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A New Versatile Discrete Distribution
by Rolf Turner

Abstract This paper introduces a new flexible distribution for discrete data. Approximate moment
estimators of the parameters of the distribution, to be used as starting values for numerical opti-
mization procedures, are discussed. “Exact” moment estimation, effected via a numerical procedure,
and maximum likelihood estimation, are considered. The quality of the results produced by these
estimators is assessed via simulation experiments. Several examples are given of fitting instances of
the new distribution to real and simulated data. It is noted that the new distribution is a member
of the exponential family. Expressions for the gradient and Hessian of the log-likelihood of the new
distribution are derived. The former facilitates the numerical maximization of the likelihood with
optim(); the latter provides means of calculating or estimating the covariance matrix of of the parame-
ter estimates. A discrepancy between estimates of the covariance matrix obtained by inverting the
Hessian and those obtained by Monte Carlo methods is discussed.

Introduction

Modelling the distribution of discrete data sets can be problematic in that it is often the case that
none of the “standard” distributions appears to be appropriate. It is possible to use a “completely
nonparametric” approach (in other words, to apply multinomial distributions, specified in a very
simple manner, by means of tables). However, this approach often turns out to be a little too flexible.
In particular, in the context of hidden Markov models for discrete data (hmm.discnp, Turner 2020),
the number of quantities to estimate rapidly becomes unwieldy. Estimates are unstable, the sensitivity
of fitting algorithms to starting values is exacerbated, and problems with the convergence of fitting
algorithms arise.

To address these problems, I developed a new discrete distribution, termed the “db” (“discretized
Beta”) distribution. The underlying idea is to define a family of distributions, for discrete data, with
shape characteristics as flexible as those of the Beta family of continuous distributions. (See Johnson
et al. 1995, Chapter 25, p. 210. See also the help for the dbeta() function in the stats package, R Core
Team 2020, and Abramowitz and Stegun 1972, Chapter 6. The reader may also find it useful to access
https://en.wikipedia.org/wiki/Beta_distribution.) The db distribution is closely related to the
Beta distribution and has “shape” parameters, α and β, analogous to the shape parameters of the Beta
distribution.

In addition to the shape parameters, the db distribution has two other parameters which specify
the “support” of the distribution. These “support parameters” are not estimated from data but must
be specified by the user prior to estimating the shape parameters. The support parameters are ntop
(a positive integer) and ζ (a logical scalar).

The parameter ntop is the upper limit of the support of the specified distribution. If the parameter
ζ is TRUE then zero origin indexing is to be used, in which case the support of the distribution is the set
{0, 1, 2, . . . , ntop}. Otherwise the support is {1, 2, . . . , ntop}. In the first case I use the notation nbot = 0
and in the second nbot = 1. The first form is convenient if the variable in question may be considered
to be a count and zero counts are possible. Of course, one could structure the distribution always
to have support of the form {0, 1, 2, . . . , ntop}, simply by re-coding or shifting the data. However,
in several of the examples with which I was concerned, it seemed more convenient to allow for a
non-zero origin.

In some contexts the value of ntop may be known (e.g., it may be analogous to the number of trials
in a binomial experiment). In other contexts it must be chosen by the user, and the choice may be
influenced by the observed values of the data. (See the section Choosing ntop.)

Like the Beta distribution upon which it is based, the db distribution is effectively unimodal. It
can have two modes if they occur at the extremes of the support but otherwise can have only one.
This characteristic is less than ideal, but seems to be unavoidable. It appears to be difficult to specify
multimodal distributions (other than by way of mixtures, which are accompanied by other problems).
Wikipedia (https://en.wikipedia.org/wiki/Multimodal_distribution, last accessed 30 March 2021)
says “Bimodal distributions, despite their frequent occurrence in data sets, have only rarely been studied [citation
needed] (sic). This may be because of the difficulties in estimating their parameters either with frequentist or
Bayesian methods.”

A referee of an earlier version of this paper suggested that the beta-binomial distribution be
considered as an alternative to the new db distribution. This referee pointed out to me the paper
“Modeling the patient mix for risk-adjusted CUSUM charts” by Philipp Wittenberg, which has interest-
ing applications in medical science. In this paper, which is to appear in Statistical Methods in Medical
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Research, the beta-binomial distribution is used to model the distribution underlying a large data set of
integer-based Parsonnet risk scores (see Parsonnet et al. 1989; see also Steiner et al. 2000). In addition
to modeling the Parsonnet risk scores with the beta-binomial distribution, Wittenberg rescales these
scores to lie between 0 and 1 and applies the Beta distribution.

The data in question are available (in a slightly modified form) in the spcadjust package (Gandy
and Kvaloy 2013). I fitted both a db distribution and a beta-binomial distribution to these data and
conducted a goodness of fit test in both instances. The tests indicate that neither distribution is
actually appropriate. Both Monte Carlo p-values were 0.01. More detail is given in Example 6 in
section Examples.

The beta-binomial distribution was introduced in Skellam (1948). Like the db distribution, it has
flexibility of shape similar to that of the Beta distribution. However I have a couple of reservations
about this distribution which I discuss in the following section.

The beta-binomial distribution

My first reservation about the beta-binomial distribution is that it is to a large extent focussed on dealing
with data which appear to arise from binomial distributions but which are, in fact, “overdispersed”. In
other words, the focus is on data which exhibit extra-binomial variation. Such data have variance
which is larger than it would be if the underlying distribution were indeed binomial.

The focus of the beta-binomial distribution on overdispersion would appear to make its application
to underdispersed data problematic. Underdispersed pseudo-binomial data sets (i.e. data sets which
have variance smaller than they would have if the underlying distribution were binomial) are rare, but
they do exist. Examples are provided in the dbd package (see section Implementation). It is indeed
possible to fit beta-binomial distributions to these examples, and goodness of fit tests indicate that
the fits are adequate. However, the meaning of the resulting fits is questionable. The estimates of s
range from around 640 thousand to 78 million. Such large values of s essentially indicate that there
is no overdispersion, i.e., that the data are, in fact, from a binomial distribution. In other words, the
estimates are trying as hard as they can to describe the true situation but cannot actually do so given
the constraints of the model.

In fairness, it must be pointed out that the db distribution does not perform particularly well when
applied to the data sets referred to above. There are no obvious theoretical problems with fitting the
db distribution to underdispersed data. However, goodness of fit tests reject the adequacy of the fit of
the db distribution to one of these data sets. In contrast, the beta-binomial distribution appears to fit
this data set adequately. Further details are given in Example 7 in section Examples. The parameter
estimates for the rejected fit of the db distribution appear to be excessively large, which might well
raise suspicions. It is not clear how the values of parameter estimates obtained from the db distribution
relate to under and overdispersion. This may be a topic to explore in future research.

