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Plasticizers are added to polymeric materials to increase flexibility and durability,
thus they constitute a common, and widely used class of industrial chemicals. Plasticizers
have been suspected of a number of adverse health effects including the interference with
the endocrine system.' These substances have the tendency to migrate to the surfaces of
materials, where they can be absorbed, ingested, or inhaled. > The iniquitousness of
plasticizers and the daily contact with polymeric materials has given rise to concern about
the toxicity and health effects of these substances. Many long-term and excessive-dose
studies have been conducted on many of these chemicals, but little has been done to
determine the short-term and small-dose effects of these types of compounds. >
Classical methods of examining the biodistribution of such substances include
autoradiography, as well as an array of other analytical techniques. While these methods
can sufficiently provide biodistribution data, they suffers some limitations.

The majority of this thesis will argue that positron emission tomography (PET) is

a potential replacement for classical techniques to monitor biodistribution and

pharmacokinetics of widespread environmental contaminants. The work in this masters



thesis is focused on the preparation of three labeled model compounds: [“F] 2-fluoro-4-
(2-(4-hydroxyphenyl)propan-2-yl)phenol, ["“F]diethyl 4-fluorophthalate, and ["°F] bis(2-
ethylhexyl) 4-fluorophthalate. Imaging of these compounds will be offered as proof of
principle. Studies demonstrate that this approach is feasible, and that it can complement

and replace many of the laborious animal studies used in current toxicology research.
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CHAPTER 1
Tools to Measure Biodistribution

1.1 Introduction

Plasticizers are added to polymeric materials to increase flexibility and durability,
thus they constitute a common, and widely used class of industrial chemicals. These
substances have the tendency to migrate to the surfaces of materials, where they can be
absorbed, ingested, or inhaled. > The iniquitousness of plasticizers and the daily contact
with polymeric materials has given rise to concern about the toxicity and health effects of
these substances. One key element in evaluating the toxicity of a substance is to study its
pharmacokinetics and biodistribution in animals and humans. There are several classical
methods of measuring biodistribution. The majority of this thesis will argue that positron
emission tomography (PET) is a potential replacement for classical techniques to monitor
biodistribution and pharmacokinetics of widespread environmental contaminants. The
work in this masters thesis is focused on the use three labeled model compounds: [18F] 2-
fluoro-4-(2-(4-hydroxyphenyl)propan-2-yl)phenol, ['*F] diethyl 4-fluorophthalate, and
['®F] bis(2-ethylhexyl) 4-fluorophthalate. Imaging of these compounds will be offered as
proof of principle. Studies demonstrate that this approach is feasible, and that it can
complement and replace many of the laborious animal studies used in current toxicology

research.
1.2 Classical Methods of Measuring Biodistribution

Many classical techniques exist for measuring the absorption, distribution,
metabolism and elimination (ADME) of a given substance. Some studies give

information about exposure to circulating metabolites, identity of metabolites, rate at



15

which metabolites are excreted, and the route of elimination. Other studies have the
ability to characterize the distribution of a compound/metabolites in a given tissue or

organ sample at one given time point.

The most useful tool for measuring adsorption, distribution and metabolism is
coupled gas chromatography and mass spectrometry. In its simplest form, GC/MS is used
to evaluate the concentrations of a given substance in a bodily fluid or tissue. GC/MS
analysis of multiple samples withdrawn at serial time points can provide an exceptionally
accurate picture of the time course of the concentration profile in vivo. As an example,
Hong-xia and co-workers used GC/MS to identify the active compound of a Chinese
herbal medicine, Gastrodia elata Blume, and measure its biodistribution in mice. The
animals were fed this compound, then urine and brain samples were collected. These
samples were treated with acetic anhydride to enhance the volatility of the compound and
its metabolite(s) and then injected into a GC/MS, which separated and identified the

acetylated derivatives. 6

Other methods have also been utilized to monitor biodistribution of a given
compound including gas chromatography-mass spectrometry (GC/MS), (liquid
chromatography- mass spectrometry (LC/MS), and mass spectrometry- mass
spectrometry (MS/MS). Frias et. al. developed a GC/MS/MS method that was able to
detect chlorocarbon pesticides in human serum samples, and Smeds and Saukko used
GC/MS to measure these substances in adipose tissue.” The U.S. Center for Disease
Control and Prevention (CDC) developed a high-throughput LC/APCI-MS/MS (Liquid
chromatography/atmospheric pressure chemical ionization-mass spectrometry/mass

spectrometry) to quantify eight phthalate metabolites in human urine.” The urine samples
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were processed using enzymatic deconjugation of the glucuronides, followed by
LC/APCI/MS/MS analysis. This method allowed for rapid detection of phthalate
metabolites with relatively low detection limits. The CDC later further optimized this
study by incorporating an isotopically labeled (°C) internal standard for each of the eight

analytes as well as a conjugated internal standard to monitor deconjugation efficiency

In absorption, distribution, metabolism and excretion (ADME) studies, it is
common to radiolabel a compound in order to track it and its metabolites at the tracer
level. In these cases, a variety of MS and GC instruments coupled to on- or off-line
radioactivity detection can be employed. ['*C] Carbon and tritium, both beta-emitting
isotopes, are commonly used for this type of analysis because their incorporation leads to
virtually no change in the molecular structure or properties of the target compound. An
example of the instrumentation used to measure radioactivity in an ADME study would
be HPLC-MS/radiometry, which combines both radiochromatographic profiles for
isotope quantification with mass spectral data of metabolites of a radiolabeled parent

8
compound.

MS-based techniques can provide information regarding identification,
concentration and isotopic ratios in serum samples, but still suffer some limitations.
These methods tend to require more work to obtain appropriate standards. Moreover, the
extraction efficiency and characterization of various matrix effects on quantitation must
be evaluated for each organ or tissue sample.9 For MS samples, the compound needs to be
ionized, which can cause different responses from metabolites than that of the parent
compound. This creates a challenge for adequate quantification of specific metabolites

and requires preparation of synthetic standards and calibration curves for each ion source.
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" Most importantly, these techniques do not allow for direct visualization of
biodistribution and binding of a given substrate in real time. In many cases, excretion
and serum samples and animal sacrifice must be performed at various time points to
retrieve complete information of adsorption, distribution, and metabolite quantification
and qualification.

Autoradiography is another widely used tool to monitor the biodistribution of
radiolabeled compounds. It has the benefit of permitting visualization of the distribution
and binding of targets at various time points. This technique is used to localize
radioactivity within a solid specimen, which provides data on distribution of a given
substance and can ultimately assess whether a substance can be completely eliminated or
not. In an autoradiography study, a subject can be sacrificed after injection of a
radiolabeled ligand (in vivo autoradiography) or a target organ or tissue can be examined
after treatment with a radiolabeled ligand (in vitro autoradiography). In either case, the
collection of tissue samples is conducted by freezing the whole animal or organ and
cryosectioning the subject. After treatment with the radio-ligand, these tissue sections are
then exposed to a photographic emulsion or a phosphoimaging device that detects and
quantifies the radioactivity in selected tissues. !0 The radionuclides of choice are typically
[*H] tritium (B decay), ['*C] carbon (B decay) or ['*1] iodine (y decay). A typical dose
supplied in vitro is around 160 pCi/kg. ® In order to gather information about distribution,
a statistically valid number of animals are injected with the same compound, and at least
three at a time are sacrificed at each time point to determine biodistribution and

pharmacokinetics.
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While autoradiography can provide data on biodistribution, this method has a
number of limitations. First, studies have shown that the use of tritium and iodine-125 as
radioisotopes can be problematic in autoradiography analysis. Tritium has the tendency to
undergo hydrogen exchange with water, and in many cases 1257 is not biologically benign
in vivo and has shown to be liberated from the parent compound. %9 The extent of
dissociation limits the accurate interpretation of the autoradiograph. The generation of
carbon-14 can be difficult and time consuming. It requires labor-intensive operations to
convert "“C to graphite and is not readily adaptable to automation. This results in low
throughput sample preparation and high cost analysis.8 Therefore, many researchers often

3 125
use “H or

I. Autoradiography is also limited by its inability to decipher between parent
molecule, metabolites or degradation product, as it only detects total-substance
radioactivity.8 Finally, autoradiography does not allow for multiple time points to be
observed in a single subject, rather at each time point, at least three subjects will be
sacrificed. Thus, this technique cannot be applied for assessing ADME in human trials.

In summary, many experimental methods exist to monitor distribution of a
compound in vivo. The above-mentioned methods have the capability of efficiently and
accurately providing information on identity, substrate concentration, binding targets,
metabolism and elimination. However, the major limitations of these methods warrant
the need of a technique that allows for non-invasive, visualization of biodistribution over
a series of time points in a single test subject. More recently, positron emission
tomography has become increasingly popular in ADME studies because it is a less

invasive technique, and can give an abundance of information relating to biodistribution

and pharmacokinetics on a single, living subject. My research focuses on the application
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of PET as a method to assess the distribution and toxicological profile of three industrial
used plasticizers: bisphenol A, diethyl phthalate, and bis (2-ethylhexyl) phthalate. These
compounds were selected as test cases for assessing PET as a standard tool in
environmental toxicology, because there exists a wealth of data derived from classical

biodistribution, pharmacokinetic, and pharmacodynamics studies.

1.3 Positron Emission Tomography

Positron Emission Tomography (PET) is a valuable, non-invasive nuclear
imaging technique that allows for the visualization of physiological and biological
processes in vivo in real time. While PET is commonly used for diagnostic confirmation
and tumor localization, it is also useful as a means to determine pharmacokinetics and
pharmacodynamics of early phase pharmaceuticals. PET holds advantages over methods
like autoradiography, as it allows for the visualization of biodistribution in real time, and
it also permits these measurements on a single subject at multiple time points. Also, the
non-invasive nature of PET permits this method to be used in human studies, which is
why tracer studies are commonly conducted for many pharmaceutical drugs before they
enter Phase II or Phase III trials. ®

PET has the potential to supplant classical methods such as autoradiography.
Autoradiography is limited is its ability to also monitor kinetics, and multiple subjects
must be used to get usable data for distribution studies. When using multiple subjects,
there is much room for error. Different subjects may react differently to a compound,
depending on sex, weight, blood type, etc. On the other hand, PET provides the

investigator with the ability to perform multiple scans at various time points on a single,
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living subject. This allows for more accurate kinetic studies as well as full visualization
of the biodistribution of a compound. Figure 1-1 depicts a comparison of
autoradiography and PET for the assessment of Alzheimer’s patients. These studies
utilized ['®F]-labeled THK523, a compound that recognizes and bind to tau proteins in
the brain. Figure 1-1A shows the hippocampus of a 90-year-old woman who died of
Alzheimer’s disease.'' Figure 1-1B are PET scans of three different levels of the brain of
a 72-year-old woman who was diagnosed with Alzheimer’s disease.'? Essentially the
same information can be drawn from a PET scan as from an autoradiogram, but PET can
be conducted on a living patient to assess the efficiency of treatments, and monitor
kinetics, distribution and binding of a specific compound over time.

A) B)

()

[18F]-THK523

Figure 1-1: Comparison of autoradiograph and PET scan of Alzheimer’s Disease
patients. A) Autoradiogram of ['*F]THK523 binding to tau tangles.'' B) PET scan of

['"®FITHK523 binding to tau proteins. HC: healthy control; AD: Alzheimer’s disease.'?
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PET imaging is performed after injecting a patient with a radiopharmaceutical
that is labeled with a positron emitting radionuclide. As the radionuclide decays, a high
kinetic energy positron is emitted, which, upon slowing down, captures an electron and
cause an annihilation. This phenomenon releases two 511 keV gamma rays oriented at
180° from each other. The coincident A-rays are detected by a circular scintillation
detector that surrounds the patient. This concept is illustrated in Figure 1-2.

A. B.
Positron emitting isotope

511 KeV
phottay
Positron

~
9

Electron

Radioactive
tracer

Scintillation
detectors

511 KeV
photon
Figure 1-2: A) A representation of a positron-emitting nucleus and the annihilation

phenomenon that occurs. Adapted from Z. Li, 2010."* B) A diagram of the detection of

the emitted gamma rays by a scintillator. Adapted from C. West, 2004."*

Various radionuclides can be incorporated into radiopharmaceuticals to be used as
PET agents, as seen in Table 1-1. It is common to utilize carbon-11 on molecules of
interest because carbon is contained in all organic compounds, and thus it is believed that
isotopic substitutions with a radioisotope of carbon does not affect biodistribution in vivo.

A significant advantage of using [''C] carbon is its relatively short half-life (20.3 min).
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This short half-life means that the total radioactive dose given to the patient can be quite
small. However, the short half-life poses a significant problem for the radiochemist;
elaborate syntheses are typically ruled out. In contrast, using a radioisotope with a much
longer half-life, such as [1241] iodide (t ¥2 =4.18 d), the disadvantage is that dosimetry is
less favorable. Of the nuclei mentioned in Table 1-1, [18F] fluoride is the most useful to
monitor short-term biodistribution. Advantages include: 1) a reasonable half-life of 109.7
minutes. This permits injection of the radiolabeled drug, a number of scans at various
time points, and clearing of the radioactivity to occur in one day. 2) This radionuclide
also has low positron energy (0.64 MeV) resulting in a relatively short range in tissue
(maximum 2.2 mm) permitting high-resolution images. 3) '*F-Fluoride can be produced
in large amounts (>10 Ci) in a cyclotron, and 4) has acceptable radiation dosimetry for

5

multiple studies in a patient.l Aryl florination of pharmaceuticals offers many

advantages, which can include enhanced solubility, bioavailability and metabolic stability

. 1
compared to non-fluorinated analogues."”

Isotope | Half-life Decay El3+ avg. Maximum (avg) | Max. Specific
Mode [KeV] range in water Activity [Gbq
[mm] pmol™]
e 20.39 min. | B*(99.8%) | 385 3.8 (1) 3.4%10°
EC (0.24%)
PN 9.96 min. | B*(99.8%) | 491 5.0 (1.5) 7.0%10°
EC (0.2%)
e 122.24 sec. | B*(99.9%) | 735 7.6 (2.7) 3.4%10°
EC (0.01%)
PF 109.77 min. | B*(96.73%) | 242 2.2(0.3) 6.3%10"
EC (3.3%)
2 4.17 d. B (22.8%) | 188 9.7 (3) 1.2%10°
EC (11.0%)

Table 1-1: Commonly used radio-nuclei for PET and their properties. [Adapted from

Browne and Firestone (1986) and Brookhaven National Laboratory, Internet database, (2003).]
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Aqueous ['®F] fluoride is produced by proton bombardment of a 8OH, target (p*

+ 80> B4 n). The [ISF] fluoride so produced is solvated with water, which reduces its
nucleaphilicity. To overcome this problem, ['*F] fluoride is trapped on an ion exchange
resin to remove excess water and eluted with an aqueous solution of bicarbonate. To
enhance the nucleophilicity and solubility of fluoride, the potassium ions are complexed
by a cryptand, typically 1,10-diaza-4,7,13,16,21,24-hexaoxabicylco[8.8.8]hexacosane
(Kryptofix 2.2.2) as shown in Figure 1-3. Water is removed by azeotropic distillation
with a hydrophilic polar solvent, such as acetonitrile. Once the '*F anion is dry, its
nucleophilicity is enhanced so then it can participate in nucleophilic substitution reactions

and related chemistries.

