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Automatic Time Series Forecasting with
Ata Method in R: ATAforecasting Package
by Ali Sabri Taylan, Güçkan Yapar and Hanife Taylan Selamlar

Abstract Ata method is a new univariate time series forecasting method that provides innovative
solutions to issues faced during the initialization and optimization stages of existing methods. The Ata
method’s forecasting performance is superior to existing methods in terms of easy implementation
and accurate forecasting. It can be applied to non-seasonal or deseasonalized time series, where
the deseasonalization can be performed via any preferred decomposition method. The R package
ATAforecasting was developed as a comprehensive toolkit for automatic time series forecasting. It
focuses on modeling all types of time series components with any preferred Ata methods and handling
seasonality patterns by utilizing some popular decomposition techniques. The ATAforecasting
package allows researchers to model seasonality with STL, STLplus, TBATS, stR, and TRAMO/SEATS,
and power family transformation and analyze the any time series with a simple Ata method and
additive, multiplicative, damped trend the Ata methods and level fixed Ata trended methods. It offers
functions for researchers and data analysts to model any type of time series data sets without requiring
specialization. However, an expert user may use the functions that can model all possible time series
behaviors. The package also incorporates types of model specifications and their graphs, uses different
accuracy measures that surely increase the Ata method’s performance.

Introduction

Ata method (Cetin and Yavuz, 2020; Yilmaz et al., 2019; Yapar et al., 2019; Yapar, 2018; Yapar et al.,
2018, 2017) is a new univariate time series forecasting method which provides innovative solutions to
issues faced during the initialization and optimization stages of existing methods. ATAforecasting
performance is superior to existing methods both in terms of easy implementation and accurate fore-
casting. It can be applied to non-seasonal or deseasonalized time series, where the deseasonalization
can be performed via any preferred decomposition method. This methodology performed extremely
well on the M3 and M4-Competition data.

The original exponential smoothing has accomplished well in a wide range of practical researches,
and it is well built as a precise and optimal forecasting method. Nonetheless, two essential difficulties
are to choose the smoothing constant and starting value in exponential smoothing theory. The Ata
method suggests an alternative method for smoothing constant and initial value. The Ata method
places more emphasis than the classical method on most recent activities. The forecasting error is
compared to the error in forecasts obtained by the original model.

Exponential smoothing (ES) is not the only model. In fact, a family of models. ES models suppose
that a time series has four components: seasonality, trend, level, and remainder. Bergmeir et al.
(2016) recommended the bootstrap aggregation of ES methods. The bootstrap aggregation employs
a Box–Cox transformation afterwards an a seasonal trend decomposition based on LOESS (LOcally
Estimated Scatter-plot Smoother) (STL) to segregate the time series sub three part: remainder, seasonal
and trend. The remainder is then bootstrapped via a moving block, and a new data is gathered via this
bootstrapped residual part. Thereafter, an ensemble of ES models is calculated with the bootstrapped
series.

Incorporating other types of model specifications and using different accuracy measures will surely
increase the Ata method’s performance. Like other approaches, the method can also benefit from
certain transformations and decompositions of other types of more involved combinations, outlier
detection, and other more complicated model selection strategies. The fact that these simple selection
and combination strategies can perform better than existing methods is fascinating, and this further
strengthens the idea that simplicity is indeed a prerequisite for forecasting accuracy.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=ATAforecasting


CONTRIBUTED RESEARCH ARTICLES 508

.

Function Description

ATA Time series analysis and forecasting using the Ata method.
ATA.Core The core algorithm of the Ata method.
ATA.Forecast Produces forecasts from the output of ATA function.
ATA.Accuracy Computes fitting and forecasting accuracy measures.
ATA.Transform Computes transformed data using power transformation techniques.
ATA.BackTransform Computes back transformed data using power transformation techniques.
ATA.BoxCoxAttr Assigns attributes set for unit root and seasonality tests.
ATA.Seasonality Tests seasonality.
ATA.Decomposition Decomposes a time series into seasonal, trend, and irregular.
ATA.SeasAttr Assigns attributes set for unit root and seasonality tests.
ATA.Plot Specialized plot function of the output of ATA function.
ATA.Print Specialized print screen function of the output of ATA function.
ATA.CI Confidence interval function for the Ata method forecasts.

Table 1: A summary of the functions available in the ATAforecasting package.

Several decomposition techniques are used before applying the Ata method for selecting an opti-
mized model. The high performance of these combined models is indicated with an empirical practice.
The Ata method is analyzed in contrast practically with the most well-known forecasting techniques
based on ES and ARIMA in accordance with its predictive performance on the M3 (Makridakis and
Hibon, 2000) and M4-Competitions (Makridakis et al., 2018) data set and is illustrated to outperform
its contestants.

Over the past few years, the preliminary research on ES (Brown, 1959; Pegels, 1969; Gardner
and McKenzie, 1985) expanded to an approach based on a model so that there are 30 potential ES
models for various types of trend, seasonality, and errors. The well-known of these are the simple ES,
Holt’s linear trend model, and Holt-Winter’s model. Then, Gardner and McKenzie (1985) proposed
damped trend model to help deal with overtrending. The reputation and universality of ES can
also be attributed to its proven record against more sophisticated techniques (Makridakis et al., 1984;
Makridakis and Hibon, 2000; Koning et al., 2005). The forecast package (Hyndman et al., 2020) in
the programming language R (R Core Team, 2016) means that a fully automated software for fitting
ETS models is available. These have led to a broadly appropriate ES modelling background, and
with the use of latterly developed software packages, these ES models handle seasonality, trend, and
other attributes of series without any human intervention (Hyndman et al., 2002, 2008; Hyndman and
Athanasopoulos, 2019).

The Theta method (Assimakopoulos and Nikolopoulos, 2000) was introduced as a new univariate
forecasting method which is similar to a simple ES model with drift, and its performance in terms of
forecasting accuracy was prominent in M3-Competition. As confirmed once again in Assimakopoulos
and Nikolopoulos (2000), it is well known that combining forecasts (Bates and Granger, 1969; Clemen,
1989) under certain circumstances improves forecasting accuracy (Armstrong, 1989, 2001; Makridakis
and Winkler, 1983; Makridakis et al., 1982). Due to this, the research focuses on transformations,
decompositions, rules, and combinations of ES and ARIMA (a few examples are (Clemen, 1989;
Cleveland et al., 1990; Adya et al., 2000) to improve the forecasting performance rather than suggesting
new forecasting methods.

Several other studies that are based on automatic forecasting procedures exist. Particularly for
seasonal time series, the forecast package offers the TBATS model (Livera et al., 2011). TBATS uses a
parsimonious trigonometric representation of seasonality instead of conventional seasonal indices
and also incorporates ARMA errors. In addition, the function also automatically performs Box-Cox
transformation of the time series if necessary.

This study introduces ATAforecasting (available from the Comprehensive R Archive Net- work
at https://cran.r-project.org/package=ATAforecasting), a software application for R which per-
forms a novel decomposition and power transformation-based approaches to time series forecasting
using Ata method without any academic expertise. To sum up, the ATAforecasting package (Taylan
et al., 2021a) provides a novel R interface for researchers interested in automatic time series analysis
and students and academics who teach courses related to univariate time series analysis topics. There
are main 13 functions available in the ATAforecasting package; see Table 1. We are going to describe
all of them as we go on to explain the theoretical procedure. The rest of the paper is organized as
follows. Section 2 presents a novel forecasting approach using the Ata method, gives an overview
of the main estimation methods of the Ata method, and provides some technical details about the
ATAforecasting package. Section 3 illustrates M-forecasting Competition dataset examples showing
the package’s functionality. Section 4 contains some concluding remarks.
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Methodology

The objective of this study is to introduce a new decomposition-based approach to time series forecast-
ing with the Ata method to provide the automation and the optimization of the Ata method which
is an innovative and accurate univariate time series analysis method without any expertise of the R
program. Specifically, we propose an analytical methodology of time series method with ATAforecast-
ing R package, as it combines several stationarities and seasonality tests, Box–Cox transformations,
seasonal decomposition techniques with the Ata method. We merge the various preceding concepts to
attain a robust and broadly practicable automatic forecasting algorithm. The methodology involves 2
alternative algorithms with 6 steps as described and summarized below:

First Algorithm in Figure 1a

• Step 1 Transformation
Transformation for stabilizing the variance of a time series if necessary;
There are many power transformation methods available to stabilizing linearity and variance. In
this paper, logarithm, logarithm with shift parameter, Box–Cox, Box–Cox with shift parameter,
Modulus, Bickel–Doksum, Dual, Yeo–Johnson, generalized logarithm (glog), and glog with
power function (gpower) methods are able to applied.

• Step 2 Seasonality Test
Identify and correct for seasonality in time series;
There are several methods to detect stationarity and seasonality in time series. In this package,
Augmented Dickey–Fuller (ADF), Phillips and Perron (PP), Kwiatkowski, Phillips, Schmidt, and
Shin (KPSS) unit root tests are adopted for stationarity. Autocorrelation function (ACF), Canova–
Hansen (CH), Hylleberg-Engle-Granger-Yoo (HEGY), Osborn, Chui, Smith, and Birchenhall
(OCSB) seasonal unit root tests are adopted for seasonality.

• Step 3 Decomposition
Decompose the series into three components: trend, seasonal, and remainder;
There are a few techniques to decompose time series. In this package, classical decomposition
(decompose – stats package (R Core Team, 2016)), the Seasonal-Trend decomposition using
LOESS (STL – stats package (R Core Team, 2016)), an enhanced of STL method (stlplus package
(Hafen, 2016)), Trigonometric Seasonal Box–Cox Transformation–ARMA residuals–Trend and
Seasonality (TBATS – forecast package (Hyndman et al., 2020)), Seasonal–Trend Decomposition
Procedure Based on Regression (stR package (Dokumentov and Hyndman, 2018)) are adopted.

• Step 4 ATA Forecasting
Apply ATA forecasting method to generate forecasts for the time series;
Although there are many forecasting techniques available to perform (e.g., ETS, ARIMA, Theta,
etc.), the Ata forecasting method is used. Ata method is an innovative new forecasting technique
where the forms of the models are similar to exponential smoothing models. Still, the smoothing
parameters depending on the sample size are optimized in a discrete space. Initialization is
easier as it is done simultaneously when the parameters are optimized and less influential since
the weights assigned to initial values approach zero quickly.

• Step 5 Selection and Aggregation
The model fits all possible ATA models to the data, then chooses the best model using the
accuracy measures. Aggregate the best selected ATA forecast model for trend + remainder
components and seasonal component to generate the final result. The final outcome is calculated
from the forecasts from the single ATA models.