My second reservation about the beta-binomial distribution is that (as revealed by fairly extensive
simulation experiments) parameter estimation for this distribution can, from time to time, be unstable.
The beta-binomial distribution may be conveniently parameterized in terms of a “success probability”
m (which must be strictly between 0 and 1) and an overdispersion parameter s (which must be
strictly positive). This is the parameterization chosen in the rmutil package (Swihart and Lindsey
2020). The reader may also find it informative to access https://en.wikipedia.org/wiki/Beta-
binomial_distribution, where the parameterization is expressed in terms of “shape” parameters α
and β. These are related to m and s by m = α/(α + β) and s = α + β.

Moment estimators of the parameters of a beta-binomial distribution are explicitly available.
However, these are often unsatisfactory in that the moment estimate of s can turn out to be negative.
Maximum likelihood estimates of the parameters may be obtained via numerical maximization (using,
e.g., optim() from the stats package, automatically available in R). Starting values are, of course,
required. If the moment estimates are outside of the required range, e.g., if ŝ is negative, rough ad hoc
starting values (e.g., m = ϵ or m = 1 − ϵ, and s = ϵ, where ϵ is equal to sqrt(.Machine$double.eps))
appear to be adequate most of the time.

However, irrespective of starting values, the maximum likelihood estimate of s is frequently far too
large. In one instance, I simulated (using rbetabinom() from the rmutil package) 100 data sets, each
with 30 observations, with m = 0.75, s = 10, and size (the number of trials) set equal to 10. Maximum
likelihood estimates of s, calculated using the true parameter values as starting values, ranged as high
as 1038.82. (An “h” plot of the estimates is shown in Figure 1.) The variance of these estimates was
13032.98. In contrast, the inverse of the Fisher information, calculated using the true parameter values
and the data corresponding to the highest estimate of s was
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m s
m 0.001121638 0.02524533
s 0.025245334 14.66327852

which indicates that the variance in question should be of the order of 15.
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Figure 1: Estimates of the s parameter of the beta-binomial distribution.

I encountered other problems — tendencies for errors to be thrown in various circumstances,
including the application of optim() — in my exploration of the beta-binomial distribution, but there
would appear to be no point in going into more detail here.

Despite these problems and my reservations about the beta-binomial distribution, I have included
a complete set of tools for working with this distribution in the dbd package. These tools have a
structure exactly analogous to that of the tools provided for working with the db distribution.

Definition of the db distribution

Conceptually, the probability mass function (PMF) of the db distribution is

Pr(X = x | α, β, ntop, ζ) =
1
κ

f
(

x − nbot + 1
ntop − nbot + 2

)
, where

κ =

ntop

∑
i=nbot

f
(

i − nbot + 1
ntop − nbot + 2

) (1)

x = nbot, nbot + 1, . . . , ntop. In (1), f (·) is the probability density function (pdf) of the Beta distribution
with the first shape parameter equal to α and the second shape parameter equal to β. The probabilities
given by (1) are the values of the corresponding Beta density, evaluated at equispaced points in the
interior of the interval (0, 1), normalized to sum to 1. However, it is possible and advantageous to
express the definition of the db distribution in a direct manner without making reference to the Beta
distribution.

Deriving the direct expression for the PMF of the db distribution from (1) is facilitated by noting
that the Beta distribution is a member of the exponential family. From this, it follows that the db
distribution as defined by (1) is, for fixed values of the support parameters ntop and ζ, also a member.
An expression for the PMF of the db distribution, in exponential family form, is derived from the pdf
of the Beta distribution in Appendix I.

From this derivation, it is seen that the PMF of the db distribution, given by (1), can also be
expressed as

Pr(X = x | α, β, ntop, ζ) = h(x) exp{αT1(x) + βT2(x)− A(α, β)},

x = nbot, nbot + 1, . . . , ntop, where
(2)
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h(x) =
(ntop − nbot + 2)2

(x − nbot + 1)(ntop − x + 1)

T1(x) = log((x − nbot + 1)/(ntop − nbot + 2))

T2(x) = log((ntop − x + 1)/(ntop − nbot + 2) and

A(α, β) = log

 ntop

∑
i=nbot

h(i) exp{αT1(i) + βT2(i)}

 .

Consequently the definition of the db distribution may be taken to be (2). This has the following
advantage. The expression given by (2) is well-defined for all values of α and β: positive, negative or
zero, whereas (1) is well-defined only for α and β strictly greater than zero. The difference is due to the
fact that the pdf of the Beta distribution involves the expression B(α, β) = Γ(α)Γ(β)/Γ(α + β). This
latter expression evaluates to ∞ (or Inf in R) if either α or β is less than or equal to zero. Consequently,
in such cases, (1) is undefined (being equal to Inf/Inf = NaN in R). Algebraically, B(α, β) cancels from
(1) due to the division by κ, whence it does not appear in (2).

Although the db distribution is well-defined for negative parameter values, there are indications
of problems in respect of such values. In practice, it may be advisable to restrict attention to positive
values only. There certainly exist data sets — as can be demonstrated by simulation — for which the
(maximum likelihood) estimates of the parameters are undeniably negative. Cursory experimentation
using the dbd package indicates that in some instances, negative parameters are reasonably well
estimated by maximum likelihood. E.g.,

library(dbd)
set.seed(42)
x <- rdb(100,-2,-3,10)
fx <- mleDb(x,10)
print(as.vector(fx))

The preceding code produces estimates α̂ = −2.1645 and β̂ = −3.1365. Ninety-five percent
confidence intervals for α and β (based on the variance entries of the “analytic” covariance matrix —
see section Implementation) are [−3.0585,−1.2706] and [−3.9443,−2.3297], which contain the true
values, equal to −2 and −3, respectively.

On the other hand, there are instances in which the maximum likelihood estimates are very large
(either positive or negative) when the true values are relatively small and negative:

library(dbd)
set.seed(348)
x <- rdb(100,alpha=-3,beta=-6,ntop=10,zeta=TRUE)
fx <- mleDb(x,ntop=10,zeta=TRUE,maxit=2000)
print(as.vector(fx))

The resulting estimates are α̂ = 73.18 and β̂ = −166.61 which bear no relation to the “truth”.

The only (as far as I can see) real advantage in the fact that the parameter values are permitted to be
negative lies in the avoidance of various numerical issues that might otherwise arise in the estimation
of parameters of a db distribution. In particular, the legitimacy of negative parameter values removes
the necessity of imposing box constraints on the procedure for maximizing the likelihood. It also
circumvents difficulties that can otherwise arise in evaluating the Hessian of the log-likelihood when
one or both of the parameter estimates is close to zero.

