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MAGNETISM OF NOVEL RARE-EARTH-FREE INTERMETALLIC COMPOUNDS 

Haohan Wang, Ph.D. 

University of Nebraska, 2022 

Advisor: Xiaoshan Xu 

Rare-earth-free magnets have drawn lots of interest because of their low cost, and 

the production is not limited by the shortage of rare-earth elements. This dissertation 

focuses on three rare-earth-free materials, Fe-Co-Ti alloys, Fe-Ni-B alloys, and Co-Si. All 

of them are synthesized by arc melting followed by melt-spinning. Fe3+xCo3−xTi2 (x = 0, 2, 

3) alloys exhibit hexagonal crystal structures and show non-collinear spin structures 

according to neutron diffraction. The magnetic moments have projections on both the c-

axis and basal plane, and the corresponding misalignment angle exhibits a nonlinear 

decrease with x, which we explain as a micromagnetic effect caused by Fe-Co site disorder. 

To increase the magnetic anisotropy of Fe2Ni alloy, we dope boron into Fe2Ni and analyze 

the structure with X-ray diffraction, which shows face center cubic or body center cubic 

structure according to different temperatures. Magnetic analysis with magnetometer shows 

that the presence of boron dramatically increases the anisotropy of Fe-Ni-B alloy. Neutron 

powder diffraction is employed to investigate the magnetism and spin structure in single-

phase B20 Co1.043Si0.957. The magnetic contributions to the neutron powder diffraction data 

measured in zero fields are consistent with the helical order among the allowed spin 

structures derived from group theory. The magnitude of the magnetic moment is larger 

than the bulk magnetization determined from magnetometry, indicating the formation of a 

helical spin phase and the associated conical states in high magnetic fields.
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Chapter Ⅰ: Introduction 

1.1 Magnetic Anisotropy 

Magnetism is one of the most fundamental topics in science. Information 

technologies ranging from personal computers to mainframes use magnetic materials to 

store information on tapes, floppy diskettes, and hard disks. More efficient power 

conversion devices such as motors, transformers, and inductors with magnetic alloys are 

necessary to enable the growing global demand for energy consumption.[1] Two-

dimensional magnetic materials are widely investigated in spintronics, magnetoelectric, 

and biomedicine.[2–4] Magnetic anisotropy is one of the key properties of magnets. 

When a physical property of a material is a function of direction, that property is said to 

exhibit anisotropy. The preference for the magnetization to lie in a particular direction in 

a sample is called magnetic anisotropy. 

Anisotropy includes magnetocrystalline anisotropy and shape anisotropy. 

Magnetocrystalline anisotropy comes from the crystal structure and spin-orbit interaction 

of the electrons, which means the magnetic moment produced by electron orbitals is 

strongly linked to the crystallographic structure. Magnetic materials are easy to 

magnetize along the easy axis and hard to magnetize along the hard axis. Fig. 1 shows the 

crystal structure for Fe, Ni, Co, and the magnetization curve.[5] The easy axis of iron 

(100) is the hard axis of nickel, and the hard axis of iron (111) is the easy axis of nickel. 

As the magnetization curve in Fig. 1 shows, the field needed to magnetize iron to 

saturation is smaller in the (100) directions than in any others, and the field needed to 

magnetize nickel to saturation is smaller in the (111) directions than in any others. Cobalt 

is hexagonal, and its easy axis is the c axis. Saturating the sample in the basal plane is 
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much more difficult than saturating along the c axis. Cobalt has only one easy axis along 

the c axis, which is said to be uniaxial anisotropy. For iron and cobalt, cubic structure 

results in several equivalent easy axis according to symmetry, so they are said to have 

cubic anisotropy. Examples of Fe, Ni, and Co show that magnetic anisotropy is related to 

crystal structure. The anisotropy energy is defined as the energy needed to saturate the 

magnetization in the hard axis minus that needed to saturate along the easy axis. 

After saturation, the process of reducing the field to zero leaves some 

magnetization along the direction in which the field had been applied. In the absence of 

an external field, the magnetization prefers to lie along the easy directions. The 

magnetization remaining at H = 0 is called the remanence. 

 

Figure 1.[5] Crystal structure showing easy and hard magnetization directions for (a) Fe, 

(b)Ni, and (c) Co, above. Respective magnetization curves are below. 
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Shape anisotropy comes from magnetostatic energy. The magnetization generates 

a demagnetization field. The effect depends on the geometry of the sample, which can be 

described by the demagnetization tensor N, which depends only on the shape. For 

example, for a thin film with demagnetizing tensor Nx = Ny = 0, Nz = 1, and the z-axis 

directed across the film's thickness, the volume shape anisotropy is 𝐾𝑠ℎ𝑎𝑝𝑒
𝑉 = 𝜇0

𝑀𝑠
2

2
 where 

Ms is the saturation magnetization.[6] Shape anisotropy is essential since it is an effective 

way to increase magnetic anisotropy. 

The magnetic material can range from soft magnetic to hard magnet. Hard 

magnets, also referred to as permanent magnets, are magnetic materials that retain their 

magnetization in zero magnetic fields (high remanence magnetization). The field of a 

magnetic material to withstand an external magnetic field without becoming 

demagnetized is called coercivity. Practically, hard magnets have a high coercivity. For 

example, SmCo5 has a coercivity larger than 2.7 MA/m (3.5 T).[7] Soft magnets, in 

contrast, have low remanence magnetization and low coercivity. In some very soft 

magnetic materials, such as certain crystalline NiFe alloys (permalloys) or amorphous 

metallic alloys, coercivity can be as low as 1 A/m (12 mOe).[8] By definition, coercivity 

along the hard axis is always small. However, the coercivity is not necessarily large along 

the easy axis because the magnetization switching involves nucleation and domain wall 

motion, the latter takes much smaller energy. The magnetic anisotropy energy limits the 

maximum value of coercivity. If the domain wall motion dominates, the coercivity along 

the easy axis will be very small. To achieve high coercivity, one needs to suppress the 

domain wall motion. This can be done using nanostructures where the grain boundaries 

hinder the domain wall motion or synthesizing small powder ribbons to minimize the 
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domain wall motion. Note that there is no clear boundary between soft material and hard 

material since the definition of soft and hard material is from the applications in the 

industry. 