1.4 Methods of Fluoride Incorporation

Several methods are currently employed to incorporate '8E_fluoride into aromatic
compounds. Nucleophilic aromatic substitution (SyAr) typically utilizes an “F -* source,
such as tetramethyl ammonium fluoride (TMAF), tetrabutyl ammonium fluoride (TBAF),
or Kryptofix 222 KF. A significant limitation of nucleophilic aromatic substitution is that
the reaction occurs only in electron poor systems. In cases where electron-withdrawing
groups are not present in the final product, multistep syntheses are required to transform

or remove an “‘activating” group.
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Figure 1-3: Structure of Kryptofix 222 KF, used in radiofluorination.

Direct electrophilic aromatic substitution utilizes an “F+” source such as NFSI'®,
Selectfluor®'’, or NFOBS.'® '® This approach works reasonably well for electron rich
arenes, but regioselectivity is sometimes an issue.'” To conduct electrophilic reactions
with '®F, the synthesis of '°F, is generally required. This is a difficult reagent to prepare
and handle routinely. In addition, its preparation involves dilution with "’F. Use of this
“carrier added” reagent leads to low specific activity compounds and the need to inject a
significant amount of the imaging agent. This is a major limitation if highly potent
compounds are being radiolabeled.

Another approach to incorporate fluoride into an arene is to employ a metal ion or
main group atom fluorination reaction. The general mechanism for a metal catalyzed aryl
fluorination is illustrated in Figure 1-4. This method can tolerate a variety of functional
groups, but suffers from several constraints. Foremost among these is that the precursors

are somewhat air-sensitive and unstable.



25

ArF LM ArX
X = Cl, Br,
M = Pd, Rh |, OTf
Ar
s /Ar
LnM\F LM’

—

Y*+X~ Y*F~

Figure 1-4: Metal catalyzed aryl fluorination. *°

In the DiMagno group, the incorporation of 'F-fluoride is conducted via
thermolysis of diaryliodonium fluoride precursors. We have developed synthetic methods
that permit very densely functionalized I(IIl) derivatives to be prepared. This method
allows for metal-free incorporation of '*F-fluoride in a no carrier added (n.c.a.) fashion.
Incorporation of n.c.a. ['*F] fluoride results in a high specific activity product. Victor
Pike was the first to incorporate n.c.a. 18R by the thermolysis of a diaryliodonium salt.?' In
this study he found that reactions with n.c.a. ["*F] fluoride with diphenyliodonium
chloride or triflate provided the first single-step method for the radiosynthesis of ['F]
fluorobenzene in high radiochemical yields. Diaryliodonium salt synthesis requires
generation of a hypervalent I(III) center, such as that found in bis(acetoxy) I(III) anisole.
These hypervalent compounds are relatively inexpensive to make, exhibit regioselectivity
in their reactions, and can generally be used under mild conditions. 2 Hypervalent I(IIT)
species are said to resemble the reactivity of Hg (II), TI(III) and Pb(IV) cognates without
the issue of toxicity. The mode of reaction of I(IIl), such as ligand exchange and

reductive elimination, resembles that of the transition metal ion.”* A general mechanism
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of the synthesis and reductive elimination of diaryliodonium salts is shown in Figure 1-5.
This illustration shows the two possible routes to prepare diaryliodonium salts that are
used in our laboratory. First, an iodinated substrate can be oxidized to the hypervalent
I(IIT) species, which is then coupled to a trifluoroborate arene to form a diaryliodonium
salt. Alterntively, the desired substrate can be modified to a potassium trifluoroborate
salt, which is then couple to a hypervalent I(III) arene to form a diaryliodonium salt. In
both cases, TMS-X serves as a trimethyl silyl ligand to activate the I(II) center. These
TMS-X groups act to “tune” the electrophilicty of the I(III) center, thus, the reaction can
be “customized” for either electron poor or electron rich systems. In the DiMagno group,
many TMS-X catalysts are used including TMS-TFA (trimethylsilyl trifluoro acetate),

TMS-OTT (trimethylsilyl triflate) and TMS-OAc (trimethylsilyl acetate).

/R
TMS-X N
@I(OA% OBFS _
i\ Fe
R
BF TMS-X | 73
3
7~ I\
.
] X
R
| \/\ A \/l\:‘
C) | N B Y
!—Ar F
F

—



27

Figure 1-5: The synthesis and reductive elimination of diaryliodonium salts. A) A
hypervalent I(III) substrate is coupled to a trifluoroborate arene to form a diaryliodonium
salt. B) Trifluoroborate modified substrate is coupled to a hypervalent arene to form a
diaryliodonium salt. C) Reductive elimination of an aryl iodide from a diaryliodonium

fluoride to form a fluoroarene.

1.5 Conclusions

Classical methods of measuring biodistribution provide valuable information but
still suffer from some limitations. PET imaging is potentially a complementary technique
to visualize the distribution, adsorption and metabolism of compounds of interest. Unlike
toxicokinetic measurement methods driven by GC/MS instruments, PET alone cannot
identify and distinguish among metabolites. While PET can supplant such methods as
autoradiography, methods to detect various metabolites will still be need to be utilized for
biodistribution and toxicity studies. While there are multiple routes to incorporate '°F
onto a desire substrate for PET, for this work, the synthesis of a diaryliodonium salt
precursor of diethyl phthalate, bis(2-ethylhexyl) phthalate and bisphenol A are explored
for proof of principle studies. Once the diaryliodonium precursors are in hand, then
biodistribution studies can be conducted to assess the efficiency of PET as a valuable,
non-invasive tool for evaluating environmental toxicology of widely used industrial

chemical.
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CHAPTER 2
Diethyl Phthalate
2.1 Introduction

Diethyl phthalate (DEP) is a commonly used plasticizer. DEP is primarily used as
a solvent or in cellulose acetate polymers. Unlike heavier chain phthalate esters, DEP is
not used as a plasticizer in PVC because its low molecular weight makes it somewhat
volatile. In 2008, approximately 5,200 of the 5,800 metric tons of consumed diethyl
phthalate produced in the U.S. were used in cellulose acetate polymer formulations.
These materials were used in films, tool handles and adhesives. B In 2010, the EPA
reported that DEP was also found in a variety of other products including soaps,
detergents, adhesives, sealants, rubber, and plastic products. DEP has also been found in
cosmetics, epoxy resins, pharmaceutical and personal care products, children’s toys, and
insect repellents. DEP is also a component in fralgralnces.23 The large number and variety
of products in which DEP is found mean that consumers encounter this compound from
multiple products on a daily basis. Moreover, this exposure to diethyl phthalate can occur
through dermal absorption, inhalation and ingestion.

Diethyl phthalate exposure and the biodistribution of this compound in animals
and human subjects are measured using the classical methods described in Chapter 1. The
overall goal of this research is to develop an alternative, positron emission tomography
(PET) based methodology to track this compound in vivo. The immediate goal of this
project was to synthesize a diaryliodonium triflate precursor, which could be readily
radiofluorinated to yield 4—[18F]—ﬂu0r0diethy1 phthalate.  This radiotracer will be

evaluated to determine if the behavior of the fluorinated compound exhibits comparable
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biodistribution and pharmacokinetics compared to the nonfluorinated material. If so, 4-
['®F]-fluorodiethyl phthalate will be offered as a means to visualize the in vivo

biodistribution of this environmental contaminant in real time.

2.2 Known Metabolism of Diethyl Phthalate

The major pathway of diethyl phthalate metabolism is hydrolysis to the
monoester, which can be further hydrolyzed to phthalic acid or glucuronidated. Oxidation
of the ester side chain also occurs as is outlined in Figure 2-1.** Hydrolysis of DEP
occurs in the lumen of the gastrointestinal tract, in intestinal mucosal cells, or in the liver,
kidneys and lungs after systematic albsorption.25

Several studies have used '*C-labeled DEP to monitor the biodistribution and
metabolism of the parent compound. In 1976, Ioku and co-workers fed 'C-labeled DEP
to rats and mice and assessed its biodistribution by autoradiography at 48 hours post
administration. The kinetics of the tissue distribution of DEP was also measured, and it
was found that maximum radioactivity (at 20 minutes post administration) was found in

23, 25 .
325 The concentration of

the kidneys and liver, followed by blood, spleen and fat.
radioactivity was measured in excretion samples and it was found that there was a rapid
decrease to trace amounts after 24 hours. Excretion was found to occur primarily through
the kidneys; only about 3% of the total administered dose was elimination in feces. The
authors identified two main metabolites: monoethylphthalate (MEP) (major) and phthalic
acid (minor). This early study proves that DEP is cleared rapidly from rodents. This fact

was used to argue that a single bolus of administered DEP carries little long term

exposure risk.
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A second study of the biodistribution of DEP in male rats probed the impact of
dermal application of ["*C] DEP (5-8 mg/cm?). Urine and fecal samples were collected
and analyzed by liquid scintillation spectrophotometry every 24 hours for 7 days.26 It was
noted that 24% of the total dose was excreted within 24 hours. After animal sacrifice,
radioactivity was detected in the brain, lungs, spleen, small intestines, kidneys, testis,
blood and spinal cord, but each having a concentration less that 0.5% of the administer
dose. It was noted that 86% of the given dose remained on the surface of the skin. This
indicates that dermal absorption of DEP is very slow. This finding is significant
considering that human exposure to DEP primarily occurs through application of

fragrances and body lotions on the skin.
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Figure 2-1: Pathways for metabolism of diethyl phthalate (DEP).
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An experiment in 1975 by Singh and co-workers, monitored ['Cl diethyl
phthalate in serum following intraperitoneal injection into 13 pregnant rats at either day 5
or day 10 of gestation. Analysis of withdrawn serum samples by liquid scintillation
spectrophotometry showed that the distribution of radioactivity in maternal blood peaked
at 24 hours then diminished quickly. A similar pattern was seen in fetal tissue and
amniotic fluid. The rate of elimination was found to fit a first-order excretion curve. It
was also suggested that radioactivity from the radiolabeled compound was transmitted
through the placenta into the fetus. The ['*C] radioactivity was widely distributed and
detected in maternal blood, amniotic fluid and the fetus (all <1%) at all gestational time
points that were investigated.** This study is significant in that it shows that the mother
and the fetus are both exposed to DEP, but it is also eliminated quickly from both the
mother and fetus. Again, this suggests that prolonged exposure to DEP, even when
administered by injection, is minimal.

The specific enzymes that are responsible for the hydrolysis of DEP have not yet
been completely characterized for various species. However, DEP has shown to be
hydrolyzed to the monoester by purified carboxylesterases isolated from human and rat
liver. In 1987, Ashour ef. al. demonstrated that microsomal carboxylesterase activity
toward DEP was induced in mouse liver and rat kidneys.”> Some major enzymes that are
involved in the microbial metabolism of DEP include phthalate oxygenase, phthalate
dioxygenase, phthalate dehydrogenase and phthalate decarboxylase.27’ %21 a study
performed with commercially available porcine and bovine pancreatic cholesterol

esterase (CEase, EC 3.1.1.13), it was found that DEP was hydrolyzed to MEP within 24
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hours.™ In 1997, Kayano and co-workers found that a novel esterase, ES46.5K, isolated
from mouse hepatic microsomes demonstrated strong hydrolytic effects toward DEP and
other short chain phthalate esters, but was less effective at hydrolyzing longer chain
derivatives such as bis(2-ethylhexyl) phthalate (DEHP).*' This esterase hydrolyzed only
one of the ester groups of DEP; formation of phthalic acid was not observed even after
prolonged incubation. From a study in 1998 by Hotchkiss and co-workers it was
demonstrated that skin could also hydrolyze DEP to MEP using in vitro percutaneous
absorption with rat and adult human skin. There are a variety of enzymes responsible for
the metabolism of DEP and they are found in several areas of the body. All of these
studies mentioned in this section confirm the efficient metabolism and rapid clearance of

DEP from the body.

2.3 Potential Health Effects of Diethyl Phthalate

While there is an industrial demand for diethyl phthalate, some studies of human
populations have suggested that its widespread use could be cause for concern. Diethyl
phthalate and its commonly found metabolite, monoethyl phthalate (MEP) are found in
population samples at levels often orders of magnitude greater than those of other
phthalates such as bis (2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP).32
The prevalence of DEP in personal care products and its volatility, are thought to be
responsible for the relatively elevated exposure to this compound.

Studies in animals and humans suggest that exposure to DEP may be responsible
for a number of reproductive issues, especially in males. In dose-response studies

performed by Duty (in 2003) and Hauser (in 2007) it was shown that damage to sperm
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DNA was associated with high levels of MEP in urine samples in two groups of adult
human males that were undergoing tests for infertility.” In 2005, Jonsson and coworkers
evaluated urine, serum, and semen samples from 234 young Swedish males and found
that men with the highest concentrations of MEP experienced 8.8% fewer sperm, 8.9%
more immotile sperm, and lower serum luteinizing hormone values compared to men
with lower levels of MEP.> However, the results of these studies were questioned because
no data were reported for the actual exposure (amount or duration) to DEP each man
experienced.

There are several other studies that correlate serum or urinary DEP metabolites to
health effects. One of these was a 2005 study by Swan and co-workers reporting a
significant association of MEP in samples in pregnant women with age-adjusted
anogenital index (AGI) of postnatal males at 2-36 months of age. AGI, which describes
the span of the perineum, the portion of the body between the anus and genitalia, has
been suggested as a tool for identifying male sexual development vs. male feminization.
It was concluded that MEP concentrations had an inverse relationship with AGL> In a
study in 2007, Stahlhut and co-workers correlated phthalate exposure with abdominal
obesity and insulin resistance in adult males in the US. It was shown that MEP level was
significantly associated with increased abdominal circumference and increased insulin
resistance.”® MEP is also suspected of being hepatocarcinogenic and teratogenic in mice
who experience chronic exposure or administration of a large dose.”" Again, these studies
show that there may be a correlation between higher DEP metabolites in urine and serum

samples and a shortened AGD in male offspring, obesity, diabetes and liver cancer.
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However, it is difficult to give a definitive answer as to if DEP is indeed the cause of
these health problems considering there was no record of the administered doses of DEP.

Several research studies have appeared in which accurate accounting of DEP
exposure was recorded. In 1993, Jones investigated organelle changes in Leydig cells of
rats that were exposed to four different phthalates including diethyl phthalate in a gavage
dosage of 2000 mg/kg body weight once a day for two days.24 Administration of DEP
resulted in mitochondrial swelling, smooth endoplasmic reticulum focal dilation and
vesiculation, and increased interstitial microphage activity associated with surface of the
Leydig cells of rats. These data provide evidence that very large doses of DEP may be
potentially damaging at the cellular level; however, the dose given is large that the
relevance of these results on human exposure to DEP is questionable.