Plots of the probability functions of a number of db distributions are shown in Figure 2. The
shapes of these distributions mimic those of the corresponding Beta distributions.

Choosing ntop

In fitting a db distribution to an observed data set, it is often sensible to set ntop equal to the maximum
of the data. On the other hand, if there is a conceptual least upper bound for the support of the
distribution (not found amongst the observed values), then one should set ntop equal to this conceptual
least upper bound. Finally, if the data are conceptually unbounded, then one might wish to set ntop
equal to the maximum of the observed data +1. In this latter case, the value of Pr(X = ntop) might be
interpreted as Pr(X ≥ ntop).
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Figure 2: Probability mass functions of db distributions

Implementation

I have written an R package dbd (Turner 2021) to provide tools for working with the db distribution.
The package supplies the four standard, “d”, “p”, “q” and “r” — density, probability, quantile and
random number generation — functions, that are as a rule associated in R with any given distribution.
In this setting, these functions are ddb(), pdb(), qdb(), and rdb(). The package also contains functions
expValDb() and varDb() to calculate the expected value (mean) and variance of a db distribution given
a specification of its parameters. There is no closed-form algebraic expression for these quantities.

Another useful tool in the package is the function mleDb() which enables the easy estimation
from data, of the parameters of the db distribution, via maximum likelihood. The function mleDb()
calls upon an undocumented function meDb() which calculates approximate moment estimates of
the parameters to serve as starting values for the maximization of the likelihood. A user would not
normally make direct use of meDb(). However, the approximation used by meDb() is of interest in its
own right. This approximation is discussed in the section Estimation of parameters.

An alternative to mleDb() is the function exactMeDb(), which is also included in the dbd package.
This function was suggested by a referee of an earlier version of this paper. It calculates “exact”
moment estimates of the parameters by minimizing (x̄ − µ)2 + (s2 − σ2)2 where x̄ and s2 are the
sample mean and variance, respectively, and µ and σ2 are the theoretical mean and variance. The latter
two quantities are functions of α and β and can be calculated from these parameters using expValDb()
and varDb(). The minimization is accomplished using optim(). “Theoretically”, the minimum should
be zero. The achieved minimum is provided as an attribute "minSqdiff" of the value returned by
exactMeDb() so that the user can see how successful the minimization was. In section The quality of
the estimates, the “exact” moment estimates are denoted by α̃ and β̃.

Somewhat to my surprise, exactMeDb() performed (in the simulation experiments that I conducted)
essentially as well as mleDb(). Occasionally exactMeDb() out-performed mleDdb() in terms of mean
squared error. See section Quality of the estimators. On the other hand, it appears that exactMeDb()
is substantially slower than mleDb(). In a small simulation experiment I found that mleDb() was about
20 times as fast as exactMeDb() (with times measured as the "user" time returned by system.time())

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 490

when starting values were taken to be the approximate moment estimates, and nearly 30 times as fast
when starting values were taken to be the true parameter values.

The function mleDb() returns an object of class "mleDb", and there is a corresponding plot()
method to produce plots of the probability mass functions for distributions having parameters equal
to the given estimates. There is also a stand-alone plotting function plotDb() which plots the PMF of
a db distribution given specified parameters.

The package also has functions that provide means of estimating or calculating the covariance
matrix of the parameter estimates. These functions enable the assessment of the uncertainty in the
estimates of the parameters. The functions are: aHess() (“analytic Hessian”), nHess() (“numeric
Hessian”), finfo(), and mcCovMat() (Monte Carlo-based estimate of the covariance matrix). The first
three functions provide matrices whose inverses are estimates of (or in the case of finfo() equal to)
the desired covariance matrix, given the supplied parameter values. The function nHess() calls upon
optimHess() from the stats package. The function aHess() makes use of the expressions set out in
Appendix II.

The values produced by aHess() and nHess() generally appear to be in very good agreement.
However, if the parameter values are “unreasonably large” (e.g., α = 150, β = 400), then there can be
a substantial disparity between the values. In such instances, it would be inadvisable to trust either
result.

Of course, the real reason for calculating the Hessian is to obtain an estimate of the covariance
matrix of the parameter estimates. Another way to obtain an estimated covariance matrix is to use the
Monte Carlo methods conveniently provided by the function mcCovMat() referred to above. Again,
there is generally good agreement between the value produced by mcCovMat() and the inverse of
the Hessian produced, e.g., by aHess(). However, unless the sample size is quite large, the variance
entries of the inverse Hessian are noticeably smaller than those of the matrix returned by mcCovMat():

set.seed(25)
x <- rdb(n=30,alpha=3,beta=4,ntop=10)
fx <- mleDb(x,ntop=10)
solve(aHess(fx))

alpha beta
alpha 0.7712032 1.047111
beta 1.0471108 1.790513
mcCovMat(fx)

alpha beta
alpha 1.342672 1.889880
beta 1.889880 3.291645

Further discussion of this phenomenon is to be found in Appendix III.

The dbd package also contains a function llPlot() for plotting log-likelihood surfaces and a
function gof() for performing tests of goodness of fit for the db distribution. The llPlot() function
may be useful in diagnosing problems with parameter estimation should these arise. The tests effected
by gof() may be either chi-squared-based tests or Monte Carlo tests. Users should be aware that Monte
Carlo tests (which use a relatively small number of simulations) are random. Performing a Monte Carlo
test is not the same as simulating a large number of test statistics (under the null hypothesis) in order
to approximate the null distribution of the statistic. See, for example, Baddeley et al. (2015, Section
10.6, p. 384) for some discussion of such tests.

Estimation of parameters

There is, unsurprisingly, no closed-form for any sort of estimates of the shape parameters of a db
distribution. Estimates may, however, be calculated reasonably easily via (numerical) maximum
likelihood or by solving for moment estimates numerically. The functions mleDb() and exactMeDb()
from the dbd package, discussed in the section Implementation make use of the optim() function
from the stats package (automatically available in R) to effect the calculations.

The optim() function requires starting values for the parameters being estimated. It turns out
that adequate starting values can be produced, as indicated in the section Implementation, via a
(very!) rough explicit approximation to the method of moments. To develop the approximation, it is
necessary to go back to the conceptual definition of the db distribution expressed in terms of the Beta
distribution (1). In terms of the conceptual definition, the mean and variance of a db distribution with
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shape parameters α and β may be written as

µ =
1
κ

n

∑
i=0

i f ((i + 1)/(n + 1))

σ2 =
1
κ

n

∑
i=0

(i − µ)2 f ((i + 1)/(n + 1)),

where f (·) is the probability density function of the Beta distribution with shape parameters α and β,
n is equal to ntop (the maximum value of the support of the distribution), and κ is the normalizing
constant

κ =
n

∑
i=0

f ((i + 1)/(n + 1)) .

