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VARIATION IN HERBIVORE-MEDIATED INDIRECT EFFECTS
OF AN INVASIVE PLANT ON A NATIVE PLANT

F. LELAND RUSSELL,1,3 SVATA M. LOUDA,1 TATYANA A. RAND,1 AND STEPHEN D. KACHMAN
2

1Department of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0118 USA
2Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0963 USA

Abstract. Theory predicts that damage by a shared herbivore to a secondary host plant
species may either be higher or lower in the vicinity of a preferred host plant species. To
evaluate the importance of ecological factors, such as host plant proximity and density, in
determining the direction and strength of such herbivore-mediated indirect effects, we
quantified oviposition by the exotic weevil Rhinocyllus conicus on the native wavyleaf thistle
Cirsium undulatum in midgrass prairie on loam soils in the upper Great Plains, USA. Over
three years (2001–2003), the number of eggs laid by R. conicus on C. undulatum always
decreased significantly with distance (0–220 m) from a musk thistle (Carduus nutans L.) patch.
Neither the level of R. conicus oviposition on C. undulatum nor the strength of the distance
effect was predicted by local musk thistle patch density or by local C. undulatum density (�5
m). The results suggest that high R. conicus egg loads on C. undulatum near musk thistle
resulted from the native thistle’s co-occurrence with the coevolved preferred exotic host plant
and not from the weevil’s response to local host plant density. Mean egg loads on C.
undulatum also were greater at sites with higher R. conicus densities. We conclude that both
preferred-plant proximity and shared herbivore density strongly affected the herbivore-
mediated indirect interaction, suggesting that such interactions are important pathways by
which invasive exotic weeds can indirectly impact native plants.

Key words: apparent competition; associational defense; biological control; Carduus nutans L.;
Cirsium undulatum Spreng.; insect herbivory; invasive plants; non-target effects; Rhinocyllus conicus;
thistle; weeds; weevil.

INTRODUCTION

Empirical results and emerging theory suggest that the

presence of an alternative, preferred host species can

strongly affect the intensity of herbivory on a less

preferred (i.e., secondary) host plant species by a shared

insect herbivore. Such indirect interactions may result in

‘‘associational defense’’ (Atsatt and O’Dowd 1976), in

which occurrence with a preferred host reduces feeding

on the secondary host. For example, in agroecosystems,

palatable species may be used as ‘‘trap crops,’’ i.e., they

draw herbivores away from associated crops (Hokkanen

1991). Alternatively, secondary host plants near more

preferred neighbors may suffer greater damage (Hjalten

et al. 1993, Wahl and Hay 1995, Rand 2003). This

phenomenon has been called ‘‘associational susceptibil-

ity’’ (Brown and Ewel 1987) or ‘‘apparent competition’’

(Holt 1977). Theory predicts that apparent competition/

associational susceptibility of less preferred hosts will

occur if herbivore populations are limited by food

availability or if herbivores aggregate in preferred host

patches and spill over onto secondary hosts nearby

(Holt 1977, Holt and Kotler 1987, Abrams and Matsuda

1996). Few tests of these predictions exist.

Holt and Hochberg (2001) extended apparent com-

petition theory for indirect effects of biological control

insects. Their analysis predicts that biocontrol insects

will mediate strong indirect effects of invasive weeds on

native plants if the insect will attack native plants and its

effects on the targeted weed are weak; weak effects allow

the weed to remain abundant enough to support a large

insect population. The possibility that biocontrol insects

can mediate indirect effects of exotic weeds on native
species rarely has been evaluated. In one of the first

studies to document indirect effects of an invasive weed

on a native plant mediated by a biocontrol insect, Rand

and Louda (2004) found that nontarget damage by

Rhinocyllus conicus Frölich, an exotic flower head weevil

introduced against the exotic musk thistle (Carduus

nutans L.), to native Cirsium spp. in midgrass prairies on

loam soils was related to both site- and landscape-scale

abundances of the targeted weed. That study provides

the foundation for the more spatially explicit evaluation

of the interaction presented here.

In theory, the strength of the population response by

the shared herbivore is critical to determining the

direction of the indirect effect (Holt 1977, Holt and

Kotler 1987). White and Whitham (2000) and Blossey et

al. (2001) hypothesized that associational susceptibility

only occurs where insect herbivore populations are large
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enough to deplete their preferred host, forcing them to

attack secondary hosts. This resource-dependent hy-
pothesis suggests that the ratio of insect herbivores to

preferred host plant resources drives associational
susceptibility of secondary hosts. Further, because local

population density of specialist insect herbivores often is
related to the spatial structure of host plant patches
(Root 1973, Bach 1984), patch structure of preferred

hosts may affect the outcome of herbivore-mediated
indirect effects on co-occurring, less preferred neighbors.