• Step 6 Inverse Transformation

Second Algorithm in Figure 1b

• Step 1 Seasonality Test
• Step 2 Decomposition
• Step 3 Transformation
• Step 4 ATA Forecasting
• Step 5 Selection
• Step 6 Inverse Transformation and Aggregation

To summarize, the ATAforecasting procedure is given in Figure 1. As default, initially, the selected
power family transformation is implemented, and the series are decomposed into the seasonal part
and trend + remainder part, using the selected decomposition technique. Then, the Ata method is
applied to the trend + remainder part. The components are added together again, and the selected
power family transformation is inverted.
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(a) First Algorithm (b) Second Algorithm

Figure 1: Algorithms of ATAforecasting procedure.

Power transformation family for ATAforecasting package

Traditional statistical procedures often assume that the data is homoscedastic and normally distributed.
Despite its apparent restrictions, the logarithmic transformation has been used mostly when data
violates these assumptions. The purpose of a particular transformation for better fitting is additivity,
convergence to normality, stationarity, linearity, reduction of skewness, stabilizing variance. These
purposes, which may even be inconsistent, are quite significant as it is just under such assumptions that
particular statistical methods are relevant. Generally, logarithmic transformations almost stabilize the
variance for time series consisting of large values. Some of the problems that arise when implementing
a specific transformation are argued in different settings by Sakia (1992), Staniswalis et al. (1993),
Quiroz et al. (1996), Yeo and Johnson (2000), Chen et al. (2002), Mu and He (2007), Horowitz (2009)
and Meintanis and Stupfler (2015). There are many proposed methods of transformation and a large
amount of research in the literature. Sakia (1992) provided a detailed and extensive review of the
Box–Cox (Box and Cox (1964)) and some alternative versions. Different methodology recommended
for choosing the appropriate value of transformation parameters based on maximizing the likelihood
function (Box and Cox (1964)) or alternatively, Kullback-Leibler information-based method (Hernandez
and Johnson, 1980), robust adaptive method (Carroll, 1980) and a method based on Kendall’s rank
correlation, (Han, 1987).

A chiefly used algorithm of the Box–Cox family is the logarithm transformation, which is con-
venient for multiplicative process data. Moreover, the asymptotic variance of a time series can be
stabilized by the log-transformation. A shift parameter was additionally proposed to apply the log
transformations more responsive and handy. The parameterizations of the shift parameter depend
on knowledge of the data e.g., data range, data distribution, so user intervention is usually required.
ATAforecasting package automates the selection of shift parameter, which is an important contribution
of automatic times series forecasting.

Selected transformation functions included in the ATAforecasting R package provide the appli-
cability of different types of transformation techniques for the data to which the Ata method will
be applied. The ATA.Transform function works with many different types of inputs. Many power
transformation methods are available to stabilize linearity and variance. In this package, power
transformation family is consist of "Box–Cox", "Sqrt", "Reciprocal", "Log", "NegLog", "Modulus",
"Bickel–Doksum", "Manly", "Dual", "Yeo–Johnson", "GPower", "GLog". If the transformation process
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needs a shift parameter, ATA.Transform will calculate the required shift parameter automatically.

• Log Transformation with Shift,

• Box–Cox Transformation with Shift (Box and Cox, 1964),

• GLog Transformation (Durbin et al., 2002),

• NegLog Transformation (Whittaker et al., 2005),

• Reciprocal Transformation (Tukey, 1977),

• Bickel–Doksum Transformation (Bickel and Doksum, 1982),

• Yeo–Johnson Transformation (Yeo and Johnson, 2000),

• Modulus Transformation (John and Draper, 1980),

• Dual Power Transformation (Yang, 2005),

• GPower Transformation (Kelmansky et al., 2013),

The ATA.BoxCoxAttr function

Since the main ATA function and ATA.Transform are designed by some attributes of Box–Cox power
transformation family, we provide the user with the function ATA.BoxCoxAttr.

The R function ATA.BoxCoxAttr can be utilized with the following code,

ATA.BoxCoxAttr(bcMethod = "loglik", bcLower = 0
, bcUpper = 1, bcBiasAdj = FALSE),

and makes use of four parameters. These are

• bcMethod: Choose method to be used in calculating lambda. "loglik" is default. Other method is
"guerrero" (Guerrero, 1993).

• bcLower: Lower limit for possible lambda values. The lower value is limited by -5. Default value
is 0.

• bcUpper: Upper limit for possible lambda values. The upper value is limited by 5. Default value
is 1.

• bcBiasAdj: Use adjusted back-transformed mean for Box–Cox transformations. If transformed
data is used to produce forecasts and fitted values, a regular back transformation will result in
median forecasts. If bcBiasAdj is TRUE, an adjustment will be made to produce mean forecasts
and fitted values. If bcBiasAdj=TRUE, optional parameter fvar required. fvar can either be the
forecast variance or a list containing the interval level and the corresponding upper and lower
intervals. Default value of fvar is NULL and it can’t be changed.

The ATA.Transform function

The main function of power transformations, the ATA.Transform, can be called with

ATA.Transform(X, tMethod = "Box_Cox", tLambda
, tShift = 0, bcMethod = "loglik", bcLower = 0, bcUpper = 1)

and it makes use of seven parameters and returns three outputs. The inputs are

• X: a numeric vector or time series of class ts or msts for in-sample.

• tMethod: Power transformation family is consist of "Box_Cox", "Sqrt", "Reciprocal", "Log",
"NegLog", "Modulus", "BickelDoksum", "Manly", "Dual", "YeoJohnson", "GPower", "GLog" in
ATAforecasting package. If the transformation process needs shift parameter, ATA.Transform
will calculate the required shift parameter automatically.

• tLambda: Box–Cox power transformation family parameter. If NULL, data transformed before
model is estimated.

• tShift: Box–Cox power transformation family shifting parameter. If NULL, data transformed
before model is estimated.

• bcMethod: Choose method to be used in calculating lambda. "loglik" is default. Other method is
"guerrero" (Guerrero, 1993).

• bcLower: Lower limit for possible lambda values. The lower value is limited by -5. Default value
is 0.

• bcUpper: Upper limit for possible lambda values. The upper value is limited by 5. Default value
is 5.
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The outputs are

• trfmX : Transformed data.

• tLambda: Box–Cox power transformation family parameter.

• tShift : Box–Cox power transformation family shifting parameter.

To apply this algorithm to an example in the tsibbledata package "aus_retail", monthly retail
turnover (in million AUD) in Australian states from April 1982 to December 2018, we use the following
commands.

library(tsibbledata)
library(lubridate)
library(dplyr)
library(tsbox)
library(ATAforecasting)
train_data <- aus_retail %>% filter(State == "New South Wales"
, Industry == "Department stores"
, `Series ID`== "A3349790V")

train_data <- tsbox::ts_ts(train_data)
bc_attr_set <- ATA.BoxCoxAttr(bcMethod = "loglik", bcLower = 0, bcUpper = 1)
fit_bc <- ATA(train_data, seasonal.type = "M", model.type = "A"
, seasonal.test = TRUE, seasonal.model = "decomp", plot.out = TRUE
, transform.method = "Box_Cox", transform.order = "before"
, transform.attr = bc_attr_set, negative.forecast = FALSE)

Seasonality for ATAforecasting package

Seasonality is a well-known phenomenon observed in many economic time series. Seasonal decompo-
sition, which is the first stage of a time series modeling, is also the first stage of the Ata method. The
performance of the Ata method has been improved after the seasonal decomposition.

Specifically, our proposed methodology to identify seasonality in time series is as follows. After or
before implementing a Box—Cox transformation (if necessary) to the data, the data is decomposed into
remainder, seasonal, and trend components. The trend and remainder components are then forecasted
via the Ata method, the seasonal component is added back in, and the Box—Cox transformation is
inverted. Then, point forecasts are calculated using each of the different models, and/or the resulting
forecasts are able to be combined.

In previous studies, the classical decomposition method is much used after the seasonality test.
With this package, stl, stlplus, tbats, and stR decomposition techniques are also available choices by
the ATAforecasting package, which can be chosen with only one or multiple.

Seasonality for ATAforecasting package enables estimating all of the below components and
specifications. The main functions of seasonality in the package are the following

• ATA.SeasAttr(),

• ATA.Seasonality(),

• ATA.Decomposition().

Three seasonality diagnostics methods are able to be applied in the package.

• Unit Root Tests,

• Seasonal Unit Root Tests,

• Seasonal Decomposition.

The ATA.SeasAttr function

This function is a class of seasonality tests using corrgram.test from ATAforecasting package,
ndiffs and nsdiffs functions from forecast package. Also, ndiffs and nsdiffs functions have
been modified according to different unit root testing packages. Please review manual and vignette
documents of the latest forecast package. According to forecast package, ndiffs and nsdiffs functions
estimate the number of differences requisite to ensure stationary of a given time series.

ndiffs employs unit root tests to define required number of differences for time series to be
ensured trend stationary. nsdiffs employs seasonal unit root tests to define required number of
seasonal differences for time series to be ensured trend stationary.

The ATA.SeasAttr function works with many different types of inputs. The inputs are below.
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• corrgram.tcrit: t-value for periodogram seasonality test.

• uroot.test: Type of unit root test before all type seasonality test. Possible values are "adf", "pp",
and "kpss".

• suroot.test: Type of seasonal unit root test to use. Possible values are "correlogram", "sea", "hegy",
"ch", and "ocsb".

• suroot.uroot: If TRUE, unit root test for stationary before seasonal unit root test is allowed.

• uroot.type: Specification of the deterministic component in the regression for unit root test.
Possible values are "level" and "trend".

• uroot.alpha: Significant level of the unit root test, possible values range from 0.01 to 0.1.

• suroot.alpha: Significant level of the seasonal unit root test, possible values range from 0.01 to 0.1.

• uroot.maxd: Maximum number of nonseasonal differences allowed.

• suroot.maxD: Maximum number of seasonal differences allowed.

• suroot.m: Deprecated. Length of seasonal period: frequency of data for nsdiffs.

• uroot.pkg: Using ucra or tseries packages for unit root test. The default value is ucra.

• multi.period: Selection type of multiseasonal period. min or max function for selection.

• x13.estimate.maxiter Maximum: iteration for X13ARIMA/SEATS estimation.

• x13.estimate.tol: Convergence tolerence for X13ARIMA/SEATS estimation.

• x11.estimate.maxiter Maximum: iteration for X11 estimation.

• x11.estimate.tol: Convergence tolerence for X11 estimation.

Unit root tests

Unit root tests for stationarity have compatibility in almost every practical time series analysis.
Choosing which unit root procedure to employ is an issue of active interest. In this study, we
implement the three widely used unit root tests. In accordance with past research, the selected unit
root tests occasionally disagree in choosing the convenient order of integration for a given data. The
following literature shows the basic features of unit root tests. Users who demand details should
consult the original resources and standard references (see, for example, (Davidson and MacKinnon,
1993; Hamilton, 1994; Hayashi, 2000)).