In the foregoing, zero origin indexing (i.e., that ζ is TRUE) is assumed. This is of no real consequence
given that the method is so rough to start with.

To get approximate expressions for the mean and variance of the distribution, one may manipulate
the sums in the expressions for µ, σ2, and κ into the form of Riemann sums that approximate integrals.
This reveals that

µ ≈ (n + 2)2

κ

∫ 1

0
x f (x) dx − 1

and that

κ ≈ (n + 2)
∫ 1

0
f (x) dx .

The integral of x f (x) is the mean of the associated Beta distribution, α/(α + β) (Johnson et al. 1995,
Chapter 25, equation 25.15a) and the integral of f (x) is, of course, just 1, whence κ ≈ n + 2. Therefore,

µ ≈ (n + 2)α
α + β

− 1 .

Proceeding similarly, one finds that

σ2 ≈ (n + 2)2αβ

(α + β)2(α + β + 1)
.

This latter result makes use of the fact that the variance of the associated Beta distribution is

αβ

(α + β)2(α + β + 1)

(Johnson et al. 1995, Chapter 25, equation 25.15b).

To calculate the approximate method of moments estimates, which I shall denote by ᾰ and β̆
respectively, equate the foregoing approximate expressions for µ and σ2 to the observed sample mean
and variance (x̄ and s2) and solve for α and β. One obtains

ᾰ =
(n + 2)2a
s2(a + 1)3 − 1

a + 1

β̆ = aᾰ,

where for convenience, I have set a = (n + 1 − x̄)/(1 + x̄).
Note that although the Beta distribution is undefined for non-positive values of α and β, the

foregoing approximate moment estimation procedure can be applied without problem to data for
which non-positive parameter estimates are appropriate.

It must be emphasized here that the explicit moment estimation procedure discussed above is not
intended to be applied by users. It is provided for the purpose of producing starting values for the
maximum likelihood and “exact” moment estimation procedures. The estimates produced via the
explicit moment estimation procedure are not very good, and in general, appear to be substantially
biased. (See Figure 4.) Despite this, they seem to be adequate as starting values.

Quality of the estimators

I investigated the question of how well the estimation procedures perform by means of a number of
simulation experiments.
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Some confidence intervals for the parameters

In the first experiment, I determined interval estimates of α and β for a small grid of true values of
these parameters. One hundred samples were generated for each combination of the true parameter
values, and the means and standard errors of these estimates were calculated. Each sample was of size
of 100. For each combination of the true parameters, 95% confidence intervals (mean ±1.96× standard
error) for the individual parameters were then calculated. Table 1 displays the sample means of the
estimates of α and β and the corresponding confidence intervals.

Half of the 18 confidence intervals failed to cover the true values. For the (3, 3) combination, the β
interval failed to cover. For the (3, 6), (6, 6), (9, 3), and (9, 9) combinations, both intervals failed to
cover. Where the confidence intervals failed to cover, they missed on the high side. As shall be seen
later on, (Figure 6 in subsection Asymptotic bias in the maximum likelihood estimates), this would
seem to be the expected behavior. The amounts by which the confidence intervals missed the true
values were not egregiously large. The worst case was for the (9, 3) combination, where the lower
endpoint of the confidence interval for α was greater than 9 by 0.294.

α β ¯̂α 95% CI for α ¯̂β 95% CI for β

3 3 3.014 (3.005, 3.023) 3.011 (3.003, 3.019)
3 6 3.029 (3.021, 3.038) 6.058 (6.041, 6.075)
3 9 3.018 (3.01, 3.026) 9.056 (9.031, 9.08)
6 3 6.056 (6.04, 6.072) 3.015 (3.007, 3.022)
6 6 6.029 (6.012, 6.046) 6.042 (6.025, 6.059)
6 9 6.019 (6.004, 6.035) 9.022 (8.999, 9.045)
9 3 9.002 (8.974, 9.029) 3.008 (2.998, 3.017)
9 6 9.032 (9.007, 9.057) 6.014 (5.997, 6.031)
9 9 9.032 (9.006, 9.057) 9.005 (8.979, 9.031)

Table 1: Some sample mean parameter estimates and 95% confidence intervals for the true values.

Comparison of estimators using mean squared error

I next conducted an experiment to investigate how well the two sorts of moment estimator compared
with the maximum likelihood estimator. In this experiment, 100 samples, each of size 100, were
generated (using rdb()) from distributions

db(αi, β j, ntop = 10, ζ = TRUE),

with αi and β j varying over the set {0, 1, 2, ..., 9, 10}. For each of the three possible estimators (explicit
but approximate method of moments, “exact” method of moments, and maximum likelihood), the
mean squared error of the estimates, corresponding to the appropriate set of 100 samples, was
calculated. The mean square error is defined as

MSE = (α − ᾱ)2 + (β − β̄)2 + s2
α + s2

β .

In the foregoing, ᾱ and s2
α are the sample mean and variance of the 100 values of the estimates of α

(ᾰi, α̃i, α̂i as the case may be) arising from the 100 samples generated for the given pair of parameter
values. Similarly for β̄ and s2

β. A subset of the MSE values that were produced is presented in table 2.

It is worth mentioning that the MSEs of the “exact” moment estimates and of the maximum
likelihood estimates were not adversely affected by the possibly poor starting values provided by the
approximate moment estimates. In a simulation experiment, it is possible to use the true values of the
parameters as starting values. Doing so gave rise to estimates that were virtually identical to those
obtained when the approximate moment estimates were used to start the optimization.

A plot of the “exact” moment estimates against the maximum likelihood estimates is shown in
Figure 3. The MSE for the “exact” moment estimates tracked the MSE for the maximum likelihood
estimates almost exactly except for one striking outlier, corresponding to the parameter pair α = 10,
β = 0. A little bit of further experimentation indicated that this outlier is a one-off aberration, and
that both “exact” moment estimation and maximum likelihood estimation are subject to occasional
instability. More simulation experiments could be considered, but there are too many possibilities for
this line of enquiry to be pursued in the current paper.