In spite of the conceptual importance of herbivore
abundance in such indirect interactions, we found no

studies of herbivore-mediated indirect effects that
quantified herbivore density across multiple sites or

multiple years.
In this study, our first objective was to determine if the

native North American wavyleaf thistle (Cirsium undu-
latum Spreng.) experienced associational susceptibility

or associational defense to inflorescence damage by the
introduced biological-control weevil, Rhinocyllus con-

icus, near patches of its exotic preferred host weed,
Carduus nutans L. (musk or nodding thistle). Our second

objective was to examine effects of the density of the
preferred exotic host plant and the local abundance of

the shared herbivore on the direction and strength of the
herbivore-mediated indirect effect. To achieve these
goals, we quantified R. conicus oviposition on Cirsium

undulatum in relation to proximity of Carduus nutans at
20 sites across mid-grass prairie on loam soils in

southwestern Nebraska, USA. Specifically, the ques-
tions we addressed were these: (1) Is R. conicus damage

to C. undulatum plants higher or lower near patches of
the weedy C. nutans? (2) Is R. conicus damage to C.

undulatum higher at sites or in years with greater R.
conicus abundances? (3) Does the structure of C. nutans

patches, specifically the musk thistle patch density, area,
or total abundance, explain spatial and temporal

variation in R. conicus damage to the native C.
undulatum? And (4), does R. conicus abundance or C.

nutans patch structure affect the relationship between
distance to the weed thistle’s patches and weevil damage

to the native C. undulatum?

METHODS

Natural history of study system and study sites

Musk (or nodding) thistle, Carduus nutans, was
introduced into the United States over 100 years ago

from Eurasia (Rees 1982). It spread to become a noxious
weed in grasslands, including those of the upper Great

Plains. Musk thistle occurs primarily on loam and
loamy-clay soils (Dunn 1976). It can grow as a biennial,

winter annual, or annual. In Nebraska, most musk
thistles bolt (initiate a reproductive stem) in May, begin

flowering in June, and begin releasing seeds in July
(McCarty 1982).

Wavyleaf thistle, Cirsium undulatum (see Plate 1), is a
widespread native thistle of the central Great Plains of

North America (Great Plains Flora Association 1986).

In the central plains, it is a tap-rooted, short-lived,

iterocarpic perennial (Great Plains Flora Association

1986). In Nebraska, C. undulatum bolts in mid- to late

May, begins flowering in early June, and disperses most

seeds in late July (McCarty 1982, Louda 1998; S. Louda,

personal observation).

The Eurasian flower head weevil, Rhinocyllus conicus

(see Plate 1), was deliberately introduced from Europe

into North America in 1968 and into Nebraska from

1969 to 1972 against weedy exotic thistles, especially

musk thistle, Carduus nutans (Zwölfer and Harris 1984,

Gassmann and Louda 2001). In Nebraska, overwinter-

ing adult weevils emerge in early May, and the females

lay eggs on thistle flower heads under externally obvious

egg covers of masticated tissues between mid May and

late June (Louda 1998, Louda et al. 2005). Larvae

burrow into the flower head where they develop,

consuming receptacle tissues, florets, ovules, and devel-

oping seeds (Zwölfer and Harris 1984; S. Louda,

unpublished data). Development takes 53–76 d (Zwölfer

and Harris 1984; S. Louda, unpublished data), allowing

one generation per year in this region. Rhinocyllus

conicus often is only marginally effective in reducing

musk thistle seed production (Milbrath and Nechols

2004; for review see Gassmann and Louda 2001),

causing 30–45% reductions in seed production by

terminal flower heads and having little effect on most

lateral flower heads that often develop after the

oviposition period (Hodgson and Rees 1976).

Site selection

Data were collected at 20 sites in Custer, Dawson,

Gosper, Lincoln, and Keith Counties, with all sites

centered around North Platte, Nebraska, USA (41.138

N, 100.768 W), in late June and early July 2001–2003

(Appendix A). At each site in each year, a musk thistle

(C. nutans) patch and the associated naturally occurring

wavyleaf thistles (C. undulatum) were sampled. We refer

to the sampled musk patches as ‘‘focal musk patches.’’

Criteria for selecting sites were (1) presence of a musk

thistle patch, (2) naturally occurring wavyleaf thistles in

and near the musk patch, and (3) naturally occurring

wavyleaf thistles from 80 to 200 m from the focal musk

patch and at least 100–200 m from any other musk

thistles. We found and sampled 11, 8, and 14 sites that

met these criteria in 2001, 2002, and 2003, respectively.

Rhinocyllus conicus oviposition use

of the native Cirsium undulatum

At each site in each year we quantified R. conicus egg

load on naturally occurring wavyleaf thistles (C.

undulatum) within a focal musk thistle patch and at

30–50 m, 80–100 m, and if available, 200–220 m from

the focal musk patch along a transect that began at the

patch edge. Transect direction varied among sites and

was determined by the occurrence of musk thistle;

transect direction was chosen to ensure that no musk

thistles were closer to wavyleaf thistles at all distances
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sampled than to the focal musk patch. At each site, we

sampled up to 10 wavyleaf thistles at each distance

(mean ¼ 9.1 thistles, range: 3–10 thistles) within a 20 3

50 m plot, with the 50-m axis perpendicular to and

centered on the transect. If more than 10 individuals

occurred, the wavyleaf thistles sampled were selected

randomly by blindly drawing paper slips marked ‘‘Y’’ or

‘‘N’’ from a bag as we approached each bolting wavyleaf

thistle. For each 20 3 50 m plot, the number of slips in

the bag was equal to the number of bolting wavyleaf

thistles in the plot with 10 of those slips marked ‘‘Y.’’ In

2001, we also recorded our counts of the total number of

bolting wavyleaf thistles in each plot.