In the ATAforecasting package, the following unit roots methods are able to be applied.

• Augmented Dickey–Fuller Test (Dickey and Fuller, 1979; Said and Dickey, 1984)

• Phillips and Perron Test (Phillips and Perron, 1988)

• Kwiatkowski, Phillips, Schmidt, and Shin Test (Kwiatkowski et al., 1992)

The ATA.SeasAttr function for unit root tests

Since the main ATA function and ATA.Seasonality are designed by some attributes of unit root
tests, we provide the user with the function ATA.SeasAttr.

For the main function ATA, the attributes of unit root test can be accessed with

ATA.SeasAttr(uroot.pkg = "tseries", uroot.test = "kpss"
, uroot.type = "trend", uroot.alpha = 0.05)

The following code uses the unit root test approach to search trend component before the seasonal-
ity test of the data in the context of the Ata method.

seas_attr_set <- ATA.SeasAttr(suroot.test = "correlogram"
, corrgram.tcrit = 1.28, uroot.pkg = "tseries"
, uroot.test = "kpss", uroot.type = "trend"
, uroot.alpha = 0.05)

fit_seas <- ATA(train_data, model.type = "A", seasonal.type = "M"
, seasonal.test = TRUE, seasonal.model = "tbats", plot.out = TRUE
, seasonal.test.attr = seas_attr_set, negative.forecast = FALSE)
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Seasonality tests

There are numerous studies relating seasonality and unit root. One of these studies uses autocorrel-
ogram. Autocorrelation function and partial autocorrelation function are useful qualitative tools to
estimate the existence of autocorrelation at individual lags. The Ljung-Box Q-test is a more quantitative
method to test autocorrelation at multiple lags jointly. Other techniques generally use unit root tests.
Hylleberg et al. (1990) improved unit root tests in linear time series regarding seasonality and studied
with different models, including different combinations of seasonal, trend, remainder, and constant
parts. Their purpose is to improve a testing process that will determine what class of seasonality is
accountable for the seasonality in a time series process. There exist more studies for testing seasonal
unit roots, such as Ljung and Box (1978), Dickey et al. (1984), Osborn et al. (1988), and Wang et al.
(2006).

In the ATAforecasting package, the following methods are able to applied.

• Autocorrelogram (Ljung and Box, 1978)

• Canova–Hansen (CH) Test (Canova and Hansen, 1995)

• Hylleberg, Engle, Granger & Yoo (HEGY) Test (Hylleberg et al., 1990)

• Osborn, Chui, Smith, Birchenhall (OCSB)Test (Osborn et al., 1988)

• Seasonal Strength Measure (Wang et al., 2006)

The ATA.SeasAttr function for seasonal unit root test

Since the main ATA function and ATA.Seasonality are designed by some attributes of seasonality
tests, we provide the user with the function ATA.SeasAttr.

For the main function ATA, the attributes of seasonality test can be accessed with

seas_attr_set <- ATA.SeasAttr(suroot.test = "correlogram"
, corrgram.tcrit = 1.28)

seas_attr_set <- ATA.SeasAttr(suroot.test = "ocsb", suroot.alpha = 0.05)

An example of the seasonality test’s call is the following

seas_attr_set <- ATA.SeasAttr(suroot.test = "ocsb", suroot.alpha = 0.05
, uroot.pkg = "tseries", uroot.test = "adf", uroot.type = "trend"
, uroot.alpha = 0.05)

fit_seas <- ATA(train_data, model.type = "A", seasonal.type = "M"
, seasonal.test = TRUE, seasonal.model = "stl", plot.out = TRUE
, seasonal.test.attr = seas_attr_set, negative.forecast = FALSE)

The ATA.Seasonality function for Seasonality Tests

The ATAforecasting’s seasonality diagnostics described before in this paper are implemented into
a function named ATA.Seasonality that can calculate all of them respectively. The function syntax is

ATA.Seasonality(input = train_data, ppy = frequency(train_data)
, attr_set = seas_attr_set)

The ATA.Seasonality function works with many different types of inputs. The inputs are below.

• input: The data.

• ppy: Frequency of the data.

• attr_set: Assign from ATA.SeasAttr function. Attributes set for the unit root, seasonality tests.

Here is an another simple example, applying ATA.SeasAttr and ATA.Seasonality to the M3 data:

library(ATAforecasting)
library(Mcomp)
seas_attr_set <- ATA.SeasAttr(suroot.test = "correlogram"
, corrgram.tcrit = 1.28, uroot.pkg="tseries"
, uroot.test="adf", uroot.type = "trend"
, uroot.alpha = 0.05, uroot.maxd = 1)

is.season <- ATA.Seasonality(M3[[1899]]$x
, frequency(M3[[1899]]$x)
, seas_attr_set)
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Seasonal decomposition

A substantial aim in time series analysis is the decomposition of a time series into latent parts that can
be incorporated with dissimilar versions of temporal variations. Persons (1919) was the first to state
the assumptions of latent parts particularly. Persons indicated that time series was constituted of four
types of fluctuations (Dagum and Bianconcini, 2016): residual variations, seasonal movement, secular trend,
and cyclical movements. Further, research in that direction included Copeland (1915) and Persons (1919),
who introduced for extracting the seasonal component until Macaulay (1931) suggested a technique
which turned into "classical" in the log run.

Macaulay (1931) developed a computer program which is significantly simplified the calcula-
tions (Shiskin, 1957). Extensively used various techniques and features which have such as ARIMA
extensions, regressors, calendar effects, robustness, and extensive diagnostics in literature are X-11
(Shiskin et al., 1967), X-11-ARIMA (Dagum, 1988), X-12-ARIMA (Findley et al., 1998) and X-13ARIMA-
SEATS (Monsell et al., 2003; Findley, 2005; Monsell, 2007). X-13ARIMA-SEATS contains a type of the
TRAMO/SEATS procedure which was improved by the Bank of Spain for seasonal adjustment.

Cleveland et al. (1990) recommended a different approach and developed STL (Seasonal Trend
decomposition using LOESS) based on local regression familiar as moving regression which is a
generalization of moving average and polynomial regression. LOESS is a connected nonparametric
method that assembles multiple regression models in a metamodel based on the k-nearest neighbor.
Burman (1980) discussed plenty of seasonal adjustment techniques and remarked that all but one
were ad hoc techniques. Since this study, several model-based methods for seasonal decomposition
have been evolved, including the TRAMO/SEATS procedure, assorted structural time series models
(Harvey, 1990; Commandeur et al., 2011) and the BATS and TBATS models of Livera et al. (2011).

Conventionally, the four variations suppose to be mutually independent of one another and signify
by means of an additive decomposition model. If there is dependency among the hidden parts, this
relation is signified via a multiplicative decomposition model. In some cases, combined additive and
multiplicative models can be employed. See Dagum and Bianconcini (2016) for further details.

The ATA.Decomposition function for seasonality

Automatic seasonal decomposition for the ATA method is called ATA.Decomposition function in
the ATAforecasting package. The function returns seasonally adjusted data constructed by removing
the seasonal component. The methodology is fully automatic. The ATA.Decomposition function works
with many different types of inputs. The inputs are below.

• input: It must be ts, msts, or numeric object. If it is a numeric object, findPeriod must be 1, 2, 3
or 4. If it is a msts object, findPeriod must be 3 or 4.

• s.model: A string identifying method for seasonal decomposition. If NULL, "decomp" method is
default. c("none", "decomp", "stl", "stlplus", "tbats", "stR") phrases of methods denote.

– none: seasonal decomposition is not required.

– decomp: classical seasonal decomposition. If decomp, the stats package will be used.

– stl: seasonal-trend decomposition procedure based on LOESS developed by Cleveland
et al. (1990) . If stl, the stats and forecast packages will be used. Multiple seasonal periods
are allowed.

– stlplus: seasonal-trend decomposition procedure based on LOESS developed by Cleveland
et al. (1990). If stlplus, the stlplus package will be used.

– tbats: exponential smoothing state space model with Box–Cox transformation, ARMA
errors, trend, and seasonal components as described in Livera et al. (2011). Parallel
processing is used by default to speed up the computations. If tbats, the forecast package
will be used. Multiple seasonal periods are allowed.

– stR: seasonal-trend decomposition procedure based on the regression developed by Doku-
mentov and Hyndman (2015). If stR, the stR package will be used. Multiple seasonal
periods are allowed.

– x13: seasonal-trend decomposition procedure based on X13ARIMA/SEATS. If x13, the
seasonal package will be used.

– x11: seasonal-trend decomposition procedure based on X11. If x11, the seasonal package
will be used.

• s.type: A one-character string identifying method for the seasonal component framework. If
NULL, "M" is default. The letter "A" for additive model, the letter "M" for multiplicative model.

• s.frequency: Value(s) of seasonal periodicity. If s.frequency is not integer, X must be msts time
series object. c(s1,s2,s3,...) for multiple period. If X has multiple periodicity, "tbats" or "stR"
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seasonal model have to be selected. For example, period of the input data, which have one
seasonal pattern –> 12 for monthly / 4 for quarterly / 7 for daily / 5 for business days. Periods
of the input data which have complex/multiple seasonal patterns –> c(7,354.37,365.25).

• seas_attr_set: Assign from ATA.SeasAttr function. Attributes set for unit root, seasonality tests.

ATA.Decomposition function returns four outputs. The outputs are below.

• AdjustedX : Deseasonalized data.

• SeasIndex : Particular seasonality data given cycle/frequency.

• SeasActual : Seasonality given original data.

• SeasType : Seasonal decomposition technique.

As an example, let us compute seasonal decomposition on the real life tsibbledata dataset shown
in the following seven figures (Figures 2, 3, 4, 5, 6, and 7).

best_fit_seas <- ATA(train_data, start.phi = 0.80, end.phi = 0.99
, size.phi = 0.01, train_test_split = 18, seasonal.test = TRUE
, seasonal.model = c("decomp","stl", "stlplus","tbats", "stR")
, negative.forecast = FALSE, plot.out = TRUE)
best_fit_seas$is.season
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Figure 2: Best forecasts for the Australian Retail Turnover using ATA seasonal trended methods.

library(ggplot2)
autoplot(train_data) +
autolayer(fit_decomp$forecast, series="ATA-decomp") +
autolayer(fit_stl$forecast, series="ATA-stl") +
autolayer(fit_stlplus$forecast, series="ATA-stlplus") +
autolayer(fit_stR$forecast, series="ATA-stR") +
autolayer(fit_tbats$forecast, series="ATA-tbats") +
ggtitle("Forecasts from ATA seasonal trended methods") + xlab("Year") +
ylab("Monthly Retail Trade Turnover of Australian States") +
guides(colour=guide_legend(title="Forecast"))

Figure 3: Forecasts from ATA seasonal trended methods.
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There are five different techniques for seasonal decomposition in the package. We use the following
techniques

• Classical Decomposition: The classical method of time series decomposition originated in the
1920s and was widely used until the 1950s.

fit_decomp <- ATA(train_data, seasonal.test = TRUE
, seasonal.model = "decomp" , negative.forecast = FALSE)

Figure 4: The Ata method with classical decomposition.

