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The classroom environment influences the ability of children to learn. To ascertain the

effect of indoor environment parameters on student achievement, a large-scale project was

launched, collecting time-logged data from 220 k-12 classrooms in the eastern Nebraska re-

gion for six days each. Data were collected from a variety of disciplines, including acoustics,

lighting, indoor air quality, and thermal comfort. This thesis focuses on the acoustic pa-

rameters, looking first at how overall classroom values–including average sound levels and

room reverberation time–influence student achievement. Using structural equation mod-

eling, the average sound level during times with speech present was discovered to have a

negative effect on math achievement scores while room reverberation time had no statistical

effect on either math or reading in the sample. Second, the time–logged data within each

measured day were explored, observing specifically how the fluctuations over time correlate

to the fluctuations in the data from other disciplines, including indoor air quality, thermal

comfort, and illuminance measures. Indoor air quality parameters, including carbon dioxide

concentration and particulate matter counts, were found to be most closely correlated with

sound level over time. Finally, the effect of ventilation system type was analyzed, observ-

ing how it affects both overall values and time logged correlations. Classrooms with unit

ventilators were observed to have the highest overall non-speech sound levels and a higher

likelihood of finding a strong correlation between sound level and coarse particulate matter.
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Chapter 1

Introduction

1.1 Importance of Classroom Acoustics

Students are the future leaders of society, making education a crucial component of a com-

munity’s infrastructure. A variety of parameters within the building affect the comfort

and performance of occupants. Among these are the acoustics of the classroom, including

reverberation time and noise levels within the room. Numerous metrics exist that charac-

terize the sound within a room and several are explored within this project. This thesis

describes the acoustic results from a project undertaken to measure acoustic and other

indoor environment parameters within schools.

1.2 Healthy Schools Project

A grant from the U.S. Environmental Protection Agency (EPA) enabled the long-term

collection of data within 220 K-12 classrooms in the eastern Nebraska region of the U.S.

(EPA Grant R835633). The project is entitled ”Evidence-Based Interactions between In-

door Environmental Factors and Their Effects on K-12 Student Achievement” and uses

direct measurements of indoor environment parameters to predict student achievement in

classrooms.

220 Schools were measured for this project, with a sampling of rooms from the 3rd grade

(74), 5th grade (70), 8th grade (32) and the 11th grade (44). The classrooms were chosen

from 5 districts, with samplings ranging from 10 to 80 schools per district. Acoustic, Indoor
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Air Quality (IAQ), Thermal Comfort, and Lighting parameters were measured in each of

these classrooms for two days during each of Fall, Winter, and Spring seasons. These data

are considered here for analysis, with particular attention to the acoustic measured data.

1.3 Summary of remaining chapters

Chapter 2 describes the literature within the field and the research that has been done,

looking specifically at classroom acoustics research and studies that have measured sound

levels, their effect on student achievement, or their interaction with other indoor environ-

ment parameters. This chapter outlines further the importance of acoustics within the

classroom.

Chapter 3 provides an overall view of the acoustic component of the Healthy Schools

Project, describing the acoustic measurements and metrics and the subsequent statistical

analyses that relate these parameters with student achievement. Averaged acoustic pa-

rameters were calculated for each classroom, such as the A-weighted equivalent continuous

sound level (LAeq) and octave band levels. K-means clustering was used to divide time-

logged data into times when speech was present and times when speech was not present.

From these divisions, overall sound levels were also calculated for speech and non-speech

categories. Various other acoustics metrics, including statistical levels, were calculated from

the classroom data.

A description of collected demographic variables follows, including percent gifted, per-

cent special education, and percent free and reduced lunch recipients within each classroom.

Subsequently, outcome variables are described, including standardized test scores in the

form of average percentile rankings in reading or math.

A structural equation model is presented that relates the acoustic variables to the out-

come variables, controlling for demographics. The unit of analysis is the classroom, where

the analysis tests for the impact of indoor environment conditions on student achievement.

An effect of speech sound level on math achievement is observed, with higher noise con-

tributing to lower math achievement percentile rankings.
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Chapter 4 takes a deeper dive into the temporal fluctuations of the data in contrast

with the averaged values utilized in Chapter3. Data processing techniques are explained

and correlational analyses were undertaken. Variation of acoustic data was correlated with

temporal variation within other discipline’s metrics, with particular attention to IAQ met-

rics. In particular, positive correlations were found to be likely between sound level and

carbon dioxide and between sound level and coarse particulate matter.

A single classroom case study is presented that measured occupancy count logged over

time in conjunction with the usual indoor environment metrics. Occupancy was found

to significantly correlate with overall sound level and 10μm particle counts in this case.

A-weighted LAe1 fluctuations significantly correlated with all measured quantities in the

sample. Correlations between specific octave frequency band fluctuations, including 125 Hz

and 1 kHz, and slecet parameters are also explored, with 1 kHz noise correlating strongly

with all measured parameters, similar to the overall level, and 125 Hz noise correlating with

fewer parameters.

Chapter 5 explores the effect of a significant contributor of noise in classrooms: the

heating, ventilation, and air conditioning (HVAC) system, looking at HVAC system effects

on both the averaged acoustic parameters and temporal interactions between parameters.

Classrooms are characterized by secondary system type and grouped by building. Significant

differences in non-speech sound level are observed by system type, with unit ventilators

producing the highest average noise levels. With the temporal data, little variation was

found between system type and likelihood of finding a significant correlation except int he

case of fine particulate matter (PM), where classrooms with unit ventilators are more likely

to have significant correlations between temporal variation of sound level and fine PM.

Overall, the acoustics measured in classrooms are considered holistically, first looking at

averaged values and their effects on student achievement. Next, the fluctuations of acoustic

and other parameters throughout the school day are considered. Finally, a characterization

of noise level by HVAC system type is undertaken.
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Chapter 2

Literature Review

The quality of education is always a key concern in society. In the past few decades, research

on how the classroom itself influences education has come to the forefront. This chapter will

review relevant literature exploring the impact of the environment on student performance

as well as research on some of the nuanced interactions between indoor environmental

parameters.

2.1 Acoustics in Classrooms

First, the classroom environment has numerous contributing factors to the ambient con-

ditions, such as the amount of light in the room, air quality, thermal comfort, and sound

level. Vischer (2008), in a review of literature about workspace environmental psychology,

proposed the category of ambient environmental conditions as one of three critical compo-

nents in a workspace (the other two being office layout and process issue). The category

includes lighting, noise, indoor air quality, and thermal comfort. While a classroom is not a

workplace, it bears similarity in the amount of time spent and the need for productivity. In

fact, a recent literature review highlights the effects of classroom architecture on academic

performance from each of the aforementioned disciplines (Lewinski (2015)) and another cites

the classroom’s ’structural environment’–comprised of lighting, acoustics, temperature, air

quality, and accessibility–as one of the key components contributing to an environment that

engenders student achievement (Cheryan et al. (2014)). Since student spend a significant

proportion of their time in classrooms (Zomorodian et al. (2016)), studies have been de-
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voted to each of these aspects with regards to their effect on student performance, typically

isolating one or two disciplines, although some studies have sought a more holistic approach

(Barrett et al. (2015),Astolfi & Pellerey (2008)). While much could be said about each

discipline (Lau et al. (2016)), this paper focuses primarily on the acoustics, thus the liter-

ature reviewed pertains specifically to sound levels and acoustics factors within classrooms

or studies that consider the interaction of acoustic parameters with others.

While the acoustic conditions are important for any grade level, there are significantly

different spatial and acoustic needs for grade schools versus the university environment,

which often consists of lecture halls and larger class sizes. Studies have been done in

several countries looking at the acoustics of either university classrooms (Zannin & Ferreira

(2009),Ricciardi & Buratti (2018),Edgett et al. (2006),Hodgson (1999)) or primary and

secondary school classrooms (Sato & Bradley (2008)). The latter are the focus of this

study, with measurements taken in classrooms ranging from 3rd through 11th grade.

2.1.1 Importance of Speech Intelligibility

First, speech intelligibility in classrooms is a key component when determining how the

environment impacts student learning. In fact, Hodgson (2002) used speech intelligibility

as the quality factor when ranking classrooms at a university in order to determine which

should be renovated. Extensive research has been done in exploring speech intelligibility

issues in classrooms. For example, J. Bradley & Yang (2009) looked at how reverberation

time, early reflections, and different signal to noise ratios affect the speech intelligibility in

classrooms for various ages of children, finding that the signal to noise ratio had the greatest

effect on speech intelligibility, followed by reverberation time. It has been said that the two

key factors determining speech intelligibility are the background noise and the reverberation

time in a space Houtgast (1981), and research has been conducted to understand and even

predict these two parameters in classrooms Hodgson et al. (1999),Hodgson (2001).
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2.1.2 Background and Ambient Noise

As for background noise, the classroom is made up of a complex soundscape of noises with

a variety of characteristics Pakulski et al. (2016). Regardless of the complexity, measuring

background or ambient noise level in some respect is crucial when quantifying the acous-

tics of a classroom and when regarding speech intelligibility. Some studies have considered

the contribution of outdoor noise, such as traffic or transportation noise (Shield & Dock-

rell (2004),Bronzaft (1981)) or noise from the schoolyard Sarantopoulos et al. (2014), many

concluding that higher outdoor noise levels affect the sound level within the classroom itself,

and even the performance of students within the classroom (Shield et al. (2015)). Other

researchers found that higher ambient noise within the classroom, such as from student

activity, contributes to raised vocal production levels in teachers Rantala et al. (2015).

J. E. Dockrell & Shield (2006) explored the effects of both ’babble’ (unintelligible speech)

and ’environmental’ background noise on student achievement in speed and literacy per-

formance tasks, finding that both had potential negative effects on the students’ abilities,

varying depending on the task. Recently, Connolly et al. (2019) found that high back-

ground noise levels significantly impacted student reading and vocabulary performance for

the worse, where students performed less accurately in reading comprehension tasks in the

presence of background noise. This effect was significant when looking at the difference

between 50 dBA background noise and 70 dBA background noise levels, but more difficult

to discern when the second level was lowered to 64 dBA.

While many studies measure noise according to the ANSI S12.60 standard in an unoc-

cupied room, several studies additionally address the importance of considering occupied

sound levels within a classroom (Chan et al. (2015)) or measuring and utilizing both oc-

cupied and unoccupied levels Hodgson (1994). Studies measuring the signal to noise ratio

(SNR) in classrooms take into account both occupied levels and the levels of speech that

the teacher uses when instructing and significantly interact with the speech intelligibility

within a classroom (J. S. Bradley et al. (1999)). A group of researchers in Canada, early in

speech intelligibility research, acknowledged the complexity of speech intelligibility, consid-
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ering early and late sound ratios, center time, early decay time, background noise level, and

reverberation time. They concluded that useful/detrimental ratios of noise can be used as

an alternative to using background noise and reverberation time to determine speech intel-

ligibility (J. S. Bradley (1986b),J. S. Bradley (1986a)), but this idea has not been embraced

widely.

In subjective surveys, correlations between perceived annoyance from sound and actual

measured noise levels were found to have a low correlation in Lundquist et al. (2000).

Another group postulated that room acoustic conditions led to modifications in occupant

behavior in school buildings, such as moving locations for speech communication issues

(Bernardi et al. (2006)). When actual subjective speech intelligibility was measured by

Escobar & Morillas (2015), it was found to correlate strongly with Sound Transmission Index

(STI), suggesting that the metric does a good job of predicting actual speech intelligibility.

Bradley 2008?

The research presented in this thesis considers the noise within the occupied classroom

with the reasoning that this is what the children will experience as they go about their daily

tasks. This noise is further divided into two categories–speech and non-speech noise–that

will be explained in subsequent sections.

2.1.3 Reverberation Time

The other important aspect in determining speech intelligibility is reverberation time, a

key component in most studies on classroom acoustics. For example, Astolfi et al. (2008)

considered both occupied and unoccupied reverberation time, suggesting the importance

of considering both the occupied and unoccupied conditions of a classroom. A majority of

studies have concluded that lower reverberation time can contribute to better conditions for

communication. Both J. Bradley & Sato (2008) and Hodgson & Nosal (2002) warned, how-

ever, that a 0 s reverberation time is never the ideal and that excessively low reverberation

times should be avoided. Early reflections can help support intelligibility.

The two critical components impacting speech intelligibility, noise and reverberation

time, are not entirely independent of each other. A study of classrooms in England, Shield
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et al. (2015) measured reverberation time and both occupied and unoccupied sound levels,

finding that the unoccupied parameters and occupied noise conditions were related. For

example, they found that a higher speech transmission index (STI) was correlated with

lower equivalent sound levels during lessons.