Unsurprisingly, the MSE of estimates produced by the approximate moment method did not track
that of the maximum likelihood estimates nearly as closely, as shown in Figure 4. There is some
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Mean squared error
α β Approx. Mom. Exact Mom. Max. Like.
0 0 1.24 0.10 0.10
5 0 55.58 8.13 8.03

10 0 636.59 102.20 45.55
0 2 4.93 0.69 0.71
5 2 1.10 1.10 1.09

10 2 9.24 7.11 6.83
0 4 27.60 2.50 2.43
5 4 1.02 1.02 1.06

10 4 3.19 3.28 3.45
0 6 94.64 8.58 8.53
5 6 1.34 1.34 1.37

10 6 3.08 3.06 3.13
0 8 292.97 28.21 28.08
5 8 1.48 1.47 1.45

10 8 3.53 3.53 3.69
0 10 556.54 50.80 52.78
5 10 3.82 3.80 3.93

10 10 5.40 5.40 5.78

Table 2: Subset of the MSE values plotted in Figures 3, 4 and 5.

suggestion that the MSE pairs are close to the “y = x” line for small values of MSE, but for values
larger than about five, the plot of the MSE values becomes rather wild.

Evidence from the simulation experiments described here indicates that the MSE becomes large
when the difference between α and β becomes large. Figure 5 displays a plot of the maximum
likelihood MSE against |α − β|. This figure indicates that the MSE values are all of roughly the same
“moderate” size until the absolute difference becomes greater than or equal to six. At this point the
values start to increase substantially.

Asymptotic bias in the maximum likelihood estimates

The squared bias component of the MSE for the maximum likelihood estimates was substantial.
However, the simulation experiment described above used a sample size of 100 exclusively. To assess
the impact of sample size on the bias in the estimates, I undertook a further simulation experiment
in which I set α and β to have true values 0 and 10 respectively, which were the values that led, in
the foregoing experiment, to the largest MSE. The sample size was allowed to range over the set
{100, 200, 300, 500, 1000, 5000}. Five hundred simulated samples were generated in each instance, and
the means and standard errors of the bias in parameter estimates were calculated.

Ninety-five percent confidence intervals for the mean bias at were plotted for both the α and β
estimates. These plots are shown in Figure 6. This figure indicates that for this pair of true parameter
values, the bias remains “significantly” different from 0 until the sample size reaches the surprisingly
large value of 2000.

Examples

Example 1: Simulated binomial data

For an initial example, I simulated 100 data from a binomial distribution Bin(10, 0.25) and fitted
a db distribution to that. I set ζ =TRUE and ntop = 10 (the “conceptual” upper bound). A plot of the
resulting fit is shown in Figure 7. The fit is consistent with the other possible values of the probabilities
of the various counts.

Example 2: The Downloads data

The Downloads data from Weiß (2018) consist of a time series (of length 267) of the observed daily
number of downloads of a TEX editor for the period from June 2006 to February 2007. These data are

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 494

0 10 20 30 40 50

0
20

40
60

80
10

0

MSE for maximum likelihood

M
S

E
 fo

r 
th

e 
ex

ac
t m

om
en

t m
et

ho
d

Figure 3: The MSE from “exact” moment estimation plotted against the MSE from maximum likelihood
estimation. The superimposed red line is the line of “exact agreement” between the two estimators, i.e.
it has slope 1 and intercept 0.

available as Downloads in the CRAN package hmm.discnp. They can also be obtained from the Wiley
website https://www.wiley.com/en-gb/An+Introduction+to+Discrete+Valued+Time+Series-p-
9781119096962, by clicking on “Downloads” and then on the “Download” button next to “Datasets”.
This will provide a zip archive of all of the data sets from Weiß’s book.

Prima facie, it might seem plausible that these data are Poisson-distributed, but they are, in fact,
much too overdispersed to be Poisson; the sample mean is 2.401, whereas the sample variance is 7.506.
Weiß finds that an INAR(1) (integer-valued autoregressive, p = 1) model provides a good fit. In fitting
a db distribution to these data, I took ζ = TRUE (zero counts are observed) and ntop = 15 (1+ the
observed maximum of the data, which is 14). This db fit yields a mean of 2.451 and a variance of
7.461. A plot of this fit is shown in Figure 8. Of course, simply fitting a db distribution is not really
appropriate since this treats the data as being i.i.d., and as Weiß’s analysis shows, there is strong
evidence of serial dependence in these data. Moreover, a goodness of fit test yields a p-value of 0.03
(see the help for gof() in the dbd package). One would thereby reject the hypothesis that the fit of the
db distribution is adequate at the 0.05 significance level.

In other analyses of these data, the details of which it is inexpedient to discuss here, I have fitted
hidden Markov models with marginal db distributions and varying numbers of states to these data. I
used both AIC and BIC to select the number of states. Both criteria indicate that a two-state model is
optimal, i.e., a model involving serial dependence is chosen over the model in which the data are i.i.d.

Example 3: The Sydney Coliform Count data

These data were analyzed in Turner et al. (1998). In that paper, the data were modeled after a
certain transformation had been applied, as having a hidden Markov model structure with marginal
Poisson distributions. I have since discretized these data into five (ordered) categories. The resulting
data set is available as SycColDisc in the package hmm.discnp. I fitted db distributions to subsets of
these data, treating them as having the numeric values 1, 2, . . . , 5, taking ntop = 5 and ζ = FALSE.

Plots of the fits, together with the observed proportions, are shown in Figure 9, for the Bondi East
data at each of the four depths, 0, 20, 40, and 60 meters.

Example 4: The Sydney Coliform Count data (continued)

In general, it may be of interest to provide graphical representations of the uncertainty in the estimates
of the parameters of db distributions. This can be done by plotting (say) 95% confidence ellipses
around the point estimates. The ellipse package (Murdoch and Chow 2018) provides convenient
means of plotting such ellipses.

In the context of the current example, it is also of interest to examine whether there are differences
amongst the distributions associated with the various depth and location combinations. Such exami-
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Figure 4: The MSE from approximate moment estimation plotted against the MSE from maximum
likelihood estimation. The superimposed red line is the line of “exact agreement” between the two
estimators, i.e. it has slope 1 and intercept 0.

nation can also be effected by means of plotting confidence ellipses. In this setting, one would plot
confidence ellipses for the differences between the parameters corresponding to different combinations.
Assuming that the samples are independent (possibly problematic here), the covariance matrix on
which to base the confidence ellipse for the difference between the parameters is the sum of the two
individual covariance matrices.

It is also possible to test the hypothesis that the distributions corresponding to a number of
different combinations of depths and locations are all identical (again assuming the samples to be
independent) by means of a likelihood ratio test. The foregoing ideas can be illustrated using the four
different depths at the "BondiE" location. Confidence ellipses for the parameters corresponding to the
four depths are shown in Figure 10. Confidence ellipses for the six pairwise differences are shown in
Figure 11. Code for effecting the likelihood ratio test is as follows:

library(dbd)
X <- hmm.discnp::SydColDisc
X$y <- as.numeric(X$y)
X <- split(X,f=with(X,interaction(locn,depth)))
X <- X[c("BondiE.0","BondiE.20","BondiE.40","BondiE.60")]
fitz <- lapply(X,function(x){mleDb(x$y,ntop=5)})
x.all <- unlist(lapply(X,function(x){x$y}))
fit.all <- mleDb(x.all,ntop=5)
ll0 <- logLik(fit.all) # Two parameters.
ll1 <- sum(sapply(fitz,logLik)) # Eight parameters.
print(pchisq(2*(ll1-ll0),6,lower=FALSE)) # Df = 8 - 2.