• STL Decomposition (Cleveland et al., 1990):

fit_stl <- ATA(train_data, model.type = "A", seasonal.type = "M"
, seasonal.test = TRUE, seasonal.model = "stl", negative.forecast = FALSE)

Figure 5: The Ata method with STL decomposition.
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• STL+ Decomposition (Hafen, 2010): The STL+ is implemented in stlplus R package. See more
details in Hafen (2010).

fit_stlplus <- ATA(train_data, model.type = "A", seasonal.type = "M"
, seasonal.test = TRUE, seasonal.model = "stlplus", negative.forecast = FALSE)

Figure 6: The Ata method with STLplus decomposition.

• TBATS Decomposition (Livera et al., 2011):TBATS uses Box–Cox transformation, exponential
smoothing, trigonometric seasonality and ARMA errors (Livera et al., 2011).

fit_tbats <- ATA(train_data, seasonal.test = TRUE, seasonal.model = "tbats"
, level.fixed = TRUE, negative.forecast = FALSE, plot.out = TRUE)

Figure 7: The Ata method with TBATS decomposition.
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• stR Decomposition (Dokumentov and Hyndman, 2015): Seasonal-Trend decomposition procedure
based on Regression (stR) is similar to Ridge Regression, and Robust stR can be related to LASSO.
The stR procedure grants for multiple seasonal and cyclic components and multiple linear
regressors with constant, flexible, seasonal, and cyclic effect. The Seasonal-Trend decomposition
by Regression is implemented in stR R package.

fit_stR <- ATA(train_data, seasonal.test = TRUE, seasonal.model = "stR"
, negative.forecast = FALSE, plot.out = TRUE)

Figure 8: The Ata method with stR decomposition.

Univariate time series forecasting with the Ata method

Ata method is an innovative new forecasting technique where the forms of the models are similar to
ES models. Still, the smoothing parameters depend on the sample size, are optimized on a discrete
space. Initialization is both easier as it is done simultaneously when the parameters are optimized and
is less influential since the weights assigned to initial values approach zero quickly. The Ata method
can easily be applied to all time series settings and provides better forecasting performance due to its
flexibility. ATA-damped is a version of the Ata method that mainly focuses on the trend component,
allowing it to range both in magnitude and form.

For a time series {y1, . . . , yn}, the Ata method can be given in additive form as below:

lt =
( p

t

)
yt +

(
t − p

t

)
(lt−1 + ϕbt−1), (1)

bt =
( q

t

)
(lt − lt−1) +

(
t − q

t

)
(ϕbt−1) , (2)

where p is the smoothing parameter for level, q is the smoothing parameter for trend, ϕ is the
dampening parameter and lt = yt for t ≤ p, bt = yt − yt−1 for t ≤ q, b1 = 0, p ∈ {1, 2, . . . , n},
q ∈ {0, 1, 2, . . . , p}, ϕ ∈ (0, 1], and p ≥ q. Then, the h step ahead forecasts can be obtained by:

ŷt+h|t = lt +
(

ϕ + ϕ2 + . . . + ϕh
)

bt. (3)

Similarly for a time series {y1, . . . , yn}, the Ata method can be given in multiplicative form as
below:

lt =
( p

t

)
yt +

(
t − p

t

)(
lt−1bϕ

t−1

)
, (4)
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bt =
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t

)(
lt

lt−1

)
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(
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)
, (5)

where, again, p is the smoothing parameter for level, q is the smoothing parameter for trend, ϕ is
the dampening parameter and lt = yt for t ≤ p, bt =

yt
yt−1

for t ≤ q, b1 = 1, p ∈ {1, 2, . . . , n},
q ∈ {0, 1, 2, . . . , p}, ϕ ∈ (0, 1], and p ≥ q. Then, the h step ahead forecasts can be obtained by:

ŷt+h|t = lt + b(
ϕ+ϕ2+...+ϕh)

t . (6)

Since both versions of the method require three parameters, we will distinguish between them by
using the notation ATAadd(p, q, ϕ) for the additive form and ATAmult(p, q, ϕ) for the multiplicative
form.

Notice that when q = 0, both forms of ATA are reduced to the simple form ATA(p, 0, ϕ) which can
be written as:

lt =
( p

t

)
yt +

(
t − p

t

)
lt−1, (7)

where p ∈ {1, 2, . . . , n} and lt = yt for t ≤ p. Forecasts then can be obtained by ŷt+h|t = lt.
When q ̸= 0 and ϕ = 1, the additive and multiplicative forms of ATA are reduced to the trended

versions ATAadd(p, q, 1) and ATAmult(p, q, 1), which are given below, respectively:
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)
(bt−1) , (9)

ŷt+h|t = lt + hbt, (10)

and

lt =
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)
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)
(lt−1bt−1) , (11)

bt =
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)(
lt
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)
+

(
t − q

t

)
(bt−1) , (12)

ŷt+h|t = lt + bh
t . (13)

To sum up, ATA can be given in 7 forms, namely the additive damped form ATAadd(p, q, ϕ)
(equations (1-3)), multiplicative damped form ATAmult(p, q, ϕ) (equations (4-6)), simple form
ATA(p, 0, ϕ) (equation (7)), additive trend form ATAadd(p, q, 1) (equations (8-10)), and finally multi-
plicative trend form ATAmult(p, q, 1) (equations (11-13)).

Another distinction can be made based on the parameter optimization process used for these
forms. Unless otherwise stated, the parameter values that minimized the in-sample one step ahead
using selected accuracy measures such as sMAPE, MASE, or OWA are used as optimum values, and
optimization is carried out for all the parameters simultaneously. However, in some cases, we realized
that fixing the smoothing parameter for the level and then optimizing the trend parameter can be
beneficial. We call these the “level-fixed” versions of ATA. The optimization is carried out for these
models as follows:

1. Find the value of p that minimized the in-sample one step ahead sMAPE for q = 0 and ϕ = 1.
Call this value p∗.

2. Holding p = p∗ fixed optimize q (and ϕ if needed) ,again, by minimizing the in-sample one step
ahead sMAPE.

Models where the parameter optimization is carried out using the algorithm in 1. and 2. will
receive the superscript (lf) an abbreviation for “level-fixed” such as ATAl f

add(p, q, ϕ) or ATAl f
mult(p, q, ϕ).

Obtaining prediction interval

For forecasting horizon h, the prediction interval is obtained by:
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yn+h|n ± Ch, (14)

where Ch =
√

hZα/2Se, Zα/2 is the Normal deviate corresponding to (1 − α)% confidence interval,
and Se is the standard deviation of the one step ahead errors of model fitting. If any lower bounds are
found to be negative, they are set equal to zero.

Model selection

There are plenty of measures and criteria available in the forecasting literature for interpreting the
achievements and accuracy of forecasting methods. In the M-Competitions, some of these measures
were employed without any obvious consensus as to the pros and cons of each.

A forecast error is a difference between an observed value and its forecast. Forecast errors are
different from residuals in two aspects. Firstly, residuals are computed on the training set, while
forecast errors are computed on the test set. Secondly, residuals are based on one-step-ahead forecasts,
while forecast errors can contain multi-step forecasts (Hyndman and Athanasopoulos, 2019).

Let Yt indicates the observation at time t, and Ft indicates the forecast of Yt. The forecast error
et = Yt − Ft is calculated. The forecasts are calculated from a common base time and are of varying
forecast horizons. Hence, we calculate out of sample forecasts Fn+1, . . . , Fn+m based on data from
times t = 1, . . . , n. Optionally, the forecasts can be from varying base times and be of a coherent
forecast horizon. Namely, we can calculate forecasts F1+h, . . . , Fm+h where each Fj+h is based on data
from times t = 1, . . . , n. The in-sample forecasts in the examples above were based on the second
scenario with h = 1. A third scenario shows up when we request to compare the accuracy of methods
across many series at a forecast horizon. Then we calculate a single Fn+h based on data from times
t = 1, . . . , n for each of m different series (Hyndman and Koehler, 2006). In this study, we adapt M4
and prior M-Competitions’ accuracy measures pool.

Automatic forecasting

We unite the prior concepts to obtain a robust and widely appropriate automatic forecasting algorithm.
The concept is summarized below.

1. Identify and correct for seasonality in time series, respectively.
- Detect stationarity and seasonality in time series.
- Decompose time series.

2. For the selected time series data, apply all models that are applicable, optimizing the parameters
of the ATA model in each case.

3. Select the best of the ATA models according to the selected accuracy measure (SMAPE is default
for the ATAforecasting package).

4. Generate point forecasts using the best model (with optimized parameters).

5. Obtain prediction intervals for the best model.

ATAforecasting in practice

This section introduces an overview of how the package is structured.

This software enables both numerical and graphical outputs to be displayed for all methods
described in the previous section. This software is intended to be used with the R statistical program
(R Core Team, 2016). Our package is composed of 13 functions that allow users to obtain estimates for
all proposed methods. Details on the usage of the functions (described in Table 1) can be obtained
with the corresponding help pages.

Returns ATA(p,q,ϕ) applied to X, based on the modified simple ES as described in Yapar (2018).
The Ata method is a new univariate time series forecasting method that provides innovative solutions
to issues faced during the initialization and optimization stages of existing methods. The ATA’s
forecasting performance is superior to existing methods both in terms of easy implementation and
accurate forecasting. It can be applied to non-seasonal or deseasonalized time series, where the
deseasonalization can be performed via any preferred decomposition method. This methodology
performed extremely well on the M3 and M4-Competition data.

Functions of ATAforecasting package

Many functions, including ATA, ATA.Forecast, ATA.Plot, ATA.Print, ATA.Accuracy, ATA.Seasonality,
ATA.Transform, ATA.BackTransform produce output in the form of a ATAforecasting object (i.e., an
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object of class "ata"). This package needs some R packages for unit root tests, seasonal unit root tests,
seasonal decompositions, M3 dataset, M4 dataset, and benchmark forecast models to work consis-
tently across a range of forecasting models. These R package are Rcpp (Eddelbuettel et al., 2020a),
RcppArmadillo (Eddelbuettel et al., 2020b), tseries (Trapletti and Hornik, 2020), forecast (Hyndman
et al., 2020), urca (Pfaff et al., 2016), uroot (de Lacalle, 2020), seasonal (Sax and Eddelbuettel, 2020), stR
(Dokumentov and Hyndman, 2018), stlplus (Hafen, 2016), xts (Ryan et al., 2020), timeSeries (Wuertz
et al., 2020), TSA (Chan and Ripley, 2020), Mcomp (Hyndman et al., 2018), M4Comp2018 (BenTaieb,
2018).