2.2 Acoustics and Achievement Scores

Research linking acoustic factors and actual student achievement have had mixed results.

The group in England, in 2007, studied the effect of classroom noise on student achievement

in young children using standardized test scores. They found that higher noise in the

classroom indeed correlates with lower student achievement scores J. Dockrell & Shield

(2008). Considering external noise, Bronzaft (1981) found that classrooms experiencing

higher noise due to proximity to train tracks had lower reading achievement scores and

that the difference between reading scores in those classrooms disappeared after a noise

abatement program was undertaken. On the other hand, another study found almost no

effect of environmental noise on student achievement (Xie et al. (2011)), but only external

environmental noise was considered. Eagan et al. (2004) studied the effect of aircraft noise on

student achievement for elementary, middle, and high school students, looking specifically at

state-standardized achievement scores and finding that noise reduction helps lower achieving

students, making them less likely to fail. They found little difference in results between math

and reading scores.

2.3 Interactions Between Disciplines

The focus of this thesis is the acoustic conditions within classrooms. However, some in-

teractions between disciplines are considered. For the past few decades, the literature has

addressed indoor environment parameters from a variety of disciplines. While the majority

of studies isolate one or two factors, several recent studies have highlighted the importance

of the interactions between factors. Zhang et al. (2016) notes the additive effect of physical

conditions on young students, suggesting that they are more impacted by environmental
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factors than adults, looking at temperature, relative humidity, carbon dioxide level, illumi-

nance, and sound level. Recently, a study looking at the effect of lighting on student focus

(van Mil et al. (2018)) used student activity noise level as a measure of focus, implicitly

suggesting a relationship between the two factors.

Other studies do not explicitly suggest relationships, but when considering results from

studies in a single discipline, possible relationships between other discipline can be en-

tertained. For example, a study exploring how CO2 feedback in classrooms improves air

quality found relationships between indoor air quality, thermal comfort, and window open-

ing (Wargocki & Da Silva (2012)), which would certainly impact how outdoor sound levels

impact classroom noise. Another study looked at how cognitive development in children

was affected by traffic-related air pollution in schools, finding that children in schools with

higher air pollution (which had quantifiably louder outdoor sound levels due to proximity

to heavy traffic) experienced less growth in cognitive development (Sunyer et al. (2015)).

Several studies have specifically aimed at quantifying the correlations between indoor

environment qualities, such as the work done by Wang et al. (2015), which found signif-

icant correlations between indoor air quality, illuminance, and thermal comfort measures

in classrooms, but did not consider sound level. Others, such as Barrett et al. (2015)

have considered the interaction of different environmental variables-—including acoustic

variables-—with a holistic approach, noting correlations between indoor environment pa-

rameters. They used measurements from 153 classrooms that were collected at one time

on a single day and observed correlations between the averaged values of the classrooms.

The sound levels from this study did not have significant correlations to any of the other

variables. The sound had a low negative correlation with light and air quality, and a low

positive correlation with temperature, but none were statistically significant at either the

0.01 or 0.05 level.

In a similar study headed by another member of that research team, Zhang et al. (2016)

measured 203 English schools, collecting indoor environment data at a single isolated time

and found that noise level had a significant positive correlation (0.203) with CO2 (p<0.01),

but had no significant correlations with illuminance, temperature, or relative humidity. The
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study also considered the state of occupancy, finding that sound level and occupancy had

a correlation of 0.456 for their sample, significant at the .01 level, a finding supported by

the work of Shield & Dockrell (2004), which also found a significant positive correlation

(p<0.01) between number of students and noise level. Some studies, unrelated to noise,

even suggest using CO2 sensor data as a feedback aid in measuring occupancy Pedersen et

al. (2017) using adaptive gray-box (Ebadat et al. (December 2015)) or white-box models

(Ebadat et al. (2017)). Another study considered the use of machine learning on measure-

ments from various disciplines (lighting, temperature, humidity, and CO2) to predict occu-

pancy, but they do not include sound level in the proposed model (Candanedo & Feldheim

(2016)). A relationship between occupancy and sound level is clear, but several confounding

components complicate the sound-occupancy relationship, such as the reverberation time

decreasing as occupancy increases because of the additional absorption of bodies within the

room Hodgson & Nosal (2002).

Toftum et al. (2014) measured CO2 and sound level over logged intervals in six class-

rooms, using an averaged sound and CO2 levels for each lesson–segments of the teaching

day–as the unit of analysis. They found a similar relationship between noise level and CO2

concentration, where higher CO2 concentration throughout the day correlated with higher

noise levels. They suggested that high occupant density (more students) combined with

poor ventilation may lead to elevated levels of CO2 and that this may adversely affect stu-

dent behavior and contribute to higher noise. They also suggested that as the school day

progresses, so does pupil tiredness, which may also lead to elevated levels in both categories.

Forns et al. (2016) studied traffic-related air pollution and noise and found that they both

negatively affected student behavior at school.

2.4 Time Variation of Indoor Environment Parameters

Some of the studies looking at the interactions between the indoor environment parameters

considered averaged values within the classrooms and others looked at the variation of

parameters over time within a single or multiple classrooms. Chapter 4 considers time-
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logged data from several disciplines as they fluctuate throughout a school day and relate to

each other. Some studies have emphasized the importance of considering the time variation

of these data within a classroom. One indoor air quality study (Angelon-Gaetz et al.

(2015) conjectured a time-based relationship between relative humidity and noise level in

classrooms, suggesting that occupants may turn of the unit ventilators to reduce noise,

resulting in increased humidity, although this relationship was never quantified. Vilcekova

et al. (2017) explored the relationships over time between temperature, relative humidity,

carbon dioxide concentration, and air pollution in a sampling of five classrooms in the Slovak

Republic. They logged the data for a week in each classroom at regular time intervals

and reported correlations over time. While they mentioned noise level along with the

aforementioned parameters and logged it over time, sound level correlations with other

parameters were not reported.

There is a suggested grade difference in Barrett et al. (2015), indicating that learning

in children is non-linear with respect to grade level and suggesting that student age should

be controlled for in analyses.

2.5 Motivations for This Work

Chapter 3 describes work done in deriving the acoustic metrics for a larger study, the EPA

Healthy Schools project. While preliminary acoustic results are presented, the focus of this

work is to describe the acoustic data collection and processing method. Full statistical

analysis including all indoor environment parameters is being performed by the whole team

and results will be published as they are formulated. Statistics in this chapter should be

considered exploratory and evolving.

Chapter 4 dives into time-logged relationships between various indoor environment pa-

rameters. While previous studies have looked at relationships between sound level and

other parameters, most have either taken isolated measurements and correlated a class-

room average or taken time-logged data but performed averaging and looked at correlations

on the classroom leve. Studies that have looked at the time-logged relationships between
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disciplines have much smaller sample sizes and have not included extensive discussion of

sound level. This work takes a large sampling of classrooms (n=220) and for each one, looks

at the relationships of the parameters over time, enabling the observation of trends over a

large number of classrooms.

Chapter 5 explores the effect of mechanical system type on noise, helping quantify

a relationship that is typically assumed to exist–that HVAC system type affects noise.

Again, the number of classrooms sampled helps illuminate true trends in a dataset that was

collected from systems functioning in situ. Limited research exists quantifying the effect of

HVAC system type on sound level and particularly on the interaction between sound level

and indoor air quality.
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Chapter 3

Acoustic Analyses of Averaged
Classroom Data

3.1 Overview of Data

A wealth of data from acoustic, lighting, thermal comfort, and indoor air quality disciplines

has been collected from 220 K-12 classrooms. Additionally, demographic information and

student achievement scores were collected in average from each classroom. In this chapter,

the acoustic variables, demographic variables, and outcome variables (achievement scores)

will be described, including a description of collection and calculation methods for each.

Within this chapter, the unit of analysis is the classroom, so data will be described in

terms of classroom averages. Finally, statistical analyses using the classroom unit will be

discussed.

3.1.1 Indoor Environment Data Overview: Unoccupied and Logged

Classroom characteristics, such as room dimensions or room reverberation time–an acoustic

characteristic of a room indicating how long it takes for sound to decay 60 dB–were collected

in unoccupied classrooms, resulting in one value per classroom.

In addition to unoccupied room characteristics, data were logged during the school

day to measure conditions during occupied hours. Logged data include sound levels, air

pollution, carbon dioxide (CO2) concentration, formaldehyde concentration, illuminance,

door state (percent open), temperature, and relative humidity. These data were collected

over two consecutive days—logged at regular time intervals—in each classroom three times
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throughout the school year, roughly corresponding to once per season. This collection

method produced six total days of logged data for each classroom. Sound levels were logged

every 10 seconds while other metrics were logged every 5 minutes. Details about acoustic

data collection methods can be found in Section 3.1.2 and about the processing of other

variables in Section 4.1.1.

To undertake statistical analyses relating achievement to measured variables in each

classroom, a single value was needed for each of the test variables. A value was calculated

for each of the six days and those six were then arithmetically averaged to produce a typical

or likely value for the classroom. The method of calculation for the value within each day

varied based on the metric. For example, temperature was taken as a simple average of

the values experienced each day, averaging between meters. Equivalent continuous sound

levels (LAeq), however, was averaged logarithmically. Logged data and their variation over

time will be considered in Chapter 4. The sound levels and derived acoustic metrics are

discussed in further detail in the subsequent section. In Appendix B, a table of all collected

variables is presented.

3.1.2 Measured Acoustic Variables

This section describes the acoustic variables that were gathered for each classroom, starting

first with unoccupied classroom data then describing the metrics derived from the logged

levels within each classroom.

First, impulse responses were taken in each classroom, resulting in reverberation times

and clarity values. A omnidirectional dodecahedron loudspeaker was used in conjunction

with Type I Larson Davis sound level meter and EASERA software to capture the impulse

response of the room. One source location (at the front of the room, where the teacher

instructs) and two receiver locations within the student seating in the classroom were uti-

lized and sine sweeps were chosen for the test signal. , separating the low, mid, and high

frequency values. Reverberation time (T20) values were collected in the low frequency range

(T20,low), mid-frequency range(T20,mid), and high-frequency range (T20,high). Additionally,

clarity (C50) values were also calculated in each classroom.
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Next, 1-minute unoccupied background noise level measurements (BNL1min) were taken

in each of the classrooms using ANSI S12.60 guidelines. Values for the BNL1min ranged

from 25.2 dBA to 55.1 dBA, with an arithmetic average of 42.9 dBA. 202 of the classrooms

with valid BNL1min measurements (n=214), or 94% of measured classrooms exceeded the

ANSI recommendation of 35 dBA. This finding is consistent with other literature, such as

the study by Zhang et al. (2016) that found indoor ambient noise levels between 40 to 80

dBA–somewhat higher than this sample–and only one classroom of 203 that adhered to the

local standards for noise level and the work by Knecht et al. (2002) that found only 4 of 32

classrooms measured had levels below the ANSI recommended 35 dBA.

In addition to the unoccupied variables, acoustic data were logged throughout the school

days. Two BSWA Type II sound level meters were deployed in each classroom, one in a

measurement kit placed near the teacher’s desk in the classroom and the other hanging

from the ceiling. These meters logged sound levels, including overall levels and octave band

levels from 32 Hz to 16 kHz, every 10 seconds for three 2-day segments in each classroom.

An logarithmic energy average of the two meters was calculated for each measurement point

in time, representing the average sound level in the room. Known unoccupied hours were

removed, resulting in single–day sequences of time–logged acoustic data during the occupied

school day, typically from 08:30 to 15:30, but variable depending on the school.

A variety of metrics were obtained using the logged data from the sound level meters.

First, the overall LAeq values were extracted from the meters. Additionally, k-means clus-

tering, an unsupervised machine learning technique, was used to classify each measurement

point in the time series as either a time where speech sounds were present or a time when

non-speech sounds were present based on the frequency and level content of the signal. For

each day, the speech levels and the non-speech levels were each grouped together and log-

arithmically averaged to produce a single value per day. The six school days (two in Fall,

two in Spring, two in Winter), were arithmetically averaged to produce a single value for

each classroom, resulting in the following two metrics: speech equivalent levels (LAeq,sp)

and non-speech equivalent levels (LAeq,ns). These two metrics contain information from all

frequency bands, so to understand better the potential contributions of specific frequency
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bands, octave band information from 32 Hz to 16 kHz was also extracted from the sound

level meters.

Similar to the overall levels, the octave band information was taken and divided into

speech and non-speech times, logarithmically averaged to produce one value per day, and

arithmetically averaged between the six days in each classroom to produce a single value for

each room. For example, each classroom has a value for speech levels in the 500 Hz octave

band (L500Hzsp) and a value for non-speech levels in the 500 Hz octave band (L500Hzns).