Magnetic materials with high magnetocrystalline anisotropy are called hard 

magnets. Hard magnets are widely used in electromotors, generators, loudspeakers, 

microphones, and so on. More recent key developments are applications in computer 

hard-disk drives, wind generators, and hybrid-car motors. In industry, high-performance 

rare-earth transition-metal permanent magnets Sm-Co and Nd2Fe14B are used.[9–13] 

Most hard magnets include rare earth elements like Nd and Sm, because they have strong 

spin-orbit coupling which increases the magnetocrystalline anisotropy. Ordered 

intermetallic compounds containing strongly spin-orbit coupled nonmagnetic metals 

(e.g., Pd, Au, and Pt) and ferromagnetic metals (e.g., Fe and Co) can also be good 

candidates for hard magnets.[14–18] Magnetic anisotropy can also be improved by 

controlling shape[19] or doping[20]. 

 

1.2 Rare-earth-free Hard Magnet 

Nd-Fe-B and Sm-Co magnets are widely used for conversion between electricity 

and mechanical energy. However, the magnetic property of Nd-Fe-B is strongly 

temperature-dependent, and the increasing demand for rare earth elements has raised the 

price of oxides like Nd2O3.[21] Rare-earth-free magnet is a good substitution for rare 

earth magnets like Nd-Fe-B and Sm-Co. Most rare-earth-free magnets are based on Fe, 
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Co, and Ni elements, but they have low magnetic anisotropy energy, so they are hard to 

be used as a hard magnet.[22] 

In magnetic materials, the maximum energy product (BH)max is defined as the 

maximal value of the product of magnetic flux density B and the magnetic field strength 

H according to the hysteresis loop, typically given in units of either MGOe (CGS) or 

kJ/m3 (SI) (1 MGOe is equal to 7.958 kJ/m³). It is a variable that serves as a measure of 

the magnetic energy stored in a magnet. Usually, a rare-earth-magnet has a high energy 

product larger than 239 kJ/m³ (30 MGOe).[21] 

People try hard to solve the low anisotropy energy problem of rare-earth-free 

magnets. Alnico is the class of alloys contains Al, Ni, Co, thus its name. Sometimes it 

also contains copper, iron, and titanium. Alnico has a high Curie temperature (1073 K) 

and a high energy product of 159 kJ/m³ (20 MGOe), but it is limited by its low 

magnetocrystalline anisotropy of 0.3 MJ/m3 (3×106 erg/cm3).[21] Further study of well-

ordered L10-FeNi shows a high magnetic anisotropy of about 1MJ/m3 (1×107 erg/cm3) 

and a (BH)max of 446 kJ/m³ (56 MGOe).[23] L10-FeNi is discovered in meteorite[24] and 

can produce in thin films by alternate monatomic layer deposition.[25,26] However, bulk 

L10-FeNi is only found in meteorites since it requires billions of years to anneal at 

extremely low cooling rates.[27] Similarly, L10-FeCo has theoretical magnetic anisotropy 

as high as 10 MJ/m3 (1×108 erg/cm3),[28] but only thin film samples can be produced in 

the lab, and no bulk sample has been synthesized yet.[29] 

Cobalt-rich intermetallic materials like HfCo7 and Zr2Co11 are also treated as 

good candidates for rare-earth-free hard magnets. For HfCo7, the magnetic anisotropy is 

1.4 MJ/m3 (1.4×107 erg/cm3); for Zr2Co11, the magnetic anisotropy is 1.35 MJ/m3 
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(1.35×107 erg/cm3).[30] However, the hard magnetic structures for both materials are 

high-temperature metastable phase which is only available in nanoparticles instead of 

bulk material.[31,32] The energy products of bulk HfCo7 and Zr2Co11 are 34 kJ/m³ (4.3 

MGOe) and 42 kJ/m³ (5.3 MGOe), respectively, which is far lower than the theoretical 

value (259 kJ/m³ /32.5 MGOe and 207 kJ/m³ /26 MGOe, respectively for HfCo7 and 

Zr2Co11).[30] Fig. 2 shows the hard magnetic structure for HfCo7 (orthorhombic) and 

Zr2Co11 (rhombohedral).[31,32] 

 

Figure 2. Hard magnet crystal structure of (a) orthorhombic HfCo7 [31]and (b) 

rhombohedral Zr2Co11.[32] 

Some rare-earth-free hard magnet does not contain Fe, Co, or Ni. Manganese-

based alloy (Mn-B, Mn-Ga, Mn-Ge, Mn-Sb Mn-Al, Mn-Bi, and Mn-As) exhibits 

ferromagnetism, while manganese is antiferromagnetic.[21] Only Mn-Al and Mn-Bi have 
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large enough magnetic anisotropy as a hard magnet among these candidates. The 

theoretical magnetic anisotropy energy of the well-ordered tetragonal L10 structure τ-

MnAl can be as high as 1.5 MJ/m3 (1.5×107 erg/cm3) with a magnetic moment of  

2.2×10-23 A·m2 (2.4 µB) per formula unit ( 0.164 A·m2/g or 164 emu/g ) and a maximal 

energy product of 105 kJ/m³ (13.2 MGOe).[33] Fig. 3(a) shows the crystal structure of τ-

MnAl. Experimental powder samples can show results similar to the theoretical value, 

K1≈1 MJ/m3 (1×107 erg/cm3), and Ms≈ 0.11 A·m2/g (110 emu/g).[34] However, 

metastable τ-phase MnAl is hard to obtain in bulk material, so the experimental magnetic 

property in bulk is far from theory. α-MnBi has a trigonal structure shown in Fig 3(b). 

Powder α-MnBi has a magnetic moment of 0.08 A·m2/g (80 emu/g), magnetic anisotropy 

energy of 1.6 MJ/m3 (1.6×107 erg/cm3), and maximal energy product of 159 kJ/m³ (20 

MGOe) at room temperature.[35] However, Mn-Bi has a similar problem to Mn-Al, that 

it is difficult to form a high-purity bulk α-MnBi. The magnetic property of bulk is usually 

not impressive.[36,37] 

 

Figure 3. Crystal structure of (a)L10 structure τ-MnAl[34] and (b)trigonal α-MnBi[35]. 
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1.3 Helical Spin Structure 

When magnetic moments in a material align in the same direction, it is called a 

ferromagnetic material. When magnetic moments in the material have more than one 

direction and the total magnetic moments are not cancelled, it is called a ferrimagnetic 

material. If the total magnetic moments cancel, it is called an antiferromagnetic material. 