Objects of class "ata" contain information about the forecasting method, the data used, the point
forecasts obtained, prediction intervals, residuals, and fitted values. There are several functions de-
signed to work with these objects, including ATA.Forecast, ATA.Accuracy, ATA.Plot and ATA.Print.

Description of the ATA function

ATA function produces a ata object directly. If the first argument is of class ts (time series object)
or msts (multi seasonal time series objects), it returns forecasts from the automatic ATA algorithm
discussed in this chapter. The definition of ATA function is below.

ATA(X, Y = NULL, parP = NULL, parQ = NULL, parPHI = NULL
, start.phi = NULL, end.phi = NULL, size.phi = NULL
, model.type = NULL, seasonal.test = NULL, seasonal.model = NULL
, seasonal.period = NULL, seasonal.type = NULL, find.period = NULL
, seasonal.test.attr = NULL, accuracy.type = NULL
, level.fixed = FALSE, trend.fixed = FALSE, trend.search = FALSE
, initial.level = NULL, initial.trend = NULL, h = NULL
, train_test_split = NULL, holdout = FALSE
, holdout.adjustedP = TRUE, holdout.set_size = NULL
, transform.order = "before", transform.method = NULL
, transform.attr = NULL, lambda = NULL, shift = NULL
, ci.level = 95, negative.forecast = TRUE
, plot.out = TRUE, print.out = TRUE)

Inputs of ATA function

The ATA function works with many different types of inputs. It generally takes a time series data
or time series model as its main argument, and produces forecasts appropriately. It always returns
objects of class "ata".

If the first argument is of class ts or msts, it returns forecasts from the automatic ATA algorithm
discussed in this chapter before.

• X : A numeric vector or time series of class ts or msts for in-sample (trarining set).

• Y : A numeric vector or time series of class ts or msts for out-sample (test set). If you do not have
out-sample data, you can split in-sample data into training and test dataset with train_test_split
argument.

• h: The number of steps to forecast ahead. When the parameter is NULL; if the frequency of X is
4 the parameter is set to 8; if the frequency of X is 5, the parameter is set to 10; if the frequency
of X is 12, the parameter is set to 24; if the frequency of X is 24, the parameter is set to 48; the
parameter is set to 6 for other cases.

• train_test_split : If Y is NULL, this parameter divides X into two parts: training set (in-sample)
and test set (out-sample). train_test_split is number of periods for forecasting and size of test set.
If the value is between 0 and 1, percentage of length is active.

• ci.level : Confidence Interval levels for forecasting.

• negative.forecast : Negative values are allowed for forecasting. Default value is TRUE. If FALSE,
all negative values for forecasting are set to 0.

• plot.out : Default is TRUE. If FALSE, graphics of Ata method are not shown.

• print.out : Default is TRUE. If FALSE, summary of Ata method is not shown.

Level Parameters :

• parP : Value of Level parameter p. If NULL or "opt", it is estimated. p has all integer values
from 1 to length(X).

• level.fixed : If TRUE, pStarQ is selected. First, fits ATA(p,0) where p = p* is optimized for q=0.
Then, fits ATA(p*,q) where q is optimized for p = p*.

• initial.level : If NULL, FALSE is default. If FALSE, Ata method calculates the pth observation in
X for level. If TRUE, Ata method calculates average of first p value in X for level.
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Trend Parameters :

• parQ : Value of Trend parameter q. If NULL or "opt", it is estimated. q has all integer values
from 0 to p.

• parPHI : Value of Damping Trend parameter ϕ. If NULL or "opt", it is estimated. ϕ has all
values from 0 to 1.

• model.type : An one-character string identifying method using the framework terminology. The
letter "A" for additive model, the letter "M" for multiplicative model. If NULL, both letters will
be tried and the best model (according to the accuracy measure accuracy.type) returned.

• initial.trend : If NULL, FALSE is default. If FALSE, Ata method calculates the qth observation
in XT − XT−1 for trend. If TRUE, Ata method calculates average of first q value in XT − XT−1
for trend.

• trend.opt :

1. none : none.

2. fixed : pBullet is selected. Fits ATA(p,1) where p = p* is optimized for q = 1.

3. search : pBullet is selected. Fits ATA(p,q) where p = p* is optimized for q = q* (q > 0). Then,
fits ATA(p*,q) where q is optimized for p = p*.

• start.phi : Lower boundary for searching parPHI. If NULL, 0 is default.

• end.phi : Upper boundary for searching parPHI. If NULL, 1 is is default.

• size.phi : Increment step for searching parPHI. If NULL, the step size will be determined as the
value that allows the bounds for the optimized value of parPHI to be divided into 20 equal parts.

Seasonal Parameters :

• seasonal.test : Testing for stationary and seasonality. If TRUE, the method firstly uses test =
”ad f ”, Augmented Dickey-Fuller, unit-root test then the test returns the least number of differ-
ences required to pass the test at level α. After the unit-root test, a seasonal test applies on the
stationary X.

• seasonal.type : A one-character string identifying method for the seasonal component frame-
work. If NULL, "M" is default. The letter "A" for additive model, the letter "M" for multiplicative
model. If other seasonal decomposition method except decomp with "M", Box–Cox transforma-
tion with lambda=0 is selected.

• seasonal.model : A string identifying method for seasonal decomposition. If NULL, "decomp"
method is default. c("none", "decomp", "stl", "stlplus", "tbats", "stR") phrases of methods denote.

– none : seasonal decomposition is not required.

– decomp : classical seasonal decomposition. If decomp, the stats package will be used.

– stl : seasonal-trend decomposition procedure based on LOESS developed by Cleveland
et al. (1990). If stl, the stats package will be used.

– stlplus : seasonal-trend decomposition procedure based on LOESS developed by Cleve-
land et al. (1990). If stlplus, the stlplus package will be used.

– tbats : exponential smoothing state space model with Box–Cox transformation, ARMA
errors, trend, and seasonal components as described in Livera et al. (2011). Parallel
processing is used by default to speed up the computations. If tbats, the forecast package
will be used.

– stR : seasonal-trend decomposition procedure based on regression developed by Doku-
mentov and Hyndman (2015). If stR, the stR package will be used.

– x13 : seasonal-trend decomposition procedure based on X13ARIMA/SEATS. If x13, the
seasonal package will be used.

– x11 : seasonal-trend decomposition procedure based on X11. If x11, the seasonal package
will be used.

• seasonal.period : Value(s) of seasonal periodicity. If NULL, frequency of X is default If sea-
sonal.period is not integer, X must be an msts time series object. c(s1, s2, s3,...) for multiple period.
If X has multiple periodicity, "tbats" or "stR" seasonal model have to be selected.

• seasonal.test.attr : Attributes set for unit root, seasonal unit root test, seasonality tests and
X13ARIMA/SEATS, and X11. If you want to change, please use ATA.SeasAttr function and its
output.

• find.period : Find seasonal period(s) automatically. If NULL, 0 is default. When find.period,
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– 0 : none.

– 1 : single period with find.freq.

– 2 : single period with forecast::findfrequency.

– 3 : multiple period with find.freq & stR.

– 4 : multiple period with find.freq & tbats.

Accuracy Parameters :

• accuracy.type : Accuracy measure for selection of the best model. IF NULL, sMAPE is default.

1. lik : maximum likelihood functions.

2. sigma : residual variance.

3. MAE : mean absolute error.

4. MSE : mean square error.

5. AMSE : average MSE over first ‘nmse’ forecast horizons.

6. RMSE : root mean squared error.

7. MPE : mean percentage error.

8. MAPE : mean absolute percentage error.

9. sMAPE : symmetric mean absolute percentage error.

10. MASE : mean absolute scaled error.

11. OWA : overall weighted average of MASE and sMAPE.

12. MdAE : median absolute error.

13. MdSE : median square error.

14. RMdSE : root median squared error.

15. MdPE : median percentage error.

16. MdAPE : median absolute percentage error.

17. sMdAPE : symmetric median absolute percentage error.

• nmse : If accuracy.type == "AMSE", "nmse" provides the number of steps for average multistep
MSE (‘2<=nmse<=30’).

Transform Parameters :

• transform.order : If "before", Box–Cox transformation family will be applied, and then seasonal
decomposition techniques will be applied. If "after", seasonal decomposition techniques will be
applied, and then the Box–Cox transformation family will be applied.

• transform.method : Transformation methods: Box_Cox, Sqrt, Reciprocal, Log, NegLog, Modulus,
BickelDoksum, Manly, Dual, YeoJohnson, GPower, GLog are used. Suppose the transformation
process needs a shift parameter, ATA.Transform will calculate required the shift parameter
automatically. When all types of Box–Cox family power techniques (except sqrt, reciprocal) are
specified, model.type and seasonal.type is set to "A".

• transform.attr : Attributes set for Box–Cox transformation. If NULL, bcMethod = "loglik",
bcLower = 0, bcUpper = 1, bcBiasAdj = FALSE. If you want to change, please use ATA.BoxCoxAttr
function and its output.

• lambda : Box–Cox power transformation family parameter. If NULL, data transformed before
the model is estimated.

• shift : Box–Cox power transformation family shifting parameter. If NULL, data transformed
before the model is estimated. When lambda is specified, model.type and seasonal.type is set to "A".
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Holdout Parameters :

• holdout : Default is FALSE. If TRUE, Ata method uses the holdout forecasting for accuracy
measure to select the best model. In holdout forecasting, the last few data points are removed
from the data series. The remaining historical data series is called in-sample data (training set),
and the holdout data is called out-of-sample data (holdout set). If TRUE, holdout.set_size will
used for holdout data.

• holdout.adjustedP : Default is TRUE. If TRUE, parP will be adjusted by the length of training-
validation sets, and in-sample set when the holdout forecasting is active.

• holdout.set_size : If holdout is TRUE, this parameter will be the same as h for defining holdout
set.

• holdin : Default is FALSE. If TRUE, Ata method uses the hold-in forecasting for accuracy
measure to select the best model. In hold-in forecasting, the last h-length data points are used
for accuracy measure.

Output of ATA function

Returns an object of class "ata", containing the generic access or functions ATA.Forecast, and
ATA.Accuracy extracts the useful features of the value returned by "ata" and associated functions.

• actual : The original time series.

• fitted : Fitted values (one-step forecasts). The mean is of the fitted values is calculated over the
ensemble.

• level : Estimated level values.

