.

The proof is given in Section 3.5.

3.5 Proof of Lemmas 3 and 4

To prove Lemmas 3 and 4, we need a version of the Nullstellensatz for finite fields.

The original “Hilbert’s Nullstellensatz” applies when k is an algebraically closed field.

It states that if f ∈ k[x1, . . . , xn] vanishes on V (J), then f ∈
√
J . In other words,

I(V (J)) =
√
J.

Because we have chosen k = F2 = {0, 1}, we have to be a little careful about the usual

ideal-variety correspondence, as there are some subtleties introduced in the case of

finite fields. In particular, J =
√
J in F2[x1, . . . , xn] does not imply I(V (J)) = J .

The following lemma and theorem are well-known. Let Fq be a finite field of size

q, and Fq[x1, . . . , xn] the n-variate polynomial ring over Fq.

Lemma 5. For any ideal J ⊆ Fq[x1, . . . , xn], the ideal J + 〈xq1 − x1, . . . , x
q
n − xn〉 is

a radical ideal.
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Theorem 1 (Strong Nullstellensatz in Finite Fields). For an arbitrary finite field Fq,

let J ⊆ Fq[x1, . . . , xn] be an ideal. Then,

I(V (J)) = J + 〈xq1 − x1, . . . , x
q
n − xn〉.

Proof of Lemma 3

We begin by describing the maximal ideals of F2[x1, . . . , xn]. Recall that

mv
def
= I(v) = {f ∈ F2[x1, . . . , xn] | f(v) = 0}

is the maximal ideal of F2[x1, . . . , xn] consisting of all functions that vanish on v ∈ Fn2 .

We will use the notation m̄v to denote the quotient of mv in RC, in cases where

mv ⊃ IC.

Lemma 6. mv = 〈x1 − v1, . . . , xn − vn〉 ⊂ F2[x1, . . . , xn], and is a radical ideal.

Proof. Denote Av = 〈x1− v1, . . . , xn− vn〉, and observe that V (Av) = {v}. It follows

that I(V (Av)) = I(v) = mv. On the other hand, using the Strong Nullstellensatz in

Finite Fields we have

I(V (Av)) = Av + 〈x2
1 − x1, . . . , x

2
n − xn〉 = Av,

where the last equality is obtained by observing that, since vi ∈ {0, 1} and x2
i − xi =

xi(1 − xi), each generator of 〈x2
1 − x1, . . . , x

2
n − xn〉 is already contained in Av. We

conclude that Av = mv, and the ideal is radical by Lemma 5.

In the proof of Lemma 3, we make use of the following correspondence: for any

quotient ring R/I, the maximal ideals of R/I are exactly the quotients m̄ = m/I,
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where m is a maximal ideal of R that contains I [27].

Proof of Lemma 3. First, recall that because RC is a Boolean ring, Spec(RC) =

maxSpec(RC), the set of all maximal ideals of RC. We also know that any maxi-

mal ideal of F2[x1, . . . , xn] which contains IC is of the form mv for v ∈ Fn2 . To see

this, we only need show that for maximal ideal m ⊇ IC, we have V (m) 6= ∅ (since if

v ∈ V (m), then m ⊆ mv, and as m is maximal, m = mv). To show this, suppose that

V (m) = ∅. Using the Strong Nullstellensatz, since m ⊇ IC ⊇ 〈x2
1 − x1, ..., x

2
n − xn〉,

we have

m = m+ 〈x2
1 − x1, ..., x

2
n − xn〉 = I(V (m)) = I(∅) = F2[x1, ..., xn]

which is a contradiction.

By the correspondence stated above, to show that maxSpec(RC) = {m̄v | v ∈ C}

it suffices to show mv ⊃ IC if and only if v ∈ C. To see this, note that for each v ∈ C,

IC ⊆ mv because, by definition, all elements of IC are functions that vanish on each

v ∈ C. On the other hand, if v /∈ C then mv 6⊇ IC; in particular, the characteristic

function ρv ∈ IC for v /∈ C, but ρv /∈ mv because ρv(v) = 1. Hence, the maximal

ideals of RC are exactly those of the form m̄v for v ∈ C.

We have thus verified that the points in Spec(RC) correspond to codewords in

C. This was expected given our original definition of the neural ring, and suggests

that the relations on F2[x1, . . . , xn] imposed by IC are simply relations ensuring that

V (m̄v) = ∅ for all v /∈ C.
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Proof of Lemma 4

Here we find explicit relations for IC in the case of an arbitrary neural code. Recall

that

ρv =
n∏
i=1

((xi − vi)− 1) =
∏

{i | vi=1}

xi
∏

{j | vj=0}

(1− xj),

and that ρv(x) can be thought of as a characteristic function for v, since it satisfies

ρv(v) = 1 and ρv(x) = 0 for any other x ∈ Fn2 . This immediately implies that

V (JC) = V (〈{ρv | v /∈ C}〉) = C.

We can now prove Lemma 4.

Proof of Lemma 4. Observe that IC = I(C) = I(V (JC)), since V (JC) = C. On the

other hand, the Strong Nullstellensatz in Finite Fields implies I(V (JC)) = JC + 〈x2
1−

x1, . . . , x
2
n − xn〉 = JC + B.
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Chapter 4

How to infer RF structure using

the neural ideal

We begin by presenting an alternative set of relations that can be used to define the

neural ring. These relations enable us to easily interpret elements of IC as receptive

field relationships, clarifying the connection between the neural ring and ideal and

the RF structure of the code.

We next introduce pseudo-monomials and pseudo-monomial ideals, and use these

notions to obtain a minimal description of the neural ideal, which we call the “canon-

ical form.” Theorem 3 enables us to use the canonical form of JC in order to “read

off” a minimal description of the RF structure of the code. Finally, we present an

algorithm that inputs a neural code C and outputs the canonical form CF (JC), and

illustrate its use in a detailed example.
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4.1 An alternative set of relations for the neural

ring

Let C ⊂ {0, 1}n be a neural code, and recall by Lemma 1 that C can always be realized

as a RF code C = C(U), provided we don’t require the Uis to be convex. Let X be a

stimulus space and U = {Ui}ni=1 a collection of open sets in X, and consider the RF

code C(U). The neural ring corresponding to this code is RC(U).

Observe that the functions f ∈ RC(U) can be evaluated at any point p ∈ X by

assigning

xi(p) =

 1 if p ∈ Ui

0 if p /∈ Ui

each time xi appears in the polynomial f . The vector (x1(p), . . . , xn(p)) ∈ {0, 1}n

represents the neural response to the stimulus p. Note that if p /∈
⋃n
i=1 Ui, then

(x1(p), . . . , xn(p)) = (0, . . . , 0) is the all-zeros codeword. For any σ ⊂ [n], define

Uσ
def
=
⋂
i∈σ

Ui, and xσ
def
=
∏
i∈σ

xi.

Our convention is that x∅ = 1 and U∅ = X, even in cases where X )
⋃n
i=1 Ui. Note

that for any p ∈ X,

xσ(p) =

 1 if p ∈ Uσ

0 if p /∈ Uσ.

The relations in IC(U) encode the combinatorial data of U . For example, if Uσ = ∅

then we cannot have xσ = 1 at any point of the stimulus space X, and must therefore

impose the relation xσ to “knock off” those points. On the other hand, if Uσ ⊂ Ui∪Uj,

then xσ = 1 implies either xi = 1 or xj = 1, something that is guaranteed by

imposing the relation xσ(1−xi)(1−xj). These observations lead us to an alternative



28

ideal, IU ⊂ F2[x1, . . . , xn], defined directly from the arrangement of receptive fields

U = {U1, . . . , Un}:

IU
def
=
〈{
xσ
∏
i∈τ

(1− xi) | Uσ ⊆
⋃
i∈τ

Ui
}〉
.

Note that if τ = ∅, we only get a relation for Uσ = ∅, and this is xσ. If σ = ∅,

then Uσ = X, and we only get relations of this type if X is contained in the union

of the Uis. This is equivalent to the requirement that there is no “outside point”

corresponding to the all-zeros codeword.

Perhaps unsurprisingly, it turns out that IU and IC(U) exactly coincide, so IU

provides an alternative set of relations that can be used to define RC(U).

Theorem 2. IU = IC(U).

Recall that for a given set of receptive fields U = {U1, . . . , Un} in some stimulus

space X, the ideal IU ⊂ F2[x1, . . . , xn] was defined as:

IU
def
=
〈
{xσ

∏
i∈τ

(1− xi) | Uσ ⊆
⋃
i∈τ

Ui}
〉
.

The Boolean relations are present in IU irrespective of U , as it is always true that

Ui ⊆ Ui and this yields the relation xi(1 − xi) for each i. By analogy with our

definition of JC, it makes sense to define an ideal JU which is obtained by stripping

away the Boolean relations. This will then be used in the proof of Theorem 2.

Note that if σ ∩ τ 6= ∅, then for any i ∈ σ ∩ τ we have Uσ ⊆ Ui ⊆
⋃
j∈τ Ui, and

the corresponding relation is a multiple of the Boolean relation xi(1 − xi). We can

thus restrict attention to relations in IU that have σ ∩ τ = ∅, so long as we include

separately the Boolean relations. These observations are summarized by the following

lemma.
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Lemma 7. IU = JU + 〈x2
1 − x1, . . . , x

2
n − xn〉, where

JU
def
=
〈
{xσ

∏
i∈τ

(1− xi) | σ ∩ τ = ∅ and Uσ ⊆
⋃
i∈τ

Ui}
〉
.

Proof of Theorem 2. We will show that JU = JC(U) (and thus that IU = IC(U)) by

showing that each ideal contains the generators of the other.

First, we show that all generating relations of JC(U) are contained in JU . Recall

that the generators of JC(U) are of the form

ρv =
∏

i∈supp(v)

xi
∏

j /∈supp(v)

(1− xj) for v /∈ C(U).

If ρv is a generator of JC(U), then v /∈ C(U) and this implies (by the definition of C(U))

that Usupp(v) ⊆
⋃
j /∈supp(v) Uj. Taking σ = supp(v) and τ = [n] \ supp(v), we have

Uσ ⊆
⋃
j∈τ Uj with σ ∩ τ = ∅. This in turn tells us (by the definition of JU) that

xσ
∏

j∈τ (1− xj) is a generator of JU . Since ρv = xσ
∏

j∈τ (1− xj) for our choice of σ

and τ , we conclude that ρv ∈ JU . Hence, JC(U) ⊆ JU .

Next, we show that all generating relations of JU are contained in JC(U). If JU has

generator xσ
∏

i∈τ (1 − xi), then Uσ ⊆
⋃
i∈τ Ui and σ ∩ τ = ∅. This in turn implies

that
⋂
i∈σ Ui \

⋃
j∈τ Uj = ∅, and thus (by the definition of C(U)) we have v /∈ C(U) for

any v such that supp(v) ⊇ σ and supp(v) ∩ τ = ∅. It follows that JC(U) contains the

relation xsupp(v)

∏
j /∈supp(v)(1 − xj) for any such v. This includes all relations of the

form xσ
∏

j∈τ (1−xj)
∏

k/∈σ∪τ Pk, where Pk ∈ {xk, 1−xk}. Taking f = xσ
∏

j∈τ (1−xj)

in Lemma 8 (below), we can conclude that JC(U) contains xσ
∏

j∈τ (1 − xj). Hence,

JU ⊆ JC(U).

Lemma 8. For any f ∈ k[x1, . . . , xn] and τ ⊆ [n], the ideal 〈
{
f
∏

i∈τ Pi | Pi ∈

{xi, 1− xi}
}
〉 = 〈f〉.
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Proof. First, denote If (τ)
def
= 〈
{
f
∏

i∈τ Pi | Pi ∈ {xi, 1−xi}
}
〉. We wish to prove that

If (τ) = 〈f〉, for any τ ⊆ [n]. Clearly, If (τ) ⊆ 〈f〉, since every generator of If (τ) is a

multiple of f . We will prove If (τ) ⊇ 〈f〉 by induction on |τ |.

If |τ | = 0, then τ = ∅ and If (τ) = 〈f〉. If |τ | = 1, so that τ = {i} for some i ∈ [n],

then If (τ) = 〈f(1− xi), fxi〉. Note that f(1− xi) + fxi = f , so f ∈ If (τ), and thus

If (τ) ⊇ 〈f〉.

Now, assume that for some ` ≥ 1 we have If (σ) ⊇ 〈f〉 for any σ ⊆ [n] with |σ| ≤ `.

If ` ≥ n, we are done, so we need only show that if ` < n, then If (τ) ⊇ 〈f〉 for any τ

of size `+ 1. Consider τ ⊆ [n] with |τ | = `+ 1, and let j ∈ τ be any element. Define

τ ′ = τ\{j}, and note that |τ ′| = `. By our inductive assumption, If (τ
′) ⊇ 〈f〉. We

will show that If (τ) ⊇ If (τ
′), and hence If (τ) ⊇ 〈f〉.

Let g = f
∏

i∈τ ′ Pi be any generator of If (τ
′) and observe that both f(1 −

xj)
∏

i∈τ ′ Pi and fxj
∏

i∈τ ′ Pi are both generators of If (τ). It follows that their sum,

g, is also in If (τ), and hence g ∈ If (τ) for any generator g of If (τ
′). We conclude

that If (τ) ⊇ If (τ
′), as desired.

4.2 Interpreting neural ring relations as receptive

field relationships

Theorem 2 suggests that we can interpret elements of IC in terms of relationships

between receptive fields.

Lemma 9. Let C ⊂ {0, 1}n be a neural code, and let U = {U1, . . . , Un} be any

collection of open sets (not necessarily convex) in a stimulus space X such that C =
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C(U). Then, for any pair of subsets σ, τ ⊂ [n],

xσ
∏
i∈τ

(1− xi) ∈ IC ⇔ Uσ ⊆
⋃
i∈τ

Ui.

Proof. (⇐) This is a direct consequence of Theorem 2. (⇒) We distinguish two cases,

based on whether or not σ and τ intersect. If xσ
∏

i∈τ (1−xi) ∈ IC and σ∩τ 6= ∅, then

xσ
∏

i∈τ (1− xi) ∈ B, where B = 〈{xi(1− xi) | i ∈ [n]}〉 is the ideal generated by the

Boolean relations. Consequently, the relation does not give us any information about

the code, and Uσ ⊆
⋃
i∈τ Ui follows trivially from the observation that Ui ⊆ Ui for

any i ∈ σ∩ τ . If, on the other hand, xσ
∏

i∈τ (1−xi) ∈ IC and σ∩ τ = ∅, then ρv ∈ IC

for each v ∈ {0, 1}n such that supp(v) ⊇ σ and supp(v) ∩ τ = ∅. Since ρv(v) = 1,

it follows that v /∈ C for any v with supp(v) ⊇ σ and supp(v) ∩ τ = ∅. To see this,

recall from the original definition of IC that for all c ∈ C, f(c) = 0 for any f ∈ IC; it

follows that ρv(c) = 0 for all c ∈ C. Because C = C(U), the fact that v /∈ C for any

v such that supp(v) ⊇ σ and supp(v) ∩ τ = ∅ implies
⋂
i∈σ Ui \

⋃
j∈τ Uj = ∅. We can

thus conclude that Uσ ⊆
⋃
j∈τ Uj.

Lemma 9 allows us to extract RF structure from the different types of relations that

appear in IC:

• Boolean relations: {xi(1−xi)}. The relation xi(1−xi) corresponds to Ui ⊆ Ui,

which does not contain any information about the code C.

• Type 1 relations: {xσ}. The relation xσ corresponds to Uσ = ∅.

• Type 2 relations:
{
xσ
∏

i∈τ (1−xi) | σ, τ 6= ∅, σ∩ τ = ∅, Uσ 6= ∅ and
⋃
i∈τ Ui 6=

X
}

.