Helimagnetic material is just in between and has a helical spin structure that exhibits 

long-range antiferromagnetic and short-range ferromagnetic orders. The helical spin 

structure is one of the spiral spin structures. Fig. 4 shows different kinds of spiral spin 

structures.[38] 

 

Figure 4. [38] Schematic illustrations of different types of spiral structures. (a) 

Sinusoidal, (b) screw/helical, (c) cycloidal, and (d,e) conical structures. eij connects the 

neighboring magnetic moments Si and Sj at i and j sites that have the same direction with 

the propagation vector. 
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Long-period helical structure comes from Dzyaloshinskii-Moriya (DM) exchange 

interaction. The long-range magnetic order was observed by neutron diffraction several 

decades ago,[39–42] while helical order gives rise to sharp Bragg peaks in neutron 

diffraction corresponding to the periodicity of the helical spin-density wave which is 

always different from the crystal period.[43,44] Other experiment methods exist to see 

the helical structure. Topological Hall effect can measure the Berry phase produced by 

helical spins.[45–47] Recent studies show helical structure can also be observed by 

Lorentz transmission electron microscopy[48,49] and spin-polarized scanning tunneling 

microscopy.[50,51] 

Several materials have helical spin structures. Some RFeO3 materials exhibit 

helical spins. BiFeO3 has a helical spin structure with a period of 620 Å.[52] while the 

helical period of SrFeO3 is 220 Å.[42] Another group of materials with a helical spin 

structure is the B20 material. B20 material has forms of MSi or MGe, where M can be 

Fe, Co, or Mn.[53–59] DM interaction is allowed when there is no inversion symmetry, 

So non-centrosymmetric P213 space group of B20 material allows the DM interaction and 

therefore result in a helical or conical spin propagating along (111) or (100) directions. 

Fig. 5 shows the crystal structure of BiFeO3 and B20 material. 
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Figure 5. Crystal structure of (a) BiFeO3 [52]and (b) MSi and MGe of B20 structures (M 

is Fe, Co, or Mn). 

 

When there is no applied field, the free energy of a system with DM interaction 

can be written as[60] 

𝐹 = 𝐴𝑀2 −
𝐽

2
𝑀 ⋅ ∇2𝑀⃗⃗ + 2𝐷𝑀⃗⃗ ⋅ (∇ × 𝑀⃗⃗ )                                     (1.1) 

Here, A, J, and D are parameters, 𝐴𝑀2 represent anisotropy energy, −
𝐽

2
𝑀 ⋅

∇2𝑀⃗⃗  represent exchange energy, and 2𝐷𝑀⃗⃗ ⋅ (∇ × 𝑀⃗⃗ ) represent DM interaction. A 

magnetic spin 𝑀⃗⃗  of a helical structure can be written as, 

𝑀⃗⃗ = 𝑀0[𝑒̂1 cos(𝑘⃗ ⋅ 𝑟 ) + 𝑒̂2 sin(𝑘⃗ ⋅ 𝑟 )]                                      (1.2) 

where the propagation vector is parallel to 𝑒̂1 × 𝑒̂2. 

Substitute 𝑀⃗⃗  into the free energy gives, 
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𝐹 = 𝐴𝑀2 −
𝐽

2
𝑀 ⋅ ∇2𝑀⃗⃗ + 2𝐷𝑀⃗⃗ ⋅ (∇ × 𝑀⃗⃗ )                                              

= 𝐴𝑀𝑜
2 −

𝐽

2
𝑀{𝑀0𝑘

2 ⋅ [−𝑒̂1 cos(𝑘⃗ ⋅ 𝑟 ) − 𝑒̂2 sin(𝑘⃗ ⋅ 𝑟 )]}                                

+2𝐷𝑀⃗⃗ ⋅ 𝑀0𝑘[−𝑒̂2 sin(𝑘⃗ ⋅ 𝑟 ) − 𝑒̂1 cos(𝑘⃗ ⋅ 𝑟 )]                                        

= 𝐴𝑀𝑜
2 +

𝐽

2
𝑘2𝑀𝑜

2 − 2𝐷𝑘𝑀𝑜
2                                             (1.3) 

the minimization leads to 

𝜕𝐹

𝜕𝑘
= 0 → 𝐽𝑘𝑀2 − 2𝐷𝑀2 = 0                                           (1.4) 

→ 𝑘 =
2𝐷

𝐽
=

2𝜋

𝜆
                                                                (1.5) 

Where λ is the helical period. This means the period of the helical structure is related to 

the exchange interaction and DM interaction. If the exchange interaction J is strong, the 

spins tend to be parallel to neighbors so that the helical period is long. Oppositely, if the 

DM interaction D is strong, the spins tend to be perpendicular to neighbors so that the 

helical period is small. 
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Chapter Ⅱ: Experimental Methods and Principle of Data Analysis  

This Chapter includes the synthesis, characterization, and neutron powder 

diffraction analysis for the magnetic moment. 

 

2.1 Synthesis of Magnetic Alloy 

 

Figure 2.1: Picture of (a) ABJ-338 Bell Jar Arc-Melting Furnace,[1] (b) Edmund Bühler 

GmbH Melt Spinner SC,[2] and (c) the sketch inside the chamber of melt spinning. [3] 

 

The polycrystalline samples are produced by conventionally melting appropriate 

amounts of high purity material, followed by melt spinning. The samples are put in an arc 

melting furnace ABJ-338 and melted via an electric arc struck between a tungsten 

electrode and metals placed in a copper holder. In our experiment, the chamber is 

backfilled with Argon to ensure the alloy does not interact with oxygen. After the 

materials are melted into a bulk alloy, this alloy is put into a melt-spinning instrument 

(Edmund Bühler GmbH melt spinner SC) with an argon environment. The melt spinning 

instrument drops melted liquid alloys onto a rotating wheel, which is cooled internally. A 
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wheel speed of 15-25 m/s was used to produce rapidly quenched ribbons of approximate 

width of 2 mm and thickness of 40 μm. Fig. 2.1 shows the picture of arc melting, melt 

spinning, and the sketch inside the chamber of melt spinning. 

 

2.2 Crystal Structure Analyze  

2.2.1 X-ray Diffraction and Neutron Diffraction Instruments. 

The X-ray diffraction was carried out with Rigaku SmartLab X-ray Diffractometer 

and PANalytical Empyrean Diffractometer, both using Cu Kα radiation of a wavelength 

of 1.5406 Å. SmartLab is famous for its high resolution and multiple features. Empyrean 

produces a high-intensity X-ray beam, which is suitable for powder samples. 