• trend : Estimated trend values.

• residuals : Original values minus fitted values.

• coefp : The weights attached to level observations.

• coefq : The weights attached to trend observations.

• p : Optimum level parameter.

• q : Optimum trend parameter.

• phi : Optimum damped trend parameter.

• model.type : Form of trend.

• h : The number of steps to forecast ahead.

• forecast : Point forecasts as a time series.

• out.sample : Test sets as a time series.

• method : The name of the optimum forecasting method as a character string.

• initial.level : Selected initial level values for the time series forecasting method.

• initial.trend : Selected initial trend values for the time series forecasting method.

• trend.opt : A choice of optional trend and level optimized trended methods (none, trend.fixed,
or trend.search).

• transform.method : Box–Cox power transformation family methods are Box_Cox, Sqrt, Recipro-
cal, Log, NegLog, Modulus, BickelDoksum, Manly, Dual, YeoJohnson, GPower, GLog.

• transform.order : Define how to apply the Box–Cox power transformation techniques before or
after seasonal decomposition.

• lambda : The Box–Cox power transformation family parameter.

• shift : The Box–Cox power transformation family shifting parameter.

• accuracy.type : Accuracy measure that is chosen for model selection.

• nmse : The number of steps for average multi-step MSE.

• accuracy : In-and out-sample accuracy measures and its descriptive that are calculated for
optimum model are given.

• par.specs : Parameter sets for Information Criteria.

• holdout : Holdout forecasting is TRUE or FALSE.

• holdout.training : Training set in holdout forecasting.

• holdout.validation : Validation set in holdout forecasting.

• holdout.forecast : Holdout forecast.
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• holdout.accuracy : Accuracy measure chosen for model selection in holdout forecasting.

• is.season : Indicates whether it contains seasonal pattern.

• seasonal.model : The name of the selected decomposition method.

• seasonal.type : Form of seasonality.

• seasonal.period : The number of seasonality periods (which defaults to frequency(X)).

• seasonal.index : Weights of seasonality.

• seasonal : Estimated seasonal values.

• seasonal.adjusted : Deseasonalized time series values.

• execution.time : The real and CPU time (in seconds) spent by the system executing that task,
including the time spent executing run-time or system services on its behalf.

• calculation.time : How much real time (in seconds) the currently running R process has already
taken.

Here are quick start examples using "aus_retail" dataset monthly retail turnover (in million AUD)
in Australian states from April 1982 to December 2018 in the tsibbledata package.

library(tsibble)
library(tsibbledata)
library(lubridate)
library(dplyr)
library(tsbox)
library(ATAforecasting)

main_data <- aus_retail %>%
filter(State == "New South Wales",
Industry == "Department stores",
`Series ID`== "A3349790V")

train_data <- tsbox::ts_ts(train_data)
test_data <- tail(train_data, 24)
train_data <- window(train_data, start = 1983, end = 2016.917)
ata_fit <- ATA(train_data, test_data, h=24)
ata_fit$is.season
unlist(ata_fit$accuracy$sMAPE)
unlist(ata_fit$accuracy$sMAPE$inSample)
unlist(ata_fit$accuracy$sMAPE$outSample)
unlist(ata_fit$accuracy$fits)
ata_fit$fitted
ata_fit$forecast
ata_fit$residuals

Here are some outputs for the above example from the ATAforecasting Package whose results
are shown in Figure 9 and 10. 40 properties of the ATA module, including all results of the automatic
forecasting using the Ata method are able to be obtained by using the "$" command as shown in the
above example.
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Figure 9: Forecasts from automatic ATA seasonal damped trended methods.

Another sample data is Makridakis Competitions 2000 (also known as the M-Competitions)
monthly data in the Mcomp package (Hyndman et al., 2018).

atafit <- ATA(M3[[1899]]$x, M3[[1899]]$xx, parQ = 1, parPHI = 1
, model.type = "A", seasonal.type = "M", seasonal.test = TRUE
, seasonal.model = "decomp", level.fixed = FALSE, transform.method = "Box_Cox"
, negative.forecast = FALSE)

Here are some outputs for the above example from the ATAforecasting Package. The results are
shown in Figure 11.
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Figure 10: The default model output from the automatic ATA seasonal damped trended methods.

The object atafit is of class "ata" and contains all of the necessary information about the fitted
model including model parameters, residuals, and so on. Printing the atafit object presents the main
items of interest.

ATA.Forecast(atafit, h = 18, ci.level = 99
, negative.forecast = TRUE)

Some goodness-of-fit measures of forecast accuracy are obtained based on only the fitting data
using ATA.Accuracy, we use the following commands.

ATA.Accuracy(atafit)

Fable modeling wrappers for ATAforecasting

We also developed a wrapper software (called fable.ata (Taylan et al., 2021b) to add the Ata method
into the fable ecosystems using the fabletools (O’Hara-Wild et al., 2021b) package, which provides
tools, helpers, and data structures for developing algorithms for the fable ecosystems (O’Hara-Wild
et al., 2021a). Here are the quick start examples using the "aus_retail" dataset.

library(fable)
library(fable.ata)

fit <- aus_retail %>%
filter(State %in% c("New South Wales", "Victoria"),
Industry == "Department stores") %>%
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Figure 11: Forecasts from the automatic ATA seasonal trended methods for M3 sample.

model(
ets = ETS(Turnover),
arima = ARIMA(Turnover),
snaive = SNAIVE(Turnover),
ata = AutoATA(Turnover~trend("M") + season(type="M",method="stR"))

) %>%
mutate(mixed = (ets + arima + snaive + ata) / 4)
fc <- fit %>% forecast(h = 12)
fc %>% autoplot(filter(aus_retail, year(Month) > 2010), level = NULL)

Here are some outputs for the above example from the fable ecosystem functions (fable and
fable.ata packages). The results are shown in Figure 12 and Figure 13.

Figure 12: Forecasts from fable models for aus_retail dataset.
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fit %>%
accuracy() %>%
group_by(.model) %>%
summarise(

RMSE = mean(RMSE),
MAE = mean(MAE),
MASE = mean(MASE)
) %>%

arrange(MASE)

Figure 13: Comparison of fable models accuracy measures.

Holdout forecasting

Using holdout samples is substantial implementation to fit a model where the epoch of fit is dissimilar
to the epoch of assessment. According to this model evaluation procedure, the epoch of fit completes
at any moment before the last observation, and the rest of the data are held out as a non-overlapping
epoch of assessment. In concern with the epoch of fit, the holdout sample is an epoch in the future,
used to compare the forecasting accuracy of model fits to past data.

The concept of a holdout sample is to split the in-sample data into two parts. The last few data
points are taken out from the in-sample data. The leftover data is called the training set, and the
removed data is called the validation set or holdout set. Assume k periods have been taken out as
holdout samples from a total of T periods. The parameters are optimized by minimizing the fit accuracy
measure for the first part of the data. After the parameters are optimized, for each model, computed
multi-step forecasts over the period covered by the second part, or holdout sample. The models are
then evaluated, comparing accuracy measures for these out-of-sample multi-step predictions of the
holdout sample. The model whose out-of-sample predictions best fit the holdout sample is chosen.
The selected model is refitted using all the data to get the final forecasting model.

The ATAforecasting package makes it easy to use the holdout sample method of model selection.
The time range used to fit models and the time range used for model evaluation are able to indepen-
dently controlled. To use holdout samples, the period of evaluation range to that last part of the data,
and the period of fit range to the remainder of the data are set. The automatic model selection feature
is able to be used to select the model whose multiperiod out-of-sample predictions best fit the holdout
sample.

Now, a quick start example of how to call the holdout method in the package.

ata_holdout <- ATA(train_data, test_data, h=24, holdout = TRUE
, holdout.set_size = 24, holdout.adjustedP = TRUE
, seasonal.test = TRUE, seasonal.model = "decomp")

Applications

Ata method was proposed as an alternative to ES, and it is not a special case of it. The details on the
method and how it helps solve some issues that ES suffers from can be found in Yapar et al. (2019),
Yapar (2018), Yapar et al. (2018), Yapar et al. (2017). ATA can be adapted to all types of time series data
and will always outperform its counter ES models.

There are many studies on the numerical and theoretical comparison of Box-Jenkins and ES
methods. Several empirical studies have been published in turn by Reid (1969), Newbold and Granger
(1974), Makridaki and Hibon (1979), Makridakis et al. (1982), Makridakis et al. (1993), Makridakis and
Hibon (2000), Makridakis et al. (2018).

Efforts for better forecasting and the competitions in which the outcomes of these efforts are tested
and measured will never cease. Better forecasting is crucial to every science and business field. The
most important platforms in which the performance of the studies for accurate forecasting is measured
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are the M-Competitions (Hyndman, 2020). The most recent of these competitions, M4, has ended
(Makridakis et al., 2018). The aim of the M4-Competition, like the competitions held before it, was to
learn how to improve the forecasting accuracy, and how such learning can be applied to advance the
theory and practice of forecasting, and are there any new methods that could really make a difference.

M-Competitions are very important and prestigious platforms for forecasting researchers since
they provide researchers and developers of new forecasting methods opportunities to test and prove
themselves. Another benefit of these competitions is that they usually lead to both the destruction
of many taboos known in the forecasting literature and the discovery of new methods that help
increase forecasting accuracy. The M-Competition was established by Spyros G. Makridakis in 1982 in
a paper that studied the post-sample accuracy of several time series forecasting methods (Makridakis
et al., 1982). The number of series was increased to 1001, and the data were subdivided into various
categories (micro, macro, industry, demography, finance, other). The participants tested the accuracy
of 24 methods on 1001 series with various horizons which were six for yearly data, eight for quarterly
data, and eighteen for monthly data. The competition’s goal was to explore how different procedures
differ from each other and how information can be ensured that forecasters can make convenient
choices under various conditions (Makridakis et al., 1984).

In Makridakis and Hibon (2000), the M3-Competition reports the reasons for conducting the
competition and summarizes its outcomes. In the M3-Competition, 3003 series, composed of 6
different types of series and 4 different time intervals between successive observations. The three prior
competitions have played a very major role in the forecasting literature. Their results ensured a basis
for future forecasting research. Consequently, Makridakis et al. initiated the fourth competition. As
per the Makridakis’ team, the goal of the M4-Competition is to further study the utility and accuracy
of various forecasting methods. Thus, the categories and number of the series and the forecasting
methods are increased.

The M4-Competition is the progression of three previous competitions that began more than 45
years ago, whose objective was to learn how to evolve forecasting accuracy and how such learning
can be implemented to proceed with the theory and performance of forecasting.