The relation xσ
∏

i∈τ (1− xi) corresponds to Uσ ⊆
⋃
i∈τ Ui.
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• Type 3 relations:
{∏

i∈τ (1 − xi)
}

. The relation
∏

i∈τ (1 − xi) corresponds to

X ⊆
⋃
i∈τ Ui.

The somewhat complicated requirements on the Type 2 relations ensure that they do

not include polynomials that are multiples of Type 1, Type 3, or Boolean relations.

Note that the constant polynomial 1 may appear as both a Type 1 and a Type 3

relation, but only if X = ∅. The four types of relations listed above are otherwise

disjoint. Type 3 relations only appear if X is fully covered by the receptive fields,

and there is thus no all-zeros codeword corresponding to an “outside” point.

Not all elements of IC are one of the above types, of course, but we will see that

these are sufficient to generate IC. This follows from the observation (see Lemma 10)

that the neural ideal JC is generated by the Type 1, Type 2 and Type 3 relations, and

recalling that IC is obtained from JC be adding in the Boolean relations (Lemma 4).

At the same time, not all of these relations are necessary to generate the neural ideal.

Can we eliminate redundant relations to come up with a “minimal” list of generators

for JC, and hence IC, that captures the essential RF structure of the code? This is

the goal of the next section.

4.3 Pseudo-monomials & a canonical form for the

neural ideal

The Type 1, Type 2, and Type 3 relations are all products of linear terms of the form

xi and 1 − xi, and are thus very similar to monomials. By analogy with square-free

monomials and square-free monomial ideals [12], we define the notions of pseudo-

monomials and pseudo-monomial ideals. Note that we do not allow repeated indices

in our definition of pseudo-monomial, so the Boolean relations are explicitly excluded.
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Definition. If f ∈ F2[x1, . . . , xn] has the form f =
∏

i∈σ xi
∏

j∈τ (1 − xj) for some

σ, τ ⊂ [n] with σ ∩ τ = ∅, then we say that f is a pseudo-monomial.

Definition. An ideal J ⊂ F2[x1, . . . , xn] is a pseudo-monomial ideal if J can be

generated by a finite set of pseudo-monomials.

Definition. Let J ⊂ F2[x1, . . . , xn] be an ideal, and f ∈ J a pseudo-monomial. We

say that f is a minimal pseudo-monomial of J if there does not exist another pseudo-

monomial g ∈ J with deg(g) < deg(f) such that f = hg for some h ∈ F2[x1, . . . , xn].

By considering the set of all minimal pseudo-monomials in a pseudo-monomial ideal

J , we obtain a unique and compact description of J , which we call the “canonical

form” of J .

Definition. We say that a pseudo-monomial ideal J is in canonical form if we present

it as J = 〈f1, . . . , fl〉, where the set CF (J)
def
= {f1, . . . , fl} is the set of all minimal

pseudo-monomials of J . Equivalently, we refer to CF (J) as the canonical form of J .

Clearly, for any pseudo-monomial ideal J ⊂ F2[x1, . . . , xn], CF (J) is unique and J =

〈CF (J)〉. On the other hand, it is important to keep in mind that although CF (J)

consists of minimal pseudo-monomials, it is not necessarily a minimal set of generators

for J . To see why, consider the pseudo-monomial ideal J = 〈x1(1− x2), x2(1− x3)〉.

This ideal in fact contains a third minimal pseudo-monomial: x1(1− x3) = (1− x3) ·

[x1(1−x2)]+x1·[x2(1−x3)]. It follows that CF (J) = {x1(1−x2), x2(1−x3), x1(1−x3)},

but clearly we can remove x1(1− x3) from this set and still generate J .

For any code C, the neural ideal JC is a pseudo-monomial ideal because JC =

〈{ρv | v /∈ C}〉, and each of the ρvs is a pseudo-monomial. (In contrast, IC is rarely

a pseudo-monomial ideal, because it is typically necessary to include the Boolean
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relations as generators.) Theorem 3 describes the canonical form of JC. In what

follows, we say that σ ⊆ [n] is minimal with respect to property P if σ satisfies P , but

P is not satisfied for any τ ( σ. For example, if Uσ = ∅ and for all τ ( σ we have

Uτ 6= ∅, then we say that “σ is minimal w.r.t. Uσ = ∅.”

Theorem 3. Let C ⊂ {0, 1}n be a neural code, and let U = {U1, . . . , Un} be any

collection of open sets (not necessarily convex) in a nonempty stimulus space X such

that C = C(U). The canonical form of JC is:

JC =
〈{
xσ | σ is minimal w.r.t. Uσ = ∅

}
,{

xσ
∏
i∈τ

(1− xi) | σ, τ 6= ∅, σ ∩ τ = ∅, Uσ 6= ∅,
⋃
i∈τ

Ui 6= X, and σ, τ are each minimal

w.r.t. Uσ ⊆
⋃
i∈τ

Ui
}
,
{∏
i∈τ

(1− xi) | τ is minimal w.r.t. X ⊆
⋃
i∈τ

Ui
}〉
.

We call the above three (disjoint) sets of relations comprising CF (JC) the minimal

Type 1 relations, the minimal Type 2 relations, and the minimal Type 3 relations,

respectively.

The proof is given in Section 4.4. Note that, because of the uniqueness of the canonical

form, if we are given CF (JC) then Theorem 3 allows us to read off the corresponding

(minimal) relationships that must be satisfied by any receptive field representation of

the code as C = C(U):

• Type 1: xσ ∈ CF (JC) implies that Uσ = ∅, but all lower-order intersections Uγ

with γ ( σ are non-empty.

• Type 2: xσ
∏

i∈τ (1 − xi) ∈ CF (JC) implies that Uσ ⊆
⋃
i∈τ Ui, but no lower-

order intersection is contained in
⋃
i∈τ Ui, and all the Uis are necessary for

Uσ ⊆
⋃
i∈τ Ui.
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• Type 3:
∏

i∈τ (1 − xi) ∈ CF (JC) implies that X ⊆
⋃
i∈τ Ui, but X is not

contained in any lower-order union
⋃
i∈γ Ui for γ ( τ .

The canonical form CF (JC) thus provides a minimal description of the RF structure

dictated by the code C.

The Type 1 relations in CF (JC) can be used to obtain a (crude) lower bound

on the minimal embedding dimension of the neural code, as defined in Section 2.2.2.

Recall Helly’s theorem (Section 2.2.1), and observe that if xσ ∈ CF (JC) then σ is

minimal with respect to Uσ = ∅; this in turn implies that |σ| ≤ d+ 1. (If |σ| > d+ 1,

by minimality all d+1 subsets intersect and by Helly’s theorem we must have Uσ 6= ∅.)

We can thus obtain a lower bound on the minimal embedding dimension d as

d ≥ max
{σ|xσ∈CF (JC)}

|σ| − 1,

where the maximum is taken over all σ such that xσ is a Type 1 relation in CF (JC).

This bound only depends on ∆(C), however, and does not provide any insight regard-

ing the different minimal embedding dimensions observed in the examples of Figure

3. These codes have no Type 1 relations in their canonical forms, but they are nicely

differentiated by their minimal Type 2 and Type 3 relations. From the receptive field

arrangements depicted in Figure 3, we can easily write down CF (JC) for each of these

codes.

A. CF (JC) = {0}. There are no relations here because C = 2[3].

B. CF (JC) = {1− x3}. This Type 3 relation reflects the fact that X = U3.

C. CF (JC) = {x1(1−x2), x2(1−x3), x1(1−x3)}. These Type 2 relations correspond

to U1 ⊂ U2, U2 ⊂ U3, and U1 ⊂ U3. Note that the first two of these receptive



36

field relationships imply the third; correspondingly, the third canonical form

relation satisfies: x1(1− x3) = (1− x3) · [x1(1− x2)] + x1 · [x2(1− x3)].

D. CF (JC) = {(1 − x1)(1 − x2)}. This Type 3 relation reflects X = U1 ∪ U2, and

implies U3 ⊂ U1 ∪ U2.

4.4 Proof of Theorem 3

We begin by showing that JU , first defined in Lemma 7, can be generated using the

Type 1, Type 2 and Type 3 relations introduced in Section 4.2. From the proof of

Theorem 2, we know that JU = JC(U), so the following lemma in fact shows that JC(U)

is generated by the Type 1, 2 and 3 relations as well.

Lemma 10. For U = {U1, . . . , Un} a collection of sets in a stimulus space X,

JU =
〈
{xσ | Uσ = ∅},

{∏
i∈τ

(1− xi) | X ⊆
⋃
i∈τ

Ui
}
,

{
xσ
∏
i∈τ

(1− xi) | σ, τ 6= ∅, σ ∩ τ = ∅, Uσ 6= ∅,
⋃
i∈τ

Ui 6= X, and Uσ ⊆
⋃
i∈τ

Ui
}〉
.

JU (equivalently, JC(U)) is thus generated by the Type 1, Type 3 and Type 2 relations,

respectively.

Proof. Recall that in Lemma 7 we defined JU as:

JU
def
=
〈
{xσ

∏
i∈τ

(1− xi) | σ ∩ τ = ∅ and Uσ ⊆
⋃
i∈τ

Ui}
〉
.

Observe that if Uσ = ∅, then we can take τ = ∅ to obtain the Type 1 relation xσ,

where we have used the fact that
∏

i∈∅(1− xi) = 1. Any other relation with Uσ = ∅
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and τ 6= ∅ would be a multiple of xσ. We can thus write:

JU =
〈
{xσ | Uσ = ∅}, {xσ

∏
i∈τ

(1− xi) | τ 6= ∅, σ ∩ τ = ∅, Uσ 6= ∅, and Uσ ⊆
⋃
i∈τ

Ui}
〉
.

Next, if σ = ∅ in the second set of relations above, then we have the relation
∏

i∈τ (1−

xi) with U∅ = X ⊆
⋃
i∈τ Ui. Splitting off these Type 3 relations, and removing

multiples of them that occur if
⋃
i∈τ Ui = X, we obtain the desired result.

Next, we show that JU can be generated by reduced sets of the Type 1, Type 2

and Type 3 relations given above. First, consider the Type 1 relations in Lemma 10,

and observe that if τ ⊆ σ, then xσ is a multiple of xτ . We can thus reduce the set

of Type 1 generators needed by taking only those corresponding to minimal σ with

Uσ = ∅:

〈{xσ | Uσ = ∅}〉 = 〈{xσ | σ is minimal w.r.t. Uσ = ∅}〉.

Similarly, we find for the Type 3 relations:

〈{∏
i∈τ

(1− xi) | X ⊆
⋃
i∈τ

Ui
}〉

=
〈{∏

i∈τ

(1− xi) | τ is minimal w.r.t. X ⊆
⋃
i∈τ

Ui
}〉
.

Finally, we reduce the Type 2 generators. If ρ ⊆ σ and xρ
∏

i∈τ (1−xi) ∈ JU , then we

also have xσ
∏

i∈τ (1− xi) ∈ JU . So we can restrict ourselves to only those generators

for which σ is minimal with respect to Uσ ⊆
⋃
i∈τ Ui. Similarly, we can reduce to

minimal τ such that Uσ ⊆
⋃
i∈τ Ui. In summary:

〈{
xσ
∏
i∈τ

(1− xi) | σ, τ 6= ∅, σ ∩ τ = ∅, Uσ 6= ∅,
⋃
i∈τ

Ui 6= X, and Uσ ⊆
⋃
i∈τ

Ui
}〉

=

〈{
xσ
∏
i∈τ

(1− xi) | σ, τ 6= ∅, σ ∩ τ = ∅, Uσ 6= ∅,
⋃
i∈τ

Ui 6= X, and σ, τ are each minimal

w.r.t. Uσ ⊆
⋃
i∈τ

Ui
}〉
.
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We can now prove Theorem 3.

Proof of Theorem 3. Recall that C = C(U), and that by the proof of Theorem 2 we

have JC(U) = JU . By the reductions given above for the Type 1, 2 and 3 generators, we

also know that JU can be reduced to the form given in the statement of Theorem 3.

We conclude that JC can be expressed in the desired form.

To see that JC, as given in the statement of Theorem 3, is in canonical form,

we must show that the given set of generators is exactly the complete set of min-

imal pseudo-monomials for JC. First, observe that the generators are all pseudo-

monomials. If xσ is one of the Type 1 relations, and xσ ∈ 〈g〉 with 〈xσ〉 6= 〈g〉, then

g =
∏

i∈τ xi for some τ ( σ. Since Uτ 6= ∅, however, it follows that g /∈ JC and hence

xσ is a minimal pseudo-monomial of JC. By a similar argument, the Type 2 and Type

3 relations above are also minimal pseudo-monomials in JC.

It remains only to show that there are no additional minimal pseudo-monomials in

JC. Suppose f = xσ
∏

i∈τ (1− xi) is a minimal pseudo-monomial in JC. By Lemma 9,

Uσ ⊆
⋃
i∈τ Ui and σ ∩ τ = ∅, so f is a generator in the original definition of JU

(Lemma 7). Since f is a minimal pseudo-monomial of JC, there does not exist a

g ∈ JC such that g = xσ′
∏

i∈τ ′(1 − xi) with either σ′ ( σ or τ ′ ( τ . Therefore, σ

and τ are each minimal with respect to Uσ ⊆
⋃
i∈τ Ui. We conclude that f is one of

the generators for JC given in the statement of Theorem 3. It is a minimal Type 1

generator if τ = ∅, a minimal Type 3 generator if σ = ∅, and is otherwise a minimal

Type 2 generator. The three sets of minimal generators are disjoint because the Type

1, Type 2 and Type 3 relations are disjoint, provided X 6= ∅.

Nevertheless, we do not yet know how to infer the minimal embedding dimension

from CF (JC). In Appendix 2 (Section A), we provide a complete list of neural codes

on three neurons, up to permutation, and their respective canonical forms.
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4.5 Comparison to the Stanley-Reisner ideal

Readers familiar with the Stanley-Reisner ideal [12, 13] will recognize that this kind

of ideal is generated by the Type 1 relations of a neural code C. The corresponding

simplicial complex is ∆(C), the smallest simplicial complex that contains the code.

Lemma 11. Let C = C(U). The ideal generated by the Type 1 relations, 〈xσ | Uσ = ∅〉,

is the Stanley-Reisner ideal of ∆(C). Moreover, if supp C is a simplicial complex, then

CF (JC) contains no Type 2 or Type 3 relations, and JC is thus the Stanley-Reisner

ideal for supp C.

Proof. To see the first statement, observe that the Stanley-Reisner ideal of a simplicial

complex ∆ is the ideal

I∆
def
= 〈xσ | σ /∈ ∆〉,

and recall that ∆(C) = {σ ⊆ [n] | σ ⊆ supp(c) for some c ∈ C}. As C = C(U), an

equivalent characterization is ∆(C) = {σ ⊆ [n] | Uσ 6= ∅}. Since these sets are equal,

so are their complements in 2[n]:

{σ ⊆ [n] | σ /∈ ∆(C)} = {σ ⊆ [n] | Uσ = ∅}.

Thus, 〈xσ | Uσ = ∅〉 = 〈xσ | σ /∈ ∆(C)〉, which is the Stanley-Reisner ideal for ∆(C).

To prove the second statement, suppose that supp C is a simplicial complex.

Note that C must contain the all-zeros codeword, so X )
⋃n
i=1 Ui and there can be

no Type 3 relations. Suppose the canonical form of JC contains a Type 2 relation

xσ
∏

i∈τ (1 − xi), for some σ, τ ⊂ [n] satisfying σ, τ 6= ∅, σ ∩ τ = ∅ and Uσ 6= ∅. The

existence of this relation indicates that σ /∈ supp C, while there does exist an ω ∈ C

such that σ ⊂ ω. This contradicts the assumption that supp C is a simplicial complex.