The resulting p-value is 0.9781; i.e., there is no evidence at all of any differences. This conclusion is
confirmed by Figure 11, wherein it can be seen that the 95% confidence ellipses all contain the point
(0, 0). It is also in accordance with the visual impression given by Figure 9 in which the plots of the
four distributions all look very similar.

An analogous exercise was done involving measurements all made at a depth of 60 meters, at
four of the seven locations (Longreef, Bondi East, Malabar Offshore, and North Head Offshore; two
“controls” and two “outfalls”). The likelihood ratio test yielded a p-value equal to 6.37 × 10−9, i.e.,
effectively zero. The origin (0, 0) was exterior to the 95% confidence ellipses for the pairwise differences
in four of the six instances.

Note that the foregoing analyses of the Sydney Coliform data are superficial in that they take
no account of the serial dependence of these data. Undertaking analyses that accommodate serial
dependence would lead us much too far afield.
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Figure 5: The MSE from maximum likelihood estimation plotted against the absolute value of the
difference the parameters in the corresponding parameter pair.

Example 5: Monocyte counts and psychosis ratings

The monocyte counts and psychosis ratings data arose in a study initiated by Jonathan Williams,
who was at the start of the study, working for the Northland District Health Board in New Zealand.
The study is still ongoing, and the results have not yet been published. The data involved cannot be
publicly released due to patient confidentiality issues.

This example is really what motivated the development of the db distribution. The data consist of
pairs of sequences of observations of monocyte blood counts, discretized to a 1 to 5 scale, and ratings
of severity of psychosis on a 0 to 4 scale. The observations were made on 1258 patients. They were
made at irregularly spaced times, and there were varying numbers of observations per patient. The
different types of sequence were not observed at the same times, and there were usually different
numbers of observation between the types.

The analysis of these data was intricate, and the details cannot be gone into here. The crucial feature
of the analysis is that hidden Markov models, whose marginal distributions were db distributions
were fitted to both types of sequence. The value of ntop was taken to be 5 for the monocyte counts
and 4 for the psychosis ratings, and that of ζ to be FALSE for the monocyte counts and TRUE for the
psychosis ratings.

For each type, a three-state model was chosen (by means of a cross-validation technique). Plots of
the db distributions corresponding to each of the three states are shown for the monocyte counts in
Figure 12 and for the psychosis ratings in Figure 13.

Example 6: The Parsonnet scores from the cardiacsurgery data

As discussed in the introduction, I fitted both a db and a beta-binomial distribution to these data and
conducted goodness of fit tests. In the case of the db distribution, I chose ntop = 71 and set zeta =
TRUE (since zeroes appear in the data). In the case of the beta-binomial distribution, I set size = 71.
The value 71 is that which was used in the paper by Wittenberg (to appear in Statistical Methods in
Medical Research) referred to on page 485.
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Figure 6: Ninety-five percent confidence intervals for the mean bias in estimates of α = 0 and β = 10,
plotted against the sample size. Five hundred sample were generated for each sample size. The red
horizontal lines are the desired zero bias level.

# Note that the package spcadjust must be available.
data("cardiacsurgery", package = "spcadjust")
xxx <- cardiacsurgery$Parsonnet
fit1 <- mleDb(xxx,ntop=71,zeta=TRUE)
g1 <- gof(fit1,obsd=xxx,MC=TRUE,verb=TRUE,seed=42)
fit2 <- mleBb(xxx,size=71)
g2 <- gof(fit2,obsd=xxx,MC=TRUE,verb=TRUE,seed=17)

Seeds were set in the calls to gof() in order for the Monte Carlo p-values to be reproducible. In both
cases, the value of nsim was left at its default value of 99, which yielded a Monte Carlo p-value of 0.01.
The values of the test statistic were huge, 12792.5 in the case of the db distribution, and 4004.668 in the
case of the beta-binomial distribution. I therefore strongly suspect that if nsim had been increased to,
say 9999, then the p-values would have been 0.0001. Howeveri, I have not checked this out.

Plots of the fits (not shown) can be produced by:

plot(fit1,obsd=xxx,main="db")
plot(fit2,obsd=xxx,main="beta-binomial)

These plots reveal that there are indeed substantial discrepancies between the fitted probabilities
and the observed proportions. The fitted probabilities from the dbd distribution, although differing
significantly from the observed proportions, are “not too different” from each other. This can be seen
from the plot (again not shown) that can be produced by:

x1 <- plot(fit1,plot=FALSE)
x2 <- plot(fit2,plot=FALSE)
ylim <- range(x1$p,x2$p)
plot(fit1,main="Comparing db and beta-binomial fits",ylim=ylim)
with(x2, lines(x+0.5,p,type="h",col="blue"))
legend("topright",lty=1,col=c("red","blue"),

legend=c("db","beta-binomial"),bty="n")

The large size (5595), of the data set that is involved here, revealed an interesting timing issue. The
goodness of fit test took a great deal (of the order of 50 times) longer for the beta-binomial distribution
than for the db distribution. Some rudimentary timing experiments revealed that for data sets of this
size, the random number generator rbetabinom() from the rmutil package is about 50 times slower
than rdb() from the dbd package. I have not investigated the reason for this phenomenon.
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Figure 7: Fit of a db distribution to a sample from a Bin(10, 0.25) distribution. Also shown are the
observed proportions, the true binomial probabilities, and the fitted binomial probabilities.
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Figure 8: Fit of a db distribution to the Downloads data from Weiß (2018). Also shown are the observed
proportions.

Example 7: Underdispersed data

As mentioned in the introduction, the dbd package provides two data sets which are of the na-
ture of binomial data but appear to be underdispersed relative to the binomial distribution. Here are
some examples which illustrate fitting db and beta-binomial distributions to these data.

