Megaclasts in alluvial fills from the Ogallala Group (Miocene), Banner, Kimball, and Morrill counties, Nebraska

Robert Diffendal Jr.

University of Nebraska - Lincoln, rdiffendal1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/diffendal

Part of the Geology Commons, Geomorphology Commons, Hydrology Commons, and the Stratigraphy Commons

Diffendal, Robert Jr., "Megaclasts in alluvial fills from the Ogallala Group (Miocene), Banner, Kimball, and Morrill counties, Nebraska" (1983). Robert F. Diffendal, Jr., Publications. 57.
http://digitalcommons.unl.edu/diffendal/57

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert F. Diffendal, Jr., Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
INFORMATION FOR CONTRIBUTORS

CONTRIBUTIONS TO GEOLOGY, The University of Wyoming, is published twice yearly and includes articles in English dealing with geology and paleontology. Articles of general interest or those dealing with problems especially pertinent to the Rocky Mountain region are given highest priority for publication. Manuscripts submitted should contain results of original research.

Authors are encouraged to contribute $5.00 per printed page, but payment is voluntary.

Lengthy manuscripts may be submitted for consideration as “Special Papers.” Publishing costs for a “Special Paper” are generally borne by the author.

Manuscript preparation: It is strongly recommended that, before submitting a paper, the author ask qualified persons to read it critically so that subsequent review will be facilitated. The author is requested to submit the original and at least one additional copy (a good photo copy is acceptable) on 8½ x 11 opaque, nonerasable standard weight paper, double-spacing the entire manuscript including all legends, references cited, appendices, and other miscellaneous items. Use ample margins. Do not break words at right-hand margins anywhere in the manuscript. A title page, footnotes, and more than three levels of subheadings in the text are to be avoided. Style in the basic text, references cited, and captions should follow in all respects that used in current issues of Contributions to Geology. In sections dealing with systematic paleontology, use the heading arrangement characteristic of those sections in current issues of Contributions to Geology. Manuscripts that do not conform to the requested style will be returned to the author without review. The metric system of weights and measurements must be used. Abbreviations must be defined at or before the first time they are used. An abstract summarizing in concise terms the methods, findings, and implications discussed in the paper must accompany all manuscripts; all new taxonomic names should be listed therein. A translation of the abstract in French, German, or Spanish is also acceptable where appropriate.

Authors are advised to adhere to the taxonomic procedures as outlined in the International Code of Zoological Nomenclature (Stoll, and others, 1964) and the International Code of Botanical Nomenclature (Lawjouw, and others, 1956). Special attention should be given to the description of new taxa, designation of holotypes, synonyms, etc.

Tables and figures (line drawings, graphs, or photographs) should not repeat data contained in the text. The author must provide numbers and brief captions for tables and figures, and refer to each of them in the text. Figure captions should be typed on a separate page and placed at the end of the manuscript. Special attention should be given to designation of orientations of views, scale used, and clarity of numbering discrete subjects within a figure. Include a linear scale using metric units on the figure itself; do not include magnifications in figure captions. Illustrations should be referred to as “figures” except for unusual materials requiring inserts of special paper, which may be called “plates.” Illustrations and lettering on figures should be of sufficient size and clarity to permit reduction to standard page size; ordinarily they should be no more than twice the size of intended reduction and cannot exceed 18 cm x 23 cm in size for the finished product. Type written lettering on figures is unacceptable. Photographs must be printed on glossy paper. Fossils or other specimens should be illuminated from the upper left. Authors are requested to make the backgrounds of figures white wherever possible. Sharp focus and high contrast are essential for good reproduction. To facilitate review and to avoid damage to illustrations, authors are instructed to submit two extra copies of each illustration, preferably at publication scale. These copies may be rough, but should provide all information necessary for an adequate review. Notations identifying the author and figure number must be made on the back of each illustration. Also, clearly indicate on each illustration which end should be “up” on the printed page. Tables should be kept to a minimum and typed on separate sheets in a camera-ready format (typed on clean white paper using a carbon ribbon set in proper proportion for reduction to constraints of the printed page.) The entirety of table captions should be capitalized. Indicate on the manuscript where figures and tables should be inserted in the text. Do not run tables within text. Be sure to include the captions in the proper format on the camera-ready table.

A cover illustration will be printed for each issue. This may be an illustration pertaining to an article in the issue or one of general scientific interest. The editors invite submittal of such illustrations and accompanying captions for possible use.