We conclude that JC has no Type 2 relations.
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The canonical form of JC thus enables us to immediately read off, via the Type

1 relations, the minimal forbidden faces of the simplicial complex ∆(C) associated to

the code, and also the minimal deviations of C from being a simplicial complex, which

are captured by the Type 2 and Type 3 relations.
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Chapter 5

Algorithms for the Canonical Form

Now that we have established that a minimal description of the RF structure can be

extracted from the canonical form of the neural ideal, the most pressing question is

the following:

Question: How do we find the canonical form CF (JC) if all we know is the code C,

and we are not given a representation of the code as C = C(U)?

5.1 Algorithm #1

In this section we describe an algorithmic method for finding CF (JC) from knowledge

only of C. finding the minimal pseudo-monomials.

Canonical form algorithm 1

Input: A neural code C ⊂ {0, 1}n.

Output: The canonical form of the neural ideal, CF (JC).



42

Step 1: From C ⊂ {0, 1}n, for each c ∈ C take the ideal pc = 〈xi − ci | i = 1, ..., n〉.

Step 2: Observe that any pseudo-monomial f ∈ JC is a multiple of one of the linear

generators of pc for each c ∈ C. Compute the following set of elements of JC:

M(JC) =
{∏
c∈C

gc | gc = xi − ci for some i = 1, ..., n
}
.

M(JC) consists of all polynomials obtained as a product of linear generators ga,

one for each prime ideal pc. M(JC) is therefore the set of generators for the

product of the ideals
∏

c∈C pc.

Step 3: Reduce the elements of M(JC) by imposing xi(1 − xi) = 0. This eliminates

elements that are not pseudo-monomials. It also reduces the degrees of some of

the remaining elements, as it implies x2
i = xi and (1− xi)2 = (1− xi). We are

left with a set of pseudo-monomials of the form f =
∏

i∈σ xi
∏

j∈τ (1− xj) with

τ ∩ σ = ∅. Call this new reduced set M̃(JC).

Step 4: Finally, remove all elements of M̃(JC) that are multiples of lower-degree ele-

ments in M̃(JC).

Proposition 1. The resulting set is the canonical form CF (JC).

Note that every polynomial obtained by the canonical form algorithm is a pseudo-

monomial of JC. This is because the algorithm constructs products of factors of the

form xi or 1 − xi, and then reduces them in such a way that no index is repeated

in the final product, and there are no powers of any xi or 1 − xi factor; we are thus

guaranteed to end up with pseudo-monomials. Moreover, since the products each have

at least one factor in each prime ideal of the primary decomposition of JC, the pseudo-
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monomials are all in JC. Proposition 1 states that this set of pseudo-monomials is

precisely the canonical form CF (JC).

To prove Proposition 1, we will make use of the following technical lemma. Here

zi, yi ∈ {xi, 1 − xi}, and thus any pseudo-monomial in F2[x1, . . . , xn] is of the form∏
j∈σ zj for some index set σ ⊆ [n].

Lemma 12. If yi1 · · · yim ∈ 〈zj1 , . . . , zj`〉 where {ik} and {jr} are each distinct sets

of indices, then yik = zjr for some k ∈ [m] and r ∈ [`].

Proof. Let f = yi1 · · · yim and P = {zj1 , . . . , zj`}. Since f ∈ 〈P 〉, then 〈P 〉 = 〈P, f〉,

and so V (〈P 〉) = V (〈P, f〉). We need to show that yik = zjr for some pair of indices

ik, jr. Suppose by way of contradiction that there is no ik, jr such that yik = zjr .

Select a ∈ {0, 1}n as follows: for each jr ∈ {j1, . . . , j`}, let ajr = 0 if zjr = xjr ,

and let ajr = 1 if zjr = 1− xjr ; when evaluating at a, we thus have zjr(a) = 0 for all

r ∈ [`]. Next, for each ik ∈ ω
def
= {i1, . . . , im}\{j1, .., j`}, let aik = 1 if yik = xik , and

let aik = 0 if yik = 1−xik , so that yik(a) = 1 for all ik ∈ ω. For any remaining indices

t, let at = 1. Because we have assumed that yik 6= zjr for any ik, jr pair, we have for

any i ∈ {i1, . . . , im} ∩ {j1, . . . , j`} that yi(a) = 1− zi(a) = 1. It follows that f(a) = 1.

Now, note that a ∈ V (〈P 〉) by construction. We must therefore have a ∈

V (〈P, f〉), and hence f(a) = 0, a contradiction. We conclude that there must be

some ik, jr with yik = zjr , as desired.

Proof of Proposition 1. It suffices to show that after Step 4 of the algorithm, the re-

duced set M̃(JC) consists entirely of pseudo-monomials of JC, and includes all minimal

pseudo-monomials of JC. If this is true, then after removing multiples of lower-degree

elements in Step 5 we are guaranteed to obtain the set of minimal pseudo-monomials,

CF (JC), since it is precisely the non-minimal pseudo-monomials that will be removed

in the final step of the algorithm.
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Recall that M(JC), as defined in Step 3 of the algorithm, is precisely the set of

all polynomials g that are obtained by choosing one linear factor from the generating

set of each pc:

M(JC) = {g = zp1 · · · zps | zpi is a linear generator of pci}.

Furthermore, recall that M̃(JC) is obtained from M(JC) by the reductions in Step

4 of the algorithm. Clearly, all elements of M̃(JC) are pseudo-monomials that are

contained in JC.

To show that M̃(JC) contains all minimal pseudo-monomials of JC, we will show

that if f ∈ JC is a pseudo-monomial, then there exists another pseudo-monomial

h ∈ M̃(JC) (possibly the same as f) such that h|f . To see this, let f = yi1 · · · yim be

a pseudo-monomial of JC. Then, f ∈ Pi for each i ∈ [s]. For a given Pi = 〈zj1 , . . . , zj`〉,

by Lemma 12 we have yik = zjr for some k ∈ [m] and r ∈ [`]. In other words, each

prime ideal Pi has a generating term, call it zpi , that appears as one of the linear

factors of f . Setting g = zp1 · · · zps , it is clear that g ∈ M(JC) and that either g|f ,

or zpi = zpj for some distinct pair i, j. By removing repeated factors in g one obtains

a pseudo-monomial h ∈ M̃(JC) such that h|g and h|f . If we take f to be a minimal

pseudo-monomial, we find f = h ∈ M̃(JC).

5.2 Algorithm # 2

In practice, we have found it is more practical to perform an inductive version of this

algorithm. Given a code C, let |C| = k. Then order the codewords c1, ..., ck. Let

Ci = {c1, ..., ci}. Note that as JC =
⋂k
i=1 pci , we have JCi = JCi−1

∩ pci . Using this

fact, we proceed inductively, finding each canonical form from the previous one.
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Canonical form algorithm 2

Input: A neural code C ⊂ {0, 1}n.

Output: The canonical form of the neural ideal, CF (JC).

Step 1: Note C1 = {c1}, so CF (JC1) = pc1 . Set i = 1.

Step 2: If i = n, we are done; CF (JC) = CF (JCn).

If i < n, let i = i+1. Take the set Mi = {fzj | zj = xj−cij, f ∈ CF (JCi−1
)} (the

set of products of an element of the canonical form CF (JCi−1
) with a generator

for pci).

Step 3: Reduce the set by imposing xi(1 − xi) = 0 as in CF Algorithm 1 to get a set

M ′
i of pseudo-monomials.

Step 4: Reduce the set M ′
i by removing all elements of M ′

i that are multiples of lower

degree elements to form a new set M̃i. Then M̃i = CF (JCi). Go back to Step

2.

Proposition 2. The resulting set CF (Cn) is CF (JC).

Proof. It suffices to show that M̃i = CF (JCi).

Suppose h ∈ CF (JCi). Then h ∈ JCi−1
also, as JCi = JCi−1

∩ pci . As h is a

pseudo-monomial in JCi−1
, this means one of the following two cases holds:

- h ∈ CF (JCi−1
): Then, as h ∈ pci and h is a pseudo-monomial, we must have zj

∣∣h
for some zj = xi − cij by Lemma 12. So zjh ∈Mi, and when we reduce by xj = x2

j or

(1− xj) = (1− xj)2, we get h ∈M ′
i .

- h /∈ CF (JCi−1
): then as h is a pseudo-monomial in JCi−1

, we have h = gf for

some pseudo-monomials g, f with f ∈ CF (JCi−1
). And as h is a pseudo-monomial,

then g, f share no indices. As h ∈ pci , then by the above technical lemma there is
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some linear factor zj = xj − cij with zj
∣∣h. It can’t be that zj

∣∣f , or else f(ci) = 0, and

thus f(c) = 0 for all c ∈ Ci, so f ∈ JC2 would be more minimal than h, contradicting

h ∈ CF (JCi). Thus, zj
∣∣g. But the pseudo monomial zjf is in M̃i, so if g 6= zj then h

is not minimal. So h = zif , and thus h ∈M ′
i .

Thus in both cases, h ∈ M ′
i . The only way that h would be removed in Step 4

and not appear in M̃i is if there were some pseudo-monomial f ∈ M̃i with f
∣∣h, but as

f ∈ JCi , this would contradict the minimality given by h ∈ CF (JCi). Thus h ∈ M̃i.

Now, if h ∈ M̃i then clearly h(c) = 0 for all c ∈ Ci, so h ∈ JCi . As h has been

reduced by xi = x2
i and (1− xi) = (1− xi)2, then h is a pseudo-monomial. As shown

above, all pseudo-monomials in CF (JCi) appear in M̃i, so if h is not minimal, h will

be removed by the reduction step. Thus, if h ∈ M̃i, then h ∈ CF (JCi).

The MATLAB code to compute the canonical form using this strategy is found in

the Appendix.

5.3 An example

Now we are ready to use the canonical form algorithm in an example, illustrating how

to obtain a possible arrangement of convex receptive fields from a neural code.
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Suppose a neural code C has the following 13 codewords, and 19 missing words:

C =

{00000, 10000, 01000, 00100, 00001,

11000, 10001, 01100, 00110, 00101,

00011, 11100, 00111}

{0, 1}5\C =

{00010, 10100, 10010, 01010, 01001,

11010, 11001, 10110, 10101, 10011,

01110, 01101, 01011, 11110, 11101,

11011, 10111, 01111, 11111}.

Thus, the neural ideal JC has 19 generators, using the original definition JC =

〈{ρv | v /∈ C}〉:

JC =
〈
x4(1−x1)(1−x2)(1−x3)(1−x5), x1x3(1−x2)(1−x4)(1−x5), x1x4(1−x2)(1−x3)(1−x5),

x2x4(1− x1)(1− x3)(1− x5), x2x5(1− x1)(1− x3)(1− x4), x1x2x4(1− x3)(1− x5),

x1x2x5(1−x3)(1−x4), x1x3x4(1−x2)(1−x5), x1x3x5(1−x2)(1−x4), x1x4x5(1−x2)(1−x3),

x2x3x4(1− x1)(1− x5), x2x3x5(1− x1)(1− x4), x2x4x5(1− x1)(1− x3), x1x2x3x4(1− x5)

x1x2x3x5(1− x4), x1x2x4x5(1− x3), x1x3x4x5(1− x2), x2x3x4x5(1− x1), x1x2x3x4x5

〉
.

Despite the fact that we are considering only five neurons, this looks like a compli-

cated ideal. Considering the canonical form of JC will help us to extract the relevant

combinatorial information and allow us to create a possible arrangement of receptive

fields U that realizes this code as C = C(U). Following Step 1-2 of our canonical
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form algorithm, we take the products of linear generators of the ideals pc. Then,

as described in Steps 3-4 of the algorithm, we reduce by the relation xi(1 − xi) = 0

(note that this gives us xi = x2
i and hence we can say xki = xi for any k > 1). We

also remove any polynomials that are multiples of smaller-degree pseudo-monomials

in our list. This process leaves us with six minimal pseudo-monomials, yielding the

canonical form:

JC = 〈CF (JC)〉 = 〈x1x3x5, x2x5, x1x4, x2x4, x1x3(1− x2), x4(1− x3)(1− x5)〉.

Note in particular that every generator we originally put in JC is a multiple of one of

the six relations in CF (JC). Next, we consider what the relations in CF (JC) tell us

about the arrangement of receptive fields that would be needed to realize the code as

C = C(U).

1. x1x3x5 ∈ CF (JC) ⇒ U1 ∩ U3 ∩ U5 = ∅, while U1 ∩ U3, U3 ∩ U5 and U1 ∩ U5 are

all nonempty.

2. x2x5 ∈ CF (JC)⇒ U2 ∩ U5 = ∅, while U2, U5 are both nonempty.

3. x1x4 ∈ CF (JC)⇒ U1 ∩ U4 = ∅, while U1, U4 are both nonempty.

4. x2x4 ∈ CF (JC)⇒ U2 ∩ U4 = ∅, while U2, U4 are both nonempty.

5. x1x3(1−x2) ∈ CF (JC)⇒ U1∩U3 ⊆ U2, while U1 6⊆ U2, U3 6⊆ U2, and U1∩U3 6= ∅.

6. x4(1 − x3)(1 − x5) ∈ CF (JC) ⇒ U4 ⊆ U3 ∪ U5, while U4 6= ∅, and that U4 6⊆

U3, U4 6⊆ U5.

The minimal Type 1 relations (1-4) tell us that we should draw U1, U3 and U5

with all pairwise intersections, but leaving a “hole” in the middle since the triple
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intersection is empty. Then U2 should be drawn to intersect U1 and U3, but not U5.

Similarly, U4 should intersect U3 and U5, but not U1 or U2. The minimal Type 2

relations (5-6) tell us that U2 should be drawn to contain the intersection U1 ∩ U3,

while U4 lies in the union U3 ∪ U5, but is not contained in U3 or U5 alone. There

are no minimal Type 3 relations, as expected for a code that includes the all-zeros

codeword.

Putting all this together, and assuming convex receptive fields, we can completely

infer the receptive field structure, and draw the corresponding picture (see Figure 4).

It is easy to verify that the code C(U) of the pictured arrangement indeed coincides

with C.

1

3

5

2

4

Figure 5.1: An arrangement of five sets that realizes C as C(U).
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Chapter 6

Primary Decomposition

Let C ⊂ {0, 1}n be a neural code. The primary decomposition of IC is boring:

IC =
⋂
c∈C

mc,

where mv for any v ∈ {0, 1}n is the maximal ideal I(v) defined in Section 3.3. This

simply expresses IC as the intersection of all maximal ideals mc for c ∈ C, because the

variety C = V (IC) is just a finite set of points and the primary decomposition reflects

no additional structure of the code.

On the other hand, the primary decomposition of the neural ideal JC retains the

full combinatorial structure of C. Indeed, we have seen that computing this decompo-

sition is a critical step towards obtaining CF (JC), which captures the receptive field

structure of the neural code. In this section, we describe the primary decomposition of

JC and discuss its relationship to some natural decompositions of the neural code. We

end with an algorithm for obtaining primary decomposition of any pseudo-monomial

ideal.
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6.1 Primary decomposition of the neural ideal

We begin by defining some objects related to F2[x1, . . . , xn] and {0, 1}n, without

reference to any particular neural code. For any a ∈ {0, 1, ∗}n, we define the variety

Va
def
= {v ∈ {0, 1}n | vi = ai for all i s.t. ai 6= ∗} ⊆ {0, 1}n.