We quantified wavyleaf thistle size by counting flower

heads. We counted R. conicus egg cases (one egg per

case) and ‘‘pinholes’’ on each flower head on each

sampled plant. Pinholes are made by first instar R.

conicus larvae as they burrow into the flower head,

allowing us to detect successful oviposition even after

egg covers fall off. In 2002 and 2003, we estimated local

thistle density around each sampled wavyleaf plant by

counting all thistles by species within 5 m of each

sampled plant; we also measured their heights. We

sampled within a 5-m radius because, in the uncommon

case when wavyleaf thistles form a dense aggregation,

the radii of the patches average ,5 m. In addition to

wavyleaf and musk thistles, three later flowering thistles

sometimes occurred: two native species, Cirsium ochro-

centrum A. Gray (yellowspine thistle) and Cirsium

flodmanii [Rydb.] Arthur (Flodman’s thistle) and one

exotic species, Cirsium vulgare (Savi) Tenore (bull

thistle).

Characteristics of focal musk thistle patches

Since host patch density (Root 1973, Turchin 1987),

area (Bach 1984, Kareiva 1985), and total plant resource

(Bach 1984, 1986) can affect local density of specialist

insect herbivores, we estimated the density of bolting

musk thistles, patch area, and the total abundance of

bolting musk thistles (density 3 area) for each focal

musk thistle patch. The aim was to test the hypothesis

that variation in the patch structure of the preferred,

exotic musk thistle among sites would explain variation

in the outcome of R. conicus-mediated indirect effects on

the secondary, native host plant, C. undulatum.

We estimated the densities of focal musk patches by

counting bolting musk thistles in 2 m wide belt transects

along north–south and east–west axes through the

patch. We estimated patch areas from field measure-

ments of distances from the center to the edge of each

patch along eight transects that radiated from the center

of the patch in the four cardinal directions plus

northeast, southeast, southwest, and northwest. Edges

were defined by an abrupt decrease in musk thistle

density and were identified by consensus among

members of the data collection team. As a result of

using these criteria, patch edges corresponded to a

decrease in musk thistle density to ,1 bolter/20 m2. We

PLATE 1. Clockwise from left panel: Cirsium undulatum in flower, Rhinocyllus conicus adult on C. undulatum flower head, R.
conicus larvae inside receptacle base of C. undulatum flower head, and R. conicus egg cases on phyllaries of C. undulatum flower
head. Photo credits: S. M. Louda.
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used an image analysis program (Scion Image, Scion,

Frederick, Maryland, USA) to calculate the area of each

musk patch from the eight radial measurements.

To estimate R. conicus adult density and activity in

focal musk patches we counted egg cases on the terminal

head of the first subsidiary branch, the terminal head of

the third subsidiary branch, and the first lateral head of

the second subsidiary branch of bolting musk thistles at

10-m intervals along north–south and east–west axes

through each patch. The timing of development of these

heads coincides with the duration of the R. conicus

oviposition period. Because egg load on the terminal

head of the first subsidiary branch significantly predicted

the sum of egg loads on the terminal head of the third

subsidiary branch and on the first lateral head of the

second subsidiary branch (ANCOVA [site was included

as an independent variable]: egg load on terminal head

first subsidiary branch, F1, 127 ¼ 37.92, P , 0.001, R2 ¼
0.46), and because the latter two heads were more

frequently missing, we used egg load on the terminal

head of the first subsidiary branch as our index of R.

conicus use of musk thistle plants.

In 2003, we sampled five musk patches in early June,

the time of peak R. conicus adult activity, as well as in

early July, after oviposition ended, to determine the

reliability of egg load estimates made in July: specifical-

ly, estimates made on the terminal head of the first

subsidiary branch, as an index of the number of R.

conicus adults per musk thistle flower head and per musk

thistle plant in the musk patch during peak activity.

Mean egg load on the terminal flower head of the first

subsidiary branch of musk thistles in patches in July was

significantly, positively related both to the mean number

of R. conicus adults per flower head in patches in early

June (linear regression: mean adult R. conicus per head¼
�0.231 þ 0.095 3 [mean number of egg cases/terminal

head first subsidiary branch]; N¼5 patches, P¼0.05, R2

¼ 0.767) and to the mean number of adults per plant in

patches (linear regression: mean adult R. conicus per

bolting musk thistle¼�0.859þ0.3643 [mean number of

egg cases per terminal head of first subsidiary branch]; N

¼ 5 patches, P¼ 0.003, R2¼ 0.963). Thus, to estimate R.

conicus adult population size in each musk patch, we

multiplied ‘‘estimated R. conicus density per bolting

musk thistle’’ by ‘‘density of bolting musk thistles’’ by

‘‘patch area.’’