Neutron diffraction was carried out at Oak Ridge National Laboratory. Thin-film 

neutron diffraction was done with a dimensional extreme magnetic neutron 

diffractometer, DEMAND. DEMAND has a four-circle mode with the χ circle 

goniometer, which can operate with a closed-cycle-refrigerator (4 K to 800 K), and a 

detector sits on the 2 rotation arm to cover the scattering angle range of 3° < 2 < 155°. 

A monochromator was used to select polarized neutron with a wavelength of 1.005 Å, 

1.546 Å, and 2.541 Å. Fig. 2.2 shows the picture of the DEMAND beamline. 

Temperature-dependent high-resolution neutron powder diffraction measurements were 

carried out without an external magnetic field on the time-of-flight (TOF) powder 

diffractometer, POWGEN. POWGEN is a third-generation powder diffractometer with 

the highest resolution to probe large unit cells in the powder suite at the Spallation 

Neutron Source Oak Ridge National Laboratory.  The data were collected with neutrons 

with a central wavelength of 2.665 Å. A cryofurnace was used as the sample environment 
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to cover the temperature region between 20 K and 600K. Fig. 2.3 shows the picture of the 

POWGEN beamline. 

 

 

Figure 2.2: Picture of DEMAND beamline in Oak Ridge National Laboratory.[4] 

 

 

Figure 2.3: Picture of POWGEN beamline in Oak Ridge National Laboratory.[5] 
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2.2.2 Structure Analysis with Diffraction 

The crystal structure can be analyzed with diffraction. The sketch of X-ray 

diffracting on the crystal is shown in Fig. 2.4.  The atom of the crystal is arranged on a 

set of parallel planes A, B, C, D, …, normal to the plane of the drawing and spaced a 

distance d’ apart. X-ray beam of wavelength λ is incident on this crystal at an incident 

angle , which is the angle between the incident beam and the crystal planes. The angle 

between diffracted beam and the crystal planes is , too. Diffraction appears where has a 

path difference. For example, the difference in the length of the path between rays 1 and 

1a is 

𝑄𝐾 − 𝑃𝑅 = 𝑃𝐾𝑐𝑜𝑠𝜃 − 𝑃𝐾𝑐𝑜𝑠𝜃 = 0                                   (2.1) 

So, the rays scattered by all the atoms on the same plane are diffracted. For rays 1 and 2, 

the path difference for rays 1K1’ and 2L2’ is 

𝑀𝐿 + 𝐿𝑁 = 𝑑′𝑠𝑖𝑛𝜃 + 𝑑′𝑠𝑖𝑛𝜃 = 2𝑑′𝑠𝑖𝑛𝜃                            (2.2) 

This is also the path difference for all rays scattered by planes A and B. The scattered 

rays are completely in phase if the path difference is equal to a whole number n of 

wavelengths, 

𝑛𝜆 = 2𝑑′𝑠𝑖𝑛𝜃                                                        (2.3) 

This relation is known as Bragg’s law, n is called the order of diffraction (n = 1, 2, 3, …). 

Bragg’s law can also be written as  

𝜆 = 2
𝑑′

𝑛
𝑠𝑖𝑛𝜃                                                               (2.4) 

For convenience, we can have d=d’/2 so that  

𝜆 = 2𝑑𝑠𝑖𝑛𝜃                                                         (2.5) 

which is the most common form of Bragg’s law. 
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Figure 2.4: Diffraction of X-rays by a crystal.[6] 

 

X-ray diffraction uses a monochromator to choose a specific wavelength λ of X-

rays. DEMAND also uses a monochromator, so the wavelength of the neutron is fixed. 

However, in POWGEN, the wavelength of the neutrons is a wide range related to their 

speed.  

Fig. 2.5 shows the sketch of neutron powder diffraction in POEGEN. A pulsed 

neutron beam incidents into a selection device to choose a specific range of neutron 

speed, the selected neutron then incident on the sample and diffracted to the detector, the 

detector records the time the neutron travels from the source to the detector (time-of-

flight) and the angle position 2 of the diffracted neutron. The wavelength of the neutron 

is 

𝜆 =
ℎ

𝑝
=

ℎ

𝑚𝑣
=

ℎ𝑡

𝑚𝐿
                                                            (2.6) 
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Where p is the momentum of the neutron, h is the Planck constant, v is the speed of the 

neutron, m is the mass of the neutron, and t is the time of pulsed neutron travels from the 

source to the detector, which is recorded by the detector, L is the distance between the 

source to the detector which is 60 meters in POWGEN. Substitute this Eq. (2.6) to 

Bragg’s law 

𝑑 =
ℎ𝑡

2𝑚𝐿𝑠𝑖𝑛𝜃
                                                              (2.7) 

Eq. (2.7) shows how we can get diffraction peaks in neutron diffraction. 

 

 

Figure 2.5: a sketch of neutron powder diffraction in POEGEN 
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2.2.3 Intensity of Diffracted Beams 

 

Figure 2.6: A sketch of diffraction that occurred on the plane (hkl). 

 

The phase difference between beams determines the intensity of the beam. For 

convenience, consider diffraction that occurs in an orthorhombic unit cell. Fig. 2.6 shows 

the diffraction condition of the plane (hkl) inside an orthorhombic crystal with parameters 

a, b, and c in x, y, and z directions, respectively. Point O is the origin that has the 

coordinate (0,0,0), and plane α is the plane parallel to the (hkl) plane and passing through 

the origin. An atom locates at point A has the coordinate (xA, yA, zA), and plane β is the 

plane parallel to the (hkl) plane and passing through point A. Here we derive the 

contribution of atom A to the diffraction pattern for the (hkl) reflection. 

The position of atom A is specified by its fraction coordinate u=xA/a, v=yA/b, and 

w=zA/c. We can define the position vector 𝑟  for atom A  
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𝑟 = 𝑢𝑎 + 𝑣𝑏⃗ + 𝑤𝑐                                                       (2.8) 

and the wave vectors of the incident and reflected beam in Fig. 2.6 are 𝐾𝑖
⃗⃗  ⃗ and 𝐾𝑑

⃗⃗ ⃗⃗  , 

respectively. The magnitude of both wave vectors is 2π/λ. The wave vector transfer 𝐾⃗⃗  

which equals the vectors (h, k, l) in the reciprocal space that represents the diffraction 

planes can be described as 

𝐾⃗⃗ = 𝐾𝑑
⃗⃗ ⃗⃗  − 𝐾𝑖

⃗⃗  ⃗ = ℎ𝑎 ∗ + 𝑘𝑏∗ + 𝑙𝑐 ∗                                       (2.9) 

where 𝑎 ∗, 𝑏⃗ ∗, and 𝑐 ∗ are the primitive vectors in reciprocal space. 