This is simply the subset of points compatible with the word “a”, where ∗ is viewed as

a “wild card” symbol. Note that Vv = {v} for any v ∈ {0, 1}n. We can also associate

a prime ideal to a,

pa
def
= 〈{xi − ai | ai 6= ∗}〉 ⊆ F2[x1, . . . , xn],

consisting of polynomials in F2[x1, . . . , xn] that vanish on all points compatible with a.

To obtain all such polynomials, we must add in the Boolean relations (see Section 3.5):

qa
def
= I(Va) = pa + 〈x2

1 − x1, . . . , x
2
n − xn〉.

Note that Va = V (pa) = V (qa).

Next, let’s relate this all to a code C ⊂ {0, 1}n. Recall the definition of the neural

ideal,

JC
def
= 〈{ρv | v /∈ C}〉 = 〈{

n∏
i=1

((xi − vi)− 1) | v /∈ C}〉.

We have the following correspondences.

Lemma 13. JC ⊆ pa ⇔ Va ⊆ C.

Proof. (⇒) JC ⊆ pa ⇒ V (pa) ⊆ V (JC). Recalling that V (pa) = Va and V (JC) = C,

this gives Va ⊆ C.
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(⇐) Va ⊆ C ⇒ I(C) ⊆ I(Va)⇒ IC ⊆ qa. Recalling that both IC and qa differ from JC

and pa, respectively, by the addition of the Boolean relations, we obtain JC ⊆ pa.

Lemma 14. For any a, b ∈ {0, 1, ∗}n, Va ⊆ Vb ⇔ pb ⊆ pa.

Proof. (⇒) Suppose Va ⊆ Vb. Then, for any i such that bi 6= ∗ we have ai = bi. It

follows that each generator of pb is also in pa, so pb ⊆ pa. (⇐) Suppose pb ⊆ pa.

Then, Va = V (pa) ⊆ V (pb) = Vb.

Recall that a an ideal p is said to be a minimal prime over J if p is a prime ideal

that contains J , and there is no other prime ideal p′ such that p ) p′ ⊇ J . Minimal

primes pa ⊇ JC correspond to maximal varieties Va such that Va ⊆ C. Consider the

set

AC
def
= {a ∈ {0, 1, ∗}n | Va ⊆ C}.

We say that a ∈ AC is maximal if there does not exist another element b ∈ AC such

that Va ( Vb (i.e., a ∈ AC is maximal if Va is maximal such that Va ⊆ C).

Lemma 15. The element a ∈ AC is maximal if and only if pa is a minimal prime

over JC.

Proof. Recall that a ∈ AC ⇒ Va ⊆ C, and hence JC ⊆ pa (by Lemma 13). (⇒) Let

a ∈ AC be maximal, and choose b ∈ {0, 1, ∗} such that JC ⊆ pb ⊆ pa. By Lemmas 13

and 14, Va ⊆ Vb ⊆ C. Since a is maximal, we conclude that b = a, and hence pb = pa.

It follows that pa is a minimal prime over JC. (⇐) Suppose pa is a minimal prime

over JC. Then by Lemma 13, a ∈ AC. Let b be a maximal element of AC such that

Va ⊆ Vb ⊆ C. Then JC ⊆ pb ⊆ pa. Since pa is a minimal prime over JC, pb = pa and

hence b = a. Thus a is maximal in AC.
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We can now describe the primary decomposition of JC. Here we assume the neural

code C ⊆ {0, 1}n is non-empty, so that JC is a proper pseudo-monomial ideal.

Theorem 4. JC =
⋂`
i=1 pai is the unique irredundant primary decomposition of JC,

where pa1 , . . . ,pa` are the minimal primes over JC.

The proof is given in Section ??.

Combining this theorem with Lemma 15, we have:

Corollary 1. JC =
⋂`
i=1 pai is the unique irredundant primary decomposition of JC,

where a1, . . . , a` are the maximal elements of AC.

Proof of Theorem 4:

Recall that JC is always a proper pseudo-monomial ideal for any nonempty neural

code C ⊆ {0, 1}n. Theorem 4 is thus a direct consequence of the following proposition.

Proposition 3. Suppose J ⊂ F2[x1, . . . , xn] is a proper pseudo-monomial ideal.

Then, J has a unique irredundant primary decomposition of the form J =
⋂
a∈A pa,

where {pa}a∈A are the minimal primes over J .

Proof. By Proposition 4, we can always (algorithmically) obtain an irredundant set

P of prime ideals such that J =
⋂
I∈P I. Furthermore, each I ∈ P has the form

I = 〈zi1 , . . . , zik〉, where zi ∈ {xi, 1−xi} for each i. Clearly, these ideals are all prime

ideals of the form pa for a ∈ {0, 1, ∗}. It remains only to show that this primary

decomposition is unique, and that the ideals {pa}a∈A are the minimal primes over J .

This is a consequence of some well-known facts summarized in Lemmas 16 and 17,

below. First, observe by Lemma 16 that J is a radical ideal. Lemma 17 then tells us

that the decomposition in terms of minimal primes is the unique irredundant primary

decomposition for J .
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Lemma 16. If J is the intersection of prime ideals, J =
⋂`
i=1 pi, then J is a radical

ideal.

Proof. Suppose pn ∈ J . Then pn ∈ pi for all i ∈ [`], and hence p ∈ pi for all i ∈ [`].

Therefore, p ∈ J .

The following fact about the primary decomposition of radical ideals is true over

any field, as a consequence of the Lasker-Noether theorems [26, pp. 204-209].

Lemma 17. If J is a proper radical ideal, then it has a unique irredundant primary

decomposition consisting of the minimal prime ideals over J .

6.2 Decomposing the neural code via intervals of

the Boolean lattice

From the definition of AC, it is easy to see that the maximal elements yield a kind of

“primary” decomposition of the neural code C as a union of maximal Vas.

Lemma 18. C =
⋃`
i=1 Vai, where a1, . . . , a` are the maximal elements of AC. (I.e.,

pa1 , . . . ,pa` are the minimal primes in the primary decomposition of JC.)

Proof. Since Va ⊆ C for any a ∈ AC, clearly
⋃`
i=1 Vai ⊆ C. To see the reverse

inclusion, note that for any c ∈ C, c ∈ Vc ⊆ Va for some maximal a ∈ AC. Hence,

C ⊆
⋃`
i=1 Vai .

Note that Lemma 18 could also be regarded as a corollary of Theorem 4, since

C = V (JC) = V (
⋂`
i=1 pai) =

⋃`
i=1 V (pai) =

⋃`
i=1 Vai , and the maximal a ∈ AC cor-

respond to minimal primes pa ⊇ JC. Although we were able to prove Lemma 18
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directly, in practice we use the primary decomposition in order to find (algorithmi-

cally) the maximal elements a1, . . . , a` ∈ AC, and thus determine the Vas for the above

decomposition of the code.

It is worth noting here that the decomposition of C in Lemma 18 is not necessarily

minimal. This is because one can have fewer qas such that

⋂
i∈σ([`]

qai =
⋂
i∈[`]

pai .

Since V (qai) = V (pai) = Vai , this would lead to a decomposition of C as a union of

fewer Vais. In contrast, the primary decomposition of JC in Theorem 4 is irredundant,

and hence none of the minimal primes can be dropped from the intersection.

Neural activity “motifs” and intervals of the Boolean lattice

We can think of an element a ∈ {0, 1, ∗}n as a neural activity “motif”. That is,

a is a pattern of activity and silence for a subset of the neurons, while Va consists

of all activity patterns on the full population of neurons that are consistent with

this motif (irrespective of what the code is). For a given neural code C, the set of

maximal a1, . . . , al ∈ AC corresponds to a set of minimal motifs that define the code

(here “minimal” is used in the sense of having the fewest number of neurons that

are constrained to be “on” or “off” because ai 6= ∗). If a ∈ {0, ∗}n, we refer to a

as a neural silence motif, since it corresponds to a pattern of silence. In particular,

silence motifs correspond to simplices in supp C, since suppVa is a simplex in this

case. If supp C is a simplicial complex, then Lemma 18 gives the decomposition of C

as a union of minimal silence motifs (corresponding to facets, or maximal simplices,

of supp C).

More generally, Va corresponds to an interval of the Boolean lattice {0, 1}n. Recall
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the poset structure of the Boolean lattice: for any pair of elements v1, v2 ∈ {0, 1}n,

we have v1 ≤ v2 if and only if supp(v1) ⊆ supp(v2). An interval of the Boolean lattice

is thus a subset of the form:

[u1, u2]
def
= {v ∈ {0, 1}n | u1 ≤ v ≤ u2}.

Given an element a ∈ {0, 1, ∗}n, we have a natural interval consisting of all Boolean

lattice elements “compatible” with a. Letting a0 ∈ {0, 1}n be the element obtained

from a by setting all ∗s to 0, and a1 ∈ {0, 1}n the element obtained by setting all ∗s

to 1, we find that

Va = [a0, a1] = {v ∈ {0, 1}n | a0 ≤ v ≤ a1}.

Simplices correspond to intervals of the form [0, a1], where 0 is the bottom “all-zeros”

element in the Boolean lattice.

While the primary decomposition of JC allows a neural code C ⊆ {0, 1}n to be

decomposed as a union of intervals of the Boolean lattice, as indicated by Lemma 18,

the canonical form CF (JC) provides a decomposition of the complement of C as a

union of intervals. First, notice that to any pseudo-monomial f ∈ CF (JC) we can

associate an element b ∈ {0, 1, ∗} as follows: bi = 1 if xi|f , bi = 0 if (1 − xi)|f , and

bi = ∗ otherwise. In other words,

f = fb
def
=

∏
{i|bi=1}

xi
∏

{j|bj=0}

(1− xj).

As before, b corresponds to an interval Vb = [b0, b1] ⊂ {0, 1}n. Recalling the JC is

generated by pseudo-monomials corresponding to non-codewords, it is now easy to

see that the complement of C in {0, 1}n can be expressed as the union of Vbs, where
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each b corresponds to a pseudo-monomial in the canonical form. The canonical form

thus provides an alternative description of the code, nicely complementing Lemma 18.

Lemma 19. C = {0, 1}n \
⋃k
i=1 Vbi, where CF (JC) = {fb1 , . . . , fbk}.

111

110 101

001

011

000

010100

Figure 6.1: Boolean interval decomposi-
tions of the code C = {000, 001, 011, 111} (in
black) and of its complement (in gray), arising
from the primary decomposition and canoni-
cal form of JC , respectively.

We now illustrate both decompositions

of the neural code with an example.

Example. Consider the neural code

C = {000, 001, 011, 111} ⊂ {0, 1}3 corre-

sponding to a set of receptive fields sat-

isfying U1 ( U2 ( U3 ( X. The primary

decomposition of JC ⊂ F2[x1, x2, x3] is

given by

〈x1, x2〉 ∩ 〈x1, 1− x3〉 ∩ 〈1− x2, 1− x3〉,

while the canonical form is

CF (JC) = 〈x1(1− x2), x2(1− x3), x1(1− x3)〉.

From the primary decomposition, we can write C = Va1 ∪ Va2 ∪ Va3 for a1 = 00∗,

a2 = 0∗1, and a3 = ∗11. The corresponding Boolean lattice intervals are [000, 001],

[001, 011], and [011, 111], respectively, and are depicted in black in Figure 5. As noted

before, this decomposition of the neural code need not be minimal; indeed, we could

also write C = Va1 ∪Va3 , as the middle interval is not necessary to cover all codewords

in C.

From the canonical form, we obtain C = {0, 1}3 \ (Vb1 ∪ Vb2 ∪ Vb3), where b1 =

10∗, b2 = ∗10, and b3 = 1∗0. The corresponding Boolean lattice intervals spanning
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the complement of C are [100, 101], [010, 110], and [100, 110], respectively; these are

depicted in gray in Figure 5. Again, notice that this decomposition is not minimal –

namely, Vb3 = [100, 110] could be dropped.

6.3 An algorithm for primary decomposition of

pseudo-monomial ideals

We have already seen that computing the primary decomposition of the neural ideal

JC is a critical step towards extracting the canonical form CF (JC), and that it also

yields a meaningful decomposition of C in terms of neural activity motifs. Recall

from Section 4.3 that JC is always a pseudo-monomial ideal – i.e., JC is generated by

pseudo-monomials, which are polynomials f ∈ F2[x1, . . . , xn] of the form

f =
∏
i∈σ

zi, where zi ∈ {xi, 1− xi} for any i ∈ [n].

In this section, we provide an explicit algorithm for finding the primary decomposition

of such ideals.

In the case of monomial ideals, there are many algorithms for obtaining the pri-

mary decomposition, and there are already fast implementations of such algorithms in

algebraic geometry software packages such as Singular and Macaulay2 [28]. Pseudo-

monomial ideals are closely related to square-free monomial ideals, but there are some

differences which require a bit of care. In particular, if J ⊆ F2[x1, . . . , xn] is a pseudo-

monomial ideal and z ∈ {xi, 1− xi} for some i ∈ [n], then for f a pseudo-monomial:

f ∈ 〈J, z〉 6⇒ f ∈ J or f ∈ 〈z〉.
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To see why, observe that x1 ∈ 〈x1(1 − x2), x2〉, because x1 = 1 · x1(1 − x2) + x1 ·

x2, but x1 is not a multiple of either x1(1 − x2) or x2. We can nevertheless adapt

ideas from (square-free) monomial ideals to obtain an algorithm for the primary

decomposition of pseudo-monomial ideals. The following lemma allows us to handle

the above complication.

Lemma 20. Let J ⊂ F2[x1, . . . , xn] be a pseudo-monomial ideal, and let z ∈ {xi, 1−

xi} for some i ∈ [n]. For any pseudo-monomial f ,

f ∈ 〈J, z〉 ⇒ f ∈ J or f ∈ 〈z〉 or (1− z)f ∈ J.

Proof of Lemma 20. Assume f ∈ 〈J, z〉 is a pseudo-monomial. Then f = zi1zi2 · · · zir ,

where zi ∈ {xi, 1−xi} for each i, and the ik are distinct. Suppose f /∈ 〈z〉. This implies

zik 6= z for all factors appearing in f . We will show that either f ∈ J or (1− z)f ∈ J .

Since J is a pseudo-monomial ideal, we can write

J = 〈zg1, . . . , zgk, (1− z)f1, . . . , (1− z)fl, h1, . . . , hm〉,

where the gj, fj and hj are pseudo-monomials that contain no z or 1− z term. This

means

f = zi1zi2 · · · zir = z

k∑
j=1

ujgj + (1− z)
l∑

j=1

vjfj +
m∑
j=1

wjhj + yz,

for polynomials uj, vj, wj, and y ∈ F2[x1, . . . , xn]. Now consider what happens if we

set z = 0 in f :

f |z=0 = zi1zi2 · · · zir |z=0 =
l∑

j=1

vj|z=0fj +
m∑
j=1

wj|z=0hj.
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Next, observe that after multiplying the above by (1− z) we obtain an element of J :

(1− z)f |z=0 = (1− z)
l∑

j=1

vj|z=0fj + (1− z)
m∑
j=1

wj|z=0hj ∈ J,

since (1− z)fj ∈ J for j = 1, . . . , l and hj ∈ J for j = 1, . . . ,m. There are two cases:

Case 1: If 1 − z is a factor of f , say zi1 = 1 − z, then f |z=0 = zi2 · · · zir and thus

f = (1− z)f |z=0 ∈ J.

Case 2: If 1 − z is not a factor of f , then f = f |z=0. Multiplying by 1 − z we obtain

(1− z)f ∈ J.

We thus conclude that f /∈ 〈z〉 implies f ∈ J or (1− z)f ∈ J .

Using Lemma 20 we can prove the following key lemma for our algorithm, which

mimics the case of square-free monomial ideals.