Figure refHist500 shows a histogram of these 500 Hz octave band values for the 220 measured

classrooms. Not all octave bands were of interest in the analysis. The following octave bands

were used to calculate speech and non-speech variables and histograms of their distributions

can be found in Appendix A.1.1:

• speech: 250 Hz, 500 Hz, 1 kHz, 2 kHz

• non-speech: 125 Hz, 250 Hz, 500 Hz

Figure 3.1: Histograms of the daily averaged 500 Hz levels within each classroom for speech
(left, N=220) and non-speech (right, N=220) times during the school day
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3.1.3 Derived Acoustic Variables

In addition to the equivalent levels in each octave band, the time-logged nature of the data

allows for the extraction of other metrics that incorporate behavior over time. A variety of

statistical levels and percent exceeded values were calculated for each of the classrooms.

First, statistical levels were calculated for both speech and non-speech data. Statistical

levels (LN) refer to the level exceeded N percent of the time. For example, L90,ns refers to

the level that was exceeded 90% of the time when speech was not present for a given day.

These metrics are calculated by taking the time-logged levels in either the speech or non-

speech category, ordering by magnitude, and identifying the value at which N% of the data

falls above said value. For each classroom, the following statistical levels were calculated in

the speech and non-speech times: L10, L25, L35, L50, L75, L90. Additionally, the common

L10 – L90 value was calculated for each classroom and noise type; this metric provides some

sense of the difference between typical maximum and typical minimum levels.

Second, percent exceeded values were calculated for each of the classroom and noise

types. Percent exceeded values refer to the percent of time that a certain value was exceeded

during a measurement period. For example, %time > 65dBAsp refers to the percent of time

with speech noise present that the level of said sound exceeded 65 dBA. This is calculated

by taking the vector of time-logged speech values and dividing the number of time units

with values above 65 dBA by the total number of time units with values. For speech times,

60, 65, and 70 dBA were used to calculate percent exceeded values and for non-speech times,

45, 50, and 55 dBA were used, resulting in the following metrics:

• speech: %time > 60dBAsp, %time > 65dBAsp, %time > 70dBAsp

• non-speech: %time > 45dBAns, %time > 50dBAns, %time > 55dBAns

It was discovered that the distributions of percent exceeded levels best approximated a

normal distribution at 65 dBA for speech and 50 dBA for non-speech (see Figure 3.2.

Accordingly, it is recommended that these levels be used when characterizing speech and

non-speech sounds in this manner. Histograms of each of the other statistical levels and
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percent exceeded variables can be found in Appendix A.1.1.

Figure 3.2: Histograms of the percent exceeds values in classrooms for 65 dBA during speech
times (left, N=220) and 50 dBA for non-speech times (right, N=220)

3.1.4 Demographic Variables

To better understand how indoor environment variables affect student achievement, it is

helpful to collect demographic data so the effects of demographics can be controlled for in

the the analyses. For example, classrooms with a high percentage of gifted students would

be expected to have higher achievement scores. Measuring these percentages allow for the

effect to be removed in the overarching analyses.

The demographic variables that were collected and controlled for in analyses include the

percentage of special education (SPED) students in each classroom, the percentage of free

and reduced lunch (FRL) recipients, and the percent of gifted students in each classroom.

Histograms of the distributions of these variables can be found in Appendix A.1.2.
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Table 3.1: Descriptive statistics of demographic variables

Variable Mean Stdev Skew Kurt

%FRL 37.8 29.9 .304 -1.377

%SPED 14.4 12.0 3.226 19.720

%GIFT 13.5 13.7 1.580 3.714

Table 3.1 shows descriptive statistics of the demographic variables used in the analyses,

including the mean, standard deviation, skewness, and kurtosis. The classrooms had widely

ranging demographic profiles, as noted by the high standard deviations in comparison with

the means. Of possible concern is skew of the percent of special education students in class-

rooms, which has slightly larger values for skewness and kurtosis than would be desirable,

indicating that the distributions of these variables do not perfectly follow the assumption

of a typical normal distribution, which can be observed in the histogram (A.35). The skew-

ness and kurtosis were noted and robust sampling was used in later analyses to address

any non-normal distributions. The sample size of 220 was chosen such that the effects of

interest would become apparent above and beyond other possible confounding variables,

such as skill of the teacher or availability of specific resources. Grade levels was also used

in some of the analyses, with 3rd grade used as a reference for the other three grades.

3.1.5 Outcome Variables

Ultimately, the overarching goal of the project is to link measured environment variables to

student achievement, with the outcome variable for the statistical analyses being student

test scores. Standardized state-wide test scores in the form of percentile rankings were

obtained as an average for each classroom in the study. Student percentile ranking scores on

standardized tests were obtained from the schools for each of the classrooms in the sample

and scores were combined into a classroom average. For elementary school classrooms,

both reading and math achievement scores were obtained, as students learn both subjects
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Table 3.2: Descriptive statistics of demographic variables student percentile scores on stan-
dardized achievement tests

Value PRRead PRMath

Valid N 181 178
Mean 55.6% 56.7%
Min 5.0% 18.3%
Max 87.3% 96.0%
Stdev 14.1% 14.6%
Skew -.506 .073
Kurt .311 -.258

in the same classroom. For high school and middle school classrooms, math and reading

achievement scores were obtained in conjunction with the type of instruction performed

in each classroom. For example, some high school classrooms are used only for math

instruction, so only math achievement scores for students in those classrooms were obtained

for the analysis. The number of classrooms with each type of achievement data can be found

in Table 3.2. Math and reading scores are considered in separate and distinct analyses. In

other words, the models are run twice, once on math achievement and once on reading

achievement in order to consider the effects of room environment variables on math and

reading achievement separately.

In addition to the number of classrooms included for each measure of achievement,

descriptive statistics of the outcome variables can be found in Table 3.2. The mean scores

for both reading an math in this sample were just above the 50th percentiles, at 55.6% and

56.7%, respectively. Both ranged widely from below the 20th percentile to above the 85th

percentile with standard deviations of around 14-15% each. Both measures are normally

distributed with both skewness and kurtosis values below 1. The achievement data for both

reading and math were deemed appropriate for use in statistical analysis.
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Figure 3.3: Histograms of the distributions of achievement scores for reading (left, N=181)
and math (right, N=178) in the classrooms

3.2 Statistical Analysis

The statistical analyses conducted on the dataset will be presented. Preliminary investi-

gation of correlations between raw variables will be presented, followed by a discussion of

a measurement model grouping acoustic variables that was used to formulate a structural

equation model linking acoustics to student achievement.

3.2.1 Exploration of Correlations

Before embarking on a detailed discussion of the statistical analyses, it is informative to

better understand the acoustic, demographic, and outcome data by observing the raw Pear-

son correlations between select variables. Pearson correlations describe the raw relationship

between two variables, or the likelihood that the two variables are related.

First, within the acoustics metrics, as would be expected, correlations were typically

high between individual variables. It should be noted that investigating a large number of

correlations you examine can introduce experimentwise error. In this case, the assumption

is that the variables will typically be correlated (as opposed to looking for a significant

correlation among many), but caution should still be taken when interpreting these results

beyond an exploratory scope.
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All speech metrics of interest (including speech octave band levels listed in Section 3.1.2,

derived speech metrics, and background noise level) were highly correlated with each other,

with all having correlations significant at the .01 level. The strength of the correlations

ranged from .497 (L4kHzsp with L500Hzsp) to .976 (L10sp with LAeqsp) and averaged .816.

Similarly, non-speech metrics of interest (including non-speech octave band levels listed

in Section 3.1.2, derived non-speech metrics, and background noise level) were also highly

correlated with each other with two-tailed significances at the .001 level. Correlations fell

between .438 (L1kHzns with L125Hzns) and .956 (L50,ns with LAeqns) and averaged .755

per correlation.

When looking at the correlations between variables in the non-speech category with

variables in the speech category, correlations were typically significant, but not always. All

speech and non-speech variables were considered, including overall levels, octave band levels,

statistical levels, and percent exceeded values for both speech and non-speech categories.

For example, speech and non-speech overall levels were significantly correlated at the .01

level, with a correlation coefficient of .347. The average correlation coefficient (for both

significant and non-significant correlations) between speech and non-speech variables was

.308 and 79 of 90 correlations were significant at either the .05 or .01 level. Figure 3.4 shows

a few select correlations between speech an non–speech metrics, with the Pearson correla-

tion coefficient shown in each box and red text indicating that the values are statistically

significant (p<0.05). For example, this figure shows that the correlation between L90,sp and

L90,ns is 0.59 and is significant at the 0.05 level. The ubiquity of statistically significant

correlations between speech and non-speech metrics indicates that the two quantities are

related and that sound levels during speech times are not independent of sound levels during

non-speech times.
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Figure 3.4: Correlations between select speech and non–speech metrics for the whole datset
of 220 classrooms

Reverberation time (T20mid) had significant correlations with other acoustics metrics

for 8 of the 19 correlations. For example, T20mid correlated significantly (p<.05, r = .145)

with the non-speech average levels but not with the speech average levels.

Next, correlations between demographic and outcome variables will be discussed. It is

postulated that demographic variables will highly correlate to outcome variables, leading

to reasoning that they should be controlled for in statistical analyses. Table 3.3 shows the

correlations between demographic and outcome variables of interest.

From this table, it is apparent that there is a clear correlation between all three measured

demographic variables and the outcome variables. For example, the percent of free and

reduced lunch recipients in each classroom has a -.430 correlation with reading achievement

scores and a -.572 correlation with math achievement scores. Each of these correlations

had a two-tailed significance at the .01 level, indicating that an increase in the percentage
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Table 3.3: Raw Pearson correlations between demographic and outcome variables

FRL SPED Gifted PRRead PRMath

FRL 1
SPED .209** 1
Gifted -0.073 -.253** 1

PRRead -.430** -.395** .513** 1
PRMath -.572** -.334** .519** .763** 1

**p < 0.01, *p < 0.05

of free and reduced lunch recipients in a classroom significantly corresponds to a decrease

in achievement scores. Knowing the raw relationships between variables can engender an

understanding of the raw data and give meaning to relationships and patterns that emerge

in analysis. Demographics are controlled for in subsequent analyses to better understand

the true effect of acoustic conditions on student outcomes. Multivariate analysis takes that

concern into consideration and uses several variables in conjunction with one another to

describe more complex relationships. For models where multiple measures can be logically

grouped, however, an alternative approach called structural equation modeling can prove

useful when dealing with several variables that can be lumped into categories.

3.2.2 Structural Equation Modeling Exploration

To understand the contribution of a predictor variable on an outcome variable, a simple

raw correlation is helpful but cannot illuminate more complex groupings or interactions.

Controlling for other variable, such as in a multivariate regression, is helpful in isolating

a relationship but again, is difficult to group related variables and can get complicated

with a large quantity of related variables. To address these limitations, structural equation

modeling (SEM) was considered on a local (considering acoustics variables only) and a

global (considering variables from each discipline) scale within the Healthy Schools project.

In this thesis, the acoustic analysis will be considered exploratorily, as the model is evolving

and will undergo revision as it develops and combines with other disciplines. Other work

by researchers on the project will describe the full structural equation model. SEM allows
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for grouped effects to be tested and uses the concept of latent variable constructs to group

related measured variables into meaningful partitions. These latent variable constructs

are typically concepts that are not directly measurable, but have measurable indicators.

For example, in the global model, if one wants to know the effect of acoustics on student

achievement, the concept of ’acoustics’ is not directly quantifiable, but indicators such as

reverberation time can be measured and are an indicator of one facet of acoustics. Combined

with other indicators of acoustics, this measure helps describe the overall factor.

Within the acoustics discipline, several variables were measured and calculated, leading

to a wealth of potential variables in the model. A full list of variables considered in this

chapter is found in Section 3.1.2. Not all acoustics variables were used in the structural

equation model. Logically, an expectation of three groupings of acoustic variables exist,

based on the exploration in Chapter 2, which explored how level of speech, background

noise, and room characteristics all factor in to how acoustics affect the human experience

and specifically the student experience in a classroom. While the model was formed through

logical and theoretical groupings, exploratory Factor Analysis (EFA) on all variables of

interest revealed clear divisions between speech, non-speech, and reverb variables. Principal

axis factoring was used in SPSS, with direct oblimin rotation and 3 factors were fixed for

extraction. The pattern matrix can be found in Appendix E (Table E.1). Alternative EFAs

with 2 factors fixed resulted in a multiplicity of problematic secondary loadings and with 4

factors resulted in not only many problematic secondary loadings but also a factor loading

greater than 1. While the groupings make sense, several of the variables are considered

redundant and only some were chosen to proceed with the analysis.