Data analyses

We used mixed-model ANCOVA (SAS version 8:

PROC MIXED; SAS Institute 2003) to examine effects

of variables describing the focal musk thistle patch

structure (i.e., patch area, density, and total abundance

of bolting musk thistles), as well as R. conicus adult

density and population size for the patch, plus distance

to the focal musk patch and size of individual wavyleaf

thistles on egg load; egg load was defined as mean

number of R. conicus egg cases plus pinholes per

wavyleaf thistle flower head. Effects of musk thistle

patch area, density, total abundance of bolting musk

thistles, R. conicus adult density, and population size

were examined in separate ANCOVAs. We compared

explanatory abilities of models that included the

different musk thistle patch variables by using the

Akaike Information Criterion (AIC; Burnham and

Anderson 2002).

To analyze effects of focal musk thistle patch density,

area, total bolting musk thistles in the patch, as well as

R. conicus adult density and population size on the

weevil egg load on the native wavyleaf thistles for each

of these independent variables, we divided sites in each

year into high and low categories. We treated these

potential explanatory variables as categorical, rather

than continuous, to avoid overstating the precision of

estimates that are based on subsampling patches. Large

fluctuations in musk thistle and R. conicus abundances

between years within sites meant that (1) some sites that

were sampled in multiple years were placed in different

categories (high vs. low) in different years and (2) few

sites could be sampled in all three years because musk

thistles were absent at some sites in some years

(Appendix A).

To ensure that results did not depend upon a

particular method of classifying sites, we repeated each

analysis using three different classification approaches.

First, we equally divided sites in each year between high

and low categories if there were an even number of sites.

If the number of sites was odd, the median site was

assigned to either the high or low category, according to

the degree of separation from the most similar patch in

each category. Second, we divided sites between high

and low categories using the largest gap in values for the

explanatory variable as the breakpoint, with the

constraint that each category had to contain at least

35% of sites in each year. Third, we used three

categories: high, medium, and low. Results obtained

using the three different methods of classification did

not differ. We present results from analyses in which

sites were classified as high vs. low, with category

boundaries chosen to achieve near-equal numbers of

sites in each category.

In mixed-model ANCOVAs, variables related to

properties of focal musk thistle patches and distance to

the focal musk patch were treated as fixed effects;

wavyleaf thistle size (number of flower heads) was used

as the covariate; and year and site were treated as

random effects (for statistical details see Appendices B–

F). Variance components were estimated using maxi-

mum likelihood. We used the Kenward-Rogers method

to calculate degrees of freedom associated with tests of

each independent variable (Littell et al. 2002). Denom-

inator degrees of freedom in tests of musk thistle patch

variables were larger than the number of sites sampled

because the year 3 site variance was relatively large and

sites that changed categories between years allowed

comparisons within sites. We used protected least

significant differences to make a posteriori comparisons

F. LELAND RUSSELL ET AL.416 Ecology, Vol. 88, No. 2



among means and to determine whether relationships

between plant size and R. conicus egg load differed

significantly from 0. The dependent variable, R. conicus

egg load, was natural-log transformed to meet the

assumptions of ANCOVA.

The repeated-measures structure of our ANCOVA

was complicated by our inability to sample all sites in all

three years. To deal with the problem of sites that were

sampled more than one year apart (i.e., in 2001 and

2003, but not 2002), we assumed that correlation

between observations two years apart were the same

as observations one year apart. We made this assump-

tion because sites with observations more than one year

apart were relatively few. This assumption is conserva-

tive, likely overestimating the correlation between

observations two years apart and so likely resulting in

an overestimation of the standard errors for between-

site comparisons. To account for the repeated-measures

structure of the data, the model included random effects

for year (Y ), site (S ), year 3 site, and plot 3 year 3 site

(P), in addition to the usual residual. The associated

variances are r2
Y , r2

S, r2
YS, r2

P, and r2
e . The resulting

within-site covariance structure would have a covari-

ance between years within a site of r2
S, between plots

within a site of r2
S þ r2

YS, and between plants within a

plot of r2
Y þ r2

YS þ r2
P.

For the ANCOVA model that best fit the data as

indicated by the AIC, we evaluated whether the effect of

distance to the musk thistle patch varied significantly

among years by using a likelihood-ratio test, comparing

the model with year 3 distance included as a random

effect against the model that did not include the year 3

distance interaction. To identify year 3 distance

combinations that might contribute to a significant

interaction effect, we used t tests to determine whether

best linear unbiased predictors for each year 3 distance

combination differed significantly from 0 (Littell et al.

2002).

We included number of flower heads per wavyleaf

plant as a covariate in ANCOVA models to control for

potential differences in plant quality that might be

correlated with distance to musk thistles or musk patch

structure. Based on results from previous studies of

native prairie thistles (Rand and Louda 2004, 2006,

Russell and Louda 2004, 2005), we used number of

flower heads as the best measure of wavyleaf thistle

plant quality for this flower head feeding weevil. We also

analyzed variation in musk thistle heights across sites, as

an index of variation in plant growing conditions, in

relation to each of the focal musk-patch structure

variables considered. Using separate ANCOVAs for

each focal musk patch structure variable (i.e., patch

density, area, total musk abundance, R. conicus density,

population size), we tested whether musk thistle height

differed between sites in different levels of the patch

structure variable. Patch structure variables were fixed

effects, whereas site and year were random effects. Musk

thistle height provided an independent measure of site

quality for plant growth that would not have been

accounted for already by including wavyleaf plant
reproductive size in models as a covariate.