Lemma 21. Let J ⊂ F2[x1, . . . , xn] be a pseudo-monomial ideal, and let
∏

i∈σ zi be a

pseudo-monomial, with zi ∈ {xi, 1− xi} for each i. Then,

〈J,
∏
i∈σ

zi〉 =
⋂
i∈σ

〈J, zi〉.

Proof of Lemma 21. Clearly, 〈J, zσ〉 ⊆
⋂
i∈σ〈J, zi〉. To see the reverse inclusion, con-

sider f ∈
⋂
i∈σ〈J, zi〉. We have three cases.

Case 1: f ∈ J . Then, f ∈ 〈J, zσ〉.

Case 2: f /∈ J , but f ∈ 〈zi〉 for all i ∈ σ. Then f ∈ 〈zσ〉, and hence f ∈ 〈J, zσ〉.

Case 3: f /∈ J and f /∈ 〈zi〉 for all i ∈ τ ⊂ σ, but f ∈ 〈zj〉 for all j ∈ σ \ τ . Without

loss of generality, we can rearrange indices so that τ = {1, . . . ,m} for m ≥ 1.
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By Lemma 20, we have (1− zi)f ∈ J for all i ∈ τ . We can thus write:

f = (1− z1)f + z1(1− z2)f + . . .+ z1 · · · zm−1(1− zm)f + z1 · · · zmf.

Observe that the first m terms are each in J . On the other hand, f ∈ 〈zj〉

for each j ∈ σ \ τ implies that the last term is in 〈zτ 〉 ∩ 〈zσ\τ 〉 = 〈zσ〉. Hence,

f ∈ 〈J, zσ〉.

We may thus conclude that
⋂
i∈σ〈J, zi〉 ⊆ 〈J, zσ〉, as desired.

Note that if
∏

i∈σ zi ∈ J , then this lemma implies J =
⋂
i∈σ〈J, zi〉, which is the

key fact we will use in our algorithm. This is similar to Lemma 2.1 in [28, Monomial

Ideals Chapter], and suggests a recursive algorithm along similar lines to those that

exist for monomial ideals.

The following observation will add considerable efficiency to our algorithm for

pseudo-monomial ideals.

Lemma 22. Let J ⊂ F2[x1, . . . , xn] be a pseudo-monomial ideal. For any zi ∈ {xi, 1−

xi} we can write

J = 〈zig1, . . . , zigk, (1− zi)f1, . . . , (1− zi)f`, h1, . . . , hm〉,

where the gj, fj and hj are pseudo-monomials that contain no zi or 1−zi term. (Note

that k, ` or m may be zero if there are no generators of the corresponding type.) Then,

〈J, zi〉 = 〈J |zi=0, zi〉 = 〈zi, f1, . . . , f`, h1, . . . , hm〉.

Proof. Clearly, the addition of zi in 〈J, zi〉 renders the zigj generators unnecessary.

The (1−zi)fj generators can be reduced to just fj because fj = 1·(1−zi)fj+fj ·zi.
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We can now state our algorithm. Recall that an ideal I ⊆ R is proper if I 6= R.

Algorithm for primary decomposition of pseudo-monomial ideals

Input: A proper pseudo-monomial ideal J ⊂ F2[x1, . . . , xn]. This is presented as

J = 〈g1, . . . , gr〉 with each generator gi a pseudo-monomial.

Output: Primary decomposition of J . This is returned as a set P of prime ideals,

with J =
⋂
I∈P I.

• Step 1 (Initializion Step): Set P = ∅ and D = {J}. Eliminate from the list of

generators of J those that are multiples of other generators.

• Step 2 (Splitting Step): For each ideal I ∈ D compute DI as follows.

Step 2.1: Choose a nonlinear generator zi1 · · · zim ∈ I, where each zi ∈ {xi, 1 −

xi}, and m ≥ 2. (Note: the generators of I should always be pseudo-

monomials.)

Step 2.2: Set DI = {〈I, zi1〉, . . . , 〈I, zim〉}. By Lemma 21 we know that

I =
m⋂
k=1

〈I, zik〉 =
⋂

K∈DI

K.

• Step 3 (Reduction Step): For each DI and each ideal 〈I, zi〉 ∈ DI , reduce the

set of generators as follows.

Step 3.1: Set zi = 0 in each generator of I. This yields a “0” for each multiple of

zi, and removes 1 − zi factors in each of the remaining generators. By

Lemma 22, 〈I, zi〉 = 〈I|zi=0, zi〉.

Step 3.2: Eliminate 0s and generators that are multiples of other generators.
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Step 3.3: If there is a “1” as a generator, eliminate 〈I, zi〉 from DI as it is not a

proper ideal.

• Step 4 (Update Step): Update D and P , as follows.

Step 4.1: Set D =
⋃
DI , and remove redundant ideals in D. That is, remove an

ideal if it has the same set of generators as another ideal in D.

Step 4.2: For each ideal I ∈ D, if I has only linear generators (and is thus prime),

move I to P by setting P = P ∪ I and D = D \ I.

• Step 5 (Recursion Step): Repeat Steps 2-4 until D = ∅.

• Step 6 (Final Step): Remove redundant ideals of P . That is, remove ideals that

are not necessary to preserve the equality J =
⋂
I∈P I.

Proposition 4. This algorithm is guaranteed to terminate, and the final P is a set

of irredundant prime ideals such that J =
⋂
I∈P I.

Proof. For any pseudo-monomial ideal I ∈ D, let deg(I) be the sum of the degrees

of all generating monomials of I. To see that the algorithm terminates, observe that

for each ideal 〈I, zi〉 ∈ DI , deg(〈I, zi〉) < deg(I) (this follows from Lemma 22). The

degrees of elements in D thus steadily decrease with each recursive iteration, until

they are removed as prime ideals that are appended to P . At the same time, the size

of D is strictly bounded at |D| ≤ 2(n3), since there are only
(
n
3

)
pseudo-monomials in

F2[x1, . . . , xn], and thus at most 2(n3) distinct pseudo-monomial ideals.

By construction, the final P is an irredundant set of prime ideals. Throughout

the algorithm, however, it is always true that J =
(⋂

I∈D I
)
∩
(⋂

I∈P I
)
. Since the

final D = ∅, the final P satisfies J =
⋂
I∈P I.
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Chapter 7

Neural Ring Homomorphisms and

Maps between codes

In the preceding chapters, we introduced the neural ring and neural ideal as algebraic

objects associated to a neural code, and showed how to use them to extract informa-

tion about the structure of receptive fields directly from the code. In this chapter,

we will examine homomorphisms between neural rings, and explore how they relate

to maps between their corresponding neural codes.We find that for any pair of neural

rings RC, RD, there is a natural bijection between ring homomorphisms RD → RC

and maps between the codes C → D. Since any code map has a corresponding ring

homomorphism, the existence of a ring homomorphism RD → RC doesn’t guarantee

any similarity in the structures of C and D. Our ultimate goal is to arrive at a defini-

tion of neural ring homomorphism which respects important structures in the codes

and corresponds to “nice” code maps.

In Section 7.1, we introduce the idea of maps between codes, and give some

elementary examples. In Section 7.2, we will show that ring homomorphisms of
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neural rings are in a natural bijection with code maps and show explicitly how to

obtain one from the other. In Section 7.3, we will work towards preserving the

structure of the code by considering neural rings as modules, and showing how to

relate ring homomorphisms with module homomorphisms. In Section 7.4, we define

neural ring homomorphisms, a restricted class of homomorphisms which preserve the

individuality of the neurons. Our main result is Theorem 6, which describes the

corresponding types of code maps. Finally, in Section 7.5, we examine the effect of

the most basic code maps on the canonical form for the ideal JC.

A note on notation: We continue our common abuse of notation from the previous

chapter, where we use f or other polynomial notation (e.g. xi) not only to denote

a polynomial of F2[x1, ..., xn], but also for the equivalence class in F2[x1, ..., xn]/IC or

R[n] of which that polynomial is a representative, or even to represent the associated

function C → {0, 1} which is given by evaluating the polynomial f on C. Wherever

it appears that the choice of polynomial representative may affect the discussion or

result, we have attempted to make clear that this choice of representative is not

important and all relevant objects are well-defined.

7.1 Elementary maps between codes

A code map is simply a function q : C → D which assigns to each element c ∈ C

a unique image q(c) ∈ D; this assignment need not be either injective or surjective.

Suppose C is a code on n neurons, so C ⊆ {0, 1}n. We will denote the ith bit of the

codeword c as ci, so we write c = (c1, c2, ..., cn). We now give some basic examples of

code maps which can be used as building blocks to get any code map.

1. Permutation of labels: Two codes C and D on n neurons which are identical

up to relabeling of neurons are effectively the same. To permute the labels of
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neurons, choose a permutation σ ∈ Sn, and then define a code map q : C → D

by q(c) = d, where d = (cσ(1), ..., cσ(n)). Here, D = q(C).

2. Dropping neuron: We take one of our neurons and remove it entirely, via the

projection map. Suppose C is a code on n neurons, and we wish to drop neuron

n. Define q : C → D by q(c) = d, where d = (c1, ..., cn−1). Here D = q(C) is a

code on n− 1 neurons.

3. Adding a neuron

The notion of adding a neuron is more complicated. It is not clear what adding

a neuron means - are we adding a new neuron which is firing, or not firing, or

some of each? However, we can add a neuron if we make the map unambiguous.

We can easily make the new neuron a function of the original codeword. That

is, let f ∈ F2[x1, ..., xn]. Then define q : C → D by q(c) = d, where d =

(c1, ..., cn, f(c)). Note that the same function f defines the new neuron for all

codewords. Here D = q(C) is a code on n+ 1 neurons.

4. Adding a codeword: Under this map, each codeword maps to itself, but

unlike the previous examples, we have q(C) ( D. Thus there are new codewords

in the target code. That is, suppose q : C ↪→ D is the inclusion map, so that

C ( D and q(c) = c, but D contains codewords which are not in C. These extra

codewords have been “added.”

Proposition 5. All code maps can be written as compositions of these four elementary

maps:

1. Permutation of labels

2. Dropping a neuron
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3. Adding a neuron of the form f(c)

4. Adding new codewords

Proof. Let C be a code on n neurons and D a code on m neurons. Suppose q : C → D

is a code map. For i = 1, ...,m, define the function fi ∈ F2[x1, ..., xn] such that fi(c) =

[q(c)]i for all c ∈ C. We can always do this, as any Boolean function {0, 1}n → {0, 1}

can be represented as a polynomial in F2[x1, ..., xn].

First we define some intermediate codes: let C0 = C. For i = 1, ...,m, let

Ci = {(c1, ..., cn, d1, ..., di) | c ∈ C, d = q(c)} ⊂ {0, 1}n+i. For j = 1, ..., n, let

Cm+j = {(d1, ..., dm, c1, ..., cn−j+1) | c ∈ C, d = q(c)} ⊂ {0, 1}m+n−j+1. Finally, de-

fine Cm+n+1 = q(C) ⊂ D.

Now, for i = 1, ...,m, let the code map qi : Ci−1 → Ci be defined by qi(v) =

(v1, ..., vn+i−1, fi(v)) ∈ Ci. Note that if v = (c1, ..., cn, d1, ..., di−1), then fi(v) = fi(c),

as only the first n places matter. Thus, if v = (c1, ..., cn, d1, ..., di−1) with d = q(c),

then qi(v) = (c1, ..., cn, d1, ..., di). Neuron by neuron, we add the digits of q(c) on to

c.

Then, take the permutation map given by σ = (n+ 1, ..., n+m, 1, ..., n), so all the

newly added neurons are at the beginning and all the originals are at the end. That is,

define qσ : Cm → Cm+1 so if v = (v1, ..., vn+m), then qσ(v) = (vn+1, ..., vn+m, v1, ..., vn).

We then drop the neurons m+ 1 through n+m one by one in n code maps. That

is, for j = 1, ..., n define qm+j : Cm+j → Cm+j+1 by qm+j(v) = (v1, ..., vm+n−j).

Lastly, if q(C) ( D, then add one last inclusion code map qa : q(C) ↪→ D to add

the remaining codewords of D.

Thus, given c = (c1, ..., cn) with q(c) = d = (d1, ..., dm), the first m steps give us

qm ◦ · · · ◦ q1(c) = (c1, ..., cn, d1, ..., dm) = x. The permutation then gives us qσ(x) =

(d1, ..., dm, c1, ..., cn) = y, and then we compose qm+n ◦ · · · ◦ qm+1(y) = (d1, ..., dn) =
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d = q(c). Finally, if q(C) ( D, we do our inclusion map, but as qa(d) = d, the overall

composition is a map C → D takes c to q(c) = d as desired.

Here are some examples of other interesting code maps that we can build from

these basic maps. See Figure 7.1 for an example of some of these maps, along with

the basic four listed above.

• The reverse map: Let C be a code on n neurons, and define q : C → D by

q(c1, ..., cn) = (1 − c1, ..., 1 − cn). That is, change all 0s to 1s, and 1s to 0s.

Here, D is the code on n neurons defined by the range of q. We can build this

as a composition by adding n new neurons, where the ith neuron is given by

the function f(x) = 1 − xi. We then permute so these new neurons are at the

beginning, and then drop the n original neurons from the end.

• The parity map: We can add a new neuron which ensures that each codeword

has even parity. Given a code C, define q(c) = (c1, ..., cn,
∑n

i=1 ci). Here, we are

adding one new neuron, given by the function f(x) =
∑n

i=1 xi. Here, D = q(C).

• Repetition of a neuron: One natural way to add a neuron in a is to add a

new neuron which copies one of the original neurons. For example, suppose C

is a code on n neurons, and we choose to repeat neuron i. Define a code map

q : C → D by q(c) = d where d = (c1, ..., cn, ci); the new neuron is given by the

function f(x) = xi. Here, D = q(C) is a code on n+ 1 neurons. All the original

neurons are kept exactly the way they are and continue to interact in the same

ways, so we consider this to preserve neuron structure.

• Adding trivial neurons Suppose we add a new neuron which is never firing,

(always 0), or always firing (always 1). That is, let C be a code on n neurons, and
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define q : C → D by q(c) = (c1, ..., cn, 0) (or q(c) = (c1, ..., cn, 1) respectively).

The function which adds the new neuron is given by f(x) = 1 (or f(x) = 0).

Here D = q(C) is a code on n+ 1 neurons.

• Merging two neurons: In cases where data has been sorted incorrectly, so

what appeared to be two neurons is actually one, we wish to combine those

neurons. Under this map, we take two neurons and merge them into one which

fires exactly when one or the other (or both) of the original two neurons fired.

For example, suppose C is a code on n neurons and we wish to merge the

last two neurons, n − 1 and n. Then define q : C → D by q(c) = d, where

d = (c1, ..., cn−2, cn−1 + cn + cn−1cn), so this last neuron is 1 if and only if

cn−1 = 1 or cn = 1 or both. Here, f(x) = xn−1 + xn + xn−1xn, and D = q(C).

Many of these maps coincide with common operations from coding theory, though

the vocabulary and motivation are slightly different. The act of dropping a neuron

is equivalent to the coding theory operation of puncturing a code. The parity map

described above is much more natural in coding theory, but has little meaning for

neural codes. The repetition map is used in coding theory to add repetitive bits which

can reduce errors in decoding, but the method is very inefficient and thus is rarely

used. As a neural code, however we may see this map arising as a sorting error, when

a single neuron’s spikes are attributed erroneously to two neurons.
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Figure 7.1: Several possible maps from the central code C = {001, 100, 101, 110, 111}, in
red, to other related codes

7.2 Ring Homomorphisms between Neural Rings

The most obvious type of map between neural rings is a ring homomorphism.