Starting with the speech category, metrics were chosen that represented distinct com-

ponents of speech noise. First, octave band levels were sampled from the speech frequency

range, one from the low-mid part of the speech range (500 Hz) and one from the mid-high

portion of the speech range (2 kHz) Everest & Pohlmann (2009). One statistical level was

chosen, L50, representing the level exceeded 50% of the time during speech, corresponding

with an average or likely value for the speech noise. Finally, one metric representing varia-

tions in time, %time > 65dBAsp was selected, this one due to its distribution most closely
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approximating a normal distribution, as opposed to the left and right skew of the percent

exceeded values when considering surrounding decibel levels (see Figures A.12, A.13, and

A.14).

A similar process was followed with the non-speech category, with a frequency band

selected (125 Hz) that represents what is considered some of the most annoying and ubiq-

uitous noise within buildings Leventhall (2004). For the statistical levels, L90 was selected

as the best representation of background noise (Rogers et al. (2006)). Finally, the percent

exceeded variable was selected to be %time > 50dBAns for the same reasoning as above

(see Figures A.25, A.26, and A.27).

Finally, T20,mid was selected because of its representation of mid-range frequencies and

precedence in other studies (Ellison & Germain (2013)).

After exploring the data and hypothesizing likely divisions, the variables that were kept

for the model include the following, grouped into three factors called speech, non-speech,

and reverberation:

• speech: L500Hzsp, L2kHzsp, L50,sp,%time > 65dBAsp

• non-speech: L125Hzns, L90,ns, %time > 50dBAns

• reverberance: T20mid
.

An EFA using just the above variables does not converge within 100 iterations, which

can be considered a limitation of this study.

Members of the statistical team within the Healthy Schools project, in conjunction with

members of the acoustics team, utilized the acoustic variables to form and test measurement

models and structural equation models. Mplus was utilized to run confirmatory factor anal-

ysis (CFA) on the measurement model and run the the structural equation model. Robust

standard error settings were used (Estimator=MLR) with Huber-White standard errors to

deal with any potential non-normality, as stated before. Multilevel modeling was used and

the data were clustered by school because of strong relationships within the schools them-

selves (type=complex was used in Mplus), A number of different hypothesized measurement
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models and see if the relationships between variables fit before looking at any effects on the

student achievement. The final measurement model with the most logical grouping of vari-

ables was linked with the demographic and outcome variables discussed previously to form

a complete structural equation model and observe grouped effects (Figure 3.5). Latent

variable constructs are represented by circles and measured indicators are represented by

rectangles. The arrows from the latent variables to the indicators show the strength of the

factors loadings. The covariances between the latent variables are indicated by the double-

headed arrows between the factors. The measurement errors are indicated by the single

numbers pointing to the boxed variables (note: the T20mid measurement error was fixed at

0). The reverberation factor has only a single indicator, so it should be noted that the in-

dicator could replace the superfluous latent variable and yield the same results. Significant

results (p < 0.05) are indicated with solid arrows and dotted lines indicate results that were

not statistically significant.

The fit of the model is not ideal but this model was selected over better fitting models

due to better theoretical and logical grouping of measures. While not within the scope of

this thesis, many models were tested, comparing fit parameters and logical groupings, and

future publications will further explore comparisons in models. For the selected model, the

χ
2 value of 240.239 is for 76 degrees of freedom (df) within an N = 219 model (the sample

size is 219 due to a missing reverberation time value in one of the 220 classrooms). The

Comparative Fit Index (CFI) is a measure of model fit that falls between 0 and 1–with

higher values being better fit–and is calculated using the ratio of the difference of χ2 – df of

the null model and χ2 – df of the proposed model to the null model alone. In the past, CFI

values of 0.90 or above have indicated acceptable fit, but more recently the accepted value

is 0.95 and above to avoid accepting misspecified models (Hooper et al. (2008)). The CFI

of 0.901 for this model is below the suggested value of 0.95. Both the root mean square

error of approximation (RMSEA) and the standardized root mean square residual (SRMR)

indicate better fit the closer the value is to 0. While both are low, around 0.1, even lower

values are needed for a good fit.

Modification indices for this model indicate ways to correlate portions of the model
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to improve fit. A modification index of 11.7 for correlating the measurement error for

L90,ns and L125n2 was tested, but resulted in a problematic negative variance and was thus

rejected. The residuals of the covariances were also considered to see which portions of the

model might be problematic. Using the standardized residuals, it was discovered that the

grade levels had high residuals for the covariances with most of the variables. Removing

grade completely as a covariate resulted in an excellent fit for the model (see Figure D.1).

While the fit was much better, eliminating grade level in an acoustics model suggests that

there grade level is not important in determining the effects of acoustics on achievement,

but various studies suggests that noise affects people of different ages differently, such as

the study by Wroblewski et al. (2012) that found that children require a higher signal to

noise ratio to have the same speech intelligibility as older colleagues. Thus the measurement

model including grade level was chosen despite poor fit. Future work should explore the

most effective way to incorporate grade level, as it is of clear importance but is not being

incorporated effectively in the current proposed model.

There was no evidence for nonlinear relationships between the latent variables and the

outcome variables (see Figure E.1). For both the reading and math SEM, demographic

variables, including percent free and reduced lunch recipients, percent gifted, and percent

special education learners, were all significant at the .001 level (see Table 3.4). The stan-

dardized beta coefficients indicate that percent free and reduced lunch recipients had a

similar strength effect on math achievement as percent gifted students in a classroom, al-

though percent FRL had an inverse effect. In other words, higher %FRL in a classroom are

associated with lower achievement scores while higher % gifted are associated with higher

achievement scores. Percent SPED in a classroom had a lower standardized effect absolute

value, indicating a somewhat lower strength effect but still highly statistically significant.

The negative direction of the effect indicates that a higher percentage of special education

students in a classrooms are associated with lower percentile scores in math. The effects of

grade level are also shown in Table 3.4, with various results.
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Figure 3.5: Structural Equation Model with Acoustics Variables

Similar effects are observed between the demographic variables and the reading achieve-

ment percentile scores, with relationships with all three main demographic variables being

significant at the 0.01 level and the direction of the effects remaining the same. However,

in this case, the %gifted exhibited the strongest relationship, followed by %FRL and finally

%SPED (Table 3.4). The clear effect of demographics on the outcome variables demon-

strates how crucial it is that they be controlled in the analysis (see Figure 3.5).
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Table 3.4: SEM results from Acoustics models for both math and reading achievement
including coefficients (B) and standardized coefficients (β)

Math Reading

B β B β

Speech -2.20** -0.14** -1.43 -0.10

Non-Speech -0.62 -0.04 0.78 0.05

Reverb 0.25 0.02 1.41 0.10

% Free Reduced Lunch -0.25** -0.47** -0.16** -0.33**

% SPED -0.31** -0.24** -0.29** -0.24**

% Gifted 0.56** 0.49** 0.61** 0.57**

% Grade 5 -3.027 -0.090 -3.428 -0.109

% Grade 8 1.074 0.024 -2.516 -0.061

% Grade 11 -2.786 -0.070 -13.584** -0.366**

**p < 0.01, *p < 0.05

Preliminary observations about effects of acoustics on achievement are considered in the

following sections. Care should be taken, however, in drawing absolute conclusions from

these results, as the model is still evolving and variables will ultimately be combined into a

much larger, more complex model that will be discussed in future work. After making these

controls for demographics, when considering reading achievement scores and acoustics, it

was found that none of the three latent variable constructs had a significant (p < 0.05) effect

on reading achievement scores within the SEM. This could be in part due to the limited

range of noise and reverberation time values included in the sample. For example, the work

by Connolly et al. (2019) found that detrimental effects on reading comprehension became

clear at 70 dBA background noise levels, but our sample only included values up to 57.7

dBA for non-speech LAeq.

The finding that reverberation time was not found to have a significant effect on reading
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achievement in this model does not correspond with literature regarding reverberation time

and student performance, such as the study done by Klatte et al. (2010) indicating a

significant effect of reverberation time on word comprehension in young children. However,

the reverberation times used in their study had a much wider range, from 0.49 to 1.11

seconds, perhaps allowing an effect to be discovered whereas the present sample had a much

lower range of reverberation times with none approaching or exceeding 1 second and most

within or near acceptable ranges for classrooms (see Figure A.29). Bistafa & Bradley (2000)

suggest that reverberation times between 0.4 and 0.5 seconds are ideal and can result in

possible 100% speech intelligibility. J. Bradley & Yang (2009) suggests a range of 0.3 to 0.9

s as acceptable reverberation times. The sample used in this research falls within that range

and is confined to a much smaller range of measured reverberations times than other studies,

from 0.3 to 0.8 s for mid-frequency reverberation time, as opposed to the aforementioned

study or another by Knecht et al. (2002) that measured reverberation times ranging from

0.2 to 1.27 s. The idea that both extremely low and extremely high reverberation times may

be detrimental to student performance suggests some sort of nonlinear effect. However, the

sample collected from these classrooms does not provide the range necessary to test that

kind of effect, as the reverberation times fall within a normal, desirable range and none

approach extreme values for a classroom.

Another reason why other studies may have found an effect of reverberation on reading

comprehension may be that the effects noted by other studies (like Knecht et al. (2002))

are often immediate effects of performance on a task in a controlled amount of time. In

contrast, our study takes the aggregate of an entire year’s worth of study in the classroom

environment. While reverberation may have a clear negative effect on student reading

ability during a single reading session, over the course of a year, other experiences like

independent study, out-of-classroom activities, and general ability to aggregate knowledge

may compensate for the detrimental effects of room reverberation on reading. Additionally,

J. Bradley & Yang (2009) found that the ideal reverberation time for speech intelligibility

was typically right around a half second, a value typical in the classroom sample discussed

in this paper.
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For math, the standardized coefficient for the effect of the ’speech’ latent construct on

math achievement percentiles was found to be significant (p < 0.001) with a value of -2.20

and a standardized value of -0.14, indicating that higher sound levels (at times when speech

are present) decrease math scores. The non-speech and reverb latent variables did not have

a significant impact on math achievement percentile scores.

Overall, structural equation modeling was used to make a preliminary exploration of the

effect of acoustics on student achievement, controlling for demographics. First, the model

was tested with reading achievement percentiles and second, the model was tested with

math achievement scores. No statistically significant effect of acoustics was discovered for

reading achievement in this sample. On math achievement, a statistically significant effect

of noise levels during speech times was found, with higher noise levels associating with lower

math scores. No statistically significant effect was found for the effects of reverberance or

non–speech noise. However, there is a relationship between speech and non–speech noise

and potential links have been explored in literature, suggesting that speaking in noise causes

vocal levels to be raised (Pisoni et al. (1985)). It is possible that the effect of non-speech

noise on achievement is being obscured by the effect of speech noise or even that an indirect

effect of non–speech noise on achievement through speech noise could be present. These

hypotheses were not tested in the proposed model here, but further work could pursue an

exploration of if non-speech noise has an effect on student performance. It is important to

note that these results are still exploratory and are part of an evolving model incorporating

components from various disciplines. While preliminary results show an effect of acoustic

variables, more work is needed before forming conclusions. Ultimately, a structural equation

model incorporating acoustics, lighting, thermal comfort, and indoor air quality will be

formed and tested by the EPA Healthy Schools Project team and results will be published.
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Chapter 4

Temporal Variation in Logged
Classroom Data

This chapter considers data logged at regular time intervals not only from the acoustic

discipline but also from several other disciplines participating in the Healthy Schools project.

Correlations between the temporal data between disciplines are considered on the classroom

level.

4.1 Methods and Data

The analysis in the previous section described averaged measured parameters for each class-

room and correlations with achievement factors. The numbers used in the previous analysis

were reliable because they were based on data averaged over a long period of time, as op-

posed to data collected at a single random time during the day. A wealth of time-logged

data were measured within each room; for example, in acoustics, a single sound level can

describe the average value experienced during a school day, but large level fluctuations occur

between silent times and times when there is a lot of student activity or teacher instruc-

tion. Two classrooms could have the same average level but one could experience generally

stable levels while the other could experience lower steady-state levels but more frequent

interruptions of higher-level noise. To capture these fluctuations and the potential impacts

and interactions they have with other parameters, an analysis of the data over time was

conducted.

For this analysis, the data were considered in vectors separated by school day, omitting
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the periods of time where data were logged overnight. Just as single values were calculated

for each of six days in the previous chapter, vectors of data logged at regular intervals were

created during the hours school was in session for each of the six days in this chapter.

4.1.1 Description of Time-Logged Metrics

For the acoustic data, sound levels were logged every 10 seconds for the duration of the

measurement period. These levels include LAeq values as well as individual octave band

levels. For example, for two sample classrooms during a school day, the fluctuations in

overall LAeq and in the LAeq in the 125 Hz and 1 kHz octave bands are visually represented

in Figure 4.1.