While earlier studies provided evidence suggesting that the dermal absorption of
DEP was modest and slow, the National Toxicology Program (NTP) conducted a study
observing the effects of dermal exposure to DEP over the course of 4 weeks. DEP was
applied dermally to B6C3F; mice at doses of 12.5, 25, 50, and 100 puL (approximately
560, 1090, 2100 or 4300 mg/kg for males and 630, 1250, 2500 or 5000 mg/kg for
females) 5 days/week. It was found that dermal application of undiluted DEP resulted in
increased relative liver weight in mice.” Intriguingly, this study showed that adverse
effects (increases in absolute and relative liver weights) only occurred in female test
subjects. In another 4-week study performed by the NTP, DEP was applied to the skin of
F344/N rats (200, 400, 800 or 1600 mg/kg for males and 300, 600, 1225, or 2500 mg/kg
for females, given 5 days/week). This study showed increased relative liver weights in

the higher dosed males and females.” These data suggest that prolonged exposure to



35

DEP at relatively high-doses could have a negative effect on the liver. Again, these doses
and long-term exposure are not comparable to human exposure levels.

In summary, the above studies indicate there may be a correlation between DEP
exposure and adverse health effects. DEP is suspected to be associated with sperm
damage, shortened AGD in male offspring from mothers that were exposed during
pregnancy, obesity, insulin resistance, and possible liver cancer. However, there was no
reported data on the amount or duration at which those studied had been exposed to.
Nonetheless, there are data suggesting that prolonged exposure to DEP in relatively high
doses can have adverse effects toward rat livers and can be detrimental to organelles in
rat cell lines.

I am interested in preparing a ['®F]-labeled DEP derivative to enable monitoring
of the biodistribution and pharmacokinetics of DEP in mice using positron emission
tomography (PET). [ISF]—DEP would be administered at a nanomolar concentration and
assessed at various time points to verify if DEP or its metabolites are binding to any
receptors in the body or if there is any evidence that this compound could be responsible
for the speculated adverse health effects at relatively low doses, comparable to that of

human daily exposure.

2.4 Synthetic Approach

The synthetic approach that was used to prepare the diethyl phthalate
diaryliodonium salt and fluorinated analogue is illustrated in Scheme 2-1 below. The
first step was to oxidize commercially available 4-iodoxylene to 4-iodophthalic acid

following the methods proposed by Dudi¢.** Several esterification methods, including
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thionyl chloride and ethanol resulted in mixtures that contained significant amounts of the
monoester product. While the desired product could be readily separated from these
reaction mixtures, it was found that esterification of 4-iodophthalic acid with N,N'-
dicyclohexylcarbodiimide (DCC), 4-dimethylaminopyridine (DMAP) and ethanol
provided an enhanced yield of the desired diester. Simple filtration through silica gel was

sufficient to obtain the desired starting product in good yield and purity.

o}
[ KMnO4 DCC, DMAP, c;H20|2 ' 07~
\©i pyridine, H,O EtOH RT, 12 hrs O~
Reflux 48 hrs O
43% 77%
7~
Selectfluor® 0 ©
TMSOAc (AcO)l 0~ BF,
> - o)
o)
HgCN N X
CHLC TMSOTS 0™
o) CH4CN o~
X=OTf, BF, ©
O ~
Amberlite IRA-450 (OTf) o
ion exchange o E
o) TMAF, CH5CN o™
( ) N
o e o_
0 - CGHG, 12000, 20 min 5
o} 72%

74% (over 3 steps)
Scheme 2-1: Synthetic scheme of the synthesis of diethyl phthalate diaryliodonium

triflate salt and conversion to the fluorinated analogue.
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Once 4-iododiethyl phthalate was isolated, it was oxidized with Selectfluor® and
TMSOACc in dry acetonitrile. Proton NMR spectroscopy was used to follow the
progression of the oxidation reaction. After optimization of the reaction conditions, it was
found that maximum conversion to the aryliodonium diacetate intermediate occurred at
24 hours at 60 °C. Once formed, the I(IIl) intermediate was treated with potassium
trifluoro(4-methoxyphenyl)borate and TMS-OTf to form the diaryliodonium salt
precursor. The desired product was easily purified by washing the solid product with
methyl-zert-butyl ether (MTBE). Sonication of the mixture was used during the washing
step to assist the removal of impurities that might be trapped in the solid matrix of the
product.

High specific activity radiochemical syntheses generate vanishingly small amounts
of material. In fact, standard UV-visible detectors on analytical HPLC equipment are
insufficiently sensitive to detect the amount of radiotracer prepared be the methods we
use in our group. Therefore, a “cold” fluorination standard sample of every compound
must be prepared to help the radiochemist establish the identity of the radiolabeled
product. The first preparation of the standard used a model reaction of the radiosynthesis:
the diaryliodonium salt precursor was treated with 0.8 equivalents of
tetramethylammonium fluoride (TMAF) in dry acetonitrile for about 15 minutes to effect
an ion exchange and prepare the corresponding diaryliodonium fluoride. The solvent was
removed and replaced with dry C¢De and the mixture was heated at 120 °C for 10-20
minutes. It was found that the optimal temperature and time needed for maximum

conversion was 20 minutes at 120°C. The final product was analyzed by HPLC (275 nm
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UV detection, mobile phase: 65% acetonitrile : 1% acetic acid in water, Phenomonex,

Luna, C18 column). The HPLC trace of the isolated standard is given in Figure 2-2.

VWD1 A, Wevelength=275 nm (£5M_FDEP 2015-02-12 12-63-29.0)

400-
350%
300-5
250%

-

5. 7Aa9

Figure 2-2: HPLC trace of 4-fluorodiethyl phthalate.

2.5 Conclusions

In summary, diethyl phthalate is a widely utilized industrial chemical that can be
found in everyday consumer items such as soaps, detergents, sealants, fragrances, lotions
and plastic products, such as children’s toys. Routes of exposure to DEP include dermal
absorption, ingestion, and inhalation. Diethyl phthalate has been reported to metabolize
and eliminated from the body quickly. The metabolism of DEP is mainly through
hydrolysis to the monoester, which can be hydrolyzed to phthalic acid or glucuronidated.
Ethyl side chain oxidation products are also formed. While it has been reported to

metabolize rapidly, the widespread use of DEP by consumers, can correlate to having a
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high concentration of DEP or its metabolites in urine and serum samples. DEP has been
speculated of being responsible for a number of adverse health effects, as mentioned
above. While there may be evidence of DEP metabolites present in many of these studies,
there was little evidence that DEP was solely responsible for many of the conditions
discussed, or the DEP doses were incredibly large. It is also unclear why males would be
more susceptible to DEP than female subjects.

The focus of this project was to prepare the diaryliodonium triflate salt precursor,
which could be exposed to late-stage radio-fluorination to yield ['*F] 4-fluoro-diethyl
phthalate. The radiotracer could then be injected into a test subject at nanomolar
concentrations and visually assess the biodistribution in real time using PET. This could
give vision to where diethyl phthalate is going through the body at reasonable
concentrations. PET scans can also give insight to if there is any occurrence of target
binding that may be associated with these speculated health effects, however other
qualification tests would need to be conducted to know to what extent, and to where,

exactly, a compound is binding.

2.6 Experimental Data

o)

OH
OH

o]
4-iodophthalic acid
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This is a known compound (CAS 6301-60-6) but was synthesized according to the

procedure reported by Dudi¢.**

In a 1L round bottom flask, 4-iodo-1,2-dimethylbenzene (
11.0 mL, 77.4 mmol) was diluted in160 mL of pyridine. Potassium permanganate (146.7
g, 928.8 mmol) and 340 mL of deionized water were added and the reaction mixture was
allowed to reflux for 72 hrs. After the mixture cooled to RT, the reduced manganese salts
were removed by filtration, and the filtrate was acidified carefully with concentrated
hydrochloric acid to pH 1-2. Upon acidification, a white precipitate was formed and
extracted with ethyl acetate. Extraction of the reaction mixture with ethyl acetate
followed by evaporation of the solvent in vacuo produced a light pink solid. The crude
product was dissolved sodium carbonate, and the aqueous solution was washed with ethyl
acetate (3 X 50 mL). The aqueous solution was adjusted back to pH=1 with concentrated
hydrochloric acid, precipitating the purified product. The mixture was extracted with
ethyl acetate and the solvent was removed under reduced pressure and dried in vacuo to
yield 9.70 g (43%) of the colorless product. '"H NMR (D,O+CH;CN, 400 MHz, 25°C) o
8.26 (d, J=1.6, 1H), § 8.12 (dd, J,= 1.6, J= 8.2, 1H), § 7.68 (d, J= 8.2, 1H); °C NMR
(D,O+CH3CN, 100 MHz, 25°C) 6 170.4, 169.7, 140.8, 137.7, 133.8, 131.1, 130.8, 98.1;

HRMS (ESI): Calcd CgHsO4I [M-H,O]" 274.9205; found 274.9173.

Diethyl-4-iodophthalate
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This compound is known (CAS 67193-51-5) but was prepared using the esterification
reaction modeled after that used by Buchwald.”* In a 250 mL round bottom flask, 4-
iodophthalic acid (2.32 g, 7.94 mmol) was dissolved in 15 mL of dichloromethane.
Ethanol (0.93 mL, 15.9 mmol) and DMAP (0.24 g, 1.96 mmol) was added to the reaction
flask, which was cooled to 0 °C. N,N'-dicyclohexylcarbodiimide (DCC) (3.44 g, 16.7
mmol) was dissolved in 10 mL of dichloromethane and added to the cooled reaction
mixture in a drop-wise fashion. The reaction was stirred and allowed to warm to RT
slowly for 12 hours. A white precipitate had formed as a result of an insoluble DCC by-
product, DCU, which was filtered off of the reaction mixture. The filtrate was stirred for
an hour with hexanes, producing more DCU solid, which was removed by filtration. The
filtrate was subjected to reduced pressure removing the solvent and the desired product
was purified by column chromatography (5% EtOAc: Hexanes). After removal of
solvent, 2.13 g of a clear oil was obtained in a 77% yield. '"H NMR (CDsCN, 400 MHz,
25°C) 6 8.04 (d, J=2.0, 1H), 7.96 (dd, J,= 8.0, J,= 1.6, 1H), 7.47 (d, J= 8.0, 1H), 4.30 (q,
J= 7.2, 2H), 429 (q, J= 7.2, 2H), 1.31 (t, J= 7.2, 3H), 1.30 (t, J= 7.2, 3H); °C NMR
(CD;CN, 100 MHz, 25°C) & 167.7, 166.9, 141.2, 138.3, 135.1, 132.4, 131.4, 98.0, 62.9,

62.8, 14.4; HRMS (ESI): Cald C;,H3104 [M+Na]*: 370.9756; found 370.9774

7
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[3,4-Bis(ethoxycarbonyl)phenyl]-(4’-methoxyphenyl)iodonium triflate
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In a N, charged atmosphere, in an oven dried Schlenk flask, diethyl-4-iodophthalate (2.08
g, 5.98 mmol) was dissolved in 60 mL of dry acetonitrile. In a 20 mL scintillation vial,
Selectfluor® (2.75 g, 7.76 mmol) was dissolved in 10 mL of dry acetonitrile, followed by
trimethylsilyl acetate (2.33 mL, 15.5 mmol) that was diluted in 10 mL of dry acetonitrile
and was allowed to mix for 3-5 mins. The Selectfluor® solution was added to the
reaction mixture in a drop-wise fashion. This mixture was sealed and stirred at 60 °C for
24 hrs. In a inert atmosphere, potassium trifluoro(4-methoxyphenyl)borate (1.28 g, 5.98
mmol) was dissolved in a minimal amount of dry acetonitrile and added to the reaction
flask. In a 20 mL scintillation vial, trimethylsilyl trifluoromethanesulfonate (1.0 mL, 5.8
mmol) was diluted in 10 mL of dry acetonitrile and added to the reaction flask in a drop-
wise fashion. The flask was sealed and reacted at RT for 12 hours. The solvent was
removed under reduced pressure. The mixture was dissolved in dichloromethane and
washed with deionized water (3 X 50 mL). The organic layer was dried over sodium
sulfate, and upon removal of the solvent produced a colorless solid. The solid was
ultrasonicated in methyl-tert-butyl ether (3 X 50 mL) and dried in vacuo. The resulting
white solid was subjected to a triflate ion exchange column (Amberlite IRA-450 (OTY))
in a solution of acetonitrile/water (80:20). The solvent was removed under high dynamic
vacuum overnight. This resulted in 2.67 g (73%) of a colorless solid. "H NMR (CDsCN,
400 MHz, 25°C) ¢ 8.37 (d, J=1.6 Hz, 1H), 8.21 (dd, J;= 2.0, J,= 8.4, 1H) 8.05 (d, J=9.2,
2H) 7.75 (d, J= 8.4, 1H) 7.07 (d, J=9.2, 2H) 4.32 (q, J= 7.2, 2H) 4.32 (q, J= 7.2, 2H) 3.84
(s, 3H), 1.31 (t, J= 6.8, 3H) 1.30 (t, J= 6.8, 3H); °C NMR (CD;CN, 100 MHz, 25°C) &

167.0, 165.8, 164.6, 139.1, 138.6, 137.1, 135.9, 135.5, 132.9, 119.3, 118.4, 116.8, 102.6,
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63.5, 63.4, 56.8, 14.3, 14.3; "’F NMR (CDsCN, 376 MHz, 25°C) 5-80.9. HRMS (ESI):
Cald CyoHyF;05IS [M-OT{]": 455.0356; found 455.0366.

o)
F
o™
o__
o)

Diethyl 4-fluorophthalate

This compound is known (CAS 320-96-7) but preparation by this route has not been
previously reported. In an N, charged glove box, diethyl 4-((4-
methoxyphenyl)(((triﬂuoromethyl)sulfonyl)oxy)—k3 -iodanyl)phthalate (0.3 g, 0.5 mmol)
and tetramethyl ammonium fluoride (0.04 g, 0.40 mmol) was dissolved in dry acetonitrile
(15 mL) in a 50 mL Schlenk tube. The solution was allowed to stir at room temperature
for 5 minutes and the solvent was evaporated under high dynamic vacuum. The reaction
mixture was then dissolved in dry benzene (15 mL) and heated to 120 °C for 20 minutes.
The solvent was evaporated and the product mixture was purified by column
chromatography (5:95; Ethyl acetate: Hexanes). This yielded a clear oil (0.07 g) in 72%
yield. 'H NMR (CD;CN, 400 MHz, 25°C) & 7.81 (dd, *Juu= 8.6, Tur= 5.4, 1H), 7.41
(dd, *Jir= 8.9, = 2.5, 1H), 7.33 (td, *Jur= 8.4, *Jun= 8.4, “Tyn= 2.5, 1H) 6 4.31 (q,
J=17.2, 4H), 8 1.32 (t, J= 7.2, 3H) & 1.31 (t, J= 7.2, 3H); °C NMR (CD:CN, 100 MHz,
25°C) §167.5 (d, “Tep= 2.2 Hz) 167.2, 164.9 (d, 'Jep= 251 Hz), 136.6 (d, *Jc= 8.1 Hz),
132.8 (d, *Jer= 8.9 Hz), 129.0 (d, *Jcr= 3.5 Hz), 118.9 (d, Jcr= 21.9 Hz), 116.8 (d, *Jc.
r= 24.3 Hz), 63.0, 62.7, 14.4, 14.4; ’F NMR (CDsCN, 376 MHz, 25°C) & -109.03 (td,
3JH_F: 8.6 Hz, 4JH_F: 5.4Hz); HRMS (ESI): Cald C;,H;3FO4 [M+Na]": 263.0696; found

263.0692.
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CHAPTER 3
Bis(2-ethylhexyl) phthalate

3.1 Introduction

Bis(2-ethylhexyl) phthalate, commonly referred to as di(2-ethylhexyl) phthalate
or DEHP, is common plasticizer that has had a wide range of uses. This colorless liquid
has an aqueous solubility of 41 pg/L at room temperature. It is miscible with mineral oil
and liquid hydrocarbons, such as hexane. According to a 1999 report from Mannsville
Chemical Products Corporation, 95% of DEHP is used as a plasticizer for polyvinyl
chloride (PVC) products to induce flexibility.” Examples of these PVC products include
floor tiles, upholstery, wall coverings, shower curtains, swimming pool liners, garden
hoses, plastic toys, rainwear, packaging film and sheets, and sheathing for wire and
cables. DEHP is also widely used in medical tubing, blood storage bags, disposable
medical examination gloves, surgical gloves, and dialysis tubing.” Less commonly,
DEHP is used as a plasticizer in natural and synthetic rubbers. Non-plasticizer uses of
DEHP include acting as solvent in erasable inks, as an acaracide in orchards, pesticides,
and as an ingredient in cosmetics, vacuum pump oil ingredient, and dielectric fluids. It
has also been used to detect leaks in respirators and for testing air filtration systems.