Definition. Let R, be rings. A ring homomorphism φ : R → S is an assignment

φ(r) ∈ S for every r ∈ R so that the following properties hold:

• φ(a+ b) = φ(a) + φ(b),

• φ(ab) = φ(a)φ(b),
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• φ(1R) = 1S.

In this section, we show that there is a natural correspondence between ring

homomorphisms of neural rings and code maps between the related codes.

Let f ∈ RD, and recall that f can be thought of as a function f : D → {0, 1}.

Given a code map q : C → D, we can “pull back” f to a function q∗f : C → {0, 1} by

defining the pullback q∗f = f ◦ q.

C

q∗f=f◦q ""

q // D
f
��

{0, 1}

Note that q∗f ∈ RC, and we can thus define a natural map between neural rings,

φq : RD → RC, which takes each f ∈ RD to its pullback by q : C → D, so that φq(f) =

q∗f = f ◦ q. This leads us to the question: is the map φq a ring homomorphism?

Conversely, is every ring homomorphism φ : RD → RC of the form φq for some code

map q : C → D?

We first show that φq is always a ring homomorphism.

Lemma 23. For any code map q : C → D, the map φq : RD → RC, where φq(f) = q∗f,

is a ring homomorphism.

Proof. To prove φq is a ring homomorphism, we need to show that addition, multi-

plication, and multiplicative unit are preserved. Throughout this proof we will use

the fact, discussed in the introduction, that two functions f, g ∈ RC are equivalent if

and only if f(c) = g(c) for all c ∈ C.
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To show that φq(f + g) = φq(f) + φq(g), observe that for all c ∈ C,

φq(f + g)(c) = q∗(f + g)(c) = (f + g)(q(c)) = f(q(c)) + g(q(c))

= q∗f(c) + q∗g(c) = φq(f)(c)) + φq(g)(c).

Since this is true for every c ∈ C, we have φq(f + g) = φq(f) + φq(g).

To show that φq(fg) = φq(f)φq(g), observe that for all c ∈ C,

φq(fg)(c) = q∗(fg)(c)) = (fg)(q(c)) = f(q(c))g(q(c)) = (q∗f)(c)(q∗g)(c) = φq(f)(c)φq(g(c).

Since this is true for every c ∈ C, we have φq(fg) = φq(f)φq(g).

Lastly, we must show φq(1D) = 1C. Again, observe that for all c ∈ C,

φq(1D)(c) = (q∗1D)(c) = 1D(q(c)) = 1 = 1C(c).

Since this holds for all c ∈ C, we get φq(1D) = 1C.

Thus, φq is a ring homomorphism.

Example. Consider again the codes C = {000, 100, 101} and D = {00, 10, 11}. If

we look at the projection code map q given by dropping the third neuron (so 000 7→

00, 100 7→ 10, and 101 7→ 10) then the corresponding neural ring homomorphism

φq : RD → RC is given by φ(x1) = x1 and φ(x2) = x2, extending by linearity to all

other elements.

It turns out that all ring homomorphisms of neural rings φ : RD → RC are in fact

of the form φq, where q : C → D is a code map. To prove this result, we introduce a

useful basis.
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As we have seen, the neural ring RC is equivalent to the ring of functions f : C →

{0, 1}. Therefore, any element f of RC is completely determined by f−1(1), the set of

codewords which f “detects.” If f−1(1) = ∅, then f ≡ 0. As a natural basis for the

neural ring RC, we therefore take the set of functions which detect a unique codeword

of C; that is, the set {f | f−1(1) = {c} for some c ∈ C}. For each c ∈ C, we denote

the function which detects only c by ρc; thus, our basis is exactly the set {ρc | c ∈ C}.

We write ρc in polynomial notation as

ρc =
∏
ci=1

xi
∏
cj=0

(1− xj).

With this polynomial representation, it’s easy to see that ρc acts as a characteristic

function for c: that is, ρc(v) = 1 if and only if v = c. We previously saw these

elements in Chapter 3.

For any element f ∈ RC, we can write f uniquely as a sum of these basis elements:

f =
∑
f(c)=1

ρc . (7.1)

As these basis elements are characteristic functions in F2, we get the following

properties immediately:

1. For any c ∈ C, ρc + ρc = 0.

2. For any c ∈ C, ρcρc = ρc.

3. For any c, c′ ∈ C with c 6= c′, ρcρc′ = 0.

4. Combining properties 2 and 3, we get ρcf = ρc if f(c) = 1, and ρcf = 0 if

f(c) = 0.
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Under this notation, 0C will always be the empty sum, and 1C will always be the

sum of all basis elements. Note that while each f ∈ RC may have many possible

representations as a polynomial in xi, the basis notation (1) is unique, and so we

frequently prefer this notation in our proofs.

Example. Consider the code C = {000, 100, 101}. A basis for RC is found by taking

ρ000 = (1 − x1)(1 − x2)(1 − x3), ρ100 = x1(1 − x2)(1 − x3), and ρ101 = x1x3(1 −

x2). Elements of RC are given by taking all possible F2-combinations of these basis

elements. So, for example, we can take ρ000 + ρ100 = (1− x2)(1− x3). This function

will evaluate to 1 on 000 and 100, but not on 101. We could also take the element

ρ000 + ρ100 + ρ001 = 1RC , which evaluates to 1 on any of the three codewords.

These choices of polynomial representatives are by no means unique, due to the

relationships among variables which are particular to each ring. In this ring RC, we

have x2 = 0 and x1x3 = x3. Polynomial representations of ρc thus include

• ρ000 = (1− x1)(1− x2)(1− x3) = (1− x1)(1− x3) = 1− x1,

• ρ100 = x1(1− x2)(1− x3) = x1(1− x3) = x1 − x3,

• ρ101 = x1x3(1− x2) = x3.

Using this basis notation, we prove an important property of ring homomorphisms

between neural rings.

Lemma 24. Let φ : RD → RC be a ring homomorphism between two neural rings.

Then for all c ∈ C, there exists a unique d ∈ D such that φ(ρd)ρc = ρc.

Proof. To show existence, we observe the following: for each c ∈ C,

ρc = 1Cρc = φ(1D)ρc = φ

(∑
d∈D

ρd

)
ρc =

∑
d∈D

φ(ρd)ρc
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Using Property 4 above, this means that for at least one d ∈ D, we have φ(ρd)ρc =

ρc.

To show uniqueness, suppose by way of contradiction that φ(ρd)ρc = φ(ρd′)ρc = ρc

with d 6= d′. Then we have the following:

ρc = φ(ρd)ρcφ(ρd′)ρc = φ(ρd)φ(ρd′)ρc = φ(ρdρd′)ρc = 0CρC = 0,

which is a contradiction.

Lemma 24 essentially shows that the sets Cd = {c ∈ C | φ(ρd)ρc = ρc} partition

C. This allows us to define a code map associated to φ as follows: let qφ : C → D be

given by qφ(c) = d, where d is the unique element of D such that φ(ρd)ρc = ρc. The

previous lemma shows that this map is well-defined.

Definition. Let C and D be neural codes. We define the following two sets:

- Hom(RD, RC)
def
= {φ : RD → RC | φ a ring homomorphism}

- Map(C,D)
def
= {q : C → D | q a function }

We now have a map in each direction between these two sets. In Lemma 23, we

showed how to find the a ring homomorphism φq from a code map using the pullback:

Map(C,D)→ Hom(RD, RC)

q 7→ φq
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And using Lemma 24, we know we can find a code map qφ from a ring homomor-

phism:

Hom(RD, RC)→ Map(C,D)

φ 7→ qφ

Theorem 5. Let C and D be neural codes, with RC and RD the respective associated

neural rings. Then the above defined maps between Hom(RD, RC) and Map(C,D) are

inverses, and thus the sets are in bijection.

Proof. We must show two things here: first, for any ring homomorphism φ : RD → RC,

we have φ = φqφ ; secondly, for any code map q : C → D, we have q = qφq .

Key to both these proofs is the following fact: φ(ρd)ρc = ρc ⇔ φ(ρd)(c) = 1.

• q = qφq : Let φ = φq, so then φ(f) = q∗f for all f ∈ RD. In particular,

φ(ρd) = q∗ρd, so φ(ρd)(c) = q∗ρd(c) = ρd(q(c)) =

 1 q(c) = d

0 q(c) 6= d

Thus, φ(ρd)ρc =

 ρc q(c) = d

0 q(c) 6= d
and so we define qφ(c) = d⇔ q(c) = d; hence,

qφq = q.

• φ = φqφ : Let q = qφ, i.e., q(c) = d for the unique d with φ(ρd)ρc = ρc.

We must show φq(f) = φ(f) for all f ∈ RD; it suffices to show φq(ρd) = φ(ρd)

for all d ∈ D. These two functions are equal if they evaluate the same on all

c ∈ C; equivalently, they are the same if φq(ρd)ρc = φ(ρd)ρc for all c ∈ C. By

the definition of φq, this means we must show that for all c ∈ C, φ(ρc) = q∗ρdρc.
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To see this, observe that by the definition of q = qφ,

φ(ρd)ρc =

 ρc d = q(c)

0 d 6= q(c)
.

On the other hand, (q∗ρd)(c) = ρd(q(c)) =

 1 d = q(c)

0 d 6= q(c)
and therefore

q∗ρdρc =

 ρc d = q(c)

0 d 6= q(c)
.

Thus, φ = φqφ .

Theorem 5 gives us both good news and bad. On the positive side, we have

discovered a very clean bijective correspondence between code maps and ring homo-

morphisms. In particular, this theorem shows that not only does every code map q

induce a related ring homomorphism φ via pullbacks, but that every ring homomor-

phism between two neural rings can be obtained in this way; the relationship between

the two notions is incredibly strong.On the other hand, the complete generality of this

theorem iis not useful for our goal of selecting realistic maps which preserve neuron

structure. As we have just shown, any code map at all has a corresponding neural

ring homomorphism. Even a random assignment q : C → D would have a related

ring homomorphism. Another unsatisfying thing about this correspondence is that

the notion of isomorphism captures very little actual similarity, but only the number

of codewords, as the following lemma shows.
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Lemma 25. Two neural rings RC and RD are isomorphic if and only if |C| = |D|.

Proof. As a neural ring RC is exactly the ring of functions f : C → {0, 1}, we have

that RC ∼= F|C|2 and RD ∼= F|D|2 , and then we use the fact that Fn2 ∼= Fm2 if and only if

n = m.

With these problems in mind, we consider another way to look at the neural rings

which can preserve the structure given by the code: we consider them as modules.

7.3 Module Homomorphisms between Neural

Rings

In this section, we will show that we can consider each neural ring RC as a carefully

designed module under the following ring:

R[n]
def
= R{0,1}n = F2[x1, ..., xn]/B

where C ⊂ {0, 1}n. The module action, as we will show, preserves the structure of

the original code C. Furthermore modules, like rings, have a well-defined notion of

homomorphism.

7.3.1 Neural rings as modules

For a code C on n neurons, we consider the neural ringRC as anR[n] = R{0,1}n-module.

R[n] will be referred to as the ‘ambient ring’ when n is understood. Considering RC as

an R[n]-module allows us to store the combinatorial structure of the code and retain

the information about the presentation even if RC is given only as an abstract ring.
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The module action is as follows: given r ∈ R[n] and f ∈ RC, define

[r · f ](c) = r(c)f(c).

That is, (r · f)−1(1) = r−1(1) ∩ f−1(1). Note particularly, this intersection will be a

subset of C. In other words, f detects a certain set of codewords; r · f detects only

those which are detected by r as well.

This module action is exactly multiplication of polynomials, with the result con-

sidered as an element of RC. In particular, in any RC we have the relationships

xi(1− xi) = 0, which also means x2
i = xi and (1− xi)2 = (1 − xi). The use of these

relationships can be seen more clearly in the following example:

Example. Consider again the code C = {000, 100, 101}. RC is a module under

R[3] = R{0,1}3 .

• Consider the element 1− x1 of R[3]. Then

(1− x1) · (1− x1)(1− x2)(1− x3) = (1− x1)(1− x2)(1− x3)

whereas

(1− x1) · x1(1− x2)(1− x3) = 0.

• Consider the element x1x2 of R[3]. Although x1x2 is a nonzero element in R[3],

it evaluates to 0 for all codewords in C, so for any element f ∈ RC, we have

x1x2 · f = 0.

As another way to look at this action, note that R[3] is itself a neural ring, and

so has basis elements {ρc | c ∈ {0, 1}3}. We can look at the action in terms of these

basis elements:
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• Consider ρ000 + ρ001 in R[3]. Then

(ρ000 + ρ001) · ρ000 = ρ000

whereas

(ρ000 + ρ001) · ρ100 = 0.

• Consider the element ρ110 of R[3]. Although this is a nonzero element in R[3], it

detects no codewords of C, so it is equivalent to 0 in RC. Thus, for any element

f ∈ RC, we have ρ110 · f = 0.

Recovering the code

The most powerful property of this action is the ability to recover the codewords

purely from the module action. To do so, we use the canonical generators xi ∈ R[n].

Note that (xi)
−1(1) = {c ∈ {0, 1}n | ci = 1}. Thus we see xi detects exactly those

codewords in which we see neuron i firing. Using these special elements, we can

recover our code. Here are the steps we use to recover a single codeword:

1. Select a basis element ρ.

2. For each i = 1, ..., n, consider xi · ρ. We know ρ detects exactly one codeword c,

so we have two possibilities: if ci = 1, then (xiρ
−1)(1) = {c}, and thus xi ·ρ = ρ;

if ci = 0, then (xiρ)−1(1) = ∅ and thus xi · ρ = 0.

3. Form the codeword c by setting ci = 1 if xiρ = ρ, and ci = 0 if xiρ = 0.

Taking the set of codewords given by repeating these steps for every basis element

ρ, we obtain the original code C.
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Example. Consider once again the code C = {000, 100, 101} and the ring RC. As an

example of how to recover the codewords, take just one basis element, ρ101. Note that

x1 · ρ101 = x1 · x1x3(1 − x2) = x1x3(1 − x2) = ρ101, which tells us c1 = 1. Similarly,

x2 · ρ101 = 0, and x3 · ρ101 = ρ101. So we know this basis element corresponds to the

codeword 101.

7.3.2 Note on modules under different rings

Now that we have a framework to consider a neural ring RC on n neurons as an R[n]-

module that preserves the code structure, we can consider module homomorphisms

between neural rings. However, this is complicated by the fact that two neural rings

RC and RD on n and m neurons respectively are considered modules under different

rings R[n] and R[m]. In order to consider R-module homomorphisms between RC and

RD for some ring R, we need some way to think of both rings as modules under the

same ring R. For this, we use the following standard construction from commutative

algebra.

Suppose R, S are rings with τ : R→ S a ring homomorphism. Given an S-module

M , we can also view M as an R-module via the homomorphism τ , using the action

r ·m = τ(r) ·m for any r ∈ R,m ∈M . In the neural ring setup, this says that given

a ring homomorphism τ : R[m] → R[n], we can consider the R[n]-module RC as an

R[m]-module.

However, our module maps will be inspired by maps between the neural rings,

rather than the overarching rings R[n], R[m]. Therefore, we need a vocabulary for

when the situation (unusual in commutative algebra) where one is first given a map

between two modules under different rings R and S, and wants to look for which

ring homomorphisms between R and S (if any) would allow that map to be a module
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homomorphism.

Definition. Given an R-module M , an S-module N , and a group homomorphism

φ : M → N (so φ(x+y) = φ(x)+φ(y)), we say that a ring homomorphism τ : R→ S

is compatible with φ if φ is an R-module homomorphism, where N is viewed as an

R-module via τ . In other words, for every r ∈ R, we want the following diagram to

commute:

M

φ
��

r· //M

φ
��
φ
��

N
τ(r)· // N

That is, τ is compatible with φ if φ(r · x) = τ(r) · φ(x) for all r ∈ R, x ∈M .