The purpose of M4 was to replicate the consequences of the prior ones and expand them into three
aspects:

1. Substantially enhanced the number of series,

2. Contained machine learning forecasting methods,

3. Interpret both point forecasts and prediction intervals.

The some substantial outcomes of the M4-Competition are:

1. 12 of the 17 most accurate methods were "combinations" of mostly statistical approaches.

2. "hybrid" approach was a significant finding that use both statistical and machine learning
features.

In the M4-Competition, the number of data from the previous M3-Competition (Makridakis and
Hibon, 2000) was increased from 3,000 to 100,000. There were numerous applications (248), but only
49 of the applicants were able to provide forecasts for the entire 100,000 series. With the addition of 10
benchmarks and 2 standard methods, 61 methods were considered (Makridakis et al., 2020). Only 17
out of 49 valid applications outperformed the benchmark set by the competition committee. Of these
17 successful methods, 12 are combinations of known statistical methods obtained by using different
weighting techniques.

The M3-Competition data set consists of 645 yearly, 756 quarterly, 1428 monthly, and 174 other
series. The M4-Competition data set consists of 23000 yearly, 24000 quarterly, 48000 monthly, 359
weekly, 4227 daily, and 414 hourly series. The original data sets, as well as the forecasts of the methods
that participated in the competitions, are available in the R packages Mcomp (Hyndman et al., 2018)
and M4comp2018 (BenTaieb, 2018).

In order to test and to apply this approach’s forecasting performance on real data and compare it
to the benchmarks and especially counter ES models, forecasts obtained from five versions of it given
the shortcode numbers Model-M3 and Model-M4 are fitted to the M3 and M4 competitions.

Therefore, in this implementation, predetermined model parameters as defined in the following
list items are used to obtain accurate forecasts. Results from seven different applications of the Ata
method will be considered here.
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1. ATA(p, 0, 1) is an alternative to SES method where p is the optimum value for q = 0 with
fixed damped trend (ϕ = 1), and is where a simple model selection of the two models in
ATAadd(p, 0, 1) and ATAmult(p, 0, 1) is carried out based on selected in-sample accuracy mea-
sure.

# --- Code for Makridakis Competition 2018
# --- (M4 Forecasting Competition) Dataset.

# Load packages for creating plots
library(ATAforecasting)
library(M4comp2018)

fit1 <- ATA(M4[[1]]$x, M4[[1]]$xx, h = M4[[1]]$h, parQ = 0
, parPHI = 1 , seasonal.test = TRUE
, seasonal.model = "decomp", accuracy.type = "sMAPE"
, negative.forecast = FALSE)

2. ATAadd(p, 1, 1) where p is optimized for q = 1 with fixed damped trend (ϕ = 1)

fit2 <- ATA(M4[[1]]$x, M4[[1]]$xx, h = M4[[1]]$h, parQ = 1
, parPHI = 1, seasonal.test = TRUE, seasonal.model = "decomp"
, model.type = "A", accuracy.type = "sMAPE"
, negative.forecast = FALSE)

3. ATA − comb where a simple average of the forecasts from the two models in (1) and (2) is used
as a forecast.

fit3 <- (fit1 + fit2) / 2

4. ATAadd(p, 1, ϕ) is an alternative to damped trend method where q is optimized for p = p∗ with
damped trend.

fit4 <- ATA(M4[[1]]$x, M4[[1]]$xx, h = M4[[1]]$h, parQ = 1
, start.phi = 0.80, end.phi = 1, size.phi = 0.01
, seasonal.test = TRUE, seasonal.model = "decomp"
, model.type = "A", accuracy.type = "sMAPE"
, negative.forecast = FALSE)

Model encoded by Model-M4 fits the ATAadd(p, 1, ϕ) to the yearly data sets and uses the ATA −
comb, a simple average of the forecasts obtained from the models ATAadd(p, 1, 1) and ATA(p, 0, 1),
for the other data sets in M4-Competitions. Model-M3 fits ATAadd(p, 0, 1), ATA(p, 0, 1), and uses the
ATA − comb for the data sets in M3-Competitions.

Team Method Type Yearly Quarterly Monthly Weekly Daily Hourly Total Rank

Smyl Hybrid 13.176 9.679 12.126 7.817 3.170 9.328 11.374 1
Montero-Manso, et al. Combination (S & ML) 13.528 9.733 12.639 7.625 3.097 11.506 11.720 3
Pawlikowski, et al. Combination (S) 13.943 9.796 12.747 6.919 2.452 9.611 11.845 5
Jaganathan. & Prakash Combination (S & ML) 13.712 9.809 12.487 6.814 3.037 9.934 11.695 2
Fiorucci & Louzada Combination (S) 13.673 9.816 12.737 8.627 2.985 15.563 11.836 4
Petropoulos & Svetunkov Combination (S) 13.669 9.800 12.888 6.726 2.995 13.167 11.887 6
Shaub Combination (S) 13.679 10.378 12.839 7.818 3.222 13.466 12.020 9
Legaki & Koutsouri Statistical 13.366 10.155 13.002 9.148 3.041 17.567 11.986 8
Doornik, et al. Combination (S) 13.910 10.000 12.780 6.728 3.053 8.913 11.924 7
Pedregal, et al. Combination (S) 13.821 10.093 13.151 8.989 3.026 9.765 12.114 13
Model-M4 Statistical 13.930 10.292 12.936 8.540 3.095 12.851 12.098 11
Spiliotis & Assimakopoulos Statistical 13.804 10.128 13.142 8.990 3.027 17.756 12.148 15
Roubinchtein Combination (S) 14.445 10.172 12.911 8.435 3.270 12.871 12.183 17
Ibrahim Statistical 13.677 10.089 13.321 9.089 3.071 18.093 12.198 18
Tartu M4 seminar Combination (S & ML) 14.096 11.109 13.290 8.513 2.852 13.851 12.496 23
Waheeb Combination (S) 14.783 10.059 12.770 7.076 2.997 12.047 12.146 14
Darin & Stellwagen Statistical 14.663 10.155 13.058 6.582 3.077 11.683 12.279 19
Dantas & Cyrino Oliveira Combination (S) 14.746 10.254 13.462 8.873 3.245 16.941 12.553 25
The M4 Team (Theta) Statistical 14.593 10.311 13.002 9.093 3.053 18.138 12.309 20
The M4 Team (Com) Statistical 14.848 10.175 13.434 8.944 2.980 22.053 12.555 27
The M4 Team (Arima) Statistical 15.168 10.431 13.443 8.653 3.193 12.045 12.661 29
The M4 Team (Damped) Statistical 15.198 10.237 13.473 8.866 3.064 19.265 12.661 30
The M4 Team (ETS) Statistical 15.356 10.291 13.525 8.727 3.046 17.307 12.725 31
The M4 Team (Holt) Statistical 16.354 10.907 14.812 9.708 3.066 29.249 13.775 43
The M4 Team (SES) Statistical 16.396 10.600 13.618 9.012 3.045 18.094 13.087 37

Table 2: Average forecasting errors for various data types and overall ranks with respect to sMAPE.

The forecasting performance of the Model-M4 that competed in the M4-Competition are given
in the following three tables (Tables 2, 3, and 4) with respect to the error criteria sMAPE, MASE, and
OWA, respectively.
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According to sMAPE (Table 2), the Model-M4 of the ATA models is ranked in the first 20. The
Model-M4 performs much better than ETS despite the fact that only sMAPE was used for optimizing
the ATA approaches for the in-sample data, and these approaches only considered limited numbers of
candidate models to choose from, unlike ETS.

Team Method Type Yearly Quarterly Monthly Weekly Daily Hourly Total Rank

Smyl Hybrid 2.980 1.118 0.884 2.356 3.446 0.893 1.536 1
Montero-Manso, et al. Combination (S & ML) 3.060 1.111 0.893 2.108 3.344 0.819 1.551 3
Pawlikowski, et al. Combination (S) 3.130 1.125 0.905 2.158 2.642 0.873 1.547 2
Jaganathan. & Prakash Combination (S & ML) 3.126 1.135 0.895 2.350 3.258 0.976 1.571 6
Fiorucci & Louzada Combination (S) 3.046 1.122 0.907 2.368 3.194 1.203 1.554 4
Petropoulos & Svetunkov Combination (S) 3.082 1.118 0.913 2.133 3.229 1.458 1.565 5
Shaub Combination (S) 3.038 1.198 0.929 2.947 3.479 1.372 1.595 7
Legaki & Koutsouri Statistical 3.009 1.198 0.966 2.601 3.254 2.557 1.601 8
Doornik, et al. Combination (S) 3.262 1.163 0.931 2.302 3.284 0.801 1.627 11
Pedregal, et al. Combination (S) 3.185 1.164 0.943 2.488 3.232 1.049 1.614 10
Model-M4 Statistical 3.117 1.231 0.962 2.578 3.277 2.238 1.631 13
Spiliotis & Assimakopoulos Statistical 3.184 1.178 0.959 2.488 3.232 1.808 1.628 12
Roubinchtein Combination (S) 3.244 1.159 0.921 2.290 3.632 1.129 1.633 15
Ibrahim Statistical 3.075 1.185 0.977 2.583 3.894 2.388 1.644 16
Tartu M4 seminar Combination (S & ML) 3.091 1.250 1.002 2.375 3.025 1.058 1.633 14
Waheeb Combination (S) 3.400 1.160 1.029 2.180 3.321 0.861 1.706 27
Darin & Stellwagen Statistical 3.406 1.168 0.924 2.107 4.128 0.856 1.693 25
Dantas & Cyrino Oliveira Combination (S) 3.294 1.170 0.952 2.534 3.436 1.598 1.657 17
The M4 Team (Theta) Statistical 3.382 1.232 0.970 2.637 3.262 2.455 1.696 26
The M4 Team (Com) Statistical 3.280 1.173 0.966 2.432 3.203 4.582 1.663 18
The M4 Team (Arima) Statistical 3.402 1.165 0.930 2.556 3.410 0.943 1.666 19
The M4 Team (Damped) Statistical 3.379 1.173 0.972 2.404 3.236 2.956 1.683 23
The M4 Team (ETS) Statistical 3.444 1.161 0.948 2.527 3.253 1.824 1.680 21
The M4 Team (Holt) Statistical 3.550 1.198 1.009 2.420 3.223 9.356 1.772 34
The M4 Team (SES) Statistical 3.981 1.340 1.019 2.685 3.281 2.385 1.885 39

Table 3: Average forecasting errors for various data types and overall ranks with respect to MASE.