Figure 4.1: Variation of sound level over time for a single day in two representative class-
rooms, (a) one with a moderate low-frequency noise floor and (b) one with a significantly
higher low-frequency noise floor

It is interesting to note the fluctuations in the sound levels within the different octave
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bands. The sound level in the 1 kHz octave band closely follows the overall level fluctua-

tions. This mirroring could be related in part to the 1 kHz band containing much of the

speech noise, with speech being one of the main contributors to sound level within the

classrooms. Contrastingly, the 125 Hz octave band frequency levels in Figure 4.1a remain

steadily below the overall level, with some mild fluctuations while in Figure 4.1b they re-

main fairly constant, with values much higher than the average and the 1 kHz levels. This

could perhaps be due in part to a noisy HVAC system with semi-constant levels over time.

In this chapter, time-logged data from other disciplines are considered in conjunction

with acoustic data. Most of the other time-logged data were measured in 5-minute incre-

ments, including carbon dioxide (CO2) concentration, particulate matter (PM), tempera-

ture, relative humidity, and illuminance. The relationship between these parameters and

the sound levels will be considered in this section.

The CO2 concentration in parts per million (ppm) in the classroom was logged by three

different meters throughout the measurement period: one in the measurement kit near the

teacher’s desk, one in or near the supply vent, and another in or near the return duct. For

this analysis, an average of the three indoor meters will be considered.

The air pollution takes the form of particulate matter (PM) of difference sizes that floats

in the air and is measured by meters that detect the particles. A sample of the presence

of all measured sizes of particulate matter over a two-day period is shown in Figure 4.2,

excluding the smallest size for graphical scaling purposes. For this analysis, two categories

of particulate matter are considered: fine and coarse. Fine particulate matter consists of a

geometric average of all particles less than 2.5 microns in diameter and coarse consists of a

geometric average of particles between 2.5 and 10 microns in diameters.
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Figure 4.2: Variation of particulate matter count over time for the span of one school day
in a representative classroom

Finally, illuminance values are divided into two categories based on which meter logged

the values. The average of two ’natural light’ meters—one in the window and one hanging

from the ceiling near the window—comprise the ’natural illuminance’ values in the room,

an approximation of daylighting. The average of two other meters—one in the light fix-

ture and one in the kit by the teacher’s desk—constitute the ’artificial illuminance’ in the

room. These two illuminance categories and their relationship with acoustic parameters are

considered distinctly.

The temperature is an average of several different meters that were placed throughout

the room and as part of other measurement devices. For example, each CO2 logger has

a built-in thermometer and readouts from each were included in the temperature average.

Similarly, each of the four illuminance meters measured temperature, and the particulate

matter counter had a temperature sensor, making the temperature readings and average of

those eight meters. Similarly, the average of eight meters–three within the CO2 meters, four

within the illuminance meters, and 1 within the particle counter–comprise the time-logged

values for relative humidity.
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It is important to note that the sampling frequency with which the data were collected

varies between the acoustics and the other parameters (10-second increments for sound

levels and 5-minute increments for most other parameters), so the sound level series’ were

modified to match the rest of the data. Logarithmic averaging was used to condense each

of thirty 10-second sound levels values into one 5-minute increment, allowing the acoustic

data to correspond to the other data. Putting all of the parameters on the same time scale

enables the use of statistical analysis procedures to understand how the data correlate over

time.

Before running correlational analysis on data that were taken over time, it is important

to make the data stationary over time, eliminating possible spurious trend effects due to

natural patterns over time. This is done by fitting a linear trend to the model and then

subtracting the deviation of the data from the trend line, effectively removing any positive or

negative trend over time and preserving only the fluctuations of the data about that trend.

Figure 4.3 shows a sample of fine particulate matter, taken from a representative day, made

stationary. In blue, the original data (translated downward to fit on the same graph as the

stationary data) has a clear upward trend over time, which could be due to any number of

factors related to the natural duration of the school day. Below, in green, represents the data

made stationary in time by plotting the deviations from the linear fit. It is important to note

that this rise in level over time was not necessarily indicative of every day in the sample,

it was chosen because it clearly demonstrated the processing. It is evident in this process

that the fluctuations over time are preserved while the overarching trend is removed. This

enables accurate evaluation of the correlation of the various disciplines over time because

if two variables experience an upward trend due to any number of unrelated reasons, they

would be strongly correlated no matter regardless of the pattern of the smaller fluctuations.

This stabilization process enables the comparison of the smaller-scale fluctuations in the

data, comparing the 5-minute incremental changes to each other instead of linear trend

that could overpower those small effects. This processing was done to all disciplines for all

days before proceeding with the analysis.
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Figure 4.3: Example comparison of original time series data and the stationary version,
after removing the linear fit

After the data were made stationary over time, correlations were drawn between them.

Figure 4.4 shows the variation in the logged measurements (processed to be made stationary)

over the course of a day in a representative classroom. The data were also normalized in this

figure, enabling the juxtaposition of all disciplines with vastly different scales and ranges.

This process makes the y-axis in units of standard deviations from the mean. For example,

a point that has a value of 1 would be one standard deviation above the mean of that

discipline’s time series data. From this figure alone, some general patterns visually emerge,

where certain parameters rise and fall together. These relationships will be quantified in

the subsequent sections.
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Figure 4.4: Variation in logged data over the course of a single school day in a sample
classroom. All parameters are normalized using z-scoring

A similar figure could be generated for each of the six days of measurement that took

place within each of the 220 classroom, although occasionally one or two disciplines ex-

perienced an equipment malfunction, leading to some missing data within the complete

set.

4.1.2 Statistical Procedures

Raw Pearson correlations were calculated between the time logged acoustic and other dis-

ciplines’ data for each 1-day vector for each season in each classroom. This results in each

classroom having a correlation coefficient (r) and statistical significance (p) between acous-

tics parameters and each of the other discipline parameters for each of the two days in Fall,

Winter, and Spring. For example, Classroom 1 has an R and p value for the relationship

between overall LAeq and the CO2 concentration during day one of measurement in the

Fall season, another set of values for day two in Fall, and so forth. For a more generalized

analysis, correlational values for each classroom were calculated by concatenating the daily

vectors to create one large vector of time-matched data for which R and p values were

calculated. In other words, each daily vector consists of paired data, like a vector of sound

level where each component has a corresponding carbon dioxide value. Six of these vector
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pairs exist per classroom and they were placed end to end to create a giant pair of vectors

that represents matched data over the course of six days. It would not make sense to graph

this data over time, as the days were not continuous, but the one-to-one correspondence

between the data allow for correlational comparisons to be drawn.

4.2 Results and Analysis

Results are presented, first considering the whole dataset and patterns in the correlations

and second considering a case study that measured the occupancy in a classrooom in con-

junction with the other measured parameters.

4.2.1 Trends in Complete Dataset

In this section, the data are considered by day in each classroom, with each correlation

representing the relationship between two parameters in a classroom where the parameter

vectors are comprised of all six days in all three seasons concatenated into a single vector.

Correlation coefficients and significances were then calculated for each classroom. There

is significant variation between the results within each classroom, so compiling the corre-

lation results for the whole dataset sheds light on what is typical and what is not. While

simply averaging the Pearson correlation coefficients for all correlations between certain

disciplines cannot determine a meaningful generalized average for the relationship between

two parameters in the dataset, it is helpful to look at the general trends in how strong and

significant the correlations are between different parameters by viewing the results in aggre-

gate. Figure 4.5 shows the significant correlations between disciplines for all classrooms as

histograms of statistically significant correlation coefficients. Each subplot represents the

correlations between sound level and the discipline listed.
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Figure 4.5: Histograms of the significant correlation coefficients within each classroom be-
tween sound level and other parameters using six days of time-logged data

This figure sheds light on the strength and frequency of correlation between parameters.

For none of the disciplines were all of the correlations statistically significant. However,

for the indoor air quality parameters, including CO2, fine particulate matter, and coarse

particulate matter, over half of the correlations were significant, with coarse particulate

matter showing the greatest number of significant correlations at 158 out of 218 possible

correlations (not 220 due to missing data in two classrooms), or 72.4% of valid correlations

being significant. For each of the other parameters, at least 68 of the measured classrooms

saw significant correlations with sound level. However, for some of the measures, like

illuminance or relative humidity, the frequency of negative correlations was comparable
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to positive correlations, shown by a balance in the histogram, with a cluster of negative

correlations on the left side and a cluster of positive correlations on the right side. The

absence of correlations near zero is likely due to the fact that only significant correlations

are included in the figure and many of the correlational values closer to 0 were not significant.

This same analysis was conducted in the 125 Hz and 1 kHz octave band noise as opposed

to A weighted equivalent continuous levels (representing a frequency average). The 1 kHz

correlations bore similarity in quantity and value to the overall LAeq correlations. The 125

Hz correlations were typically less likely to be significant and took overall lower values. No

particularly standout results occurred from this analysis.

Overall, the IAQ metrics together showed the strongest clustering effects with positive

correlations. Table 4.1 shows descriptive statistics of the positive, statistically significant

correlations between sound level and IAQ metrics.

Table 4.1: Descriptive statistics of significant positive correlation values between sound level
and IAQ metrics of interest

CO2 Fine PM Coarse PM

n 62 41 108

mean 0.472 0.503 0.515

sd 0.073 0.098 0.100

min 0.360 0.369 0.361

max 0.661 0.738 0.746

The mean correlational value was not incredibly strong for any of the relationships

between sound level and IAQ parameters, with the average significant positive correlation

being around 0.4 for both the relationship between sound level and CO2 and between

sound level and fine PM. The average significant positive correlation between sound level

and Coarse PM was somewhat higher, approaching 0.5. The standard deviations for each of
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these collections of correlations were just above 0.1 each and the ranges were fairly similar,

from around 0.2 to around 0.7, with coarse PM having the highest maximum correlation

coefficient case of 0.746.

Overall, the ubiquity of significant correlations between sound level and IAQ parameters

suggests an important connection. All of these metrics have logical ties to occupancy. More

people in a room typically means higher sound levels. Similarly, more people in a room

should increase the carbon dioxide concentration through natural human exhalation. More

activity in a room results in the stirring up of particulate matter, particularly in sizes greater

than 2.5μm, or coarse particulate matter.

4.2.2 Case Study Controlling for Occupancy

We postulate that a large part of the reason some of the metrics are correlated is due to the

room occupancy. To test this assumption, in one of the classrooms, a pilot study collecting

room occupancy information was conducted simultaneously with the usual measurements.

Using thermal imaging, the number of people in the classroom was logged at regular time

intervals. Studies have looked at automating the use of infrared sensors to extract occupancy

Raykov et al. (2016), but for this study, the number of occupants per time-lapse image was

extracted manually. The correlations between acoustic and other variables are considered

while controlling for occupancy. Figure 4.6 shows the 5–minute variations of the data over

time during the course of a school day. Each of the parameters were normalized using

z-scoring in order to enable comparison within the same figure. The y–axis then represents

the standard deviations of each data point with respect to the mean.
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Figure 4.6: Normalized data values, including occupancy, are plotted over time from various
disciplines over the span of one school day

This figure of the variability of parameters over time begins to show apparent trends.

Some of the parameters seem to ’follow’ one another throughout the course of the school

day, similar to the data shown in Figure 4.4. The additional component here is the occu-

pancy data, shown with a purple ’+’ marker. The variability and fluctuation of occupancy

somewhat follows the overall trends that are roughly apparent in this figure.
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Figure 4.7: Variation of of logged data over time from various disciplines for the span of
one school day in separate plots for each discipline

For further clarity on the trends over time and more illumination on scaling, figure 4.7

shows each of the metrics of interest juxtaposed and within their own metric scale. The

range of each y–axis can illuminate information about how much these values actually

fluctuate over time. For example, the temperature measurements have a relatively small

range, from around 69◦ to 75◦, while the particle matter, by nature of its metric, spanned

from 0 to around 800 ppb and experienced more up and down fluctuations throughout the
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day.

While several metrics appear related over time, correlations can be statistically analyzed

to verify this assumption, as was done with the full data set. Again, these data were taken

sequentially in time, so as a time series, they were pre-processed to be made stationary over

time in order to illuminate pure trends. A correlation matrix including occupancy, sound

level, and select IAQ parameters shows each parameter plotted against each of the others

(Figure 4.8). The numbers in each box indicate the correlation coefficient, or the strength

of the relationship, and the color indicates significance, where red numbers are significant at

the p=0.00089 level (chosen by using the Bonferroni correction for the comparisons between

each of 8 variables).