Procedure for submittal: All manuscripts should be submitted to the Editors, Contributions to Geology, Department of Geology, P. O. Box 3006, University Station, Laramie, Wyoming 82071-3006. Evaluation begins with a critical reading by the editors. One or more referees also check the paper for scientific content, originality, and clarity of presentation. It is requested that the author provide the name, title, and complete mailing address of at least one individual deemed qualified to review the manuscript. Such persons, in addition to those selected by the editors, may be asked to evaluate the paper. Judgments as to the acceptability of the paper and suggestions for enhancing it are sent to the author at which time he may be requested to reread portions of the paper considering recommendations by the referees. The paper is then resubmitted and may be reevaluated before final acceptance. The review period ranges from two weeks to two or more months. Authors should return one copy of the manuscript and illustrations, as we cannot be responsible for material lost in the mails.

Proof: The galley proof and manuscript will be sent to the author, who should carefully read the proof sheets for errors and omissions in text, tables, illustrations, legends, and bibliographical references. The author should mark corrections on the galley (proofreaders’ marks can be found in Webster’s Dictionary) and promptly return both galley and manuscript to the editors. Manuscripts and original illustrations will be returned to the author. Printing charges accruing from excessive additions to, or changes in the proofs must be assumed by the author. Page proofs will ordinarily not be provided.

Reprint orders: Fifty reprints are furnished free of charge. Authors will receive instructions pertaining to the order of additional copies.
Megaclasts in alluvial fills from the Ogallala Group (Miocene), Banner, Kimball, and Morrill counties, Nebraska

R. F. DIFFENDAL, JR. Conservation and Survey Division, IANR, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0517

ABSTRACT

Locally derived blocks and boulders (megaclasts) occur in conglomerate and in sand and gravel fills of channels in the Ogallala Group (Miocene) at localities in Banner, Kimball, and Morrill counties in western Nebraska. Some of the megaclasts are up to one or more orders of magnitude larger than the largest distantly derived grains in the sediments surrounding them. A number of these megaclasts probably moved downslope by mass wasting from outcrop sites on paleovalley sides and were later transported by running water. Other blocks and boulders were eroded by streams from bedrock along channel sides and then were transported by these bodies of water to their depositional sites.

The compositions and source formations of the blocks and boulders vary. Clasts of sandstone, caliche, and cemented volcanic ash were derived from erosion of older beds of the Ogallala Group. Interbedded sandstone and concretions were eroded from rocks of the Arikaree Group, and masses of siltstone were part of the Brule Formation.

INTRODUCTION

Megaclasts have been reported previously from Tertiary formations at four sites in western Nebraska ranging in age from Oligocene to Miocene. Work by the author since 1979 shows that megaclasts are relatively abundant in most upper Ogallala Group channel fills in the southern third of the Nebraska Panhandle.

The purposes of this report are: (1) to describe the megaclasts which can easily be mistaken for weathered outcrops; (2) to note positions of megaclasts in alluvial fills; and (3) to report the geometries of the paleochannels in which the fills (including megaclasts) were deposited.

PREVIOUS WORK

Crowell (1964, p. 86) defined megaclasts as

"... large clasts (pebbles, cobbles, boulders, and blocks), mixed or dispersed in a matrix of finer material."

He said (ibid., p. 87) that these megaclasts may occur in bedded or unbedded sequences and listed nine possible modes of origin for megaclasts. The modes included ice rafting, glacial deposition, slumping, volcanic and other mud flows and turbidity currents, tectonic formation along the edges of thrusts, talus accumulation, and selective weathering. To these may be added fluvial erosion and collapse along cutbanks of channels incised into bedrock during normal stream flow as well as during major stream discharges.

In Nebraska, megaclasts have been reported previously from at least four formations of Tertiary age. Matthew (1924, p. 63) noted large slump blocks of Miocene rock in a younger channel sand. Lugn (1939, p. 1255) elaborated on Matthew's brief description of the slump blocks and reported their dimensions as "from 10 to 20 feet or larger." Skinner and others (1977, p. 309, 312-313 and Fig. 7) gave a more complete description of the same site. Their Figure 7 shows that the blocks are tabular and jumbled. Slump blocks up to 0.6 m in diameter have also been reported in a channel fill in the Box Butte Formation by Galusha (1975, p. 36). Swisher (1982, p. 65, and Pl. 6) describes "rip-up blocks" up to 0.9 m in diameter in a channel fill of the Gering Formation. Schultz and Stout (1955, p. 24) noted large boulders of Pierre Shale in a basal Chadron fill at one locality.