The horse race prediction data from the dbd package (see the help for hrsRcePred) provides four
examples.

library(dbd)
X <- hrsRcePred
top1e <- X[X$sbjType=="Expert","top1"]
top1n <- X[X$sbjType=="NonXpert","top1"]
top3e <- X[X$sbjType=="Expert","top3"]
top3n <- X[X$sbjType=="NonXpert","top3"]
fit1e <- mleDb(top1e,ntop=10,zeta=TRUE)
fit1n <- mleDb(top1n,ntop=10,zeta=TRUE)
fit3e <- mleDb(top3e,ntop=10,zeta=TRUE)
fit3n <- mleDb(top3n,ntop=10,zeta=TRUE)

The ratios of the raw variance to the putative binomial distribution variance are 0.4895, 0.4100, 0.5718
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Figure 9: Fits of db distributions to discretized Sydney coliform count data from the Bondi East
location, at depths equal to 0, 20, 40, and 60 meters. Also shown are the observed proportions.
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Figure 10: Ninety-five percent confidence ellipses for the parameters of the db distributions fitted to
the data from the Bondi East location at depths 0, 20, 40, and 60 meters.

and 0.7745 respectively. All ar substantialy less than 1, whence these data sets appear to be indeed
underdispersed.

The fitting procedures proceeded without complaint for all four data sets. Goodness of fit tests
(two of which required increasing maxit from its default value) indicate adequate fit for three of the
four data sets.

# Set seeds to get repeatable Monte Carlo p-values.
pv1e <- gof(fit1e,obsd=top1e,MC=TRUE,maxit=5000,

seed=49,verb=TRUE)$pval # 0.02
pv1n <- gof(fit1n,obsd=top1n,MC=TRUE,

seed=128,verb=TRUE)$pval # 0.79
pv3e <- gof(fit3e,obsd=top3e,MC=TRUE,

seed=303,verb=TRUE)$pval # 0.35
pv3n <- gof(fit3n,obsd=top3n,MC=TRUE,maxit=3000,

seed=24,verb=TRUE)$pval # 0.40

There is significant evidence that the db distribution is not appropriate for the top1e data (p-value
= 0.02). For the other three data sets, the p-values are all large, indicating that there is no evidence of
any problems with any of these fits.
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Figure 11: Ninety-five percent confidence ellipses for pairwise differences between the parameter
vectors of the db distributions fitted to the data from the Bondi East location at depths 0, 20, 40, and 60
meters.

Note that for the problematic fit (i.e., fit1e), the parameter estimates might be considered to be
excessively large:

alpha beta
145.14659 21.23249

This may be indicative of problems.

The beta-binomial distribution fits acceptably to all four of the data sets top1e, top1n, top3e, and
top3n. For example, for the first of these data sets (for which the fit of the db distribution was rejected),
the following code produces a Monte Carlo p-value of 0.11:

bbfit1e <- mleBb(top1e,size=10)
bbpv1e <- gof(bbfit1e,obsd=top1e,MC=TRUE,maxit=5000,

seed=792,verb=TRUE)$pval # 0.11

(For the other three data sets, Monte Carlo p-values of 0.64, 0.62, and 0.75 were obtained.)

Another two examples of underdispersed data are provided by the visual recognition data from
the dbd package (see the help for visRecog). The ratios of the raw variance to the putative binomial
distribution variance for these data are 0.7635 and 0.7979. The Monte Carlo p-values from fitting the
db distribution were 0.92 and 0.71, and those from fitting the beta-binomial distribution were 0.97 and
0.83.

As a “reality check”, it is worth noting that fitting a simple binomial distribution to these data
sets yielded Monte Carlo p values, from goodness of fit tests, equal to 0.13, 0.61, 0.72, and 0.70 for the
hrsRcePred data, and 0.98 and 0.81 for the visRecog data. That is, binomial distributions fit these data
sets acceptably despite their apparent underdispersion.

Concluding remarks

The db distribution is a new distribution that can be applied to any sort of data that takes values in
a finite discrete set. It is an ad hoc distribution and does not require any theoretical justification in
terms of properties that the data may have. It is very flexible, with the restriction that (as remarked
in the Introduction) it is effectively unimodal. The values of the distribution are integers varying
from 0 to n or from 1 to n for some n, and data to which a db distribution is to be fitted must be
converted (recoded) into that form. In order that the fit should make practical sense, the data should,
generally speaking, bear some relation to counts or at least be ordered. However, there is no theoretical
requirement that this should be the case.

A number of examples have been given in this paper illustrating the fit of the db distribution to
different data sets. These examples show that the db distribution may reasonably be expected to be
useful to data analysts who need to deal with discrete data that do not conform to one of the standard
distributions.
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Figure 12: Marginal db distributions corresponding to each of the three states of a hidden Markov
model fitted to the monocyte count data.
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Figure 13: Marginal db distributions corresponding to each of the three states of a hidden Markov
model fitted to the psychosis rating data.

Appendix I

Here I derive, from the conceptual definition (1) of the db distribution, an expression for the PMF
of this distribution which, for fixed values of the support parameters ntop and ζ, is in exponential
family form. A distribution is in the exponential family if its probability density or mass function has
a particular structure. Different authors and books express this structure in a variety of equivalent
ways. (See e.g., Cox and Hinkley 1974, p.94, Davidson 2003, p. 168, Hogg et al. 2005, p. 400. Liero
and Zwanzig 2012, p. 15, Abramovich and Ritov 2013, p. 13. The reader may also find it useful to
access https://en.wikipedia.org/wiki/Exponential_family.) Almost all of the commonly used
distributions (with the notable exception of the uniform distribution) are in the exponential family.

A suitable expression for the exponential family form of a probability density or mass function, of
a (scalar) distribution depending on a parameter vector θ = (θ1, . . . , θk)

⊤, is

f (x | θ) = h(x) exp

(
k

∑
i=1

ηi(θ)Ti(x)− A(θ)

)
.

The “natural parameters” of the distribution are the ηi(θ).

The pdf of the Beta distribution can be written in exponential family form (with natural parameters

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://en.wikipedia.org/wiki/Exponential_family


CONTRIBUTED RESEARCH ARTICLES 502

equal to α and β) as

f (x | α, β) = hB(x) exp{α log(x) + β log(1 − x)− log B(α, β)},

where hB(x) = (x(1 − x))−1, and B(α, β) is the beta function which is equal to Γ(α)Γ(β)/Γ(α + β)
(where in turn Γ(·) is the gamma function).

The PMF of the db distribution, expressed in terms of the Beta distribution (1), is

Pr(X = x | α, β) =
1
κ

f
(

x − nbot + 1
ntop − nbot + 2

)
,

where f (·) is the pdf of the Beta distribution and

κ =

ntop

∑
i=nbot

f
(

i − nbot + 1
ntop − nbot + 2

)
.