𝑎 ∗ =
2𝜋

𝑎
𝑥 , 𝑏⃗ ∗ =

2𝜋

𝑏
𝑦 , 𝑐 ∗ =

2𝜋

𝑐
𝑧                                       (2.10) 

 When the Bragg’s law is satisfied for the reflection, the path difference between 

ray 2’ and ray 1’ is 

𝛿2′1′ = 𝑀𝐶𝑁 = 2𝑑ℎ𝑘𝑙𝑠𝑖𝑛𝜃 = 𝜆                                        (2.11) 

From the definition of Miller indices, the distance between (hkl) planes is 

𝑑ℎ𝑘𝑙 =
1

√ℎ2

𝑎2 +
𝑘2

𝑏2 +
𝑙2

𝑐2

                                               (2.12) 

Atom A locates at (xA, yA, zA) and has a distance dA to plane α. So, the path difference 

between ray 3’ and ray 1’ is 

𝛿3′1′ = 𝑅𝐴𝑆 =
𝑂𝐴

𝑂𝐶
𝜆 =

𝑑𝐴

𝑑ℎ𝑘𝑙
𝜆                                          (2.13) 

dA can be calculated with the position vector 𝑟  and the wave vector transfer 𝐾⃗⃗ , 

𝑑𝐴 =
𝑟 𝐾⃗⃗ 

|𝐾⃗⃗ |
=

ℎ𝑢𝑎 ∙ 𝑎 ∗ + 𝑘𝑣𝑏⃗ ∙ 𝑏⃗ ∗ + 𝑙𝑤𝑐 ∙ 𝑐 ∗

√(2𝜋ℎ)2

𝑎2 +
(2𝜋𝑘)2

𝑏2 +
(2𝜋𝑙)2

𝑐2

=
ℎ𝑢 + 𝑘𝑣 + 𝑙𝑤

√ℎ2

𝑎2 +
𝑘2

𝑏2 +
𝑙2

𝑐2

            (2.14) 

Substitute Eq. (2.14) and Eq. (2.12) into Eq. (2,13) gives 
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𝛿3′1′ = (ℎ𝑢 + 𝑘𝑣 + 𝑙𝑤)𝜆                                            (2.15) 

then the phase difference between ray 3’ and ray 1’ in radians is given by 

𝜙 =
𝛿3′1′

𝜆
2𝜋 = 2𝜋(ℎ𝑢 + 𝑘𝑣 + 𝑙𝑤)                                 (2.16) 

With Eq. (2.8) and Eq. (2.9), the phase difference from Eq. (2.16) can be written as  

𝜙 = 𝐾⃗⃗ ⋅ 𝑟                                                         (2.17) 

Atom A contributes to the diffraction pattern in terms of planes with wave vector transfer 

𝐾⃗⃗  by 

𝑓𝐴𝑒
𝑖𝜙 = 𝑓𝐴𝑒

𝑖𝐾⃗⃗ ∙𝑟                                                    (2.18) 

Where fA is a constant related to the type of atom and the type of diffraction (neutron or 

X-ray). Eq. (2.18) represents the contribution of the intensity of atom A on the plane (hkl) 

in an orthorhombic structure. However, Eq. (2.18) is also true in other structures that are 

not orthorhombic. 𝑟  is the real space position of the atom and 𝐾⃗⃗  is the reciprocal space 

vector of the beam, the magnitude of 𝑟  and 𝐾⃗⃗  remains the same for any coordinate 

system, nor does the angle between 𝑟  and 𝐾⃗⃗  change in a different coordinate system. So,  

𝐾⃗⃗ ⋅ 𝑟 = |𝐾||𝑟|𝑐𝑜𝑠𝜃(  is the angle between 𝑟  and 𝐾⃗⃗ ) does not change in any coordinate 

system. 

The overall contribution to the planes with wave vector transfer 𝐾⃗⃗  is the sum of all waves 

scattered by the individual atoms in the unit cell 

𝐹ℎ𝑘𝑙 = ∑ 𝑓𝑖
𝑖

𝑒𝑖𝐾⃗⃗ ∙𝑟𝑖⃗⃗⃗                                               (2.19) 

Eq. (2.19) is called the structure factor for the hkl reflection, and it is valid for any space 

group 
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2.3 Intensity Analysis from Neutron Powder Diffraction  

Neutrons can exhibit wave phenomena like all quantum particles, diffraction is one 

of these phenomena. Neutron diffraction, also named as neutron elastic scattering, is an 

application to determine the atomic and magnetic structure of a material. The advantages 

of neutron diffraction include its high penetration depth and high sensitivity to light 

atoms.[7] 

Nuclear scattering in neutron diffraction can get information about crystal structure 

of a material. Neutron diffraction follows Bragg's las that is the same with X-ray diffraction. 

Neutrons interact directly with the nucleus of the atom, and the contribution to the 

diffracted intensity depends on each isotope, so, light (low Z) atoms contribute strongly to 

the diffracted intensity, even in the presence of large Z atoms.[8] The scattering length 

varies from isotope to isotope rather than linearly with the atomic number. 

Magnetic scattering in neutron diffraction can get information about magnetic 

ordering of a material.[9] Although the net charge of neutron is zero, it carries a magnetic 

moment, and therefore interacts with magnetic moments by dipole-dipole interactions. As 

a result, the diffraction intensity of magnetic part is related to the shape of electron cloud 

and the incident angle, this factor is called magnetic form factor (𝑓𝑖
′  in Eq. (2.22)) in 

magnetic scattering of neutron diffraction.    

If the neutron beam is not polarized, it is called unpolarized neutron. If the neutron 

beam is polarized that the diffraction only occurs for a specific vertical spin-polarization 

direction, it is called polarized neutron.[10] DEMAND can produce both unpolarized and 

polarized neutron beam, while POWGEN can only generate unpolarized neutron beam. [4] 



30 
 

 
 

Neutron diffraction can be used to trace the magnitude and direction of the 

magnetization after carefully separating the magnetic signal from the nuclear signal. The 

nuclear (n) and magnetic (m) parts of the powder neutron diffraction are 

𝐼𝑛 = 𝐴𝐵𝐹𝑛
2𝑒−2𝑊(𝑇)          (2.20) 

and  

𝐼𝑚 = 𝐴𝐵𝐹𝑚
2𝑒−2𝑊(𝑇)     (2.21) 

where A is a common constant factor and B is the multiplicity that depends on the 

diffracting plane indicated by (h, k, l). The Debye-Waller factor 𝑒−2𝑊(𝑇) takes into 

account the effect of thermal fluctuation of atomic positions on the diffraction, where 

W(T) increases with temperature.[11] Fn and Fm are the structure factors for the nuclear 

and magnetic parts, respectively. 