Differences in R. conicus egg loads on native wavyleaf
thistles within vs. outside the focal musk patches could

occur either because wavyleaf thistles within the focal
musk thistle patches were closer to the preferred host

(musk thistle) or because they had higher densities of
acceptable neighbors (regardless of the species compo-
sition of those neighbors) than did wavyleaf thistles

outside of the focal musk thistle patches (White and
Whitham 2000). To evaluate the possibility that local

density of all acceptable host plant neighbors was
driving variation in R. conicus egg load and damage,

we used ANCOVA to examine the relationship between
the number of bolting native thistles within 5 m and R.

conicus egg load for wavyleaf thistles sampled outside
musk patches. Distance to the musk thistle patch was

treated as a fixed effect, and number of all bolting native
thistles within 5 m was the covariate. Year and site were

random effects. However, because R. conicus uses
Cirsium ochrocentrum and C. flodmanii very little due

to their later reproductive phenology, we also conducted
a second ANCOVA using only the local density of C.

undulatum as the covariate. To examine whether
wavyleaf densities at larger spatial scales affected R.
conicus oviposition and damage, we used ANCOVA to

analyze effects of bolting wavyleaf thistle density in 203

50 m plots at each distance on R. conicus egg load on

wavyleaf thistles in the plot in 2001.
To provide a preliminary examination of the possi-

bility that musk thistle negatively affects wavyleaf thistle
through interspecific competition, we used linear regres-

sion to examine whether the density of bolting wavyleaf
thistles in focal musk thistle patches was negatively

related to the density of musk thistles in the patch in
2001, the only year in which counts of all wavyleaf

thistles in focal musk patches were recorded.

RESULTS

Oviposition by R. conicus on wavyleaf thistle

with distance from focal musk thistle patch

The ANCOVA model that fit the data best, as

measured by the AIC, included density of R. conicus
adults in the focal musk thistle patch, wavyleaf thistle

distance to the focal musk patch, number of flower
heads per wavyleaf plant, and the year 3 distance

random effect (Table 1). Oviposition by R. conicus on
native wavyleaf thistles decreased significantly with

increasing distance from musk thistle patches (distance:
F3,10.5¼ 15.07, P , 0.001; Fig. 1, Appendix B). Mean R.

conicus egg load on wavyleaf thistles within the focal
musk patches averaged across all three years was 2.86

eggs (SE¼ 0.18) per flower head; this was 2.0-, 3.4-, and
3.6 times the mean number of egg cases per flower head

observed on wavyleaf thistles at 30–50 m (1.42 egg
cases/flower head, SE ¼ 0.14), at 80–100 m (0.83 egg

cases/flower head, SE ¼ 0.09), and at 200–220 m (0.79
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egg cases/flower head, SE ¼ 0.12) from musk thistle

patches, respectively. There was a trend toward differ-

ences in the effect of distance among years but it did not

reach statistical significance (likelihood-ratio test for

models with and without year 3 distance as a random

effect: v2
1 ¼ 2.5, P ¼ 0.114). The largest best linear

unbiased estimator was for egg load on wavyleaf thistles

within musk thistle patches in 2002 (best linear unbiased

estimator¼0.122, t4.02¼1.26, P¼0.275). High egg loads

in this year 3 distance combination could contribute to

the trend toward a year 3 distance interaction effect.

Oviposition on wavyleaf thistle in relation

to R. conicus density within musk focal patches

Egg loads on the native wavyleaf thistles at sites with

high densities of R. conicus adults within the focal musk

thistle patch were significantly greater than those at sites

with low R. conicus densities (R. conicus density: F1,33.5¼

5.08, P ¼ 0.031; Fig. 2, Appendix B). However, the

observed variation in R. conicus adult density or

population size within focal musk thistle patches was

not sufficient to predict the magnitude of decrease in

weevil egg load on C. undulatum with distance from the

patch (R. conicus adult density3distance: F3,78¼1.24, P

¼ 0.299; R. conicus adult population size 3 distance:

F3,90.4 ¼ 0.33, P ¼ 0.806). Also, egg load on wavyleaf

thistle was not related to the estimated population size

of R. conicus adults within the focal musk patch (R.

conicus adult population size: F1,34.8 ¼ 0.02, P ¼ 0.89,

Appendix C). The relationship between R. conicus adult

density and egg load on wavyleaf thistle at a site likely

did not result from differences in overall quality of plant

growing conditions between sites. For example, plant

size (height) of the musk thistles in focal patches did not

differ between high vs. low R. conicus density sites in

2002 or 2003 (F1,16.3¼ 1.27, P¼ 0.276), the two years in

which we measured heights of the musk thistles in the

focal patches.