Team Method Type Yearly Quarterly Monthly Weekly Daily Hourly Total Rank

Smyl Hybrid 0.778 0.847 0.836 0.851 1.046 0.440 0.821 1
Montero-Manso, et al. Combination (S & ML) 0.799 0.847 0.858 0.796 1.019 0.484 0.838 2
Pawlikowski, et al. Combination (S) 0.820 0.855 0.867 0.766 0.806 0.444 0.841 3
Jaganathan & Prakash Combination (S & ML) 0.813 0.859 0.854 0.795 0.996 0.474 0.842 4
Fiorucci & Louzada Combination (S) 0.802 0.855 0.868 0.897 0.977 0.674 0.843 5
Petropoulos & Svetunkov Combination (S) 0.806 0.853 0.876 0.751 0.984 0.663 0.848 6
Shaub Combination (S) 0.801 0.908 0.882 0.957 1.060 0.653 0.860 7
Legaki & Koutsouri Statistical 0.788 0.898 0.905 0.968 0.996 1.012 0.861 8
Doornik, et al. Combination (S) 0.836 0.878 0.881 0.782 1.002 0.410 0.865 9
Pedregal, et al. Combination (S) 0.824 0.883 0.899 0.939 0.990 0.485 0.869 11
Model-M4 Statistical 0.818 0.916 0.901 0.930 1.008 0.817 0.872 12
Spiliotis & Assimakopoulos Statistical 0.823 0.889 0.907 0.939 0.990 0.860 0.874 13
Roubinchtein Combination (S) 0.850 0.885 0.881 0.873 1.091 0.586 0.876 14
Ibrahim Statistical 0.805 0.890 0.921 0.961 1.098 0.991 0.880 15
Tartu M4 seminar Combination (S & ML) 0.820 0.960 0.932 0.892 0.930 0.598 0.888 17
Waheeb Combination (S) 0.880 0.880 0.927 0.779 0.999 0.507 0.894 18
Darin & Stellwagen Statistical 0.877 0.887 0.887 0.739 1.135 0.496 0.895 19
Dantas & Cyrino Oliveira Combination (S) 0.866 0.892 0.914 0.941 1.057 0.794 0.896 20
The M4 Team (Theta) Statistical 0.872 0.917 0.907 0.971 0.999 1.006 0.897 21
The M4 Team (Com) Statistical 0.867 0.890 0.920 0.926 0.978 1.556 0.898 22
The M4 Team (Arima) Statistical 0.892 0.898 0.903 0.932 1.044 0.524 0.902 23
The M4 Team (Damped) Statistical 0.890 0.893 0.924 0.917 0.997 1.141 0.907 25
The M4 Team (ETS) Statistical 0.903 0.891 0.915 0.931 0.996 0.852 0.908 26
The M4 Team (Holt) Statistical 0.947 0.932 0.988 0.966 0.995 2.749 0.971 37
The M4 Team (SES) Statistical 1.003 0.970 0.951 0.975 1.000 0.990 0.975 39

Table 4: Average forecasting errors for various data types and overall ranks with respect to OWA.

The forecasting performance of the Model-M3 that competed in the M4-Competition are given in
the Table 5 with the error criteria sMAPE.

These results should motivate users to consider ATA instead of ES-based forecasting. An important
result from the M4-Competition was that combining forecasts improved accuracy. This improvement
will become even stronger if the set of initial candidate models are chosen wisely and more meaningful
if the combination can be obtained faster. Speed is an undeniable factor when choosing a forecasting
method due to the need to obtain forecasts for the streaming and big data sets. The results obtained
by using a simple combination of ARIMA and ATA for the M4-Competition data set are given in
Table 6. For all error metrics considered, ATA approaches provide much better forecasts, and since the
optimization is much faster than ETS, these more satisfying forecasts are obtained much faster.

Just by using the simple combination of ATA and ARIMA, forecasts that are more accurate than
most of the methods that competed in the M4-Competition and that can compete with the more
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Forecasting horizons Averages

Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

Naive2 10.5 11.3 13.6 15.1 15.1 15.9 14.5 16.0 19.3 20.7 12.62 13.57 13.76 14.24 14.81 15.47
Single 9.5 10.6 12.7 14.1 14.3 15.0 13.3 14.5 18.3 19.4 11.73 12.71 12.84 13.13 13.67 14.32

Holt 9.0 10.4 12.8 14.5 15.1 15.8 13.9 14.8 18.8 20.2 11.67 12.93 13.11 13.42 13.95 14.60
Winter 9.1 10.5 12.9 14.6 15.1 15.9 14.0 14.6 18.9 20.2 11.77 13.01 13.19 13.48 14.01 14.65

Dampen 8.8 10.0 12.0 13.5 13.8 14.3 12.5 13.9 17.5 18.9 11.07 12.05 12.17 12.45 12.98 13.64
Comb (S-H-D) 8.9 10.0 12.0 13.5 13.7 14.2 12.4 13.6 17.3 18.3 11.10 12.04 12.13 12.4 12.91 13.52

ETS 8.8 9.8 12.0 13.5 13.9 14.7 13.0 14.1 17.6 18.9 11.04 12.13 12.32 12.66 13.14 13.77

ATA(p, 0, 1) 8.9 10.0 12.1 13.7 13.9 14.7 12.8 13.9 17.3 18.9 11.16 12.21 12.34 12.64 13.13 13.77
ATA(p, 1, 1) 8.4 9.7 11.5 12.9 13.6 14.2 12.9 15.4 18.9 20.9 10.64 11.72 11.94 12.66 13.32 14.09

ATA(p, q, ϕ = 0.5) 8.6 9.6 11.6 13.2 13.5 14.2 12.4 13.7 17.0 18.6 10.76 11.77 11.92 12.24 12.75 13.39
Model-M3 8.5 9.6 11.4 12.8 13.0 13.6 12.0 13.1 16.3 17.4 10.56 11.47 11.58 11.94 12.40 12.94

Table 5: Average sMAPE across different forecast horizons: all 3003 series.

Yearly Quarterly Monthly Weekly Daily Hourly Total

sMAPE

ETS & ARIMA 14.691 10.027 12.917 8.439 3.076 14.377 12.205
Model-M3 & ARIMA 13.847 9.987 12.653 7.607 2.998 11.942 11.859

MASE

ETS & ARIMA 3.334 1.132 0.909 2.476 3.259 1.249 1.627
Model-M3 & ARIMA 3.093 1.148 0.908 2.345 3.255 1.436 1.575

OWA

ETS & ARIMA 0.869 0.868 0.875 0.906 1.002 0.652 0.875
Model-M3 & ARIMA 0.813 0.872 0.866 0.837 0.989 0.625 0.849

Table 6: Average forecasting errors for various data types and error metrics using simple combinations
of forecasts.

accurate methods considering the computation complexity and time as important factors can be
obtained. The results are given along with the ranks when all the methods are ranked according to
OWA in Table 7. The three simple combinations of ATA and ARIMA are ranked in the top 10 when all
other methods are considered.

Team Yearly Quarterly Monthly Weekly Daily Hourly Total Rank

Smyl 0.778 0.847 0.836 0.851 1.046 0.440 0.821 1
Montero-Manso, et al. 0.799 0.847 0.858 0.796 1.019 0.484 0.838 2
Pawlikowski, et al. 0.820 0.855 0.867 0.766 0.806 0.444 0.841 3
Jaganathan. & Prakash 0.813 0.859 0.854 0.795 0.996 0.474 0.842 4
Fiorucci & Louzada 0.802 0.855 0.868 0.897 0.977 0.674 0.843 5
Petropoulos & Svetunkov 0.806 0.853 0.876 0.751 0.984 0.663 0.848 6
Model-M4 & ARIMA 0.813 0.872 0.866 0.837 0.989 0.625 0.849 8
Shaub 0.801 0.908 0.882 0.957 1.060 0.653 0.860 10
Legaki & Koutsouri 0.788 0.898 0.905 0.968 0.996 1.012 0.861 11
Doornik, et al. 0.836 0.878 0.881 0.782 1.002 0.410 0.865 12

Table 7: Average forecasting errors (OWA) for various data types along with the ranks.

Conclusion

In this study, we have introduced a novel method of bagging for the Ata method using power family
transformations and various seasonal decomposition techniques. Ata method is a new and simple
forecasting method that is an alternative to exponential smoothing. Although the Ata method’s form is
analogous to exponential smoothing, its weighting and parameterization schemes are utterly particular.
Therefore, it is not a specific case of ES. It can be adapted to all types of time series data, much like ES
and ARIMA, in addition to providing more accurate forecasts. Also, ATA can be optimized faster than
exponential smoothing since its parameters can take on a limited number of discrete values only.

The goal of this manuscript is to introduce a new package for a new univariate time series
forecasting method that provides innovative solutions to issues faced during the initialization and
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optimization stages of existing methods. The ATAforecasting package implements several different
routines, most of which are related to the Ata method. Nevertheless, its modular structure enables the
user to customize and complement the included functionality by means of custom algorithms or even
other R packages. The ATAforecasting package provides a more general-purpose development as a
comprehensive toolkit for automatic time series forecasting without any expertise on the R program. It
focuses on modeling all types of time series components with any preferred Ata method and handling
seasonality patterns by utilizing some popular decomposition techniques. Also, it combines several
stationarity and seasonality tests, Box–Cox transformations, seasonal decomposition techniques with
the Ata method. ATAforecasting performance is superior to existing methods both in terms of easy
implementation, accurate, and flexible forecasting framework.

The ATAforecasting package categorizes some of the best-known techniques into three groups:
(a) power transformation-based methods, (b) decomposition-based methods, and (c) time series
forecasting-based methods. The package is also designed to assist research along with the whole
modeling process: data preparation, model selection, prediction and forecasting, and interpretation
of outcomes handling summaries and demonstrating functionalities. Providing these combinations
of methods to the users is considered to introduce a new decomposition-based approach to time
series forecasting with the Ata method, to provide automation, optimization, and bagging of the Ata
method, which is an innovative and accurate univariate time series analysis method without any
expertise by R program. Specifically, a proposed analytical methodology of the time series method
with theATAforecasting R package combines several stationarity and seasonality tests, power family
transformations, and various seasonal decomposition techniques with the Ata method. In addition to
this theoretical model, we focus on the computational implementation of all considered Ata methods
in the ATAforecasting package. In particular, simulation and estimation have been demonstrated.
Besides, the ATAforecasting package is aligned to many worthy R packages, such as forecast, urca,
uroot, seasonal, stR, stlplus, xts, timeSeries, TSA, tseries.

In the future, the package should be extended to provide a comprehensive set of tools for three
common issues in forecast combination prior to estimation, fast optimization of model parameters,
missing values, and modeling with regressor variables. Users would have the option to automate the
selection algorithm so that a good combination method is found based on the training set fit. Finally,
the package offers specialized functions for summarizing and visualizing the combination results.
Along this vein, a class for model specifications should be added alongside the actual implementations
via arguments for the fitting functions. In that way, the package can be aligned to M-Competition
benchmark time series models and useful R package. Furthermore, the package could benefit from
robust estimation methods, another focus for future research.
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