DEHP can enter the environment through disposal of industrial and municipal
wastes, and by leaching into consumer products that have been stored in material
containing DEHP. This compound has been shown to sorb strongly to soil and sediment.
The most frequent route of exposure to humans is through ingestion.” However, the
greatest risk of acute exposure to DEHP occurs during medical procedures such as blood

transfusions (estimated upper bound limit of 8.5 mg/kg/day) and hemodialysis (estimated
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upper bound limit of 0.36 mg/kg/daly).2 According to the U.S. Food and Drug
Administration (2001) it was proposed the DEHP can leach from these plastic medical
equipment into biological fluids and then into the patient.” Due to an increase in the
awareness of potential health concerns associated with DEHP, many companies have
discontinued use of this phthalate.2

It is important to note that the presence of DEHP in commonly used analytical
equipment makes it difficult to accurately measure the relatively low levels of the
compound in laboratory samples. The ubiquitous nature of DEHP can lead to false
positives during assays, and also introduce significant uncertainty in the amount of DEHP
contaminant present.

The focus of this project was to synthesize a diaryliodonium triflate precursor of
bis(2-ethylhexyl) phthalate for the purpose of preparing radiolabeled DEHP. Once
prepared, the radio-fluorinated DEHP analogue shall be administered to laboratory
animals, and the pharmacokinetics and biodistribution of the compound will be measured

using positron emission tomography (PET).

3.2 Known Metabolism of Bis(2-ethylhexyl) phthalate

The metabolism of bis(2-ethylhexyl) phthalate is much like that of diethyl
phthalate. The main metabolite detected in urine and serum samples is the corresponding
monoester, MEHP, which can undergo further hydrolysis to phthalic acid or aliphatic side
chain oxidation. The metabolic pathways for degradation of DEHP are illustrated in
Figure 3-1 below. DEHP is more lipophilic than MEHP and it should readily absorb in

the gastrointestinal tract. However, a 1980 study by White and co-workers indicated that
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only the monoester was adsorbed in the small intestines of rats.”> This finding suggested
the presence of a hydrophilic barrier in the lining of the small intestine that limits the
amount of the parent compound being absorbed. Another report by Sjoberg and co-
workers in 1986 suggested that absorption of the orally administered dose of DEHP is
age—dependent.36 This study showed that younger rats had the ability to absorb more
MEHP through the small intestine than older rats when administered 2.7 mmol of DEHP/

kg/ day.
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Figure 3-1: Metabolic pathway of DEHP.
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Bis(2-ethylhexyl) phthalate is hydrolyzed to MEHP and 2-ethylhexanol in the
gastrointestinal tract by the combined actions of pancreatic lipase and an intestinal
mucosa lipase.” Other lipases, found in the liver, kidney, lungs and plasma have been
reported to hydrolyze DEHP to MEHP.?” A small amount of MEHP is further hydrolyzed
to phthalic acid while the remainder undergoes ®- and ®-1-oxidation of the aliphatic side
chain.”” The products of @-oxidation can undergo o- or B-oxidation, reducing the number
of carbons in the side chain. The oxidized metabolites can also be glucuronidated and
excreted. In a study performed on two humans in 1985, Schmid and Schlatter
administered 30 mg of DEHP orally to two human volunteers and analyzed urine samples
by mass spectrometry.”® From the metabolites in Figure 3-1, it was found that 20% was
2-ethyl-5-oxyhexyl phthalate (VI), 30% was 2-ethyl-5-hydroxyhexyl phthalate (IX) and
30% was 2-ethyl-5-carboxypentyl phthalate (V) of the total excreted material. MEHP
accounted for up to 12% of excreted DEHP metabolites; the remaining metabolites
accounted for less than 5% of the total excreted material.

It has been suggested that similar metabolic pathways are involved when DEHP is
inhaled or dermally administered due to the lipases present in alveolar cells and the
epidermis. In 1989, Elsisi and co-workers administered a dermal dose of 30 mg/kg/day
for 7 days to rats.”® Only 5% was excreted (3% in urine and 2% in feces) and 95% was
recovered from the skin surface. This study demonstrated that transdermal absorption of
DEHP was not extensive, suggesting that skin exposure is of relatively little concern.
Secondly, the fact that 40% of the absorbed portion was found in the feces reflects the

importance of biliary excretion.”
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Other enzymes are responsible for further hydrolysis and oxidation of MEHP. For
the hydrolysis of the monoester to phthalic acid, an esterase (primarily microsomal) is
implicated. ZMEHP can be reversibly glucuronidated, with the formation of the
glucuronide catalyzed by UDP-glucuronyltransferase (Figure 3-1). Regeneration of the
aglycone, from the glucuronide, is catalyzed by B-glucuronidase. Oxidation of MEHP to
the primary and secondary hydroxyl products is catalyzed by NADPH-dependent
microsomal monooxygenases in a manner analogous or identical to fatty acid - and (-
1) hydrolases.37 Albro has postulated that the hydroxylated products are substrates for
alcohol dehydrogenase, which produce aldehyde-containing metabolites. These
compounds can be oxidized to di-acids by aldehyde dehydrogenase and NAD. The
diacids can be further oxidized to form shorter acids with the help of a- and B-oxidation
enzymes, cofactors, mitochondria and/or peroxisomes.3 7

Because medical procedures significant exposure to DEHP, several studies were
conducted to analyze the metabolism of intravenously administered plasticizers. When a
single dose of "C-DEHP was administered intravenously to rats, the majority of the dose
was recovered in the urine and feces, indicating that the major excretory pathways for
rats were urine and bile.” In 1975, Rubin and Schiffer demonstrated that humans who
were administered a bolus of DEHP during a blood transfusion showed rapid clearance of
the compound from the blood.* Patients receiving an injection of platelets stored in a
vinyl plastic pack displayed an initial DEHP plasma concentrations ranging from 0.34 to
0.83 mg/dL. These concentrations decreased rapidly; the mean rate of DEHP clearance
was 2.83% per minute and the plasma half-life of the compound and related metabolites

was 28 minutes.
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3.3 Potential Health Effects of Bis(2-ethyhexyl) Phthalate

In a study of prematurely born infants who required mechanical ventilation, it was
found that the infants displayed unusual lung function similar to that of hyaline
membrane disease, which is caused by insufficient surfactant production in the lungs.” In
1991, Klimisch and co-workers exposed rats to 1,000 mg/m3 of DEHP aerosol for 6
hrs/day, 5 days/week, for 4 weeks and found evidence of increased lung weight,
thickening of aveolar septa and proliferation of foam cells in male rats.* These effects
were found to be reversed 8-weeks post exposure. The female lab subjects did not display
any of these symptoms. There are also reports that suggest that DEHP in house duct work
can be responsible for the onset of asthma, wheezing, and eczema.’?

The toxicity of DEHP itself is presumed to be low, but several of its monoester
metabolites are presumed to exhibit toxicity. Oral ingestion of DEHP is associated with a
number of health effects. While no direct human studies were located, Barry and co-
workers observed a potential human cardiac muscle contractility effect in an in vitro
study in 1990.*' The monoester of DEHP, MEHP, displayed a dose-dependent negative
inotropic effect of human atrial trabecule. This work suggests that high MEHP serum
levels could lead to cardiotoxic effects in humans. However, because of the rapid
metabolism and excretion of MEHP, the long-term exposure to this metabolite would be
minimal.

In 2009, a study was conducted with clinically relevant concentrations of DEHP
on neonatal rat cardiomyocytes.*> It was found that applying DEHP to a confluent,

synchronously beating cardiac cell network, caused a loss of gap junction connexin-43, a
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gap junction protein necessary for many physiological processes such as depolarization
of cardiac muscles and the conducted response in microvasculature. This led to a marked,
concentration-dependent decrease in conduction velocity, which is the speed at which an
electrochemical impulse propagates down a nerve pathway. This ultimately caused the
cells to beat out of sync. This experiment also showed that DEHP affected the
mechanical movement of myocyte layers, which resulted in a decrease of triton-insoluble
vimentin, leading to stiffness of underlying fibroblasts.

Experiments on rats and mice reported that liver mass increased in response to
DEHP oral administration. DEHP triggered rapid cell division along with some liver cell
enlargement.” Morphological changes caused by DEHP include fat deposits to the
periportal area, a decrease in centrilobular glycogen deposits, and structural changes in
the bile ducts. Hepatic cell enlargement and fat deposits are indicators of cellular lipid
peroxidation.2 It has also been noted by Mitchell and co-workers that rats exposed to 50
mg/kg/day of DEHP show an increase in hepatic peroxisomes in the centrilobular and
periportal areas of the liver, which ultimately leads to cellular hypertrophy.43 These
changes were only observed in male rats, even up to doses of 200 mg/kg/day, indicating
that male rats are more susceptible to the hepatotoxic effects of DEHP than females. The
reason why males are more susceptible is unclear.

DEHP is a well-known peroxisome proliferator. Peroxisomes are organelles that
utilize molecular oxygen to produce hydrogen peroxide during the catabolism of a
substrate. Peroxisomal fatty acid oxidation follows the same pathway utilized by
mitochondria, with the exception that ATP is not produced and hydrogen peroxide is

produced in place of water. There are several studies that indicate that the activity of the
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enzymes responsible for fatty acid catabolism is increased in rodents up to 1,500% after
exposure to DEHP in doses greater that 11 mg/kg/day and longer than 2 weeks.” When
peroxisomal catabolism of fatty acids is not accompanied by an increase of the liver
detoxifying hydrogen peroxide, the excess hydrogen peroxide can begin to react with
cellular lipids, proteins, and nucleic acids. Marker of lipid reactions with peroxides,
namely, lipofuscin deposits, were identified in high-dose studies in rats through their
lifetime.** These data suggest that some hepatic damage caused by DEHP can be
attributed to the reaction of excess hydrogen peroxide with cellular lipids.

When studies were conducted on the endocrine effects of DEHP in rats, it was
found that, in some cases, thyroid structure and activity were altered. In 1986 when
Hinton orally exposed male rats with 2,000 mg/kg/day for as little as 3 day, there was a
significant decrease in serum thrytoxine (T4) levels at all time points observed.” Electron
microscopy also revealed a considerable increase in the number and size of lysosomes,
signs of mitochondria damage and enlargement of the Golgi apparatus. These
ultrastructural changes are consistent with hyperactivity of the thyroid. These results are
consistent with a study done in 2009 by Ghisari and co-workers." In this report, in vitro
studies were conducted on thyroid hormone-dependent GH3 cells and MVLN cells
derived from human breast cancer cells for estrogen receptor binding. Here, the thyroid
hormone disrupting potential of DEHP was determined by the effect on the TH-
dependent rat pituitary GH3 cell proliferation and the estrogenic activity was assessed in
MVLN cells, transfected with an estrogen receptor (ER) luciferase reporter vector.

Several rodent studies suggest that the testes are primary target tissues for DEHP

in doses beyond 100 mg/kg/day. Many of these studies reported decrease in testicular
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weight and tubular atrophy, along with weight reductions for seminal vesicles,
epididymis, and prostate gland.” In a study from Albro and co-workers in 1989 **, acute
testicular atrophy occurred when a single dose of DEHP (2.8 g/kg) or MEHP (0.8 g/kg)
were orally given to young male rats and to testicular cells for in vitro studies. When
testicular cells were subjected to 1C-labelled MEHP (8 uM), it was found that the cells
could not metabolize MEHP beyond slight hydrolysis to phthalic acid after 24 hours.
Sjoberg also suggests that MEHP, the metabolite of DEHP, is responsible for these
testicular effects.”® There is also evidence from multiple rat studies that indicate sperm
DNA damage and sperm malformations.

There are few data on the effects of DEHP on female fertility. In a short-term
study feeding female rats 140 mg/kg/day for 126 days resulted in a complete loss of
fertility.46 When the rats were sacrificed, a significant decrease in the weights of ovaries,
oviducts and uterus in females, as well as a decrease in sperm concentration and an
increase in testicular atrophy in males was observed. These data suggest that DEHP had
adverse effects toward reproductive organs in rats. In 1994, Davis and co-workers
reported a decrease in serum estradiol levels, an increase in FSH levels and the absence
of LH surges, which is necessary for ovulation, when given a one-time dose of 2,000
mg/kg. This led to hypoestrogenic anovulatory cycles and the development of polycystic
ovaries in female rats.*’

There are a plethora of studies on potential developmental effects caused by
DEHP exposure, but only a few will be mentioned. In 2005, Swan and co-workers
conducted a study examining the anogenital distance (AGD) and other genital

measurements on humans in relation to prenatal exposure to phthalates.33 It was found
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that the oxidized metabolites of DEHP were those responsible for shortening of the AGD.
A report from Colén in 2000, correlated phthalate metabolites in serum with pre-mature
breast development in Puerto Rican girls younger than 8 years old with no other signs of
puberty displayed.48 In this study several phthalates were screened and the monoester of
DEHP accounted for 68% of phthalate metabolites present.