Oviposition on wavyleaf thistle in relation to wavyleaf

plant flower-head resources

For individual wavyleaf thistles, R. conicus egg load

was positively related to the number of flower heads per

plant (size: F1,1033 ¼ 12.3, P , 0.001). There was some

indication that effects of wavyleaf plant size on R.

conicus oviposition may interact with plant proximity to

musk thistle (Fig. 3; size 3 distance: F3,1029 ¼ 2.17, P ¼
0.09). Egg loads on wavyleaf thistles within musk

patches were not related to the number of flower heads

per plant (t ¼ 0.31, P ¼ 0.758). However, egg load

increased significantly with wavyleaf plant size at 30–50

m (t¼3.45, P , 0.001) and marginally at both 80–100 m

TABLE 1. Values for the Akaike Information Criterion (AIC)
to evaluate fit of ANCOVA models that differed in the musk
thistle patch structure variable (a fixed effect) and whether
distance to the musk thistle patch 3 year was included as a
random effect.

Musk thistle patch
structure variable

Distance 3 year included
(random effect)?

AIC
values

R. conicus density yes 1931.6
R. conicus density no 1932.1
R. conicus population size no 1938.9
Musk thistle density no 1939.8
Musk patch area no 1934.5
Total musk thistle abundance no 1935.8

Note: AIC values were calculated from variance components
estimated by maximum likelihood; the lower the AIC value, the
better is the model fit.

FIG. 1. Number (mean þ SE) of Rhinocyllus conicus egg cases (each egg case contains one egg) per wavyleaf thistle (Cirsium
undulatum) flower head as a function of distance to the nearest musk thistle (Carduus nutans) patch. Egg loads (mean number of
eggs plus pinholes per wavyleaf thistle flower head) were measured for 2001–2003.
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(t¼ 1.9, P¼ 0.058) and 200–220 m (t¼ 1.84, P¼ 0.066)

from focal musk patches. Slopes for these relationships,
which were calculated for ln(egg load), corresponded to

0.2%, 4.7%, 2.7%, and 4.6% increases in number of eggs
per flower head for each additional head on wavyleaf

plants within the musk thistle patch, and at 30–50 m,
80–100 m, and 200–220 m, respectively. Smaller sample
sizes for wavyleaf thistles at the greater distances

reduced our ability to detect a significant relationship
between plant size and egg load there.

Oviposition by R. conicus in relation to densities
of exotic and native thistles

We found no significant effect of musk thistle patch

structure traits—focal patch density, area, or total
abundance of musk thistles—on R. conicus egg load

on wavyleaf thistles at a site (Appendices D–F). Further,
we found no significant interactions between patch

density, patch area, or total musk thistle abundance with
distance in predicting R. conicus egg load on wavyleaf

thistles.
For wavyleaf thistles outside of focal musk thistle

patches (e.g., 30–50 m, 80–100 m, and 200–220 m), R.
conicus egg load was not related either to the total

number of native thistles flowering (F1, 411 ¼ 0.98, P ¼
0.323; Appendix G) or to the number of wavyleaf
thistles flowering within 5 m (F1, 442 ¼ 0.38, P ¼ 0.377;

Appendix H). Also, density of bolting (i.e., flowering)
wavyleaf thistles in the 203 50 m sampling plots did not

explain variation in R. conicus egg load on wavyleaf
thistles in those plots (2001; F1,5 ¼ 3.05, P ¼ 0.141;

Appendix I). The density of bolting wavyleaf thistles
within focal musk thistle patches was not significantly

related to the density of the bolting musk thistles there
(2001; F1,11 ¼ 0.25, P ¼ 0.626).

DISCUSSION

Ecological context affects R. conicus oviposition
and damage to C. undulatum

Associational susceptibility is defined as increased
predation on a prey species that results from close

proximity to another prey species (Brown and Ewel
1987). We found that native wavyleaf thistles (Cirsium

undulatum) within patches of the exotic musk thistle
(Carduus nutans) suffered greater damage by the exotic

flower head weevil, R. conicus, than did wavyleaf thistles
that were even short distances (30–50 m) from those

musk patches. The decrease in herbivory with increasing
distance from musk thistles suggests that C. undulatum

experiences associational susceptibility where it is near
the weevil’s preferred, targeted host plant, musk thistle.

Although R. conicus oviposition on wavyleaf thistle can
be high in areas without musk thistle, such as sand

prairie (Russell and Louda 2005), the results here in
richer prairies are consistent with other recent studies
that showed associational susceptibility with host plant

co-occurrence in an area; in these studies, as in ours, the
secondary host species suffered more damage from

shared insect herbivores near vs. far from the preferred

host (White and Whitham 2000, Blossey et al. 2001).