OGALLALA MEGACLASTS

Megaclasts occur in either sand and gravel or conglomerate-filled channels in the Ogallala Group in southwestern Morrill, southern Banner, and northern Kimball counties in Nebraska. Five sites containing megaclasts (Fig. 1) are described in this paper. The easternmost of these filled channels is partially exposed along the west side of the valley of Greenwood Creek in Morrill County. This site, principally on the Flamig Ranch (NW 1/4, sec. 33, T. 18 N., R. 50 W.), has many good exposures of unconsolidated sand, and sand and gravel in the Ogallala Group. The gravel contains quartzite, granite, rhyolite, and other types of stream-transported clasts derived from Rocky Mountain sources to the west and southwest. The largest of these clasts have intermediate diameters of over 10 cm. Scattered about on the surface of outcrops of the coarsest of these beds are a few locally derived older Ogallala sandstone boulders up to 60 cm in diameter.

Other Ogallala channels filled with sand and gravel occur to the west and southwest of Greenwood Creek. These beds contain large sandstone boulders like those at the Greenwood Creek site. A channel fill on the Singleton Ranch (NW 1/4, sec. 31, T. 17 N., R. 53 W.) in Banner County has a basal conglomerate containing older Ogallala sandstone and calcrite boulders (Fig. 2) up to 50 cm in intermediate diameter.

The boulder-sized megaclasts had to have originated close to their present positions because they are composed of poorly indurated sedimentary rocks. On the Beranek Ranch (NE 1/4, sec. 5, T. 16 N., R. 54 W.) in Kimball County, there is a channel fill where the distance between the source of the megaclast boulders and their depositional site can be estimated. At this locality a younger Ogallala valley has been produced by stream erosion of

Figure 1. Physiographic map of study area with locations of specific sites. Base after DeGraw (1971).

Figure 2. Sandstone megaclast in Ogallala granitic conglomerate, Singleton Ranch, Banner County, Nebraska. Hammer is 40.6 cm long.
Figure 3. Megaclasts in Ogallala sand and gravel in alluvial fill of channel that was eroded by stream into older Ogallala sandstone beds (left). Dashed line is approximate position of channel side. Arrow points to site of Figure 4.

Figure 4. Sandstone megaclasts (rounded) in Ogallala conglomerate along channel side. Rocks at left are older Ogallala sandstone ledges. Hammer is 40.6 cm long.
Figure 5. A, (left page) Megaclast boulders and blocks in Ogallala channel fill on Van Pelt Ranch. Arrow 1 points to location of boulders in Figure 5B. Arrow 2 points to location of blocks in Figure 5C; B, (right page) Megaclast sandstone boulders in conglomerate. Man is 1.9 m
C, (left page) Megaclast volcanic ash block in conglomerate. Hammer is 40.6 cm long; D, (right page) Megaclast volcanic ash blocks in conglomerate. Stick is about 1.2 m long; E, (left page) Megaclast volcanic ash block (9.1 x 3.0 x 2.4 m) in trough-crossbedded conglomerate; and F, (right page) Close-up of SE showing edge of block in Figure SE in side of trough in conglomerate.
older Ogallala Group sandstones, the underlying sandstones of which are probably part of the Gering Formation of the Arikaree Group, and the uppermost siltstones of the Brule Formation (White River Group). This younger Ogallala valley was subsequently filled with sand and gravel which later was cemented into conglomerate locally along the paleovalley side. Sandstone boulders averaging about 80 cm in intermediate diameter occur in this younger Ogallala fill (Fig. 3). Sandstone source ledges crop out as little as 30 cm from some of the sandstone boulders that are cemented into the conglomerate part of the fill (Fig. 4). It seems unlikely that any of these megaclasts was carried more than a few tens of meters from its source to its present position.

At a site on the Faden Ranch (NW1/4, sec. 18, T. 18 N., R. 54 W.) in Banner County, boulders of Ogallala sandstone and calcrete up to 80 cm in diameter, a block of Arikaree sandstone about 160 cm in intermediate diameter, and smaller siltstone boulders from the Brule Formation are cemented into the basal conglomerate filling the channel. This is the easternmost occurrence in the study area of megaclast blocks found in an Ogallala channel fill.

South of Harrisburg in Banner County, a part of a younger Ogallala sand and gravel fill is exposed on the Van Pelt Ranch (NW1/4, sec. 25, T. 18 N., R. 56 W.). This fill contains megaclast boulders of older Ogallala sandstone and megaclast blocks of older Ogallala sandstone and indurated volcanic ash. When viewed from a distance the boulders and blocks look like debris weathered from outcrops and transported by downslope movements to their present positions during the Holocene (Fig. 5A). A cluster of sandstone boulders with average intermediate diameters of about 50 cm is cemented into conglomerate at one locality (Fig. 5A, B). Other boulders also occur in the fill either in conglomerate or in loose sand. Bedding in the locally derived blocks is oriented from horizontal to vertical and some blocks may be overturned (Fig. 5C, D). Many of the blocks are cemented into trough-cross-bedded conglomerate (Fig. 5E, F). Blocks vary in size but are generally over 1 m in diameter. The largest block at the site is about 9.1 x 3.0 x 2.4 m.