Bis(2-ethylhexyl) phthalate is noted to reduce fetal testosterone, and insulin-like
growth factor-3, which results in male reproductive abnormalities in humans. These
abnormalities include shortened AGD, and malformations of the epididymis, vas
deferens, semina lvesciles, and prostate, along with signs of hypospadias and
cryptorchidism.3 ? These are all symptoms of a condition that has come to be named the
“phthalate syndrome.”

The Carcinogen Assessment Group of the Environmental Protection Agency
(EPA) classified DEHP as “probable human carcinogen”. When examining for
carcinogenic potential it was found that the 2-ethylhexyl moiety is associated with
hepato-carcinogenic activity in rodents.” * In several chronic, high-dose feeding studies,
it was noted that there was a clear dose-dependent increase in the appearance of liver

. . 2
tumors, and in some cases pancreatic islet cell adenomas were also observed.

3.4 Synthetic Approach

The synthetic route to prepare the bis(2-ethylhexyl) phthtalate diaryliodonium
triflate is depicted in Scheme 3-1 below. Initially, the esterification reaction to form
bis(2-ethylhexyl) 4-iodophthalate was conducted in the same manner as 4-iododiethyl

phthalate with DCC, DMAP and 2-ethylhexanol (Scheme 3-2). In this reaction, the DCC
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by-product formed, dicylcohexylurea (DCU), typically precipitates out of the

dichloromethane solvent.

I\CE KMnO, DBU, CH;CN
e
o _—
pyridine, H,O 95°C, 14 hrs
Reflux 48 hrs 62%

/\/j/\ O /\/j/\
Selectfluor® \©\ K®
ele uor A o
_ TMSOAc C \@i BF;
_ :
CHsCN TMSOTf
\/\)\‘ . OTf BF“\/\JW

CH4CN

oy

(OTf)
Amberlite IRA-450 (OTf /©/ Oii
CH30N/H20

46% (over 3 steps)
Scheme 3-1: Synthetic route to prepare [3,4-bis(((2-ethylhexyl)oxy)carbonyl)phenyl]-

(4’-methoxyphenyl)iodonium triflate

O HO | Q SN
| on o T
> 0 (0]
OH  DCC, DMAP, CH.Cl,

0°C -->RT, 12 hrs e} (DCU)

Scheme 3-2: Initial route explored to synthesize bis(2-ethylhexyl) 4-iodophthalate.
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Multiple filtration, precipitations, and column chromatography was not efficient to

remove the residual DCU, as indicated in the '"HNMR in Figure 3-2.

I N o
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90 85 80 75 70 65 60 55 50 45 40 35 30 25 20
E

Figure 3-2: "H NMR data representing the presence of DCU (indicated by red arrows)

L

after column chromatography.

To solve this problem, a second, a DCC-free esterification method was developed.
4-lodophthalic acid was treated with thionyl chloride to form 4-iodophthaloyl chloride.
The thionyl chloride was removed and the resulting solid was dissolved in
dichloromethane and treated with 6 equivalents of 2-ethylhexanol and pyridine in

dichloromethane to form the desired diester in 12 hours. (Scheme 3-3). An aqueous



56

workup followed by solvent removal under high dynamic vacuum left the product
contaminated with residual pyridine and excess alcohol, which were observed by 'H
NMR. The reaction mixture was subjected to column chromatography in 100% hexanes,
which removed the pyridine but not the residual alcohol. An aliquot was heated to 45 °C
and stirred under high dynamic vacuum for 12 hours. There was no observable change in
the ratio of alcohol to product following this treatment. Further heating (60 °C for 2.5
days) resulted in significant decomposition.

Esterification of 4-iodophthaloyl chloride was also performed with triethylamine
in chloroform as was reported by Navarro.”® The amount of alcohol used was also
reduced to 2.2 equivalents. Unfortunately, when reduced amounts of the alcohol were

used, a mixture of mono- and di-substituted products was obtained.

e o

(0] HO
SOCl, I cl 6.0, 4.0 and 2.2 eq
Cl

80°C, 3 hrs A) pyridine, CH,Cl,

0°C-->RT, 12 hrs
B) Et3N, CHCly
60°C, 2 hrs

Scheme 3-3: Esterification route from the di-acyl chloride species with modifications of

the amount of 2-ethylhexanol used and various conditions (A &B).
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While each of the prior esterification methods suffered from significant problems in
product isolation and purification, the method of Kelber and co-workers ! provided the
desired product in sufficient purity. In this route, 4-iodophthalic acid was dissolved in
acetonitrile and treated briefly with 1, 8-diazabicyclo[5.4.0]Jundec-7-ene (DBU) under an
inert atmosphere before 2-ethylhexyl bromide was added. After the mixture was heated to
95 °C for 14 hours, it contained a large amount of the desired ester with a minimal
amount of the mono-substituted analogue. These products were easily separated from
each other and from residual 2-ethylhexyl bromide by column chromatography. The
bis(2-ethylhexyl) 4-iodophthalate so isolated (62%), was treated with Selectfluor® and
TMSOAC, the general oxidation conditions developed in our laboratory, to provide bis(2-
ethylhexyl) 4-(diacetoxy-A’-iodanyl)phthalate. This I(III) intermediate was coupled with
potassium trifluoro(4-methoxyphenyl)borate, using TMSOTf as a catalyst to provide
[3,4-Bis(((2-ethylhexyl)oxy)carbonyl)phenyl]-(4’-methoxyphenyl)iodonium triflate, the
DEHP diaryliodonium triflate salt, which was obtained as a paste-like compound that
proved to be difficult to recrystallize. Despite the luck of crystallinity of this
diaryliodonium salt, I decided to forge ahead with model fluorination studies. A sample
of [3,4-Bis(((2-ethylhexyl)oxy)carbonyl)phenyl]-(4’-methoxyphenyl)iodonium triflate
(0.30 g) was treated with 0.8 equivalents of TMAF in 15 mL of acetonitrile, evaporated,
then dissolved in benzene and heated form 20 minutes at 120 °C. This reaction produced
the I(I) species, bis(2-ethylhexyl) 4-iodophthalate, along with the desired fluorinated
DEHP, bis(2-ethylhexyl) 4-fluorophthalate and 4-iodo-anisole (Scheme 3-4). When this
reaction was conducted on an NMR scale (0.02 g) and treated with 0.8 equivalents of

TMAF, formation of the iodophthalate was still observed. Because of the lack of 4-
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fluoroanisole as a major by-product, it was determined that “aryl-swapping” could be

occurring at 120°C.

(0] TMAF (>0.8 eq.),
OTf
|( ) CH30N
0]
O/©/ 0 Benzene,
[ 0 120°C, 20 mins

oS
ol Qe
Y

Scheme 3-4: Fluorination reaction with 0.8 equivalents of TMAF with DEHP OTTf salt.

The suggested mechanism for aryl swapping for DEHP can be seen in Scheme 3-5,

based on a report by DiMagno.’” This article reports that at 80°C in benzene, these aryl-

exchange products can be observed, and even more so at higher temperatures. This could

have been a result of an impurity in the triflate salt, thus recrystallization conditions for

the triflate salt were explored.
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Scheme 3-5: A) Possible aryl exchange products when subjected to fluoride anion. B-D)

decomposition products for each scenario.
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Another fluorination route was investigated utilizing commercially available 4-
fluoro-o-xylene, which was oxidized to 4-fluorophthalic acid. The product was esterified
in the same fashion as mentioned above for bis(2-ethylhexyl) 4-iodophthalate in good
yield (Scheme 3-6). This fluorinated standard was analyzed by HPLC (275 nm UV
detection, mobile phase: 100 % acetonitrile, Phenomonex, Luna, C18 column). The

HPLC trace of the isolated standard is given in Figure 3-3.

] . \)\/\/ /\/Oj/\
F F DBU, CHaCN E
Y e, on DUCHN o
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Scheme 3-6: Synthesis of bis(2-ethylhexyl) 4-fluorophthalate.

VWD1 A, Wavelength=275 nm (KSMKSM 4-FLUORODEHP 2015-04-08 18-46-32.0)

120-
100-
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Figure 3-3: HPLC trace of 4-fluoro-bis(2-ethylhexy)phthalate.
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3.5 Conclusion

Bis(2-ethylhexyl) phthalate is a widely used plasticizer found in a number of
everyday household PVC items. It is also widely used in medical tubing, blood storage
bags, disposable medical examination gloves, surgical gloves, and dialysis tubing.2 Bis(2-
ethylhexyl) phthalate has also been reported to be used in non-plasticizer manners as

well.

DEHP is metabolized to the corresponding monoester, MEHP, which can then
undergo further hydrolysis to yield phthalic acid or oxidation to give several oxidized
metabolites (Figure 3-1). Some studies show that the metabolites of DEHP may be the
cause of some associated health concerns. However, due to the rapid metabolism and
elimination of DEHP and its metabolites, long-term exposure is minimized reducing any
potential hazards. In most of the metabolism and distribution studies mentioned above,
most, if not all, of the administered dose was accounted for in one form or another. This

leaves little evidence of long-term binding to target receptors.

Studies have shown that DEHP exposure is associated with a number of health
concerns, especially in males. The testes have shown to be a target organ for MEHP,
resulting in a number of component malformations and sperm DNA damage. The reason
behind why males are more at risk for health effects caused by DEHP exposure is
unclear. Nonetheless, DEHP studies in female rodents have reported reproductive
complications, such as decrease fertility. The main health concern that could be of
heightened risk would be the inhalation of DEHP during mechanical ventilation,

especially in premature infants. This can sometimes be a prolonged procedure. Evidence
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has proved to be directly correlated inhaled DEHP to insufficient production of surfactant
in the lungs of premature infants. Other medical exposures to DEHP, like blood

transfusions, have the capacity to be metabolized more quickly.

The goal of this project was to prepare the bis(2-ethylhexyl) phthalate
diaryliodonium triflate aslt as a precursor for radio-fluorination to yield bis(2-
ethylhexyl)-['*F]-4-fluorophthalate. The radiotracer could then be injected into a test
subject then undergo PET scans to analyze the short-term biodistribution of the
compound at any given time point. This imaging technique has the ability to overcome

current limitations of classical analytical methods for measuring biodistribution.

3.6 Experimental Data

/\/Oj/\
O
o
\/\O)ﬁ
Bis(2-ethylhexyl) 4-iodophthalate
This compound was esterified following the method of Kelber.”' In an oven dried
Schlenk tube in a N, charged atmosphere, 4-iodophthalic acid (5.0 g, 17 mmol) and 1,8-
diazabicyclo[5.4.0Jundec-7-ene (DBU) (5.10 mL, 34.2 mmol) was dissolved in 100 mL
of dry CH3CN. To this solution, 2-ethylhexyl bromide (10.8 mL, 51.4 mmol) was added

dropwise. The reaction vessel was sealed and heated at 95 °C for 14 hrs. The solvent was

removed under high dynamic vacuum and the reaction mixture was washed with DI
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water (100 mL) and extracted with ethyl acetate (4 X 100 mL). The organic layer was
washed with DI water (1 X 100 mL), then the ethyl acetate was dried over sodium
sulfate, gravity filtered, and the solvent was removed from the product. Bis(2-ethylhexyl)
4-iodophthalate was isolated by column chromatography with a gradient of 100 %
hexanes to 5% EtOAc: hexanes. This yielded a pale yellow oil (5.45 g) in a 62% yield. 'H
NMR (CDsCN, 300 MHz, 25°C) & 8.01 (d, J= 1.2, 1H), 7.93 (dd, J,= 1.5, J,= 8.1, 1H),
7.46 (d, J= 8.4, 1H), 4.16 (d, J=5.7), 4H), 1.66-1.62 (m, 2H), 1.42-1.30 (m, 17H), 0.92-
0.87 (m, 13H); *C NMR (CDsCN, 75 MHz, 25°C) & 167.8, 167.1, 141.3, 138.4, 135.2,
132.5, 131.5, 98.1, 69.2, 69.0, 39.7, 39.7, 31.2, 31.2, 29.8, 29.7, 24.6, 24.6, 23.8, 14.4,

11.4. HRMS (ESI): Cald C4H37104 [M+Na]": 539.1634, found: 539.1623.
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[3,4-Bis(((2-ethylhexyl)oxy)carbonyl)phenyl]-(4’-methoxyphenyl)iodonium triflate

In an N, charged glove box, in an oven dried Schlenk tube, bis(2-ethylhexyl) 4-
iodophthalate was dissolved in approximately 100 mL of dry acetonitrile. In an oven
dried round bottom flask, Selectfluor® (4.46 g, 12.6 mmol) was dissolved in 100 mL of
dry acetonitrile. Trimethylsilyl acetate (TMS-OAc) (3.80 mL, 25.2 mmol) was slowly

added via syringe. This mixture was allowed to stir for 3-5 mins, and added drop-wise to



64

the reaction mixture. The reaction vessel was sealed and heated to 60 °C for 24 hrs.
Potassium trifluoro(4-methoxyphenyl)borate (2.07 g, 9.68 mmol) was added to the
reaction mixture. Trimethylsilyl triflate (TMS-OTf) (1.7 mL, 9.2 mmol) was diluted in
dry acetonitrile (5 mL) and added in a drop-wise fashion to the reaction tube. This
mixture was allowed to stir at room temperature for 1 hour. The solvent was removed
under high dynamic vacuum and the reaction mixture was washed with DI water (100
mL) and extracted with dichloromethane (4 X 50 mL). The organic layer was dried over
sodium sulfate and the solvent was removed in vacuo, leaving 3.42 g of a light pink paste
in a 46% yield. "H NMR (CDsCN, 300 MHz, 25°C) & 8.27 (d, J= 1.8, 1H), 8.20 (dd, J,=
1.8, J,= 8.4, 1H), 8.05 (d, J=9.0, 2H), 7.76 (d, J= 8.4, 1H), 7.08 (d, J= 9.3, 2H), 4.20 (d,
J=5.4,2H), 4.19 (d, J=5.7, 2H), 3.851 (s, 3H), 1.67-1,603 (m, 2H), 1.39-1.30 (m, 17H),
0.92-0.87 (m, 13H); °C NMR (CD:iCN, 75 MHz, 25°C) & 167.1, 165.9, 164.7, 139.3,
138.5, 137.3, 135.6, 135.6, 135.5, 132.9, 119.4, 116.7, 102.3, 69.6, 69.6, 56.9, 39.6, 31.2,
31.1, 29.7, 24.6, 24.5, 23.7, 14.4, 14.4, 11.4; "F NMR (CDsCN, 282 MHz, 25°C) & -

79.29; HRMS (ESI): Cald C3,HysF510gS [M-OT]": 623.2234 found: 623.2219.