High R. conicus egg loads on wavyleaf thistles within

musk thistle patches likely did not result from a positive

response by the weevils to overall density of flower head

resources on all thistle species. We found that oviposi-

tion on wavyleaf thistle by R. conicus was not related to

local densities (within 5 m) of bolting native thistles

FIG. 2. (A) Number (mean þ SE) of Rhinocyllus conicus
eggs per wavyleaf thistle (Cirsium undulatum) flower head for
sites with low vs. high densities of R. conicus adults in focal
musk thistle patches. (B) Number (mean þ SE) of R. conicus
eggs on the terminal flower head of the first subsidiary branch
of musk thistles in focal patches for sites with low vs. high
densities of R. conicus adults in focal patches. (C) Predicted
number (meanþSE) of R. conicus adults per musk thistle flower
head in focal patches for sites with low vs. high densities of R.
conicus adults in focal patches.
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outside musk thistle patches, nor was it related to

bolting wavyleaf density at the larger plot spatial scale.

In sum, the results strongly suggest a relationship

between proximity to the preferred host plant and high

R. conicus egg loads on wavyleaf thistles. The strength of

this correlative pattern suggests that the next step is an

experimental test of the relationship between distance

and egg load on wavyleaf thistle to verify that no

unmeasured variable, in addition to the key variables

assessed here (e.g., local thistle density, site quality,

individual plant size), is confounded with distance to

preferred host.

Insect herbivore abundance, behavior,

and associational susceptibility

Theory predicts that secondary host plant species are

likely to suffer associational susceptibility where they co-

occur with a preferred host, if populations of the shared

FIG. 3. Mean number of Rhinocyllus conicus eggs per wavyleaf thistle (Cirsium undulatum) flower head as a function of the
number of flower heads produced by the plant for each distance from the focal musk thistle (Carduus nutans) patch at which plants
were sampled. Regression equations are: (A) in focal musk thistle patches, egg load per head¼ 1.741þ 0.00253 (number of flower
heads); (B) at 30–50 m, egg load per head¼ 0.687þ 0.0483 (number of flower heads); (C) at 80–100 m, egg load per head¼ 0.408þ
0.028 3 (number of flower heads); (D) at 200–220 m, egg load ¼ 0.322þ 0.0467 3 (number of flower heads).

F. LELAND RUSSELL ET AL.420 Ecology, Vol. 88, No. 2



herbivore respond numerically to the preferred host

species (Holt 1977, Holt and Kotler 1987). Our data

suggest that adult R. conicus occurred more densely and

were more abundant in patches containing their

coevolved exotic host, musk thistle, than in patches

containing only the native wavyleaf thistle. For example,

during the peak of adult weevil activity in early June

2003, the mean number of R. conicus per musk thistle

flower head in musk patches was 29 times higher than

the mean number of R. conicus per wavyleaf thistle

flower head in relatively dense wavyleaf patches (5 m

diameter) at three intensive study sites (L. Russell and S.

Louda, unpublished data). Given the large annual

variation in musk thistle density observed at our sites,

active dispersal by R. conicus adults that allows

aggregation in dense musk patches, may explain why

wavyleaf thistle experiences associational susceptibility,

rather than associational defense, amid its preferred

musk thistle hosts.

White and Whitham (2000) and Blossey et al. (2001)

hypothesized that variation in the density of the shared

insect herbivore drives variation in the strength of

associational susceptibility. In fact, they predicted that

associational susceptibility would occur only where the

shared herbivore is sufficiently abundant to deplete its

preferred host. In our study, use of C. undulatum by R.

conicus, averaged across all distances to the focal musk

thistle patch, was higher at sites with greater densities of

adult R. conicus in the focal musk patch. This result may

provide partial support for the resource limitation

hypothesis of White and Whitham (2000) and Blossey

et al. (2001). However, contrary to this resource

limitation hypothesis, we also found that variation in

R. conicus adult density in patches of the preferred musk

thistle did not predict either the presence of associational

susceptibility or the magnitude of decrease in R. conicus

egg load on the acquired secondary host plant, C.

undulatum, with increasing distance from the patch.

Wavyleaf thistles within musk thistle patches suffered

greater use than wavyleaf thistles away from musk

patches over a wide range of R. conicus population sizes

and densities within musk patches. Estimated popula-

tion sizes of adult R. conicus observed in musk patches

varied 2200%, and the estimated number of R. conicus

adults per musk thistle flower head varied 360%. To our

knowledge, our study is the first empirical test of the role

of herbivore density and population size in determining

the outcome and strength of herbivore-mediated indirect

effects of a preferred host on a secondary host.

Our observation that sites with high adult R. conicus

densities within musk thistle patches averaged greater

egg loads on wavyleaf thistles (C. undulatum) across all

distances sampled than did sites with low R. conicus

densities in musk patches may be explained if sites with

high weevil densities within musk patches also have high

weevil densities throughout the site, leading to greater

egg loads even for plants that are relatively isolated from

musk thistles. The egg load on individual wavyleaf

thistles appears to reflect the effects of proximity to musk

patches overlaid on a background level of weevil floral

herbivory that is determined by site- and landscape-level

factors (Rand and Louda 2004). However, it is important

to note that R. conicus damage to C. undulatum was not

restricted only to sites with high weevil densities (Fig. 2).

Attack on the secondary host remained high even when

resources on the preferred, exotic host were available.