Figure 4.8: Matrix showing the Pearson correlations of select variables with each other.
Red text indicates that the correlation is significant at the p=0.05 level
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Occupancy correlations are found in the first column and significant relationships are

observed between occupancy and sound level and occupancy and 10μm particle counts. The

correlations between occupancy and CO2 and between occupancy and 2.5μm particle counts

were significant before processing the data and making them stationary in time, but after

this transformation, the correlations were not significant, as shown in Figure 4.8.

Some of the correlations are not plotted here, such as with thermal comfort and lighting

parameters, so all raw Pearson correlations are shown in Table 4.2.

Table 4.2: Correlations between all measured variables for one-day case study.

Occup LAeq CO2 PN2.5 PN10 ILN ILA Temp

Occup 1

LAeq 0.41*** 1

CO2 0.13 0.40*** 1

PN2.5 0.17 0.35*** 0.24* 1

PN10 0.22* 0.39*** 0.35* 0.88*** 1

ILN 0.00 -0.38*** -0.35*** -0.15 -0.21* 1

ILA 0.13 0.48*** 0.41*** 0.31** 0.27** -0.31** 1

Temp 0.16 0.30** 0.84*** 0.29** 0.25* -0.23* 0.35*** 1

RH 0.19 0.30** 0.37*** 0.11 0.02 0.03 0.52*** 0.22*

***p < 0.00089,**p < 0.01,*p < 0.05

When considering all the measured data, occupancy is not highly related to most of

the parameters. Sound level, on the other hand, shows highly significant, although not

necessarily very strong, relationships with all measured parameters in this sample. While

not necessarily within the scope of this paper, it is still interesting to observe the various

significant correlations (or lack thereof) between thermal, IAQ, and lighting parameters.

Future work could explore these correlations further using the entire dataset.
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Acoustically, the relationships between the parameters can vary by which octave band

is considered. The correlations in Table 4.2 considered the overall level in the form of

equivalent continuous A-weighted sound level, including all measured octave bands. Rela-

tionships, however, change when only the 125 Hz band or the 1 kHz band, for example,

are considered. Table 4.3 shows the correlation coefficients between the time fluctuations

in both the 125 Hz and 1 kHz octave bands with other disciplines in this single day case

study.

Table 4.3: Correlations between select octave band frequency levels and other parameters.

125 Hz 1 kHz

125Hz 1 0.60***

1kHz 0.60*** 1

Occup 0.21* 0.41***

LAeq 0.62*** 0.99***

CO2 0.11 0.42***

PN2.5 0.27** 0.36***

PN10 0.30** 0.39***

ILN -0.22* -0.35***

ILA 0.36*** 0.50***

Temp 0.04 0.32**

RH 0.04 0.35**

***p < 0.00056,**p < 0.01,*p < 0.05

Here, some strong correlations are evident. Similar to the overall level, the 1 kHz noise

is highly correlated with all parameters. Figure 4.1, shown earlier in the chapter, illustrates

how closely 1 kHz noise typically follows the overall level, making this observation not

surprising. For the 125 Hz band, however, some interesting results become evident. There
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is no significant correlation with CO2 in this sample, as might be expected. Carbon dioxide

emissions from people’s mouths as they breathe and speak are correlated with the amount

of speech they produce, which would be reflected in the 1 kHz noise and not the 125

Hz noise, especially for a group of young children whose vocal production frequencies lie

generally above that range. Temperature and relative humidity also lose their significance

in correlation with the 125 Hz levels, perhaps due in part to the lack of fluctuation in the

125 Hz levels. Overall, the 1 kHz correlations follow the overall correlations but the 125 Hz

noise is much less likely to be correlated with other parameters. Note, however, that 125

Hz noise is still correlated with various indoor air quality and lighting variables.

Besides looking at simple correlations, it is hypothesized that both sound level and

indoor air quality parameters are significantly affected by occupancy. This would mean that

the relationships between these variables would be affected or driven by the occupancy. In

order to test this theory, a measurement model was created using the test data from this

sample classroom. Three models were tested, each checking to see if the relationship between

sound level and an indoor air quality parameter (including CO2, PN2.5 and PN10.0) was

affected by occupancy. The measurement model is shown in Figure 4.9.

Figure 4.9: Measurement model with occupancy leading to sound level and an indoor air
quality parameter

To do this kind of modeling, it must be determined that the measures are reliable.

The CO2 scale (an average of supply, return, and kit meters) had a cronbach’s alpha of
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0.994, indicating that there was no significant measurement error associated with the scale,

indicating that the average can serve as a measure rather than needing to represent the

three as a latent variable construct. The particulate matter variables are single measures

and are highly reliable measurements. The sound level is a logarithmic average between

two meters, representing the average sound level in the room. Figure 4.9 shows the model

that was used for testing sound level with each of the three indoor air quality parameters

of interest as separate tests.

For this particular classroom on this day, the direct relationship between occupancy and

each of the IAQ parameters (β2) was not significant, nullifying the results of the measure-

ment model. β1 was significant in each of the models as was β3. While not much can be

concluded from this particular set of data, the lack of results here cannot be generalized

because it is an isolated sample. In light of the variability seen in the simple correlational

analyses mentioned earlier in this chapter, generalizations cannot be drawn from this single

classroom example with occupancy. This case was the only instance that occupancy was

measured, but future work is suggested to explore this relationship on a larger scale with

more examples.

4.3 Conclusions and Discussion

The classroom measurements in the Healthy Schools project resulted in a wealth of time-

varying data gathered in classrooms over the course of six days each. To better understand

these data and their interactions, various analyses were undertaken. First, a correlational

analysis looked at how related each of the measured parameters were over time, specifically

looking at the sound level with other parameters. Care was taken to pre-process the time

series data and make it stationary over time to avoid false correlations. The entire dataset

was analyzed to see how likely it was to get correlations between certain parameters. Often,

sound level was found to significantly correlate with indoor air quality parameters, especially

CO2 and coarse particulate matter.

To explore the possible effect of occupancy on the variation of the aforementioned pa-
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rameters, a study was undertaken, supplementing the typical indoor comfort measurements

with occupancy count logged over time. Occupancy correlated strongly with sound level,

but was not found to have a clear effect on IAQ parameters in this example. Further work,

however, should explore how common this is within a larger classroom sample. That being

said, metrics that are affected by human occupancy and behavior, like IAQ and sound level,

are more likely to be correlated with each other. Some relationships that showed potential

significance, such as sound level and temperature (see Figure 4.5) were not explored in

detail and could be the subject of further study.
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Chapter 5

Ventilation System Effects on
Acoustic Parameters

This chapter explores the interactions between ventilation system type and acoustical pa-

rameters. It is generally understood that the heating, ventilation, and air conditioning

(HVAC) systems in a building contribute to the background noise levels, which can then

deteriorate speech intelligibility in classrooms Hodgson (2002). Manufacturers provide noise

data from extensive tests and acoustical consultants use various softwares and calculation

methods to predict the noise level in a complete system based on the components used. How-

ever, assumptions are often made that may not produce reliable results Liu et al. (2017).

Predicting noise from HVAC sources, which travels through ducts and enters rooms along

with the airflow requires extensive measurement or knowledge specific system parameters

K̊arekull et al. (2014). In this sample, since actual noise data was collected in classrooms

and the HVAC system types in the classrooms are known, an empirical exploration of their

interaction was undertaken. First, a description of the ventilation systems incorporated

in the sample of schools provides a framework for the analysis. The interactions between

ventilation system type and overall classroom parameters is then addressed. Finally, the

effect of ventilation system type on the time logged interaction between acoustic and other

variables (described in Chapter 4) is explored.
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5.1 Ventilation Systems in Schools

The heating, ventilation, and air conditioning (HVAC) systems within schools consist of

primary and secondary systems, which provide a widely varied collection of options. For this

sampling, the system types were divided categories based on their secondary system. For

example, a single–zone system can consist of buildings with centralized systems, typically

utilizing variable air volume (VAV) boxes or air handling units (AHUs). Other systems

include multi–zone systems and can include schools that have unit ventilators or heat pumps

in their ventilation systems, where the HVAC components are not centralized. The three

categories chosen to group the classrooms in this study are:

• Centralized Systems with VAV or AHU (n = 41)

• Heat Pumps (n = 104)

• Unit Ventilators (n = 59)

Classrooms with unknown or ambiguous system types were omitted from the analysis.

For example, some of the classrooms were in temporary, portable structures outside the

regular building and were not included in the analysis. The overall speech and non-speech

levels in classrooms are considered first, then other select acoustic metrics are considered,

namely those used in the creation of the SEM in Chapter 3. Finally, the effect of HVAC

system type on the interactions over time between sound level and select indoor air quality

parameters are considered.

For the first portion of the HVAC analysis, the speech and non-speech average levels

(LAeq) are considered. Figure 5.1 shows histograms of the distributions of speech sound

levels within the classrooms, divided by HVAC system type. Likewise, Figure 5.2 shows the

histograms of the distributions of non-speech sound levels within the classrooms, divided by

HVAC system type. While it is apparent that there are more classrooms with heat pumps

than the other two system types in consideration, there are also differences in the means

and the distributions, especially with the non-speech levels. The differences in the means

will be explored numerically in subsequent analyses.
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Figure 5.1: Histogram of distributions of speech sound levels within classrooms, divided by
HVAC system type

Figure 5.2: Histogram of distributions of non-speech sound levels within classrooms, divided
by HVAC system type

5.2 Ventilation Systems and Overall Classroom Acoustic Pa-

rameters

An analysis of variance (ANOVA) has been conducted to determine if there are any signifi-

cant differences between sound level in classrooms with these different types of mechanical

heating, ventilation, and air conditioning systems. It is postulated that unit ventilators

will contribute the highest levels of sound, due to their location inside the classrooms. Heat

pumps are proposed to contribute less noise, followed by systems using VAV boxes or AHUs.

First, using effect coding, the three divisions within the secondary system types were
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dummy coded in two ways in order to see differences between groups.

In both cases, the classrooms with heat pumps were used as a reference and coded with

a -1. The first case codes unit ventilators as 0 and centralized systems as 1. The second case

reverses the effect coding to enable comparison, representing the centrailzed systems with

0 and unit ventilators with 1. Using a multivariate regression method, one-way ANOVA

results were obtained for the linear model including the two effect-coded variables. For each

analysis, Equation (5.1) below was tested for overall significance and each beta coefficient

was tested individually for significance.

SoundLevel = β1X1 + β2X2 (5.1)

here β1 and β2 are the standardized regression coefficients and X1 and X2 are the contrast

codes as described above. This equation was used for several analyses, with the the left hand

side of the equation, sound level, being replaced each time by a different sound metric. As

described in Chapter 3, various metrics were measured and calculated that help represent

the sound level within the room, such as overall level when speech was present and overall

non-speech level.

Since classrooms in the same building typically have the same HVAC system type,

the analysis uses grouping by building. This is particularly important because some of

the classrooms are actually connected to the same equipment, such as in the case of the

centralized systems. With the classrooms grouped by building, the sample size decreases.

The number of buildings employing unit ventilators is 12, with 7 buildings using centralized

systems and 19 employing heat pumps.

For this analysis, the building average level for speech times and the average level non-

speech times averaged across all classrooms within a building are considered. These two

metrics were analyzed to see if there was any difference in level by system type. The means

of the speech and non-speech average sound levels are shown for each category in Table 5.1.
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Table 5.1: Group means by system type for speech and non-speech average levels

Average Sound Level (dBA)

LAeqsp LAeqns

Unit Ventilators 65.9 50.6

Centralized 66.5 48.4

Heat Pumps 66.1 48.7

Conducting the ANOVA illuminates whether or not the differences in the means have

statistical significance. For the speech levels, the omnibus test failed to be significant,

suggesting that the null hypothesis that the means for each of the three groups are not

different from each other cannot be rejected (see Table 5.2). In other words, there is

no significant difference between the sound levels experienced during speech times with

regards to what HVAC system type is employed in the classrooms. The effect size (η2) for

this ANOVA is 0.018 indicating that only 1.8% of the total variance is accounted for by

the HVAC type, so even if it were significant, the test would not indicate that HVAC type

significantly affects speech noise.

Table 5.2: ANOVA table for speech noise divided into HVAC categories

Model SS df MS F p

Regression 1.506 2 .753 .324 .725

Residual 81.262 35 2.322

Total 82.769 37

On the other hand, the omnibus ANOVA results for the non-speech average level was

significant, indicating quantifiable differences between the means of the non-speech level
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when categorized into secondary HVAC system type (see Table 5.3). The effect size for

this analysis is also much larger than the previous (η2 = 0.202), where 20% of the variance

in non-speech noise is accounted for by HVAC system type. With a significant omnibus

test, looking into each beta coefficient can reveal differences between the specific divisions,

including the direction of the trends.