0]

OH
OH

0

4-fluorophthalic acid

This is a known compound (CAS 320-97-8) but was prepared following the methods of
Dudi¢.** In a 250 mL round bottom flask, 4-fluoro-o-xylene (2.0 mL, 16 mmol) was

mixed with potassium permanganate (30.54 g, 193.3 mmol), pyridine (32 mL, 16 mmol)
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and deionized water (32.0 mL) and refluxed for 48 hrs. After the mixture cooled to RT,
the reduced manganese salts were removed by filtration, and the filtrate was acidified
carefully with concentrated hydrochloric acid to pH 1-2. Extraction of the reaction
mixture with ethyl acetate followed by evaporation of the solvent in vacuo produced a
colorless solid. The crude product was dissolved in a minimal amount of ethyl acetate
and stirred while hexanes was added to the mixture drop-wise. A white precipitate
formed and was dried under high dynamic vacuum yielding 1.52 g (51%) of the pure
product as a colorless solid. '"H NMR (CD;CN, 300 MHz, 25°C) ¢ 9.13 (s, 2H), 7.85 (dd,
Tun= 8.5 Hz, Typ= 5.4 Hz, 1H), 7.44 (dd, “Jur= 8.5 Hz, “Tyu= 2.6 Hz, 1H), 7.32 (td,
Tur= 8.6 Hz, “Jup= 8.6 Hz, “Tyuu= 2.6 Hz, 1H); °C NMR (CD;CN, 75 MHz, 25°C) §
168.4, 168.211, 165.0 (d, 'Jer= 251 Hz), 136.56 (d, *Jcr= 8.2 Hz) 133.24 (d, Jer= 9.2
Hz) 128.29 (d, Jer= 3.4 Hz), 118.96 (d, *Jcr= 21.9 Hz) 117.00 (d, *Jcp= 24.4 Hz); "°F
NMR (CD;CN, 282 MHz, 25°C) & 108.53 (td, *Jy.r= 8.6 Hz, *Ju.e= 5.4 Hz); HRMS (EI):

Cald CgHsFO, [M]": 184.0172 found: 184.0175.

F

/\/Oj/\
O
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Bis(2-ethylhexyl) 4-fluorophthalate

This compound was esterified following the method of Kelber.”' Under inert atmosphere,

in a 100 mL Schlenk tube, 4-fluorophthalic acid (1.01 g, 5.43 mmol) and 1,8-



66

diazabicyclo[5.4.0Jundec-7-ene (DBU) (1.6 mL, 11 mmol) were dissolved in dry
acetonitrile (32 mL). 1-Bromo-2-ethylhexane (3.5 mL, 16 mmol) was added drop-wise to
the solution. The reaction vessel was sealed and heated to 95 °C for 24 hrs. The solvent
was removed and the resulting orange oil was treated with deionized water (50 mL) and
extracted with ethyl acetate (3 X mL). Ethyl acetate was removed under reduced pressure
and the product was isolated by column chromatography (95%hexanes: 5% ethyl
acetate). The product obtained was 0.76 g of a colorless oil (34% yield). '"H NMR
(CD;CN, 300 MHz, 25°C) & 7.80 (dd, *Juu= 8.6 Hz, Jur= 5.4 Hz, 1H), 7.39 (dd, Jy=
8.8Hz, “Jyy= 2.6 Hz, 1H), 7.32 (td, “Juu= 8.4, Jur= 8.4 Hz, Jun= 2.6 Hz, 1H), 4.18
(m, 4H), 1.65 (m, 2H), 1.34 (m, 17H), 0.90 (m, 13H); *C NMR (CD;CN, 75 MHz, 25°C)
8 167.5 (d, Jer= 2.3 Hz), 167.2, 164.8 (d, 'Jcr= 251 Hz), 136.7 (d, *Jer= 8.1 Hz) 132.8
(d, Jer= 9.0 Hz), 129.0 (d, “Jer= 3.4 Hz) 118.9 (d, “Jcr= 21.9 Hz) 116.8 (d, *Jor= 24.3
Hz) 69.2, 68.9, 39.7, 39.7, 31.2, 31.2, 29.8, 24.6, 24.6, 23.8, 14.5, 11.4; "F NMR
(CDsCN, 75.5 MHz, 25°C) & -108.8 (td, *Jur= 8.4 Hz, “Jur= 5.2 Hz); HRMS (ESI):

Cald C4H37;FNaO4 [M+Na]™: 431.2574 found: 431.2570
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CHAPTER 4
Bisphenol A
4.1 Introduction

Bisphenol A (BPA) is a commodity chemical used primarily as a polymer
backbone component in polycarbonate plastics and epoxide resins, a class of polymers
found in food and drink packaging, food can liners, bottle tops, water bottles, water
supply pipes, and flame-retardants. BPA is also used in the processing of PVC plastics,
the recycling of thermal paper, in infant feeding bottles, and in microwave ovenware.* >
Exposure to BPA mainly occurs orally. Other exposure routes include inhalation and
skin absorption. It has been shown that young children and infants are exposed to the
highest doses of BPA.>BPA has been known to migrate to the surface of plastic or resin
containing products and leach into liquids and foods, including infant formulas.'

Low levels of BPA ranging from 2-8 pg/L can be found in the environment from
the release of effluent from wastewater treatment plants. Bisphenol A dust particulates
are typically well-contained in workplaces reducing the release of air-born BPA into the
environment. BPA has an aqueous solubility ranging from 0.120-0.300 g/L and this value
can increase when in alkaline environments.>

There are several health concerns associated with BPA that will be discussed in
Section 4.3. Analyses have quantified the amount of BPA that the general public is
exposed to through urine, serum, and tissue samples. BPA is suspected as being an
endocrine disruptor, but the mechanism by which this could occur is unclear.

The focus of this project was related to the projects described in the two previous

chapters: to synthesize a bisphenol A diaryliodonium triflate precursor for the efficient
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preparation of '®F-labelled BPA. From here the ['°F] labeled analogue can be injected
into a test subject to visualize the biodistribution of the compound in real-time, on a
single subject, at multiple time points. Based on preliminary data, 'SE_-BPA also shows
potential as biomarker for liver function, since it undergoes rapid clearance and is
subjected to enterohepatic recirculation. Once '*F-BPA is efficiently synthesized, its use

as a probe to assess liver function and damage will be explored.

4.2 Known Metabolism of Bisphenol A

The metabolism of BPA mainly occurs in the gut and liver where the major
metabolite, glucuronidated BPA is observed. Other minor metabolites, sulfonated-BPA,
and the ortho-quinone of BPA, have also been observed.”® These metabolites are shown
in Figure 4-1. BPA 1is extensively absorbed in the gastrointestinal tract, then
glucuronidated in the liver and gut in rats and mice, which limits the internal exposure to
the aglycone form, which is the form suspected of being an endocrine disruptor. In
rodents, enterohepatic recirculation of the glucuronidated BPA occurs, which prolongs

the serum lifetime of the compound.
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HO I I 0-S-OH

Figure 4-1: Observed BPA metabolites.

The enzymes responsible for the glucuronidation of BPA include a number of
uridine diphosphate glucuronosyltransferase isoforms, which are located in the
endoplasmic reticulum in vertebrates. = The major isoform responsible for the
glucuronidation of BPA in the human liver is 2B15. Human, rat and mouse hepatocytes,
along with microsomes from rat and human liver and intestine have been shown to
catalyze the conversion of BPA to its glucuronidated conjugate. Sulfonation of BPA is

155

catalyzed by sulfotransferase isoforms 1A1, 2A1 and 1E1.”” Evidence show that most of

these enzymes are present in very low concentrations, or even absent altogether, in

55, 56

prenatal and perinatal humans. The BPA-o-quinone is generated by a cytochrome

P450 isoform, 1B1.°% Hydroxylation of BPA yields 3-hydroxybisphenol A, which is



70

oxidized to the ortho-quinone (BPAQ). This metabolite is suspected to be genotoxic. In
2012, Kolsek and co-workers studied the reaction of BPAQ with deoxyadenosine and
glutathione to elucidate the mechanism by which BPAQ interacts with DNA.”" It was
determined that BPAQ reacts preferentially with guanine sites of DNA. It will also act as
an electrophile toward glutathione if it is available, contributing to glutathione depletion
in cells. Edmonds and co-workers performed a similar study in 2004 in which herring
testes DNA and deoxyguanosine in aqueous buffer (pH 7) were treated with BPAQ
resulting in a BPAQ-guanine-N7 adduct. It was suggested that metabolic oxidation of
BPA could be as effective as estrogen oxidation in the generation of ortho-quinones that
covalently bind to DNA.”

In a study conducted by Yoo in 2001

female rats were administered 100 pg/kg
of BPA intravenously, and rapid elimination of the aglycone form was observed. The
half-life of BPA was determined to be 0.66 hours. In 2010, Doerge and co-workers
administered 0-200 pg/kg of BPA orally and observed linear pharmacokinetics,
enterohepatic recirculation of the conjugated BPA form, but not the aglycone form. There
was also a significant inverse relationship observed between postnatal age and measures
of internal exposure to aglycone BPA in rats with the elimination half-time decreasing
with postnatal age. Measurements of the BPA analogues from urine, serum and feces
were examined by LC/MS/MS. Doerge also concluded that oral exposure of BPA to rats
attenuates internal exposure to aglycone BPA to below 1% of the total administered
dose.® These findings highlight the significant differences between the elimination of

BPA in rats by biliary secretion compared to non-human primates and humans, which

eliminate BPA primarily in urine. This study also noted that the maximum concentration
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of algycone BPA in neonatal and adult rats from a one-time dose of 100 ug/kg, was
found to be 0.4 nM-30 nM. When comparing oral and intravenous administration, Doerge
noted that orally administered BPA resulted in a much lower percentage of algycone
BPA (5% of dose) than intravenously administered BPA (45%).

Another study monitored and compared the biodistribution of orally and
intravenously administered '“C-labeled BPA in rats at doses of 100 or 0.1 mg/kg. It was
determined that the '*C-BPA derived radioactivity was tightly bound to plasma protein
and preferentially distributed to the plasma with a blood/plasma ratio of 0.67. This study
also reported finding free BPA in feces.®” The author conducted a similar study using
Cynomolgus monkeys in 2002. The monkeys were subjected to a single oral or
intravenous dose of '*C-BPA (100 pg/kg). It was reported that 79-85% of the dose was
excreted in the urine over 7 days, with most of the urinary excretion recovered after the
first 24 hours after administration. Radioactivity measured in fecal matter only
accounted for 1.8-3.1% of the total radioactive dose. The unchanged '“C-BPA half-life
was somewhat shorter for male monkeys (t;»= 0.57 hr) than that for females (t;,= 0.39
hr). The authors concluded from these studies that the aglycone form was fractionated
into adipose tissue after intravenous injection, and '*C-BPA derived radioactivity also
bound tightly to plasma protein.”’ For these studies, radioactivity was determined by
liquid scintillation counting and the identification and quantification of metabolites were

determined by HPLC analysis.
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4.3 Potential Health Effects of Bisphenol A

A large amount of data have been generated on the potential toxic effects of BPA,
and a number of reproductive and developmental effects have been associated with
exposure to this compound. While, BPA is typically described as being “weakly”
estrogenic, a number of studies indicate a number of additional biological activities.” Xin
and co-workers conducted a study in which they treated INS-1 cells with various doses of
BPA (0, 25, 50 or 100 uM) and assessed subsequent DNA damage by nuclear comet
assays, gel electrophoresis, and western blot analysis. The results indicated that BPA is
associated with a dose-dependent increase in DNA strand breaks at higher doses and with
greater DNA migration from the nucleus into the comet tail. DNA damage was also
suggested by the observation of a significant increase in the expression of DNA repairing
proteins.*

Three epidemiological studies in humans reported associations with high urinary
BPA metabolite concentrations and reduced semen quality.* A study conducted on
factory workers in China found that those who worked with BPA were found to have
reduced sperm count and decreased sperm concentration. A 2010 study on fertile males in
the US determined that there was an inverse relationship with BPA urine concentration
and sperm count and motility of sperm. A third study conducted on infertile males also
concluded that there was an inverse relationship with urinary BPA concentration and
sperm count and sperm motility. This study also reported that there was also a positive
correlation with abnormal sperm morphology.

BPA exposure has been correlated with a number of cardiovascular and neuronal

disorders. Michaela and co-workers investigated the effects of BPA on T-type calcium



73

channels, which are vital regulatory elements in both the cardiovascular and neuronal
systems. The whole-cell patch clamp technique was used to measure calcium current
through T-type calcium channels expressed in HEK 293 cells. It was found that BPA
inhibited the current through calcium channel subtypes in a concentration-dependent
manner. The concentration range resulted in a physiological response that corresponds to
that found in human fluids.®’

There has been some correlation between BPA exposure and a decrease in
glucose metabolism. In 2013, Zhang and co-workers, studied the effects of BPA on
glucose metabolism and adipokine expression in female offspring of pregnant rats that
had been exposed to BPA. Pregnant rats were exposed to aqueous BPA at doses of either
I pg/mL or 10 pg/mL from the sixth day of gestation to the end of the lactation period.
Body weight, fasting serum glucose levels, insulin, adiponectin (ADP) (adipokine needed
for glucose metabolism), Zinc-alpha2-glycoprotein (ZAG) (body weight regulator), ADP
mRNA, and protein expression from the adipose tissue of 7 week old female offspring
were examined. It was observed that the female offspring had higher body weight,
significantly higher serum glucose and insulin levels, lower serum ADP and plasma ZAG
protein levels, and lower ADP and ZAG mRNA and protein expression as compared to
the control group. It was concluded that BPA exposure during early development has
long-term effects on body weight and glucose metabolism in rats.*®

A study of BPA exposure in pregnant rats being exposed to BPA revealed similar
results as Zhang’s work. In 2010, Alonso-Magdalena and co-workers treated pregnant
rats with 10 or 100 pg/kg/day during day 9-16 of gestation.”” Glucose tests performed on

both the mother and offspring divulged that BPA aggravated the insulin resistance
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produced during pregnancy, increased plasma insulin, triglycerides, and leptin
concentrations in comparison to controls. Six-month old male offspring exposed to BPA
in utero expressed decreased glucose tolerance increased insulin resistance and altered
blood parameters. As a result, the authors of the study suggested that BPA exposure may
be linked to an increased risk of diabetes.

In 2014, Khalil and co-workers investigated whether BPA is correlated with
obesity and metabolic changes in human liver.®® A cross-sectional study was conducted
on 39 obese and overweight children (3-8 years old) indicated that a higher BPA
concentration in overweight children was associated with an increase in free thyroxine
levels. In male candidates, there was a correlation of serum BPA (1.82 pg/g) and elevated
levels of the liver enzyme aspartate aminotransferase, elevated diastolic blood pressure,
and insulin resistance.

A 2014 study showed that colorectal cancer SW480 cells exposed to nanomolar to
micromolar concentrations of BPA (10'8 M and 107 M) exhibited changes in the
expression of more than 56 proteins relevant to structure, motility, cell proliferation,
production of ATP, oxidative stress, and protein metabolism. It was also suggested that
BPA increased migration and invasion of cancer cells, as well as triggered
transformations from epithelial to mesenchymal transitions of colorectal cancer cells.*’

There is a substantial body of work indicating that BPA is an endocrine disruptor,
but the mechanism by which BPA could function in such a capacity in unclear. BPA’s
estrogenic activity is weak; its binding affinity to ER-alpha and ER-beta are more than
10,000 times lower than that of estradiol. However, as the above studies show, cellular

responses are induced by very low concentrations of BPA. In a study in which pregnant
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rats were fed 0.025 pg/kg/day and 0.25 pg/kg/day, masculinization of a brain region
essential for cyclic gonadotropin release in female offspring was observed. This suggests
that BPA could have acted as an estrogen in specific areas of a developing brain that are
important for sexual differentiation.”