It is worth noting that not every group homomorphism between two neural rings

has a compatible ring homomorphism.

Example. Consider the codes C = {000, 100, 101} and D = {00, 10, 11} , and let the

map φ : RD → RC be given by φ(ρ00) = ρ000 + ρ100, φ(ρ10) = ρ100, and φ(ρ11) = 0.

Extending by linearity to all elements of RD gives us a group homomorphism, which

is easy to check.

As a polynomial map, this is the group homomorphism given by: x1 → y1(1 −

y2)(1−y3), x2 → 0. There is, however, no compatible ring homomorphism τ : R[2]→

R[3] so that φ is an R[2]-module homomorphism. To see this, note that any such

homomorphism τ would need the following properties:

φ(ρ00 · ρ00) = τ(ρ00)φ(ρ00) = τ(ρ00) · [ρ000 + ρ100].

But as ρ00 ·ρ00 = ρ00, this must equal ρ000 +ρ100. So τ(ρ00) must preserve ρ000 and

ρ100. Similarly, τ(ρ10) must preserve ρ100. So τ(ρ10)τ(ρ00) must preserve ρ100 at least,

so τ(ρ10)τ(ρ00) 6= 0. Note τ(ρ00ρ10) = τ(0) = 0, but as τ is a ring homomorphism, we
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also have τ(ρ00ρ10) = τ(ρ00)τ(ρ10) 6= 0. So no such τ can exist; there is no compatible

ring homomorphism for φ.

Luckily, one class of group homomorphisms between neural rings which are guar-

anteed to have a compatible τ are those which are also ring homomorphisms.

For this result, we will use the idea that elements of RD can also be thought of

as elements of the ambient ring R[m]. For example, each basis element ρd of RD is

the function which detects only the codeword d; since d ∈ {0, 1}m, we know R[m]

has a basis element ρd which detects only d as well, and we consider these two ρd

to be essentially the same. Likewise, any function f ∈ RD corresponds the subset

f−1(1) ⊂ D which it detects, so we can consider f as a function in R[m] which detects

the same set of codewords.

Proposition 6. Suppose C and D are neural codes on n and m neurons, respectively.

If φ : RD → RC is a ring homomorphism, then there exists a ring homomorphism

τ : R[m] → R[n] which is compatible with φ, and thus φ is an R[m]-module ho-

momorphism. Furthermore, the set of compatible τ is exactly the set of ring homo-

morphisms R[m] → R[n] which are extensions of φ, in the sense for all f ∈ RD,

(φ(f))−1(1) ⊆ (τ(f))−1(1).

Proof. Let φ : RD → RC be a ring homomorphism. To construct a compatible ring

homomorphism τ : R[m] → R[n], first select one basis element ρd of RD. Note that

ρd (as the function which detects exactly the codeword {d}) is also a basis element

of R[m], and define τ(ρd) = φ(ρd) +
∑

v∈{0,1}n\C ρv; that is, τ(ρd) will detect all the

same codewords as φ(ρd), but also all the codewords of {0, 1}n which are not part

of C. For all other d ∈ D, define τ(ρd) = φ(ρd), and for all v ∈ {0, 1}m\D, define

τ(ρv) = 0. Extend τ to all elements of R[m] by linearity; that is, if f =
∑
ρc, then

τ(f) =
∑
τ(ρc). This gives a ring homomorphism.
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Now, we will show that the property of compatibility is equivalent to the prop-

erty of extensions. Let τ : R[m] → R[n] be a ring homomorphism, and let f =∑
d∈f−1(1) ρd ∈ RD. As f · f = f , then τ is compatible with φ if and only if we have

φ(f) = φ(f · f) = τ(f) · φ(f), which occurs if and only if τ(f) detects at least the

same codewords as φ(f), which happens if and only if τ(f)−1(1) ⊇ φ(f)−1(1).

7.3.3 Compatible τ extend code maps

It is important to note that each map τ : R[n] → R[m] is in fact also a ring ho-

momorphism between neural rings - in this case, the neural ring for the complete

code - as R[n] = R{0,1}n . We have shown that code maps correspond to ring ho-

momorphisms, and thus each ring homomorphism τ corresponds to a unique code

map qτ : {0, 1}m → {0, 1}n between the complete codes. Furthermore, Proposition

6 shows that τ is compatible with φ if and only if it is an extension of φ, in that

φ(f)−1(1) ⊆ τ(f)−1(1). Therefore, we have the following lemma:

Lemma 26. τ is compatible with φ if and only if qφ = qτ
∣∣
C.

Proof. Suppose τ is compatible with φ. Note that qτ
∣∣
C = qφ if and only if qτ (c) = qφ(c)

for all c ∈ C. So, suppose by way of contradiction that qτ (c) 6= qφ(c) for some c ∈ C.

Let d = qφ(c). Then, φ(ρd)(c) = 1. But φ(ρd) = φ(ρd · ρd) = τ(ρd) · φ(ρd), and we

know τ(ρd)(c) = 0, not 1, so τ and φ cannot be compatible. This is a contradiction.

Now, suppose qφ = qτ
∣∣
C. Suppose c ∈ φ(ρd)

−1(1). By our code map-homomorphism

correspondence, this means that qφ(c) = d. So then qτ (c) = d also, and thus again

by the proven correspondence, c ∈ τ(ρd)
−1(1). Thus, for each d ∈ D, we have

τ(ρd)
−1(1) ⊇ φ(ρd)

−1(1), and by Proposition 6, τ is compatible with φ.

We know based on our earlier work that given a ring homomorphism φ : RD → RC,

we can always find a ring homomorphism τ : R[m]→ R[n] which is compatible with
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φ. We now confirm that idea from the code maps side: we can generate a possible τ

by taking any code map q′ : {0, 1}n → {0, 1}m which extends q (so q′(c) = q(c) for all

c ∈ C) and taking the corresponding ring homomorphism τq. Then τq will take each

function to its pullback by τ , and it will be compatible with φ.

Example. Consider again the codes C = {000, 100, 101} and D = {00, 10, 11}. Let

the map φ : RD → RC be given by φ(ρ00) = ρ000, φ(ρ10) = ρ100 +ρ101, and φ(ρ11) = 0,

and extend by linearity to all other elements. Then φ is a ring homomorphism.

First, consider τ1 : R[2]→ R[3] given by τ1(ρ00) = ρ000 +ρ001 +ρ010 +ρ110 +ρ011 +

ρ111, τ1(ρ10) = ρ100 + ρ101, and τ1(ρ11) = 0. Extend again by linearity. Then τ1 is a

compatible ring homomorphism, which is not hard to check.

Now, consider τ2 : R[2]→ R[3] given by τ2(ρ00) = ρ000 + ρ001 + ρ010 + ρ110 + ρ011 +

ρ111, τ2(ρ10) = ρ100, and τ2(ρ11) = ρ101. τ2 is not a compatible ring homomorphism,

as if it were, we would have

ρ100 + ρ101 = φ(ρ10) = φ(ρ10ρ10) = τ2(ρ10)φ(ρ10) = ρ100 · (ρ100 + ρ101) = ρ100

which is a contradiction.

7.4 Neural Ring Homomorphisms

7.4.1 Neuron-preserving homomorphisms

We have now established that ring homomorphisms φ : RD → RC between two neural

rings are in correspondence with the set of possible functions q : C → D. But this

is not entirely a satisfying definition for neural ring homomorphism. By looking at

the neural rings as modules, we had hoped to preserve structure; this result makes
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it clear that additional restrictions are needed, since not every code map preserves

structure, but every code map generates a related ring homomorphism and therefore

a related module homomorphism. So, using module properties we can extract code

structure, but we cannot ensure that structure is preserved across maps.

This motivates us to consider preservation of neurons. We have seen that the

activity of neuron i is recovered by considering the action of the variable xi. This

allows us to figure out which basis elements correspond to which codewords. Under

a general ring homomorphism, we place no unusual restriction on the images of these

special elements of the ambient ring, and so we don’t carry that structure over to

the image ring. What could be learned if we restricted to compatible maps where

elements which detect neurons to map to other elements that detect neurons? This

motivates the following definition:

Definition. Write R[m] = F2[y1, ..., ym]/B, and R[n] = F2[x1, .., xn]/B. A ring ho-

momorphism τ : R[m] → R[n] is called neuron-preserving if τ(yi) ∈ {x1, ..., xn, 0, 1}

for all i = 1, ...,m.

Not all ring homomorphisms are neuron-preserving, as shown in the following

example:

Example. Consider the map τ : R[1]→ R[2] given by τ(ρ1) = ρ01 + ρ10 and τ(ρ0) =

ρ00 + ρ11. Here τ(y1) = x1 + x2, and τ(yi) /∈ {x1, x2, 0, 1} as would be required.

Observe that a neuron-preserving homomorphism τ : R[m] → R[n] is defined by

the vector S = (s1, ..., sm), where Si ∈ [n] ∪ {0, u}, so that

τ(yi) =


xj if si = j

0 if si = 0

1 if si = u

.
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S is a vector which stores the pertinent information about τ , and each possible S

with si ∈ [n]∪{0, u} defines a possible neuron-preserving τ . We refer to the τ defined

by S as τS.

Remark: We make a careful choice to define neuron-preserving as a property of

maps between the Boolean rings only, and not between neural rings in general. This

is due in part to our notational conventions. The polynomial representative x1 means

a different thing in R[n] than it does in RC. In particular, in a neural ring, we may

have xi = xj for i 6= j, whereas in the Boolean ring these are necessarily distinct.

This allows us to define a neuron-preserving homomorphism τ for any given S without

fear; we don’t need to worry about relationships amongst the xi being preserved, since

there are no relationships in R[n] to speak of. Thus, any choice of images τ(xi) will

give a ring homomorphism.

Lemma 27. The composition of two neuron-preserving homomorphisms is neuron-

preserving.

Proof. Suppose S = (s1, ..., sn) with si ∈ [m] ∪ {0, u} and T = (t1, ..., tm) with

ti ∈ [`] ∪ {0, u} are given as above, with τS : R[n] → R[m] and τT : R[m] → R[`].

To prove the lemma, we need to find W = (w1, ..., wn) with wi ∈ [`] ∪ {0, u} so

τW = τT ◦ τS : R[n]→ R[`].

Define the vector W by

wi =


tsi if si ∈ [m]

0 if si = 0

u if si = u
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Use variables zi for R[n], yi for R[m], xi for R[`]. Then, unraveling the definitions,

τW (zi) =



xj if tsi = j

0 if tsi = 0

or if si = 0

1 if tsi = u

or if si = u

=



xj if si = k and tk = j

0 if si = k and tk = 0

or if si = 0

1 if si = k and tk = u

or if si = u

=



xj if τS(zi) = yk and τT (yk) = xj

0 if τS(zi) = yk and τT (yk) = 0

or if τS(zi) = 0

1 if τS(zi) = yk and τT (yk) = 1

or if τS(zi) = 1

=


xj if τT ◦ τS(zi) = xj

0 if τT ◦ τS(zi) = 0

1 if τT ◦ τS(zi) = 1

.

7.4.2 Neuron-preserving code maps

We now define what it means for a code map to be neuron-preserving, and relate the

two notions.

Definition. Let C be a code on n neurons and D a code on m neurons. A code map

q : C → D is neuron-preserving if there exists some S = (s1, ..., sm), si ∈ [n] ∪ {0, u}

such that q(c) = d if and only if di =


cj if si = j

0 if si = 0

1 if si = u

.

If q is neuron-preserving with vector S, we write q = qS. (S may not be unique.)
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In particular, given S = (s1, ..., sm), si ∈ [n] ∪ {0, u} we can always define a

neuron-preserving code map qS : {0, 1}n → {0, 1}m by qS(c) = d where

di =


cj if si = j

0 if si = 0

1 if si = u

.

Lemma 28. Let C = {0, 1}n and D = {0, 1}m, and suppose qS : C → D is neuron-

preserving. Then φqS = τS, and thus qS = qτS by Lemma 26.

Proof. Write qS = q and τS = τ . Note φq(yi) = q∗yi, so for any c ∈ C,

q∗yi(c) = yi(q(c)) = di =


cj if si = j

0 if si = 0

1 if si = u

.

On the other hand, we also have

τ(yi)(c) =


xj(c) if τ(yi) = xj

0 if τ(yi) = 0

1 if τ(yi) = 1

=


xj(c) if si = j

0 if si = 0

1 if si = u

=


cj if si = j

0 if si = 0

1 if si = 1

.

Thus τ and φq are identical on {yi}, and hence are identical everywhere.

If C is a code on n neurons and D a code on m neurons so q : C → D is neuron-

preserving with vector S, and if qS : {0, 1}n → {0, 1}m is the neuron-preserving map

defined above, observe that q = qS
∣∣
C, and therefore that q = qτS

∣∣
C where τS is the

neuron-preserving ring homomorphism defined above. As S is not necessarily unique,

there are often many such possible τS.
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Lemma 29. The composition of two neuron-preserving code maps is neuron-preserving.

Proof. Let qT : C → D and qS : D → E be neuron-preserving. Suppose qT (c) = d and

qS(d) = e. Let W be defined so wi = tsi (where t0 = 0 and tu = u) Then,

ei =


dj if si = j

0 if si = 0

1 if si = u

=



ck or if si = j and tj = k

0 if si = j and tj = 0

or if si = 0

1 if si = j and tj = u

si = u

=


ck if tsi = k

0 if tsi = 0

1 if tsi = u

=


ck if wi = k

0 if wi = 0

1 if wi = u

Thus, qS(qT (c)) = qW (c), and so qS ◦ qT is neuron-preserving.

Elementary neuron-preserving code maps

Of our four original elementary code maps, three of them are neuron-preserving

without any restrictions. The only problem is adding a neuron, which may or may not

be neuron-preserving, depending on the definition of the function f(x) which defines

the new neuron. Here we list the elementary code maps which are neuron preserving,

and give their respective S-vectors. Throughout, let C be a code on n neurons and

c = (c1, ..., cn) an element of C.

1. Dropping the last neuron: Let S = (1, 2, ..., n− 1). Then qS(c) = d, where

d = (c1, ..., cn−1). We require qS(C) = D.
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2. Adding a 1 (respectively, 0) to the end of each codeword: S = (1, 2, ..., n, 1)

(respectively S = (1, 2, ..., n, 0) ). Then qS(c) = d where d = (c1, ..., cn, 1)

[respectively d = (c1, ..., cn, 0)]. We require qS(C) = D.

3. Adding a neuron which repeats neuron i to the end of each word: S =

(1, 2, ..., n, i). Then qS(c) = d, where d = (c1, ..., cn, ci). We require qS(C) = D.

4. Permuting the labels: Let σ ∈ Sn be a permutation. To relabel the code so

neuron i is relabeled σ(i), we use S = (σ(1), ..., σ(n)). Then qS(c) = d, where

d = (cσ(1), ..., cσ(n)). We require qS(C) = D.

5. Adding a codeword: Let S = (1, 2, ..., n). This defines an inclusion map,

so q(c) = c. We use this anytime we have q(C) ( D. Then all codewords in

D \ q(C) are “added.”