Table 5.3: ANOVA table for non-speech noise divided into HVAC categories

Model SS df MS F p

Regression 30.558 2 15.279 4.424 .019

Residual 120.885 35 3.454

Total 151.443 37

For the non-speech noise, the β1 coefficient was not significant, indicating that classrooms

with VAV boxes or AHUs experienced no difference in non-speech sound levels on average

than classrooms with heat pumps (see Table 5.4). The second beta coefficient (β2) was,

however, significant (p<0.01), and has a value of 0.59, indicating that those classrooms that

include unit ventilators in this sample experienced higher non-speech levels than classrooms

with heat pumps (see Table 5.4). While no statistical conclusion can be drawn regarding the

difference between the non-speech levels in centralized system classrooms vs. unit ventilator

classrooms from the analysis with the analysis as designed, it is likely that there would be,

since the average level in the classrooms with centralized systems is even lower than those

with heat pumps. Overall, this analysis provides quantifiable evidence that unit ventilators

contribute to higher noise levels in classrooms. Concern could arise from noting that the

difference between the means of the groups is small. For example, the difference between

the unit ventilator non—speech noise mean and the heat pump non—speech noise mean

is only about 2 dB. Taking into account the meters used—BSWA Type II meters—ANSI

S1.4 gives +
– dB for maximum allowable errors for exponential time averaging for this type
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of meter. However, this difference does not translate directly to the margin of error within

which a true difference can be observed because of the aggregate nature of the overall values

per system type. To find the true margin of error, a detailed error propagation analysis

would have to be pursued, taking into account the averaging at different levels, the sample

size, and so forth.

Table 5.4: Beta coefficients for both speech and non-speech noise divided into HVAC cate-
gories

X1 X2

B1 β1 B2 β2

LAeqsp .33 .17 -.25 -.15

LAeqns -.85 -.33 1.33** .59**

**p < 0.01

Overall, a difference between non-speech sound levels is observed between grouping

of HVAC system types, while speech levels do not experience a comparable difference.

Classrooms with heat pumps and centralized systems experience similar average sound

levels, while classrooms with unit ventilators experience higher average non-speech levels

overall.

5.2.1 Additional ANOVAS using metrics from the SEM

The above section considered the measured speech and non-speech building average levels,

which should not be confused with the ’speech’ and ’non-speech’ latent variables discussed

in Chapter 3. The latent variables are not directly measured, but are concepts that have

multiple measured indicators. These seven indicators–four for the speech latent variable

construct and three for the non-speech latent variable construct–were tested with the same

method as the speech and non-speech noise, with the hypothesis that the speech metrics
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would not yield significant results and the non-speech metrics would. The ANOVA results

for the four speech metrics (including L500Hzsp, L2kHzsp, L50,sp, and %time > 65dBAsp)

were not significant, indicating that for those specific measures, there is no categorical

difference when grouping the school buildings by system type.

For the non-speech metrics, results varied. The ANOVA for the non-speech noise in the

125 Hz band was not significant (p=0.072), indicating that the difference between means

of 125 Hz octave band noise in each HVAC category were not statistically significant at

the 0.05 level. The next metric considered was the percentage of time non-speech noise ex-

ceeds 50 dBA. The ANOVA comparing the means of this metric between the three HVAC

divisions was significant (p<0.05), indicating a statistically significant difference. Using

equation (5.1), the first beta coefficient was not significant (p=0.055), indicating no signifi-

cant difference in the percent of time 55 dBA is exceeded during non-speech times between

centralized systems and heat pumps. The second beta coefficient, however, was significant

(p<0.01), indicating a difference between the average %time > 50dBAns for heat pumps

and unit ventilators, with unit ventilators exceeding 55 dBA more frequently than heat

pump systems.

The third and final non–speech metric considered was the level exceeded 90% of the

time (L90) for non-speech noise. This metric also had a statistically significant ANOVA

(p<0.05) when considering HVAC categorizations. As before, the first beta coefficient was

not significant (p=0.168), indicating no significant difference in L90 between centralized

systems and heat pumps for non-speech L90. The second beta coefficient, however, was

significant (p<0.01), indicating a difference between the average L90 for heat pumps and

unit ventilators, with unit ventilators having higher values overall, lending further evidence

to the hypothesis that unit ventilators contribute to higher background noise in rooms.

Reverberation time was also considered for the sake of being thorough, although the-

oretically no difference is expected with the reverberation times between different system

types. The results of the ANOVA were not statistically significant (p=0.898) confirming no

substantial difference in T20,mid between the system types.

Overall, the metrics used in the SEM were analyzed by HVAC category to see if different
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values resulted from the different HVAC groupings. Significant differences were found in

two of the three non-speech metrics–non-speech L90 and %time > 50dBAns, indicating that

in this category, unit ventilators correlate to higher levels in the classroom overall. As

expected, the reverberation time and speech noise metrics saw no difference between HVAC

types.

5.3 Ventilation Systems and Time-logged Interactions

The above analyses considered overall values, averaged between all measured data in the

classroom, as was done in the analyses in Chapter 3. Next, the effect of HVAC system

type was considered on the time-logged interactions between the data (see Chapter 4).

Specifically, the question of interest is whether the relationship over time between sound

level and indoor air quality parameters was affected by the type of HVAC system employed

in the building.

ANOVAS were conducted with the correlations as the variable of interest and the schools

as the unit of analysis, grouped in the same way as the previous section. Only significant

correlations were considered, so some schools were represented by an average of fewer corre-

lations than the number possible due to some classrooms in the group not having significant

correlations. The results of the ANOVAS are not presented as none were significant, in-

dicating that the differences in the r values were not affected by system type, considering

only the significant correlations.

While interesting, the above result does not reflect results from the entire dataset.

For some of the HVAC types, less than half of the classrooms had significant correlations

between sound level and certain IAQ parameters. While the HVAC system type did not

have a quantifiable effect on the values of significant correlations, it is interesting to observe

the percentage of significant correlations between sound level and IAQ parameters for the

various categories. Table 5.5 shows these correlations, divided by system type.



61
Table 5.5: Percentage of significant correlations between each HVAC category

% Significant

CO2 Heat Pump 29%

x VAV 34%

LAeq Unit Ventilator 29%

Fine PM Heat Pump 23%

x VAV 39%

LAeq Unit Ventilator 58%

Coarse PM Heat Pump 51%

x VAV 49%

LAeq Unit Ventilator 53%

For the correlations between CO2 and overall LAeq, each of the three categories saw

about a third of the correlations significant (p<0.00089), so little difference was observed

between the HVAC categories. Similarly, the correlations between coarse particulate matter

and sound level do not seem to depend on HVAC system type, with each of them falling

around half significant. While no difference was observed between system types, it is notable

that a higher ratio of correlations was significant overall, with around half of the correlation

being significant (at the Bonferroni corrected level of p < 0.00089), suggesting once again

a strong relationship between sound level fluctuation and coarse particulate matter in the

classroom.

While both CO2 and coarse particulate matter correlations with sound level did not

seem to change between system types, for fine particulate matter, a difference was ob-

served. For systems with heat pumps, only 23% of the correlations were significant. For

centralized systems with VAV boxes or AHUs, 39% of the correlations between sound level

and fine particulate matter were significant. However, when considering classrooms with

unit ventilators, 58% of the correlations were significant, suggesting a stronger relationship
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between fine particulate matter and sound level in rooms with unit ventilators. Perhaps

this could be due to the way the unit ventilator brings in outdoor air, so when the system

kicks on, leading to more sound, particulate matter from outside is also brought in. Further

exploration should explore if there is any veracity to this conjecture.

For time-based interactions between sound level and indoor air quality parameters,

HVAC system types do not seem to make a difference except in the special case of the

correlation between sound level and fine particulate matter, with classrooms with unit

ventilators experiencing a much higher number of significant correlations. The actual value

of these correlations, however, does not significantly vary between schools.

5.4 Conclusion

Building occupants often complain about noisy HVAC systems. To explore the effect of

HVAC system type on sound level in actual classrooms, an analysis of how sound levels

are different with system type was undertaken. First, various sound metrics were tested

using ANOVA to see if there was a difference in level between the groups of classrooms with

different HVAC system types. The average sound level in the classroom during times when

speech was present was no different between types of HVAC system. However, the average

sound level in the classrooms during times when no speech was present was different de-

pending on the system type, with unit ventilator classrooms experiencing the highest levels

overall and classrooms with centralized systems and heat pumps experiencing lower overall

levels. While it is clear that HVAC system type does contribute to noise and noise does af-

fect student achievement, the actual link between HVAC type and student achievement still

needs more quantification. Jaramillo (2013) found subjectively that teachers typically do

not notice HVAC noise or believe that it affects learning in the classroom, although Ronsse

& Wang (2010) found that higher levels of mechanical system noise do negatively impact

student achievement, although no distinction was made between system types. Future work

can explore relationships between system type and achievement more in depth.

HVAC system type not only impacts sound level but also affects indoor air quality pa-
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rameters. To look at how the time-logged relationship between sound level and select IAQ

parameters was affected by HVAC system type, an ANOVA was conducted with the sig-

nificant correlations between the various parameters. The ANOVA produced no significant

results, indicating no quantifiable difference in the strength of the significant correlations

in different categories. However, classrooms with unit ventilators were much more likely to

see a significant correlation between average sound level and fine particulate matter than

those with other HVAC system types.
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Chapter 6

Concluding Remarks

6.1 Discussion and Future Work

6.1.1 Averaged Parameters and Student Achievement

A statistical analysis was conducted, relating measured acoustic parameters in classrooms

with student achievement in reading and math. Three categories were considered, including

sound during speech times in classrooms, noise when speech wasn’t present, and reverber-

ance. Structural equation modeling was used to link these parameters in the form of latent

variable constructs to student achievement, controlling for demographics. The analysis re-

vealed no effect of the acoustic parameters on reading achievement. For math, a statistically

significant negative effect of speech noise was found on math achievement.

The lack of statistically significant effects on reading achievement is hypothesized to be

due in part to the limited range of values in this sample, with reverberation times generally

falling between 0.29 and 0.84 and averaging 0.47. Detrimental effect on reading, for example,

would not likely occur until values reach at least 1 second or more.

The higher speech levels and their effect on math achievement suggest that when teachers

need to raise their voice to instruct, the students do not benefit. While no statistically

significant effect of non-speech noise on match achievement was observed, non-speech noise

and speech noise are related in complex ways and are not entirely independent. Further

exploration is needed to understand the complex relationships between occupied speech

and non-speech noise in classrooms and if there is a causal relationship. This sample found
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a clear relationship between the two but cannot establish causal order between the two

measured parameters. For example, it could be said that higher speech noise is correlated

with higher non-speech noise in this sample, but it cannot be concluded that higher non-

speech noise causes higher speech noise.

A sample of classrooms with ’worse’ acoustics may yield different results from this

analysis that includes classrooms that generally contain reasonable values for reverberation

time and background noise. While the background noise levels were typically not below

the ANSI S12.60 maximum value of 35 dBA in this sample, the maximum level observed

was 55.1 and the minimum was 25.2, with an average of 42.91. None of these levels are

extraordinarily high and may not be quantifiably detrimental to student performance.

6.1.2 Temporal Variation in Indoor Environment Parameters

Building off the averaged values considered in the analysis in Chapter 3, the time variation in

logged parameters values were considered in Chapter 4. In particular, the question addressed

was: do the various measured parameters relate in how they rise and fall throughout the

school day? For sound level and indoor air quality parameters, the answer is typically

yes, with more than half of classrooms experiencing significant correlations both between

LAeq and CO2 over time and between LAeq and fine particulate matter over time. Nearly

three quarters of classrooms (73%) experienced statistically significant correlations between

sound level and coarse particulate matter.

These relationships result in part from natural human tendencies within occupied spaces.

For example, more people in a room means louder sound levels due to talking and activ-

ity. Correspondingly, people also stir up particle matter by their activity and emit carbon

dioxide simply by breathing. Thus, the correlations over time between these parameters

confirm a logical assumption that conditions in a room vary with occupancy, perhaps with

occupancy driving the values of these parameters. Statistically, however, this assumption

was unable to be verified. A measurement model was created for each of these interac-

tions with occupancy as the predictor variable for both sound level and the select indoor

air quality parameter, but the path between occupancy and the IAQ parameter was not
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significant, regardless of which was used in the analysis. Sound level, however, did correlate

significantly with occupancy.

Occupancy is critical when considering the time variation of indoor environment param-

eters within classrooms, especially sound level and indoor air quality. Since this occupancy

analysis was only performed on one classroom, further measurement and exploration is

needed to form conclusive results. It is suggested that similar measurements to those dis-

cussed in this paper be taken with the addition of occupancy counts over time in a greater

number of cases in order to observe correlational patterns over a greater sample size. Addi-

tionally, further exploration of thermal parameters with consideration of occupancy could

also yield interesting results, as those were not explored in depth in this paper.