Vom Saal and Hughes reviewed several low dose rodent BPA studies in 2005.
Several health effects, including increased postnatal growth, early onset of sexual
maturity in females, altered plasma luteinizing hormone levels, an increase in prostate
size in male offspring, and stimulation of mammary gland development in female
offspring were observed. Other health effects included increased mortality of embryos,
altered immune function, increase in progesterone receptor mRNA levels, modulation of
somatostatin receptors in the brain, and behavioral changes such as hyperactivity, an

increase in aggressiveness, altered reactivity to pain, and impaired learning.”"

4.4 Preliminary Data and Synthetic Short Comings

Preliminary studies conducted in the DiMagno lab focused on the routes relying
on the dimethylether protected BPA derivative. The synthesis of the diaryliodonium salt,
which was developed by Dr. Kiel Neumann, relied heavily upon a selective iodoarylation
method that was recently published by our research group.’? A synthetic shortcoming of
using a diaryliodonium salt precursor, featuring methyl ether protective groups, was that
aggressive deprotection conditions were required, involving the use of a strong acid.
These conditions led to destruction of the parent molecule, perhaps by aryl ring
protonation and the generation of a stabilized cumyl cation. The radio-fluorination and

deprotection procedure that Dr. Neumann developed is shown in Scheme 4-1. While the
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deprotection conditions used in this synthesis provided radio-fluorinated BPA, BBr;
proved to be aggressive toward the radiosynthesis equipment and the yields were quite
low. To pursue imaging studies with 'SF-BPA, a better synthesis was needed. It was
proposed that a more acid-labile phenol-protecting group be used. We selected ethoxy
methyl (EOM) as a more acid-labile alternative to methyl ether. Chloromethyl ethyl ether
is preferred over other acid-labile protecting groups, like methoxy methyl (MOM),

because it is less volatile and thus, less hazardous to work with.

BBr
TR, e IO, ar I
~o0 o~ DCM 25°C HO OH
Toluene, 150°C
1(OTf)
~o° :

Scheme 4-1: Radiosynthetic route of ['*F] FBPA.

Dr. Neumann’s preliminary PET imaging data of ['*F] BPA in mice suggests that
BPA has promising potential as a biomarker for liver function. The PET scan of a
healthy mouse can be seen in Figure 4-2. This is a PET scan taken 60 minutes post-
intravenous injection. These data show that the most concentrated areas of radioactivity
are in the stomach and intestines. This is indicative of rapid metabolism and clearance of
the radiolabelled compound from the bloodstream. In Figure 4-3, it is shown that at 10
minutes and 22 minutes post injection, there is a spike in radioactivity in the intestine
followed by a slight decrease. This is indicative of enterohepatic recirculation occurring.

The highest concentration of radioactivity in the intestine was at approximately 53
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minutes. This suggested rapid metabolism of the majority of the radioactive compound.
No data was acquired on rate or amount of radioactivity excreted during this experiment.
At 55 minutes the mouse was sacrificed and each organ was weighed and counted for
radioactivity. In Figure 4-4, the ex vivio biodistribution of [18F]—FBPA is illustrated at
150 minutes post-injection. These data indicate that the radioactive compound has
recirculated back into the liver yet again. This is also evident of the advantages of
utilizing PET as tool to monitor biodistribution and pharmacokinetics, over classical
methods such as ex vivo biodistribution. PET allowed for the visualization of the
biodistribution of [18F] BPA and the rate at which the enterohepatic recirculation took
place. The classical ex vivo method can only give information on where radioactivity

resides at the time of death.

At
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Figure 4-2: Representative PET imaging at 60 min post injection of ['*F][FBPA in

normal, healthy mouse.
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Figure 4-4: Ex vivo biodistribution data of healthy mice 150 min post-injection (n=3),

“%ID/g in liver includes gall bladder.

4.5 Synthetic Approach
I explored several synthetic routes towards (2-(ethoxymethoxy)-5-(2-(4-
(ethoXymethoxy)phenyl)propan—2—yl)phenyl)(4—methoxyphenyl)—?f—iodanyl

trifluoromethanesulfonate. The first route is illustrated in Scheme 4-2. Here,
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commercially available bisphenol A was protected with chloromethyl ethyl ether. Next, I
conducted a heteroatom-directed ortho-lithiation, followed by transmetalation with
trimethyl borate. The obtained aryl borate was treated with potassium bifluoride to
hydrolyze the borate esters and form the corresponding potassium trifluoroborate.
However, lithiation was not efficient and the desired product was only obtained in 8%
yield. Nonetheless, this compound was carried forward. Coupling with
bis(acetoxy)iodoanisole took place in excellent yields. = However, because the
trifluoroborate derivative was formed in such poor yields, other avenues toward the

synthesis were explored.

\/O Cl
O O /\O/\O O O O/\O/\
HO OH

Hun|g s Base
THF/ 40°C
.0 0.
1) sec-butyl Li / Ether /RT R O O R KHF,
% 4»
2) Trimethyl Borate B(OMe), MeOH /H,0

(AcO),!
Vs AT e oW
oR
I(TFA)
TMSTFA / CDSCN /©/
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Scheme 4-2: First synthetic route attempted to form a BPA diaryliodonium salt.

Several iodination reactions were employed to find a suitable method to
selectively iodinate 4,4'-(propane-2,2-diyl)bis((ethoxymethoxy)benzene). Because of the

symmetrical nature of this compound, selective, mono-substitution was not achieved
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when using I, and TMSI as iodinating agents under the conditions shown in Scheme 4-3.

HO I I OH

AOAOO%

EOM ClI
I
Hunig's Base
THF

/\O/\OO/\O/\

5 070 ‘ ‘ oo™

| |
I, K,CO3 ,DCM

Selectfluor®, CHzCN

S
™S, @Nra SFB
7]

Scheme 4-3: lodination methods investigated for 4,4'-(propane-2,2-

diyl)bis((ethoxymethoxy)benzene).

Because the bulky triisopropylsilyl (TIPS) protecting group has been shown to

inhibit ortho halogenation in heterocyclic systems,73 I thought that preparation of a

selectively protected BPA derivative, in which only one phenolic oxygen was silylated,

might allow for selective iodination. Mono-TIPS substituted BPA was subjected to

several iodination methods using

mixture of iodinated isomers were

I, and NIS as the iodine source (Scheme 4-4) but a

observed in each case.
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Scheme 4-4: Attempted selective iodination of mono-substituted TIPS BPA.

Iodoarylation was also attempted with 4-methoxyphenyl iodonium diacetate in the
presence of 1-(chloromethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium
hexafluorophosphate(V), which acts as a weak base to scavenge any acid that could be
potentially generated. (Scheme 4-5). Activation of 4-methoxyphenyl iodonium diacetate
with TMS-TFA gave no reaction. Even after 24 hour at 40°C, there was no conversion.
When TMS-OMS was used as the catalyst, there was an instant color change to light
green and the NMR data from time = 15 minutes indicated complete conversion of
ArI(OAc), to Arl and no production of the desired diaryliodonium salt. The result was

the same when TMS-OTf was used, but the color change was from clear to brown. It
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was thought that 1-(chloromethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium
hexafluorophosphate(V) could have potentially been interacting with the TMS-X groups
or the bis(acetoxy) iodoanisole, so the reaction was attempted without the base. This
reaction resulted in decomposition of the I(III) center to I(I) but no noticeable sign of

deprotection.

(l)Ac

AcO/I
>
070 oo »

TMS-X (X: TFA, OMS, OTF; also w/o TMS-X)
CD4CN

Scheme 4-5: Attempted iodoarylation of 4,4'-(propane-2,2-
diyl)bis((ethoxymethoxy)benzene), with various TMS-X groups in the presence of 1-

(chloromethyl)-1,4-diazabicyclo[2.2.2]octan- 1-ium hexafluorophosphate(V).

In the end, we elected to perform the initial iodination on a dimethyl ether
protected derivative of BPA using chemistry developed by Dr. Neumann. "> Once the
selectively iodinated, the compound was deprotected with BBr; and protected with
chloromethyl ethyl ether and the iodine center was oxidized with Selectfluor®. Coupling
of the aryliodonium diacetate with potassium trifluoro(4-methoxyphenyl)borate gave the

corresponding diaryliodonium salt (Scheme 4-6). The only major difficulty encountered
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in this synthesis was discovering the optimal recrystallization conditions for the

diaryliodonium triflate salt.
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Scheme 4-6: Total synthesis of
(2-(ethoxymethoxy)-5-(2-(4-(ethoxymethoxy)phenyl)propan-2-yl)phenyl)(4-

methoxyphenyl)-A*-iodanyl trifluoromethanesulfonate.
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4.6 Conclusions

In summary, bisphenol A is a widely used industrial compound found in a number
of everyday consumer products. BPA is metabolized primarily in the gut and liver where
the major metabolite is the guluronidated conjugated and minor metabolites include
sulfonated-BPA and the 3.,4-quinone-BPA. BPA and its metabolites have been
associated with several health effects including damage to sperm DNA and morphology,
cardiovascular and neuronal disorders, obesity, insulin resistance, and altered glucose
metabolism, high blood pressure, and was reported to accelerate the invasion and
metastasis of colorectal cancer cells. BPA was also shown to act as an estrogen in
specific areas of the brain responsible for sexual differentiation. It was also associated
with an early onset of sexual maturity in female rats, increased prostate size in male rats,
and altered immune function and behavioral changes.

Preliminary data generated by Dr. Kiel Neumann suggests that BPA has great
potential as a biomarker for liver function. Most importantly, it suggests that BPA is
cleared remarkably fast and does not bind to any target receptor with high affinity in
mice. While the synthetic methods used to generate [ISF] FBPA were successful, the
deprotection conditions with BBr; proved to be harsh toward the radiosynthesis
equipment. This research was designed to synthesize a BPA diaryliodnium salt precursor
with a more acid-labile protecting group. The synthesis of this precursor will allow for
late-stage radio-fluorination and application to the monitoring of biodistribution of BPA

in animal models with both healthy and damaged livers and visualize liver function.
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4.7 Experimental Data

4,4'-(propane-2,2-diyl)bis(methoxybenzene)

This compound is known (CAS 1568-83-3) and the synthesis was modeled after the
methods of Kubo.”” In an oven dried, Schlenk tube, with a magnetic stir bar, under a N,
atmosphere, 4,4'-(propane-2,2-diyl)diphenol (3.00 g; 13.1 mmol) was dissolved in 25 mL
of dry THF and this solution was cooled to 0 °C. Sodium hydride (0.95 g; 39.4 mmol)
was added slowly and this mixture was stirred at 0 °C for 30 mins. Methyl iodide (2.3
mL; 53 mmol) was added dropwise to the reaction mixture at 0 °C. The tube was sealed,
transferred to an oil bath and heated at 75 °C overnight. The reaction was monitored by
TLC with an elution of 30% ethyl acetate in hexanes and gave an Ry value of 0.79. The
reaction was cooled to RT then quenched with DI H,O. The solvent was removed in
vacuo then the product was extracted with dichloromethane (3 X 25 mL). The organic
layer was dried over sodium sulfate, gravity filtered, and evaporated to yield a colorless
solid. Any residual starting material was removed by dissolving it in hexanes (with
sonication) and filtering the remaining solid. The solvent was removed from the filtrate,
yielding 2.78 g (82.4% vyield) of colorless, prism-like crystals. 'H NMR (CDs;CN, 400
MHz, 25°C) ¢ 7.15 (d, J=8.6 Hz, 4H), 6.82 (d, J=8.6 Hz, 4H), 3.74 (s, 6H), 1.62 (s, 6H);
BC NMR (CD;CN, 100 MHz, 25°C) & 158.6, 144.1, 128.7, 114.3, 55.8, 42.3, 31.4;

HRMS (EID): calcd for C7H»;0, [M+H]": 257.1542; found 257.1543.
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I(TFA)

.

2,2,2-trifluoro-1-((2-methoxy-5-(2-(4-methoxyphenyl)propan-2-yl)phenyl)(4-
methoxyphenyl)- [ 3-iodanyl)ethan- 1-one

This compound was synthesized following the procedure reported by Hu.”® In a N,
charged glove box, in an oven dried Schlenk flask, 4,4'-(propane-2,2-
diyl)bis(methoxybenzene) (6.01 g; 23.5 mmol) was dissolved in 50 mL of dry
acetonitrile. In dry acetonitrile (50 mL) (4-methoxyphenyl)-[1*-iodanediyl diacetate
(3.30 g; 9.38 mmol) was added to the reaction flask. In a scintillation vial, trimethylsilyl
trifluoro acetate (3.2 mL; 19 mmol) was diluted in dry acetonitrile (50 mL). This
solution was then added slowly to the reaction mixture. The flask was sealed and stirred
at 80 °C for 24 hrs. The solvent was removed under high dynamic vacuum. A small
amount of ethyl acetate was added to the resulting orange viscous oil and subjected to
sonication. Methyl-tert-butyl ether (100 mL) was added to the flask and subjected to
sonication for 20 mins. A colorless solid was precipitated out of the solution. The
solution was decanted off into a round bottom flask and the volume was reduced by 10%
forming more solid precipitate. The solid was dried under high dynamic vacuum giving
3.48 g (63%) of the desired product. 'H NMR (CDsCN, 300 MHz, 25°C) & 7.88 (d, J=9.2
Hz, 2H), 7.67 (d, J=2.3 Hz, 1H), 7.430, (dd, J,=8.7 Hz, J,=2.3 Hz, 1H), 7.08 (d, J=2.2 Hz,
2H), 7.05 (d, J=8.6, Hz 1H), 6.95 (d, J=9.3 Hz, 2H), 6.80 (d, J=8.7 Hz, 2H), 3.89 (s, 3H),
3.83 (s, 3H), 3.76 (s, 3H), 1.60 (s, 6H); °C NMR (CDsCN, 75 MHz, 25°C) & 163.6,

158.8, 155.6, 147.9, 142.6, 138.5, 135.0, 133.6, 128.6, 114.4, 113.1, 106.6, 103.9, 57.9,
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56.6, 55.9, 42.8, 30.9; '’F NMR (CD;CN, 282 MHZ, 25 °C), -75.48; HRMS (HREI):

Calcd for Co6HaeF5104 [M-TFA]™: 489.0938; found 489.0929.

|

2-iodo-1-methoxy-4-(2-(4-methoxyphenyl)propan-2-yl)benzene

This compound is known (CAS 1501940-95-9) and was prepared following the
procedure of Hu.In a N, charged atmosphere, in a Schlenk flask, 2,2,2-trifluoro-1-((2-
methoxy-5-(2-(4-methoxyphenyl)propan-2-yl)phenyl)(4-methoxyphenyl)- | 3
iodanyl)ethan-1-one (3.51 g; 5.98 mmol) and sodium iodide (2.69 g; 17.9 mmol) were
dissolved in dry acetonitrile (60 mL). The Schlenk flask was sealed and stirred for 4
hours at 120 °C. The flask was cooled to RT. The solvent was removed in vacuo and the
compound was isolated by column chromatography (100 % hexanes). The R¢ value for
the desired product was 0.47. After removal of solvent, the product was 2.29 g of a pale
yellow oil (96.8% yield). 'H NMR (CD;CN, 300 MHz, 25°C) § 7.62 (d, J=2.4 Hz, 1H),
7.23 (dd, J,=8.6 Hz, J,= 2.4 Hz, 1H), 7.15 (d, J=8.8 Hz, 2H), 6.83 (d, J=8.7 Hz, 1H), 6.83
(d, J=8.7 Hz, 2H), 3.79 (s, 3H), 3.74 (s, 3H), 1.59 (s, 6H); °C NMR (CD;CN, 75 MHz,
25°C) & 158.6, 157.0, 146.5, 143.3, 138.5, 128.9, 128.6, 114.3, 111.7, 86.0, 57.0, 55.8,

42.1,31.1. HRMS (HREI): Calcd Ci7H;9l0, M™: 382.0430; found 382.0447.