Proposition 7. All neuron-preserving code maps q are compositions of these elemen-

tary neuron-preserving code maps:

1. Permutation of labels

2. Dropping the last neuron

3. Adding a 1 to the end of each codeword

4. Adding a 0 to the end of each codeword

5. Adding a new neuron which repeats another neuron

6. Adding a codeword

Proof. Suppose C is a code on n neurons and D is a code on m neurons. Let q :

C → D be a neuron-preserving code map, with q = qS for S = (s1, ..., sm) , with

si ∈ [n] ∪ {0, u}.
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We use the same process as we used in the proof of Proposition 5. Since permuta-

tion, dropping neurons, and adding codewords are all neuron-preserving code maps,

It is enough to show that the functions f which we use to define the new neurons

we add do indeed correspond to the three operations above: adding a 1, a 0, or a

repeating neuron. That is, we must show fi ∈ {x1, ..., xn, 0, 1} for i = 1, ...,m. This

is easy; simply define

fi(x) =


xj if si = j

0 if si = 0

1 if si = 1

Then, we have that

fi(c) =


cj if si = j

0 if si = 0

1 if si = u

just as we wish.

7.4.3 Neural ring homomorphisms

With the idea of neuron-preserving in mind, we define a better notion for neural ring

homomorphism.

Definition. Suppose C is a code on n neurons and D a code on m neurons. A ring

homomorphism φ : RD → RC is called a neural ring homomorphism if there exists a

neuron-preserving compatible ring homomorphism τ : R[m]→ R[n].

A ring isomorphism φ : RD → RC is called a neural ring isomorphism if there

exists a neuron-preserving compatible ring isomorphism τ : R[m]→ R[n].
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As we have now proven that ring homomorphisms are in correspondence with code

maps, we immediately have the following natural question:

Question: Which code maps correspond to neural ring homomorphisms? to neural

ring isomorphisms?

Lemma 30. φ is a neural ring homomorphism if and only if qφ is a neuron-preserving

code map.

Proof. Suppose C is a code on n neurons and D a code on m neurons.

φ : RD → RC is a neural ring homomorphism if and only if there exists some

neuron-preserving τ : R[m] → R[n] compatible with φ. Let τ = τS, and let qS :

{0, 1}n → {0, 1}m be the neuron-preserving map defined at the beginning of the

previous section. qτS = qS by Lemma 28 and qφ = qτS
∣∣
C by Lemma 26 so qφ = qS

∣∣
C = q

is a neuron-preserving code map.

Theorem 6. φ is a neural ring homomorphism if and only if qφ is a composition of

the following elementary code maps:

1. Dropping a neuron

2. Permutation of labels

3. Repeating a neuron

4. Adding a trivial (1 or 0) neuron

5. Adding codewords

Proof. By Lemma 30, φ is a neural ring homomorphism if and only if qφ is neuron-

preserving, and by Proposition 7, qφ is neuron preserving implies it is a composition

of the elementary code maps.
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Lemma 31. Neural ring isomorphisms correspond exactly to those code maps which

permute the labels on neurons.

Proof. Suppose τ = τS : R[n]→ R[m] is an isomorphism. Then since R[n] and R[m]

are finite, they must have the same size. So we must have 22n = |R[n]| = |R[m]| = 22m ,

and thus n = m. Thus we can write τ : R[n]→ R[n].

As τ is an isomorphism, we know ker τ = {0}. So we cannot have τ(xi) = 0 since

then xi ∈ ker τS, and similarly we cannot have τ(xi) = 1, since then 1 − xi ∈ ker τ .

As τ is neuron-preserving, this means that τ(xi) ∈ {x1, ..., xn} for all i = 1, ..., n; as

τ = τS for some S, this means that si ∈ [n] for all i.

If we had τ(xi) = τ(xj) = xk for i 6= j, then xi−xj ∈ ker τ , which is a contradiction

as xi − xj 6= 0. So τ induces a bijection on the set of variables {x1, ..., xn}; i.e., S

contains each index in [n] exactly once.

Now,consider the corresponding code map qτ . Let c ∈ {0, 1}n, and qτ (c) = d.

We must have τ(f)(c) = f(d). In particular, we must have xj(c) = xi(d), or rather,

cj = di. So qτ takes each codeword c to its permutation where j → i iff τ(xi) = xj.

Now, we know that if τ is compatible with φ, then φ is merely a restriction of

the map τ , and so qφ(c) = qτ (c) for all c ∈ C. And as φ is an isomorphism, qφ is a

bijection, so every codeword in D is the image of some c ∈ C; thus, qφ is a permutation

map on C, and no codewords are added.

7.5 The effect of elementary code maps on the

canonical form

Here we look at the effect of the elementary moves on the canonical form of the

ring. Throughout, C is a code on n neurons with canonical form CF (JC), and zi ∈
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{xi, 1− xi} represents a linear term.

1. Permutation: as this map simply permutes the labels on the variables, the

canonical form stays nearly the same, but the labels are permuted using the

reverse permutation σ−1. That is, let D be the code obtained by applying

the permutation σ ∈ Sn to C. Then f = zi1 · · · zik ∈ CF (JC) if and only if

fσ = zσ−1(i1) · · · zσ−1(ik) ∈ CF (JD).

2. Dropping a neuron: Let C be a code on n neurons, and D the code on n − 1

neurons obtained by dropping the nth neuron. Then CF (JD) = CF (JC) \

{f | f = gzn, g a pseudo-monomial }. That is, we simply remove all pseudo-

monomials which involved the variable xn.

3. Adding a new neuron which is always 1 (always 0): Let D be the code on n+ 1

neurons obtained by adding a 1 (respectively 0) to the end of each codeword in

C. Then CF (JD) = CF (JC) ∪ {1− xn+1} (respectively CF (JC) ∪ {xn}).

4. Adding a new neuron which repeats another neuron: Let D be the code on n+1

neurons obtained from C by adding a new neuron which repeats the action of

neuron i for all codewords.

Let F = {f ∈ CF (JC) | f = zi · g for g a pseudo monomial}; let H be the set

formed by replacing xi with xn+1 for all f ∈ F . Then in most cases, CF (JD) =

CF (JC)∪{xi(1−xn+1), xn+1(1−xi)}∪H. The only exception is if zi ∈ CF (JC);

then CF (JD) is simply CF (JC) ∪H.

5. Adding codewords: This is by far the most complicated. The algorithmic pro-

cess for obtaining CF (C ∪ {v}) from CF (C) is described in Algorithm 2.
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Appendix A

Neural codes on three neurons

Label Code C Canonical Form CF (JC)

A1 000,100,010,001,110,101,011,111 ∅
A2 000,100,010,110,101,111 x3(1− x1)
A3 000,100,010,001,110,101,111 x2x3(1− x1)
A4 000,100,010,110,101,011,111 x3(1− x1)(1− x2)
A5 000,100,010,110,111 x3(1− x1), x3(1− x2)
A6 000,100,110,101,111 x2(1− x1), x3(1− x1)
A7 000,100,010,101,111 x3(1− x1), x1x2(1− x3)
A8 000,100,010,001,110,111 x1x3(1− x2), x2x3(1− x1)
A9 000,100,001,110,011,111 x3(1− x2), x2(1− x1)(1− x3)
A10 000,100,010,101,011,111 x3(1− x1)(1− x2), x1x2(1− x3)
A11 000,100,110,101,011,111 x2(1− x1)(1− x3), x3(1− x1)(1− x2)
A12 000,100,110,111 x3(1− x1), x3(1− x2), x2(1− x1)
A13 000,100,010,111 x3(1− x1), x3(1− x2), x1x2(1− x3)
A14 000,100,010,001,111 x1x2(1− x3), x2x3(1− x1), x1x3(1− x2)
A15 000,110,101,011,111 x1(1− x2)(1− x3), x2(1− x1)(1− x3),

x3(1− x1)(1− x2)
A16* 000,100,011,111 x2(1− x3), x3(1− x2)
A17* 000,110,101,111 x2(1− x1), x3(1− x1), x1(1− x2)(1− x3)
A18* 000,100,111 x2(1− x1), x2(1− x3), x3(1− x1), x3(1− x2)
A19* 000,110,111 x3(1− x1), x3(1− x2), x1(1− x2), x2(1− x1)
A20* 000,111 x1(1− x2), x2(1− x3), x3(1− x1), x1(1− x3),

x2(1− x1), x3(1− x2)

Table A.1: Continues next page
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Label Code C Canonical Form CF (JC)

B1 000,100,010,001,110,101 x2x3

B2 000,100,010,110,101 x2x3, x3(1− x1)
B3 000,100,010,101,011 x1x2, x3(1− x1)(1− x2)
B4 000,100,110,101 x2x3, x2(1− x1), x3(1− x1)
B5 000,100,110,011 x1x3, x3(1− x2), x2(1− x1)(1− x3)
B6* 000,110,101 x2x3, x2(1− x1), x3(1− x1), x1(1− x2)(1− x3)

C1 000,100, 010,001, 110 x1x3, x2x3

C2 000,100,010,101 x1x2, x2x3, x3(1− x1)
C3* 000,100,011 x1x2, x1x3, x2(1− x3), x3(1− x2)

D1 000,100,010,001 x1x2, x2x3, x1x3

E1 000,100,010,001,110,101,011 x1x2x3

E2 000,100,010,110,101,011 x1x2x3, x3(1− x1)(1− x2)
E3 000,100,110,101,011 x1x2x3, x2(1− x1)(1− x3), x3(1− x1)(1− x2)
E4 000,110,011,101 x1x2x3, x1(1− x2)(1− x3), x2(1− x1)(1− x3),

x3(1− x1)(1− x2)

F1* 000,100,010,110 x3

F2* 000,100,110 x3, x2(1− x1)
F3* 000,110 x3, x1(1− x2), x2(1− x1)

G1* 000,100 x2, x3

H1* 000 x1, x2, x3

I1* 000,100,010 x3, x1x2

Table A.1: Forty permutation-inequivalent codes, each containing 000, on three neurons.
Labels A–I indicate the various families of Type 1 relations present in CF (JC), organized
as follows (up to permuation of indices): (A) None, (B) {x1x2}, (C) {x1x2, x2x3}, (D)
{x1x2, x2x3, x1x3}, (E) {x1x2x3}, (F) {x1}, (G) {x1, x2}, (H) {x1, x2, x3}, (I) {x1, x2x3}.
All codes within the same A–I series share the same simplicial complex, ∆(C). The ∗s
denote codes that have Ui = ∅ for at least one receptive field (as in the F, G, H and I series)
as well as codes that require U1 = U2 or U1 = U2 ∪U3 (up to permutation of indices); these
are considered to be highly degenerate. The remaining 27 codes are depicted with receptive
field diagrams (Figure 6) and Boolean lattice diagrams (Figure 7).
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Figure A.1: Receptive field diagrams for the 27 non-∗ codes on three neurons listed in
Table 1. Codes that admit no realization as a convex RF code are labeled “non-convex.”
The code E2 is the one from Lemma 2, while A1 and A12 are permutation-equivalent to
the codes in Figure 3A and 3C, respectively. Deleting the all-zeros codeword from A6 and
A4 yields codes permutation-equivalent to those in Figure 3B and 3D, respectively.
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Figure A.2: Boolean lattice diagrams for the 27 non-∗ codes on three neurons listed in
Table 1. Interval decompositions (see Section 6.2) for each code are depicted in black, while
decompositions of code complements, arising from CF (JC), are shown in gray. Thin black
lines connect elements of the Boolean lattice that are Hamming distance 1 apart. Note that
the lattice in A12 is permutation-equivalent to the one depicted in Figure 5.
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Appendix B

MATLAB Code

The following code is used to obtain the canonical form of the ideal JC, given a code

C. We follow the inductive algorithm given in Chapter 5. Although an algebraic

language such as Macaulay2 would be more natural for an algorithm involving rings

and ideals, we use Matlab. Primarily, this is because the data the algorithm is built

to analyze is most likely to be in Matlab data, and this removes the necessity of

a translation step between the two programs. Furthermore, because of the simple

(indeed, binary) nature of most of our data, and the properties of pseudo-monomials,

it is not difficult to translate the necessary information and operations into matrix

format in this instance.

A note on this translation: pseudo-monomials in F2[x1, ..., xn] are stored as the

rows of a matrix of 1s, 0s, and 5s via the following rule: the row (v1, ..., vn) corresponds

to the pseudo monomial
∏

vi=0 xi
∏

vi=1(1−xi). The selection of 5 as the ‘empty’ slot

is not random; we wanted information about the similarity between two pseudo-

monomials to be extracted by subtracting the rows. Choosing a 2, though it seems

more natural, leads to confusion as 2− 1 = 1− 0; therefore we select 5 instead since

it is large enough to not have this problem.
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The function FinalIntersectIdeals finds the canonical form of CF (JCi) from CF (JCi−1
)

and the next codeword ci; the overarching function Code2CF takes the code, and calls

FinalIntersectIdeals with each new CF (JCi) until all codewords are used; it then out-

puts CF (JCn) = CF (JC).

f unc t i on [CF, t ] = Code2CF(C)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Input : C, a binary matrix r e p r e s e n t i n g the code ;

% each row i s a codeword .

%Output : a matrix CF o f 0s , 1s , and 5s , r e p r e s e n t i n g

% the canon i ca l form CF( J C ) .

% a number t : the number o f ope ra t i on s i t performed ,

% used f o r time complexity a n a l y s i s

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

L=diag (C(1 , : ) )+ ones ( s i z e (C, 2 ) , s i z e (C,2))∗5− eye ( s i z e (C, 2 ) ) ∗ 5 ;

[ I , t ]= F i n a l I n t e r s e c t I d e a l s (L ,C( 2 , : ) ) ;

f o r i =3: s i z e (C, 1 )

r=C( i , : ) ;

[ I , t0 ]= F i n a l I n t e r s e c t I d e a l s ( I , r ) ;

t=t+t0 ;

end

CF=I ;

func t i on [ Idea l , t ] = F i n a l I n t e r s e c t I d e a l s (L , r )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Input : L , a matrix with rows r e p r e s e n t i n g
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% the pseudo−monomials o f CF( J {C { i −1}})

% r , a vec to r r e p r e s e n t i n g the next codeword cˆ i

%Output : Idea l , a matrix I d e a l o f 1s , 0s , and 5s , which

% g i v e s a s e t o f pseudo−monomials

% f o r CF(C\cup r ) .

% t , the number o f ope ra t i on s that occurred .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

n = s i z e (L , 2 ) ;

m = s i z e (L , 1 ) ;

I = ones (m∗n , n )∗5 ;

k=1;

w=1;

L0=ones (0 , n ) ;

%i f any element in any row o f L matches a monomial in r ,

%put that row in I . otherwise , mul t ip ly i t by

% each monomial in r in the next s tep

f o r i =1:m

i f ( s i z e ( f i n d ( (L( i , : )+ r )==2),2)>0 | | s i z e ( f i n d ( (L( i , : )+ r )==0) ,2)>0)

I (k , : )=L( i , : ) ;

k=k+1;

e l s e

L0(w, : )=L( i , : ) ;

w=w+1;

end
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end

k1=k−1;

w=w−1;

t =0;

%mult ip ly each p−m in L0 by l i n e a r terms in p r

%check f o r m u t l i p l e s

f o r i =1:w

f o r j =1:n

i f L0( i , j )==5 %otherwise , we get x i (1−x i )

I (k , : )= L0( i , : ) ; %put the i ’ th row o f L0 in the new i d e a l

I (k , j )=r ( j ) ; %mult ip ly i t by the j ’ th monomial o f r

i f k>1

M=0; %i s i t a mu l t ip l e o f something ?

f o r l =1:k1 ;

t=t +1;

d i f f = I ( l , : )− I (k , : ) ;

i f s i z e ( f i n d ( abs ( d i f f )==1),2)==0

i f s i z e ( f i n d ( d i f f <−1),2)==0

M=1; %yes , i t ’ s a mu l t ip l e

break ;

%d e f i n i t e l y not going to put i t in , stop

end

end

end

i f M==0 %no m u l t i p l e s
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k=k+1;

end

e l s e % i f k i s 1 or 2 ,

k=k+1;

end

end

end

end

I d e a l = I ( 1 : k−1 , : ) ;
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