 

2.3.1 Debye-Waller Factor of Neutron Powder Diffraction  

To evaluate the nuclear contribution to the diffraction intensity, we have exploited 

that the temperature dependence of In comes from the Debye-Waller factor 𝑒−2𝑊(𝑇), The 

Debye–Waller factor is used to describe the attenuation of x-ray scattering or coherent 

neutron scattering caused by thermal motion.[12,13] It has also been called the B factor or 

the temperature factor. So long as there is no structural transition at high temperature 

(above Curie temperature Tc), we first estimated the Curie temperature Tc using the 

temperature-dependent magnetometry based on W(T) =  T/(4d2).[11] Two methods can 

estimate -values. First method is fitting the intensity above Tc for different d-spacing at 

the same temperature. The intensity above Tc does not contain magnetic scattering, the 
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difference between theoretical intensity and the experimental value should result from 

Debye-Waller only. We can use the theoretical and the experimental peak intensity of 

different d-spacing at the same temperature to fit  value. 

The other method is fitting the intensity above Tc for different temperatures of the 

same peak (same d-spacing). We can use the theoretical and the experimental intensity of 

the same peak at different temperature to fit  value. 

 The nuclear contribution can then be obtained from In = In(T1) exp[–2W(T) + 

2W(T1)] and subtracted, where T1 is a reference temperature.  

 

2.3.2 Magnetic Moment for Ferromagnetic Material from Neutron 

Powder Diffraction 

In the nuclear part in Eq. (2.20), 𝐹𝑛 = ∑ [𝑓𝑖exp (𝑖𝐾⃗⃗ ⋅ 𝑟𝑖⃗⃗ )]𝑖 is the crystal structure 

factor, and i is the index of atoms in the unit cell of the crystal structure. The position of 

the i-th atom in the unit cell is denoted by 𝑟𝑖⃗⃗ ; fi is the neutron coherent scattering lengths of 

the elements;[14] 𝐾⃗⃗  is the neutron wave vector transfer which equals the vectors (h, k, l) in 

the reciprocal space that represents the diffraction planes.  

For the magnetic part, if the magnetic structure in every unit cell is the same, one 

has[9,15] 

𝐹𝑚
2 =

1

2
(𝛾𝑟0𝑔)2 ∑ (𝛿𝛼𝛽 −

𝐾𝛼𝐾𝛽

𝐾2
)

𝛼,𝛽
∑ 𝑓𝑖

′(𝐾⃗⃗ )𝑓𝑗
′(𝐾⃗⃗ )𝑒𝑖𝐾⃗⃗ ⋅(𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗)

𝑖,𝑗
𝑆𝑖𝛼𝑆𝑗𝛽         (2.22) 

Here ,  {x, y, z}, 𝛿𝛼𝛽 is the unity matrix (Kronecker symbol), 𝐾𝛼 is the projection of 
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𝐾⃗⃗  along the -direction, 𝑆𝑖𝛼  is the projection of the spin 𝑆𝑖
⃗⃗⃗   of the i-th atom onto the -

direction, 𝑓𝑖
′(𝐾⃗⃗ ) is the magnetic form factor, which depends on the type of the magnetic 

atom.[16] For the Landé factor we assume g = 2 for 3d transition metal, γ = 1.913, and r0 

= 2.818 · 10-15 m is the classical electron radius. 

In the case of ferromagnetism (all spins in one unit cell are aligned along the same 

axis), we can carry out a quantitative discussion where Eq. (2.22) simplifies to 

      𝐼𝑚 =
1

2
𝐴(𝛾𝑟0𝑔)2𝑒−2𝑊(𝑇)𝐵(𝐾⃗⃗ ) |∑ [𝑓𝑖

′(𝐾⃗⃗ )𝑒𝑖𝐾⃗⃗ ∙𝑟𝑖⃗⃗⃗  ]𝑖 |
2

𝑆2𝑄2(𝐾⃗⃗ )                     (2.23) 

Here Q2(𝐾⃗⃗ ) = 1– [𝑆 𝐾⃗⃗ /(SK)]2 and S is the average spin per atom.   

Next, we analyze the magnitude S2. From Eq. (2.23) and Eq. (2.20), the ratio 

between the magnetic contribution and the nuclear contribution is 

                   
𝐼𝑚

𝐼𝑛
=

(𝛾𝑟0𝑔)2|∑ [𝑓𝑖
′(𝐾⃗ )𝑒𝑖𝐾⃗ ∙𝑟𝑖⃗⃗ ]𝑖 |

2
𝑆2𝑄2(𝐾⃗ )

2|∑ [𝑓𝑖𝑒
𝑖𝐾⃗ ∙𝑟𝑖⃗⃗ ]𝑖 |

2                                     (2.24) 

Q2(𝐾⃗⃗ ) can be calculated with ∑ 𝑠𝑖𝑛2𝜃𝑖𝑖=𝛼,𝛽,𝛾 = 2, where α, β, and γ are the angle 

between the magnetic moment and the a,b, and c axis of the unit cell (an example is 

provided in chapter 3), S2 is the only unknown variable. 

 

2.3.3 Magnetic Moment for Complex Spin Structure from Neutron 

Powder Diffraction 

Neutron diffraction probes the arrangement of spins or spin texture. The spin 

structure extraction hinges on the magnetic diffraction intensity (magnetic contribution) 
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analysis from the coherent scattering of the spins. The intensity of the magnetic 

contribution can be expressed as 

𝐹𝑚
2(𝑘⃗ ) =

1

2
(𝛾𝑟0𝑔)2 |∑𝑞 (𝑘⃗ , 𝑟 )𝑓′(𝑘⃗ , 𝑟 ) exp(𝑖𝑘⃗ ⋅ 𝑟 )

𝑟 

|

2

                        (2.25) 

with 

𝑞 (𝑘⃗ , 𝑟 ) ≡ 𝑠 (𝑟 ) − 𝑘̂[𝑘̂ ⋅ 𝑠 (𝑟 )].                                                 (2.26) 

Here, 𝑟  is the position of a magnetic atomic site with spin 𝑠 (𝑟 ); 𝑘̂ = 𝑘⃗ /|𝑘⃗ | is the 

unit vector of 𝑘⃗ , 𝑓′(𝑘⃗ , 𝑟 ) is the isotope-specific form factor for each site, γ= 1.913, r0 = 

2.818×10-15 m is the classical electron radius, and g ≈ 2 is the Landé factor.  