Figure 6. Landsat image of study area showing channel positions (dashed lines and arrows), and megaclast locations. Boulders shown by circles; blocks by triangles.
MEGACLASTS IN ALLUVIAL FILLS

The average intermediate diameter of the ten largest blocks is about 1.7 m.

In all but the last example, megclasts occur either along, or at or near the base of filled channels. On the Van Pelt Ranch megclast boulders and blocks occur at least 10 m above the base, and at least 20 m away from the nearest adjacent side of the channel fill. The blocks occur over one half of a section and are so widely separated vertically and horizontally that they probably could not simply be parts of a bed fragmented in place and not moved significantly.

Stream-transported megclasts (either boulders and/or blocks) derived locally by erosion of bedrock outcrops occur in several Ogallala channel fills in the study area. Megclast locations, positions of channel fills, and types of megclasts are shown on a Landsat image that covers most of the study area (Fig. 6). While these very large clasts have come from several older formations crossed by younger channels, most of the megclasts have been derived from older Ogallala strata. At least some of these older beds may have been fairly well indurated before erosion because their fragments contain well-cemented interbeds.

Some segments of the channels and their fills have been removed by stream erosion during the Quaternary, but enough remain to reconstruct their geometries and paths across the area. All of the Ogallala channels containing megclasts are deeply incised into older rocks. At sites where overall incision depths can be estimated, the range is from about 20 to about 60 m. Channel width is from about 1 to 2 km. Some channels, like the one on Faden Ranch, appear to have bifurcated in the initial stages of erosion of the deepest part of the channels. The channel path is slightly sinuous along its length for distances of 20 to 30 km. The channel fills are similar to those described by Breyer (1975) as braided stream deposits.

In general, Ogallala fluvial megclasts are associated with granitic sand and gravel fills of deeply incised stream channels. Megclast frequency increases toward the mountain source areas of the streams. Overall size of the megclasts also increases westward.

CONCLUSIONS

Megclasts are far more common in Tertiary fluvial channel fills than has been previously reported. V. L. Souders (personal communication, 1983), who has worked many years on the Cenozoic geology of the Nebraska Panhandle, even feels that most Cenozoic fluvial sequences in the Great Plains close to mountain sources should contain these very large, locally derived clasts.

The presence of fluvial megclasts allows the possibility of estimating the competence of some Cenozoic streams with greater precision than has been accomplished previously. That presence also points out some parallels between ancient and modern streams in the Great Plains because Quaternary alluvium at sites along rivers and arroyos also contains megclasts.

ACKNOWLEDGMENTS

R. Burchett and K. Messenger read the manuscript and offered helpful suggestions for its improvement. M. Flamig, C. Singleton, G. Beranek, J. Faden, and R. Van Pelt allowed the author to work on their land and provided helpful insights.

REFERENCES CITED

MANUSCRIPT RECEIVED FEBRUARY 9, 1983
REVISED MANUSCRIPT RECEIVED APRIL 18, 1983
MANUSCRIPT ACCEPTED SEPTEMBER 6, 1983
Contributions to Geology
The University of Wyoming
Volume 22, Number 2
Fall, 1983

CONTENTS

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edwin Ullmer</td>
<td>75</td>
<td>Precambrian iron-rich pods and uranium mineralization near Warm Spring Creek, Fremont County, Wyoming</td>
</tr>
<tr>
<td>John S. Isby and M. Dane Picard</td>
<td>91</td>
<td>Currant Creek Formation: record of tectonism in Sevier-Laramide orogenic belt, north-central Utah</td>
</tr>
<tr>
<td>R. F. Diffendal, Jr.</td>
<td>109</td>
<td>Megaclasts in alluvial fills from the Ogallala Group (Miocene), Banner, Kimball, and Morrill counties, Nebraska</td>
</tr>
<tr>
<td>Richard G. Reider</td>
<td>117</td>
<td>Soils and late Pleistocene-Holocene environments of the Sister's Hill archeological site near Buffalo, Wyoming</td>
</tr>
</tbody>
</table>

Cover Illustration:
64 m3 megaclast block of indurated volcanic ash from the Ogallala Group included in a trough cross-bedded younger Ogallala conglomerate (see paper by Diffendal).

SUBSCRIPTION RATE $10.00 per year. Special student rate $5.00 per year in the U.S. when application is accompanied by certification of student standing by faculty member. Individual issues $7.00 each; student rate $3.50.

SUBSCRIPTIONS and related matters may be addressed to Circulation Dept., Contributions to Geology, P. O. Box 3006, University Station, Laramie, WY 82071-3006, U.S.A.

POTENTIAL CONTRIBUTORS should consult inside front cover.