HO \‘><‘illOH
|

4-(2-(4-hydroxyphenyl)propan-2-yl)-2-iodophenol
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This compound is known (CAS 88953-17-7) but was prepared by a different route. In a
Schlenk tube with a magnetic stir bar that had been purged with nitrogen gas, 2-iodo-1-
methoxy-4-(2-(4-methoxyphenyl)propan-2-yl)benzene (2.22 g; 5.79 mmol) was dissolved
in dry dichloromethane (20 mL) and cooled to O °C. An excess of boron tribromide (2.19
mL; 23.2 mmol) was added drop-wise to the reaction mixture. The flask was sealed and
stirred at O °C for 2 hrs. The solution was gently poured over 5 grams ice. The aqueous
layer was washed with dichloromethane (3 X 20 mL), which was washed with pH 5
deionized water (2 X 25mL). The organic layer was dried over sodium sulfate, and the
solvent was removed in vacuo yieldingl.76 g (86%) of a colorless solid. 'H NMR
(CDsCN, 400 MHz, 25°C) 6 7.2 (s, 1H), 7.07 (dd, J,=8.3 Hz, J,=2.3 Hz, 1H), 7.05 (d,
J=8.6 Hz, 2H), 6.78 (d, J=8.4 Hz, 1H), 6.71 (s, 1H), 6.71 (d, J=8.6 Hz, 2H), 1.57 (s, 6H);
C NMR (CD;CN, 100 MHz, 25°C) & 155.7, 154.7, 146.0, 142.6, 138.0, 129.1, 128.6,
115.6, 115.4, 84.1, 42.1, 31.14. . HRMS (HREI): Calcd for C;sH;510, M™: 354.0117,

found 354.0126

\/Ovoo\/o\/
|

1-(ethoxymethoxy)-4-(2-(4-(ethoxymethoxy)phenyl)propan-2-yl)-2-iodobenzene

In an oven-dried 25 mL Schlenk storage tube purged with nitrogen, 4-(2-(4-
hydroxyphenyl)propan-2-yl)-2-iodophenol (1.76 g; 4.96 mmol) was dissolved in dry THF
(17 mL). Hunig’s base (3.50 mL; 19.9 mmol) was added drop-wise to this solution, and
the reaction mixture was stirred for 10 minutes and cooled to 0 °C followed by the drop-

wise addition of chloromethyl ethyl ether (1.50 mL; 19.9 mmol). The tube was sealed and
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transferred to an oil bath to react at 40 °C for 48 hrs. The solvent was removed in vacuo,
and the product was extracted with dichloromethane (3 X 20 mL) from deionized water.
The organic aliquots were combined and washed with an aqueous solution of NaHCO3
(pH 8). The dichloromethane was dried over sodium sulfate, and the solvent was
removed in vacuo. TLC was conducted in 10% ethyl acetate in hexanes, giving an Ry
value of 0.52 for the desired product. The product was isolated by column
chromatography (10:90; ethyl acetate: hexanes) yielding 1.88 g (80.7%) of a pale yellow
oil. '"H NMR (CD;CN, 400 MHz, 25°C) § 7.67 (d, J=2.4 Hz, 1H), 7.19 (dd, J,;=8.6 Hz,
Jo»=2.3 Hz, 1H), 7.16 (d, J= 8.6 Hz, 2H), 6.99 (d, J=8.8 Hz, 1H), 6.94 (d, J=8.8 Hz, 2H),
5.23 (s, 2H), 5.18 (s, 2H), 3.72 (q, J=7.0, 2H), 3.69 (q, J=7.0, 2H), 1.61 (s, 6H), 1.17 (t,
J=7.0, 6H); °C (CD;CN, 100 MHz, 25°C) 8 156.2, 154.8, 147.2, 144.1, 138.2, 128.8,
128.4, 116.6, 115.3, 94.56, 93.86, 87.66, 65.35, 64.77, 42.22, 31.19, 15.62, 15.66. HRMS

(ESD): calcd for CpHy7104 [M4Na]*: 493.0852, found 493.0834.

070 ‘ ‘ oo
o©—| OTf
) (OTH)

(2-(ethoxymethoxy)-5-(2-(4-(ethoxymethoxy)phenyl)propan-2-yl)phenyl)(4-
methoxyphenyl)-1*-iodanyl trifluoromethanesulfonate

In an N, charged glove box, in an oven-dried 100 mL Schlenk tube, 1-(ethoxymethoxy)-
4-(2-(4-(ethoxymethoxy)phenyl)propan-2-yl)-2-iodobenzene (1.80 g; 3.82 mmol) was
dissolved in 40 mL of dry CH3CN. 1-(chloromethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium
hexafluorophosphate(V), (0.58 g; 1.91 mmol) was added to the reaction flask. In a

separate vial, Selectfluor® (1.76 g; 4.97 mmol) was dissolved in 20 mL of dry CH;CN,
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followed by the addition of trimethylsilyl acetate (1.50 mL; 9.95 mmol) in a drop-wise
fashion. This mixture was shaken for 3-5 mins and slowly added to the reaction flask.
The flask was sealed and allowed to stir at RT for 21 hrs. Potassium trifluoro(4-
methoxyphenyl)borate (0.64 g; 2.97 mmol) was dissolved in a small amount of dry
CH;CN  followed by trimethylsilyl trifluoroacetate (0.33 mL; 1.93 mmol) diluted in 10
mL of dry CH3CN was added to the reaction flask. This mixture was stirred at RT for 12
hrs. The solvent was evaporated, leaving behind ~5-10 mL of CH3CN, which was poured
into an aqueous solution of sodium acetate (basic pH). The product was extracted from
the aqueous layer with dichloromethane (3 X 30 mL). The organic aliquots were
combined and washed with deionized water (1 X 50 mL). The water layer was washed
with dichloromethane again (2 X 30 mL). The organic aliquots were combined and dried
over sodium sulfate. The solvent was removed in vacuo, yielding a brown, viscous oil,
which was dissolved in hexanes (2 X 100 mL) and subjected to sonication. The hexanes
solution was poured off of the oil. The oil was treated with methyl-tert-butyl ether with
sonication. The solution was poured off and placed under high dynamic vacuum. This
produced a tan colored foam. The solid was dissolved in a minimal amount of acetonitrile
and transferred to a 1M solution of sodium trifluoromethane sulfonate (30 mL). This
mixture stirred for 30 mins, and extracted with dichloromethane (3 X 30 mL), dried over
sodium sulfate, gravity filtered, and then the solvent was removed under reduced
pressure. To insure that all trifluoroacetate ions were exchanged with triflate ions, the
orange product was passed through an ion exchange resin. The ion exchange column was
loaded with Amberlite IRA-450 (Cl) and a mixture of acetonitrile/water (8:2 by volume).

The solution was allowed to drain slowly. A 1.0 M solution (100 mL) of sodium triflate
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was passed through the ion exchange resin very slowly (~1 drop/15 sec). Dry 1-((2-
(ethoxymethoxy)-5-(2-(4-(ethoxymethoxy)phenyl)propan-2-yl)phenyl)(4-

methoxyphenyl)—k3 -iodanyl)-2,2,2-trifluoroethan-1-one was dissolved in a solution of
acetonitrile and water (8:2 by volume) and loaded onto the ion exchange resin. The
solution was passed through the column very slowly at a rate of approximately 1 drop/ 30
seconds and collected. The (2-(ethoxymethoxy)-5-(2-(4-(ethoxymethoxy)phenyl)propan-
2-yl)phenyl)(4-methoxyphenyl)-A*-iodanyl trifluoromethanesulfonate solution was dried
under reduced pressure overnight. The product was 1.48 g of a tan solid that was found in
95 % purity (41 % yield). 'H NMR (CDsCN, 300 MHz, 25°C) § 7.92 (d, J=9.2 Hz, 2H),
7.69 (d, J=2.2 Hz, 1H), 7.47 (dd, J,=8.6 Hz, J,=2.2 Hz, 1H), 7.23 (d, J=8.6 Hz, 1H), 7.09
(d, J1=8.9 Hz, 2H), 7.01 (d, J,=9.1 Hz, 2H), 6.92 (d, J,=8.8 Hz, 2H), 5.35 (s, 2H), 5.20 (s,
2H), 3.85 (s, 3H), 3.68 (q, J,=7.1 Hz, 2H), 3.62 (q, J,=7.1 Hz, 2H), 1.62 (s, 6H), 1.16 (t,
J,=7.0 Hz, 3H), 1.11 (t, J;=7.0 Hz, 3H); >C NMR (CDsCN, 75 MHz, 25°C) § 164.3,
156.6, 153.5, 149.1, 143.6, 139.0, 134.9, 134.3, 128.7, 119.0, 116.9, 116.1, 105.3, 100.9,
95.2,94.0, 66.1, 65.0, 56.8, 43.1, 30.8, 15.5, 15.4; "’F NMR (CDsCN, 282 MHz, 25°C) -

79.3; HRMS (LR-FAB): calcd for CooH34105S [M-OTf]*: 577.1451, found 577.1448
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'H NMR Spectrum of 4-iodophthalic acid

C NMR Spectrum of 4-iodophthalic acid
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'H NMR Spectrum of diethyl-4-iodophthalate
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BC NMR Spectrum of diethyl 4—((4—meth0xyphenyl)(((trifluoromethyl)sulfonyl)oxy)—7»3—

iodanyl)phthalate
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'H NMR Spectrum of bis(2-ethylhexyl) 4-iodophthalate
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'H NMR Spectrum of bis(2-ethylhexyl) 4-iodosylphthalate compound with 1-methoxy-4-
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4-((trifluoromethyl)sulfonyl)benzene (1:1)

C NMR Spectrum of bis(2-ethylhexyl) 4-iodosylphthalate compound with 1-methoxy-
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F NMR Spectrum of bis(2-ethylhexyl) 4-iodosylphthalate compound with 1-methoxy-4-

((trifluoromethyl)sulfonyl)benzene (1:1)
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BC NMR Spectrum of 4-fluorophthalic acid
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F NMR Spectrum of 4-fluorophthalic acid
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'H NMR Spectrum of bis(2-ethylhexyl) 4-fluorophthalate
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BC NMR Spectrum of bis(2-ethylhexyl) 4-fluorophthalate
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F NMR Spectrum of bis(2-ethylhexyl) 4-fluorophthalate
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'H NMR Spectrum of 4,4'-(propane-2,2-diyl)bis(methoxybenzene)
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C NMR Spectrum of 4,4'-(propane-2,2-diyl)bis(methoxybenzene)
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'H NMR Spectrum of 2,2,2-trifluoro-1-((2-methoxy-5-(2-(4-methoxyphenyl)propan-2-

yl)phenyl)(4-methoxyphenyl)-[1*-iodanyl)ethan-1-one



120

oo T oL
o an

EE-Tar TT

] LT

nx ma

THE #0000 T 008 a0

accen zo
cxsasrnaed Bugoossorr - o4

EPESEEEEGD TETL
LT Ta

HT Toos
SHH FCEFTOT 000 Todo

m— g L DAL b ——

T oaL
S4E ARARRNARTT Ta
ERRTh aL
SECT O E aa
SEET OOTT T =a
aEtusT 1

SES THERTEE G e
W EEETEOND cxaara
ax aTroazon =)

= oa

aT an
HoCao Laasmoo
T ar
LTLE oL aTOL

-9% ogTd WM 4 QEEOAL
e LA L

0wt or wuTL
corasTarn “aama
T W
T SRS

T aRLIT

& T-C—FT (D) AT TR LANE 4TSI TEER

ST AT KN ST

LBSL

s

N e NSESm——
PO eOO O NSNS NN NN N
e ] - O OOoO00 RN
[7- g O i O k= O 0 g 00 ok oo 0 OO



(TFA)I

121

C NMR Spectrum of 2,2,2-trifluoro-1-((2-methoxy-5-(2-(4-methoxyphenyl)propan-2-

yl)phenyl)(4-methoxyphenyl)-[1*-iodanyl)ethan-1-one
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F NMR Spectrum of 2,2,2-trifluoro- 1-((2-methoxy-5-(2-(4-methoxyphenyl)propan-2-

yl)phenyl)(4-methoxyphenyl)- [*-iodanyl)ethan-1-one
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"H NMR Spectrum of 2-iodo- 1-methoxy-4-(2-(4-methoxyphenyl)propan-2-yl)benzene
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3C NMR Spectrum of 2-iodo-1-methoxy-4-(2-(4-methoxyphenyl)propan-2-yl)benzene
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'H NMR Spectrum of 4-(2-(4-hydroxyphenyl)propan-2-yl)-2-iodophenol
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BC NMR Spectrum of 4-(2-(4-hydroxyphenyl)propan-2-yl)-2-iodophenol
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"H NMR Spectrum of 1-(ethoxymethoxy)-4-(2-(4-(ethoxymethoxy)phenyl)propan-2-yl)-

2-iodobenzene
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BC NMR Spectrum of 1-(ethoxymethoxy)-4-(2-(4-(ethoxymethoxy)phenyl)propan-2-yl)-

2-iodobenzene
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"H NMR Spectrum of (2-(ethoxymethoxy)-5-(2-(4-(ethoxymethoxy)phenyl)propan-2-

yl)phenyl)(4-methoxyphenyl)-A*-iodanyl trifluoromethanesulfonate
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BC NMR Spectrum of (2-(ethoxymethoxy)-5-(2-(4-(ethoxymethoxy)phenyl)propan-2-

yl)phenyl)(4-methoxyphenyl)-A*-iodanyl trifluoromethanesulfonate
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F NMR Spectrum of (2-(ethoxymethoxy)-5-(2-(4-(ethoxymethoxy)phenyl)propan-2-

yl)phenyl)(4-methoxyphenyl)-A*-iodanyl trifluoromethanesulfonate
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