Hence, if one sets h(x) = hB((x − nbot + 1)/(ntop − nbot + 2)), T1(x) = log((x − nbot + 1)/(ntop −
nbot + 2)), and T2(x) = log((ntop − x + 1)/(ntop − nbot + 2), then the PMF of the db distribution can
be written as

Pr(X = x | α, β) = h(x) exp

αT1(x) + βT2(x)− log

 ntop

∑
i=nbot

h(i) exp{αT1(i) + βT2(i)}


Note that the log B(α, β) terms, present in f (·), cancel when

f
(

x − nbot + 1
ntop − nbot + 2

)
is divided by κ.

The foregoing expression for the PMF is equal to

Pr(X = x | α, β) = h(x) exp{αT1(x) + βT2(x)− A(α, β)},

where

A(α, β) = log

 ntop

∑
i=nbot

h(i) exp{αT1(i) + βT2(i)}

 .

This is the expression given in (2) and is of exponential family form, although the constant A(α, β)
might appear to be somewhat unorthodox.

Obviously, the value of A(α, β) is such that the values of Pr(X = i | α, β), i = nbot, . . . , ntop, sum
to 1.

Appendix II

When the PMF of a db distribution is expressed in the form (2), it is a relatively simple matter to derive
an analytic expression for the gradient of the log-likelihood. Such an expression can be passed to
optim() obviating the need for approximating the gradient numerically via finite differencing. The
derivation of an analytic expression for the Hessian is equally easy. The optim() function makes no
provision for using an analytically calculated Hessian. However, the availability of such an expression
permits the calculation or estimation of the covariance matrix of the parameter estimates in an analytic
manner. The derivations of the expressions for the gradient and Hessian are as follows.

The log-likelihood is

ℓ = log Pr(X = x | α, β, ntop, ζ)

= log h(x) + αT1(x) + βT2(x)− A(α, β) .

Consequently, the gradient is given by

∂ℓ

∂α
= T1(x)− ∂A

∂α

∂ℓ

∂β
= T2(x)− ∂A

∂β
.
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The Hessian is given by
∂2ℓ
∂α2 = − ∂2 A

∂α2
∂2ℓ

∂α∂β = − ∂2 A
∂α∂β

∂2ℓ
∂β2 = − ∂2 A

∂β2

Now let

E = exp(A) =

ntop

∑
i=nbot

h(i) exp{αT1(i) + βT2(i)} .

Clearly
∂A
∂α

=
1
E

∂E
∂α

∂A
∂β

=
1
E

∂E
∂β

∂2 A
∂α2 = 1

E
∂2E
∂α2 − 1

E2

(
∂E
∂α

)2
∂2 A
∂α∂β = 1

E
∂2E

∂α∂β − 1
E2

(
∂E
∂α

∂E
∂β

)
∂2 A
∂β2 = 1

E
∂2E
∂β2 − 1

E2

(
∂E
∂β

)2
.

It remains to calculate the relevant partial derivatives of E. These are given by:

∂E
∂α

=

ntop

∑
i=nbot

h(i)T1(i) exp(αT1(i) + βT2(i))

∂E
∂β

=

ntop

∑
i=nbot

h(i)T2(i) exp(αT1(i) + βT2(i))

∂2E
∂α2 =

ntop

∑
i=nbot

h(i)T1(i)2 exp(αT1(i) + βT2(i))

∂2E
∂α∂β

=

ntop

∑
i=nbot

h(i)T1(i)T2(i) exp(αT1(i) + βT2(i))

∂2E
∂β2 =

ntop

∑
i=nbot

h(i)T2(i)2 exp(αT1(i) + βT2(i)) .

The foregoing calculations have been translated into R code in the (undocumented) functions
gradDb() and hessDb() in the dbd package.

Appendix III

Covariance matrices of the maximum likelihood estimates of the parameters of a db distribution may
be calculated both by theoretical means (using, e.g., aHess() from the dbd package) or by a Monte
Carlo procedure using the mcCovMat() function from the same package. Doing such calculations in a
number of examples has indicated that there can be noticeable discrepancies between the theoretical
and Monte Carlo results. To investigate this issue further, I calculated the variance of β̂ from known
(rather than estimated) parameters using both the theoretical (inversion of the Fisher information
matrix) and Monte Carlo procedures. The essential part of the code used to do this is as follows.

obj <- makeDbdpars(alpha=3,beta=3,ntop=10,zeta=TRUE,ndata=<some value>)
varBeta.mc <- mcCovMat(obj,nsim=500)[2,2]
varBeta.fi <- solve(do.call(finfo,obj))[2,2]

I effected the calculations for a range of sample sizes (“ndata”). The results are plotted in Figure 14.

The behavior depicted in Figure 14 is typical. The theoretical covariance matrices for the parameter
estimates generally include variance entries which (for relatively small sample sizes) are appreciably
smaller than the corresponding entries of the covariance matrices produced by Monte Carlo methods.
Since the Monte Carlo covariance matrices are unbiased estimates of the true covariances, it would
appear that the theoretical variances tend to underestimate the truth. This phenomenon is not peculiar
to the db distribution. Such underestimation occurs in the context of the Beta distribution and very
likely in other contexts as well. As illustrated by Figure 14, the level of underestimation (as would
be expected) diminishes as the sample size increases. In the illustrated instance, the underestimation
effectively disappeared when the sample size reached 200.

The fact that variances are underestimated by the theoretical covariance estimates implies that
inference about the shape parameters based on the theoretical values should be treated with a certain
amount of circumspection. Unless the sample size is large, confidence intervals may be somewhat too
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Figure 14: Monte Carlo and analytic estimates of the log variance of β̂ for various sample sizes.

narrow, and hypothesis tests too liberal. When conducting inference about the shape parameters, it
is advisable to estimate the covariance matrix using mcCovMat(). The procedure is not too computa-
tionally demanding and is thus reasonably quick in normal circumstances. It is probably a good idea,
in circumstances in which inferential conclusions are critical, to calculate a number of Monte Carlo
covariance matrix estimates (using different seeds) and to compare these with each other and with the
“analytic” value of the covariance matrix.

The difference between results from using an “analytic” covariance matrix and those from using a
Monte Carlo covariance matrix is also illustrated in Figure 15. The examples used are from the Bondi
East Sydney Coliform Count data. (See Figures 10 and 11.) The chosen examples evince the most
striking difference between the confidence ellipses based on the two different calculation methods.
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Figure 15: The top two panels show 95% confidence ellipses for the parameters of the db distribution
for the Bondi East data at depth equal to 40 meters. The left-hand panel is based on the “analytic”
covariance matrix, the right-hand panel on a Monte Carlo covariance matrix. The bottom two panels
show 95% confidence ellipses for the difference in parameters between depth 60 meters and depth 40
meters. Again, the left-hand panel is based on the “analytic” covariance matrix and the right-hand
panel on a Monte Carlo covariance matrix. The inferential conclusions with respect to the differences
are unchanged.
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