Eq. (2.25) is a more general case for Eq. (2.23) since Eq (2.25) does not require the 

spin structure to be ferromagnetic. In a ferromagnetic structure 𝑞 (𝑘⃗ , 𝑟 ) is the same for all 

atoms, which can be taken out from Eq. (2.25) 

|𝑞 (𝑘⃗ , 𝑟 )|
2
= |𝑠 − 𝑘̂[𝑘̂ ⋅ 𝑠 ]|

2
= 𝑠 2 − 2𝑠 ∙ 𝑘̂[𝑘̂ ⋅ 𝑠 ] + (𝑘̂[𝑘̂ ⋅ 𝑠 ])2 

= 𝑠 2 − 2(𝑘̂ ⋅ 𝑠 )
2
+ (𝑘̂ ⋅ 𝑠 )

2
= 𝑠 2 − (𝑘̂ ⋅ 𝑠 )

2
= 𝑠 2 [1 − (

𝑠 ∙ 𝑘⃗ 

|𝑠 ||𝑘⃗ |
)

2

]        (2.27) 

Which is the form of Eq. (2.23) 

Multiple magnetic atomic sites within the unit cell can be described by defining 𝑟 =

𝑅⃗ + 𝑢⃗  with the lattice point vector 𝑅⃗  and the relative position 𝑢⃗  of an atomic site in the unit 

cell. The form factor 𝑓′(𝑘⃗ , 𝑟 ) depends on atomic (and isotopic) species and 𝑘⃗ , but not on 

the lattice points, which implies 𝑓′(𝑘⃗ , 𝑟 ) = 𝑓′(𝑘⃗ , 𝑢⃗ ). A spin texture, such as a helical 
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structure, with a propagation vector 𝑘⃗ 𝑠, can be considered by writing 𝑠 (𝑟 ) = 𝑠 0(𝑢⃗ )𝑒
−𝑖𝑘⃗ 𝑠⋅𝑅⃗  

and 𝑞 (𝑘⃗ , 𝑟 ) = 𝑞 0(𝑘⃗ , 𝑢⃗ )𝑒
−𝑖𝑘⃗ 𝑠⋅𝑅⃗ , yielding  

 ∑ 𝑞 (𝑘⃗ , 𝑟 )𝑓′(𝑘⃗ , 𝑟 )𝑒𝑖𝑘⃗ ⋅𝑟 
𝑟 = ∑ 𝑞 0(𝑘⃗ , 𝑢⃗ )𝑓′(𝑘⃗ , 𝑢⃗ )𝑒

𝑖𝑘⃗ ⋅𝑢⃗⃗ 
𝑢⃗⃗ ∑ 𝑒𝑖(𝑘⃗ 𝑠+𝑘⃗ )⋅𝑅⃗ 

𝑅⃗                    (2.28) 

The factor ∑ 𝑒𝑖(𝑘⃗ 𝑠+𝑘⃗ )⋅𝑅⃗ 
𝑅⃗  determines the diffraction angle where the intensity peaks 

appear. The factor 𝑓 ′𝑠(𝑘⃗ ) ≡ ∑ 𝑞 0(𝑘⃗ , 𝑢⃗ )𝑓′(𝑘⃗ , 𝑢⃗ )𝑒
𝑖𝑘⃗ ⋅𝑢⃗⃗ 

𝑢⃗⃗  can be treated as the vector structure 

factor for magnetic scattering. Eq. (2.25) and (2.28) can be used to simulate the magnetic 

contribution to the diffraction intensity according to the spin arrangement 𝑠 (𝑟 ) =

𝑠 0(𝑢⃗ )𝑒
−𝑖𝑘⃗ 𝑠⋅𝑅⃗ . The example is discussed in chapter 4. 
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Chapter Ⅲ: Noncollinear Spin Structure in Fe3+xCo3-xTi2 (x = 0, 2, 3) 

from Neutron Diffraction 

 

3.1 Introduction 

Permanent-magnet material free of rare earth and other expensive elements is a 

technologically important research topic because innovative technologies such as electric 

cars, wind generators, and medical resonance-imaging work are energy-efficient and easy 

to operate when using permanent magnets.[1–6] Most top-performing permanent magnets 

are made from rare-earth transition-metal metal intermetallics such as Nd-Fe-B and Sm-

Co,[7–9] but supply-chain concerns and raw materials prices call for replacement options 

for these often bulky magnets. 

The energy product is the key figure of merit for permanent magnets, which 

describes the magnetostatic energy stored in free space. High-energy-product permanent 

magnets require high magnetizations, high Curie temperatures, and high magneto-

crystalline anisotropies.[2,10] Iron and cobalt have very high Curie temperature and 

magnetizations, Fe being preferred due to its lower raw-materials price. However, the 

anisotropies of Fe and Co-based magnets, such as steel magnets, are moderate at best. First, 

magnetocrystalline anisotropy requires spin-orbit coupling, which is strongest for heavy 

elements. Second, the atomic environments in the 3d elements are cubic (bcc Fe, fcc Co) 

or nearly cubic (hcp Co). Adding small amounts of rare earth elements, for example, 

through nanostructuring[11–13], is one option, but such structures are extremely difficult 

and expensive to produce. 
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Another option is to search for new permanent magnets entirely based on Fe-series 

(3d) transition-metal elements.[14–20] Some structures are structurally highly anisotropic, 

for example, orthorhombic HfCo7 and the rhombohedral Zr2Co11,[21] and there is hope 

that this structural anisotropy turns into magnetic anisotropy, despite the relatively small 

spin-orbit coupling. A key challenge is that the addition of elements from the first half and 

the middle of the 3d series (Ti, Cr, Mn) tends to reduce magnetization and Curie 

temperature. Exploring the full range of ternary and quaternary transition-metal alloys is 

an important task. Examples of unexpected 'hot spots' in phase diagrams are Nd2Fe14B[2]  

and, more recently, partially ordered Mn-Fe-Co.[16] 

Our focus is on the recently discovered alloy Fe3+xCo3-xTi2, whose hexagonal 

crystal structure has recently been shown to support uniaxial anisotropies of the order of 

K1 = 1 MJ/m3 (1×107 erg/cm3)[22–24]. Emphasis is on the magnetic anisotropy as a 

function of the Co content. The dependence of the first uniaxial magnetic anisotropy 

constant on the number of d electrons tends to be highly nonlinear and needs separate 

consideration for each alloy system. Substitution of Co by Fe is also interesting from the 

viewpoint of raw-materials price.  