In light of the importance of occupancy, design standards should consider occupied

conditions more frequently, especially in acoustics. There is a clear relationship between

occupied conditions and student achievement, so taking into consideration the occupied

condition can yield a better environment overall.

6.1.3 HVAC Analysis

A significantly higher non-speech sound level was observed for classrooms containing unit

ventilators, a discovery that is not unexpected to one familiar with HVAC system types.

For systems with unit ventilators, the average value of non-speech noise experienced was

50.6 dBA while for centralized systems and heat pumps, the average values were lower, at

48.4 and 48.7 respectively. While the difference between these average values is not above

the just noticeable difference, it is still statistically significant and could have imperceptible

overall effects.

Average speech values were, however, not found to be any different between classrooms

of different system types. If average values for speech levels are the same but for non-

speech levels are much higher for unit ventilators, the signal to noise ratio within these

classrooms would likely be lower, causing lower speech intelligibility within this subsection

of classrooms, a factor shown repeatedly to affect occupants’ ability to listen and perform.

No clear effect of HVAC system type on the strength of time-based interactions between
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acoustics and IAQ was discovered. Overall, further work can explore the relationships of

HVAC system type on indoor environment parameters and their relationships. Perhaps

different or more detailed divisions can be explored to isolate more nuanced effects.
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Appendix A

Additional Figures

A.1 Distributions of Classroom Averaged Parameters

A.1.1 Acoustics

Figure A.1: Histogram of Average Speech Sound Levels in Classrooms
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Figure A.2: Histogram of Average Speech Levels in Classrooms for 250 Hz Octave Band

Figure A.3: Histogram of Average Speech Levels in Classrooms for 500 Hz Octave Band
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Figure A.4: Histogram of Average Speech Levels in Classrooms for 1 kHz Octave Band

Figure A.5: Histogram of Average Speech Levels in Classrooms for 2 kHz Octave Band
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Figure A.6: Histogram of L10 Values for Speech Levels in Classrooms

Figure A.7: Histogram of L25 Values for Speech Levels in Classrooms
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Figure A.8: Histogram of L35 Values for Speech Levels in Classrooms

Figure A.9: Histogram of L50 Values for Speech Levels in Classrooms
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Figure A.10: Histogram of L75 Values for Speech Levels in Classrooms

Figure A.11: Histogram of L90 Values for Speech Levels in Classrooms
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Figure A.12: Histogram of Percent of Time Speech Noise Exceeds 60 dBA

Figure A.13: Histogram of Percent of Time Speech Noise Exceeds 65 dBA
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Figure A.14: Histogram of Percent of Time Speech Noise Exceeds 70 dBA

Figure A.15: Histogram of Average Non-Speech Sound Levels in Classrooms



76
Figure A.16: Histogram of Average Non-Speech Levels in Classrooms for 125 Hz Octave
Band

Figure A.17: Histogram of Average Non-Speech Levels in Classrooms for 250 Hz Octave
Band
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Figure A.18: Histogram of Average Non-Speech Levels in Classrooms for 500 Hz Octave
Band

Figure A.19: Histogram of L10 Values for Non-Speech Levels in Classrooms
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Figure A.20: Histogram of L25 Values for Non-Speech Levels in Classrooms

Figure A.21: Histogram of L35 Values for Non-Speech Levels in Classrooms
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Figure A.22: Histogram of L50 Values for Non-Speech Levels in Classrooms

Figure A.23: Histogram of L75 Values for Non-Speech Levels in Classrooms
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Figure A.24: Histogram of L90 Values for Non-Speech Levels in Classrooms

Figure A.25: Histogram of Percent of Time Non-Speech Noise Exceeds 45 dBA
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Figure A.26: Histogram of Percent of Time Non-Speech Noise Exceeds 50 dBA

Figure A.27: Histogram of Percent of Time Non-Speech Noise Exceeds 55 dBA
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Figure A.28: Histogram of T20low values in classrooms

Figure A.29: Histogram of T20mid values in classrooms

Figure A.30: Histogram of T20mid values.
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Figure A.31: Histogram of T20high values in classrooms

Figure A.32: Histogram of C50 values in classrooms
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A.1.2 Demographics

Figure A.33: Histogram of percent of gifted students in classrooms
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Figure A.34: Histogram of percent of free and reduced lunch recipients in classrooms

Figure A.35: Histogram of percent of special education students in classrooms
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Appendix B

Averaged Data Variable Summary
Table

Table B.1: Variable names and definitions for averaged classroom acoustic, achievement,
and demographic data

Variable Description

Achievement

PRRead Classroom percentile average of state

achievement scores in reading

PRMath Classroom percentile average of state

achievement scores in math

Demographics

%FRL Percentage of free and reduced lunch re-

cipients in each classroom

%SPED Percentage of special education students

in each classroom

%Gifted Percentage of gifted students per class-

room

Acoustics: K-means Clustered ’Speech’ Metrics

Continued on next page
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Table B.1 – Continued from previous page

Variable Description

LAeq,sp A-weighted continuous equivalent sound

pressure level during times when speech

was present in the classroom

L250Hzsp 250 Hz octave band noise level during

times when speech was present

L500Hzsp 500 Hz octave band noise level during

times when speech was present

L1kHzsp 1000 Hz octave band noise level during

times when speech was present

L2kHzsp 2000 Hz octave band noise level during

times when speech was present

L4kHzsp 4000 Hz octave band noise level during

times when speech was present

L8kHzsp 8000 Hz octave band noise level during

times when speech was present

L10,sp Sound level (dBA) exceeded 10% of

the time during times when speech was

present

L25,sp Sound level (dBA) exceeded 25% of

the time during times when speech was

present

L35,sp Sound level (dBA) exceeded 35% of

the time during times when speech was

present

Continued on next page
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Table B.1 – Continued from previous page

Variable Description

L50,sp Sound level (dBA) exceeded 50% of

the time during times when speech was

present

L75,sp Sound level (dBA) exceeded 75% of

the time during times when speech was

present

L90,sp Sound level (dBA) exceeded 90% of

the time during times when speech was

present

%time>60dBAsp Percent of time noise when speech is

present exceeds 60 dBA

%time>65dBAsp Percent of time noise when speech is

present exceeds 65 dBA

%time>70dBAsp Percent of time noise when speech is

present exceeds 70 dBA

L10,sp – L90,sp L10 – L90 during times when speech was

present

Acoustics: K-means Clustered ’Non-Speech’ Metrics

LAeq,ns A-weighted continuous equivalent sound

pressure level during times when no

speech was present in the classroom

L125Hzns Non-Speech 125 Hz octave band noise

level during times when no speech was

present

Continued on next page



89

Table B.1 – Continued from previous page

Variable Description

L250Hzns Non-Speech 250 Hz octave band noise

level during times when no speech was

present

L500Hzns Non-Speech 500 Hz octave band noise

level during times when no speech was

present

L1kHzns Non-Speech 1000 Hz octave band noise

level during times when no speech was

present

L10,ns Sound level (dBA) exceeded 10% of the

time during times when no speech was

present

L25,ns Sound level (dBA) exceeded 25% of the

time during times when no speech was

present

L35,ns Sound level (dBA) exceeded 35% of the

time during times when no speech was

present

L50,ns Sound level (dBA) exceeded 50% of the

time during times when no speech was

present

L75,ns Sound level (dBA) exceeded 75% of the

time during times when no speech was

present

Continued on next page
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Table B.1 – Continued from previous page

Variable Description

L90,ns Sound level (dBA) exceeded 90% of the

time during times when no speech was

present

%time>45dBAns Percent of time noise when no speech is

present exceeds 45 dBA

%time>50dBAns Percent of time noise when no speech is

present exceeds 50 dBA

%time>55dBAns Percent of time noise when no speech is

present exceeds 55 dBA

L10,ns – L90,ns L10–L90 during times when no speech was

present

Acoustics: Unoccupied Room Measurements

BNL1min Background noise level collected over 1

minutes (ANSI S12.60)

T20 Reverberation (time it takes for sound to

decay 60 dB) extrapolated from 20dB de-

cay starting from 5 dB down point

T20,low T20 (see above for definition) for low fre-

quency range

T20,mid T20 (see above for definition) for mid fre-

quency range

T20,high T20 (see above for definition) for high fre-

quency range

C50mid Clarity index for speech intelligibility us-

ing 50ms as the critical time limit
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Appendix C

Time-Logged Data Variable
Summary Table

Table C.1: Variable Names and Definitions for Time-Logged Classroom Indoor Environment
Data

Variable Description

CO2 The concentration of carbon dioxide in parts per mil-

lion (ppm)

Coarse PM Geometric concentration of coarse (2.5μm < x <

10μm) particulate matter in counts/0.05ft3(air)

Fine PM Geometric concentration of fine (< 2.5μm) particulate

matter in counts/0.05ft3(air)

Formaldehyde Formaldehyde concentration in the room in parts per

billion (ppb)—not used in statistical analyses

ILA Artificial illuminance, an indication of the lighting

within the room in lumens/ft3

ILN Natural illuminance, an approximation of daylighting

in lumens/ft3

LAeq Equivalent continuous sound pressure level in dBA—

often referred to as ’Sound Level’ in the text

L125Hz Sound Level (dB) in the 125 Hz octave band

Continued on next page
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Table C.1 – Continued from previous page

Variable Description

L1kHz Sound Level (dB) in the 1000 Hz octave band

PN2.5 Count of 2.5 μm particles in parts per billion (ppb)

PN10 Count of 10.0 μm particles in parts per billion (ppb)

RH Relative Humidity (%) within the classroom

State Door state in percent open (%)—not utilized in sta-

tistical analyses

Temp Temperature in degrees Fahrenheit (◦F)
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Appendix D

Alternative Acoustics Model

Figure D.1: Alternative model not including grade level as a control



94

Appendix E

Supporting Statistics

Table E.1: Exploratory factor analysis pattern matrix for speech, non-speech, and room
acoustic variables

Variable Factor 1 Factor 2 Factor 3

L10,sp 0.991 0.058 -0.020

L25,sp 0.987 -0.016 -0.013

LAeq,sp 0.984 0.021 -0.008

L35,sp 0.968 -0.062 0.001

L2kHzsp 0.945 0.071 -0.023

%time>65dBAsp 0.945 -0.077 0.008

%time>70dBAsp 0.938 0.048 -0.024

L1kHzsp 0.928 -0.007 -0.033

L50,sp 0.919 -0.145 0.022

L4kHzsp 0.830 0.089 -0.065

%time>60dBAsp 0.827 -0.284 0.046

L75,sp 0.809 -0.334 0.034

L500Hzsp 0.804 -0.067 0.092

L250Hzsp 0.682 -0.114 0.073

L90,sp 0.672 -0.548 0.026

Continued on next page
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Table E.1 – Continued from previous page

Variable Factor 1 Factor 2 Factor 3

L8kHzsp 0.634 0.050 -0.045

L75,ns -0.051 -0.991 -0.025

L50,ns 0.026 -0.976 0.000

L90,ns -0.074 -0.958 -0.068

L35,ns 0.092 -0.941 -0.009

LAeq,ns 0.168 -0.923 0.022

%time>45dBAns -0.024 -0.916 0.009

L25,ns 0.159 -0.909 -0.019

%time>50dBAns 0.124 -0.886 0.002

L250Hzns 0.117 -0.838 0.018

L10,ns 0.285 -0.835 -0.005

L1kHzns 0.212 -0.825 0.021

L500Hzns 0.147 -0.819 0.023

L10,sp – L90,sp 0.461 0.760 -0.056

BNL1min -0.066 -0.701 0.074

%time>55dBAns 0.256 -0.672 0.064

L125Hzns -0.001 -0.668 0.023

L10,ns – L90,ns 0.400 0.550 0.085

T20,mid 0.081 0.010 0.965

C50mid -0.064 -0.004 -0.905

T20,high -0.001 0.020 0.764

T20,low -0.110 -0.005 0.458

Rotation converged in 8 iterations

Note: Octave band levels of 1 kHz for non-speech and 4 kHz and 8 kHz for speech times
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were included in the EFA but not discussed in the text.

Table E.2: Factor correlation matrix for the latent variable constructs

Factor 1 2 3

1 1 -0.222 0.059

2 -0.222 1 -0.11

3 0.059 -0.11 1

Extraction Method: Principal Axis Factoring. Rotation Method: Oblimin with Kaiser

Normalization.

Figure E.1: Scatterplot of latent variable factor scores and outcome variables, showing
scattered trends and no clear evidences of nonlinearity
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