In addition to effects of ecological context, specifically

proximity to musk thistle patches, the magnitude of use

of flower heads on individual wavyleaf thistle plants was

influenced by the properties of individual plants. We

found that the number of R. conicus egg cases per flower

head on wavyleaf thistle plants at sites with musk thistle

increased as the number of its flower heads increased per

plant. Damage to individual plants by insects feeding as

floral herbivores and predispersal seed predators often

increases with the size of the plant’s floral display

(Leimu et al. 2002). However, the relationship between

egg load of the exotic R. conicus and number of flower

heads per native thistle plant was modified by distance

to a patch of the weevil’s preferred host, musk thistle.

Number of flower heads per plant did not explain

variation in R. conicus damage for wavyleaf thistle

within the musk patches, but it did help explain the

variation in oviposition and damage to wavyleaf thistles

outside of musk thistle patches where these two host

plant species co-occurred, in the loam midgrass prairie

region of the upper Great Plains.

Indirect effects imposed by invasive species

Invasive exotic species, such as musk thistle (Carduus

nutans) and the flower head weevil (R. conicus), can

represent a significant threat to biodiversity; yet, the

mechanisms by which such invaders affect native species

and communities remain poorly understood (Parker et al.

1999, Levin et al. 2002). An understanding of these

mechanisms is essential to predicting impacts of exotic

species if they invade new communities (Louda et al.

2003a, b, 2005). Holt and Hochberg (2001) suggested that

exotic biological control insects that attack native plants as

secondary hosts and do not strongly suppress the targeted

weed can mediate indirect effects of invasive weeds on

acquired native hosts, as shown in this study. In some

cases, it is possible that the negative effects of damage by a

shared herbivore on native plants may be balanced by

reduced competition from the exotic host plant if the

herbivore reduces the density of the exotic species.

However, for the interaction between musk thistle and

wavyleaf thistle we have found no evidence of interspecific

competition between the two thistle species nor did our test

for negative correlations in densities of these two species

reveal evidence of interspecific competition. We conclude

that it is likely that herbivore-mediated negative indirect

effects dominate the interaction between this native thistle

and this exotic weedy thistle.

Accumulating empirical evidence suggests that less

preferred host plant species frequently suffer associa-
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tional susceptibility to damage by shared insect herbi-

vores where they co-occur with preferred host species

(White and Whitham 2000, Rand and Louda 2004).

Therefore, indirect interactions between exotic weeds

and native plants that share an invasive, marginally

effective insect herbivore likely exemplify the type of

synergistic interactions among exotic species that can

promote ‘‘invasional meltdown’’ of invaded communi-

ties (Simberloff and Von Holle 1999). Our results

document such a case of an indirect interaction mediated

by an invasive biocontrol insect, in which the less

preferred, native host plant suffers increased associa-

tional susceptibility near the preferred, exotic weed.
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APPENDIX A

Characteristics of focal musk thistle patches sampled (Ecological Archives E088-026-A1).

APPENDIX B

ANCOVA results for effects of Rhinocyllus conicus density in the focal musk thistle patch and distance to the focal patch on R.
conicus egg load on wavyleaf thistles (Ecological Archives E088-026-A2).

APPENDIX C

ANCOVA results for effects of Rhinocyllus conicus population size in the focal musk thistle patch and distance to the focal patch
on R. conicus egg load on wavyleaf thistles (Ecological Archives E088-026-A3).

APPENDIX D

ANCOVA results for effects of focal musk thistle patch density and distance to the focal patch on Rhinocyllus conicus egg load
on wavyleaf thistles and a bar graph of mean R. conicus egg load on wavyleaf thistles at sites with low vs. high musk thistle densities
in the focal patch (Ecological Archives E088-026-A4).

APPENDIX E

ANCOVA results for effects of focal musk thistle patch area and distance to the focal patch and on Rhinocyllus conicus egg load
on wavyleaf thistles and a bar graph of mean R. conicus egg load on wavyleaf thistle at sites with small vs. large total area of the
focal patch (Ecological Archives E088-026-A5).

APPENDIX F

ANCOVA results for effects of musk thistle abundance in the focal patch and distance to the focal patch on Rhinocyllus conicus
egg load on wavyleaf thistles. Bar graph of mean R. conicus egg load on wavyleaf thistle at sites with low vs. high total abundance of
musk thistles in the focal patch (Ecological Archives E088-026-A6).

APPENDIX G

Regression of mean number of Rhinocyllus conicus egg cases per wavyleaf thistle flower head as a function of the number of
bolting native thistles within a 5-m radius of the sampled wavyleaf plant (Ecological Archives E088-026-A7).

APPENDIX H

Regressions of mean number of Rhinocyllus conicus egg cases per wavyleaf thistle flower head as a function of the number of
bolting wavyleaf thistles within a 5-m radius of the sampled wavyleaf plant (Ecological Archives E088-026-A8).

APPENDIX I

Mean number of Rhinocyllus conicus egg cases per wavyleaf thistle (Cirsium undulatum) flower head in 203 50 m sampling plots
as a function of the number of bolting wavyleaf thistles within the sampling plot (Ecological Archives E088-026-A9).
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