The basics of the micromagnetism of polycrystalline magnets are well-established 

from the viewpoints of both general magnetism[25] and neutron experiments[26–28]. A 

particular feature is that easy-plane and easy-axis magnetisms are difficult to distinguish 

in nanocrystalline magnets, both yielding substantial coercivity[29]. Density-functional  

calculations indicate that rapidly-quenched Fe3+xCo3-xTi2 exhibits competing for 

anisotropies on an atomic scale caused by Fe-Co site disorder.[22–24] The effect of this 

disorder and the spin structure of Fe3+xCo3-xTi2 are poorly understood, especially from 
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an experimental viewpoint. Questions include the possible occurrence of easy-cone 

magnetism[4,10,30] and how atomic-scale easy-plane contributions caused by random-

anisotropy disorder[25,31–33] affect the spin structure. In this chapter, we use temperature-

dependent neutron powder diffraction (NPD)[34–40] to investigate the spin structure 

(magnitude and direction of the atomic magnetic moments) in Fe3+xCo3-xTi2 (x = 0, 2, and 

3). 

  

3.2 Experimental method 

Neutrons have long been used to investigate the spin structure of permanent 

magnets. Spin-polarized neutron experiments were used to investigate R2Fe14B magnets, 

leading to the clarification of its spin structure and the observation of low-temperature 

easy-cone magnetism in Nd2Fe14B.[9,30,41,42] However, Fe3+xCo3-xTi2 is a 

nonequilibrium compound and, therefore, difficult to obtain in single-crystal form. 

Polycrystalline magnets, including Nd2Fe14B, have been investigated by small-angle 

neutron scattering (SANS), with emphasis on micromagnetic length scales[26–28], these 

measurements are cumbersome to perform over a wide temperature range and yield limited 

information about the spin structure.  This chapter uses neutron diffraction over the whole 

angle and temperature range. In particular, the neutron-diffraction selection rules make it 

possible to determine the alignment between the magnetic moments and the crystalline 

orientations even in polycrystalline samples.  

To produce the sample, we have used a melt-spinning method explained 

elsewhere.[21] The melt-spun ribbons, which have the compositions Fe3+xCo3-xTi2 (x = 0, 

2, 3), were mechanically ground to obtain powders suitable for structural and magnetic 
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characterization. The high-resolution neutron powder diffraction measurements were 

carried out between 100 and 600 K without a magnetic field using pulsed neutron beams 

at the beamline POWGEN in the Spallation Neutron Source at the Oak Ridge National 

Laboratory. The sample masses for the neutron diffraction measurements are 4.46 g 

(Fe3Co3Ti2), 3.41 g (Fe5CoTi2), and 4.27 g (Fe6Ti2), as shown in Table 3.1. The diffraction 

spectra were analyzed using the Rietveld method[43] with the FullProf program.[44] The 

bulk magnetization measurements were carried out using a superconducting quantum 

interference device (SQUID) magnetometer and a physical property measurement system 

(PPMS).  

 

 

Sample (unit) Fe3Co3Ti2 Fe5CoTi2 Fe6Ti2 

Mass (g) 4.46 3.41 4.27 

Particle size (nm) 44±1 44±1 39±2 

Thermal expansion coefficient (10-6 K-1) 8.9 8.6 7.9 

TC (K) 586 
 

513 

Magnetic moment per unit cell (µB) 23±4 25±3 26±2 

Table 3.1: Properties of the three samples studied in this work. 
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3.3 Result and Discussion 

In this section, we present and analyze the results of the neutron diffraction 

experiments. Structurally, we focus on the lattice constants as functions of composition x 

and temperature T, and the grain-size determination from the width of the diffraction peaks. 

The magnetic contribution to the neutron diffraction is used to extract the magnitude of the 

magnetization and its direction with respect to the local c-axis. 

 

 

Figure 3.1: Crystal structure and neutron diffraction patterns: (a) unit cell of hexagonal 

Fe3+xCo3-XTi2 and (b) neutron powder diffraction spectra for different compositions, 

measured at 600 K and scaled by incident neutron counts and sample mass. 
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3.3.1 Crystallographic Structure 

The Fe3+xCo3-xTi2 alloys crystallize in the hexagonal structure of Fig. 3.1(a), which 

has the space group P6̄m2 (point group C3h). Fig. 3.1(b) shows the 600 K diffraction 

intensities of Fe3+xCo3-xTi2 (x = 0, 2, 3) as a function of the spacing d of the lattice planes. 

The intensities are scaled by the sample mass and the charge deposited by the proton beam 

on the liquid mercury target. The diffraction spectra are consistent with the hexagonal 

structure of polycrystalline Fe3+xCo3-xTi2;[22] the Miller indices (h, k, l) of selected peaks 

are marked accordingly. The significant differences between the diffraction intensities of 

the samples are due to the significant difference between the neutron coherent scattering 

length of Co and Fe.[45] 

The powder samples consist of randomly oriented grains whose size D can be 

estimated from the widths of the diffraction peaks—provided that the instrument 

broadening is much smaller than the peak width of the nanograins, D ≈ 2d2/Δd,[23] where 

Δd is the peak's full width at half maximum. Fig. 3.2(a) shows the temperature dependence 

of the grain size D. Using the well-separated peaks (014), (024), (018), (026), and (034), 

we obtained grain sizes of about 44 nm for Fe6Ti2 and Fe5CoTi2, whereas the grain size of 

the Fe3Co3Ti2 sample is around 39 nm. The corresponding errors of 1-2 nm (Table 3.1) 

were calculated from the dispersion of the results of different peaks. The grain sizes do not 

exhibit any obvious temperature dependence, suggesting that the microstructures are stable 

over the temperature range of the measurements. 

Fig. 3.2(b), the lattice constants and their temperature dependences were obtained 

by fitting the diffraction spectra with the Rietveld method implemented in the software 

FullProf.[44,46] The lattice constants of Fe3+xCo3-xTi2 increase with x, which is consistent 
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with Fe's smaller effective nuclear charge than Co. For each compound, the temperature 

dependences of the lattice constants a and c are similar. For Fe3Co3Ti2 and Fe5CoTi2, the 

thermal expansion appears to be linear in the range of 100 to 600 K, while for Fe6Ti2, the 

thermal expansion is linear only above 300 K, indicating that Fe6Ti2 may have a 

substantially higher Debye temperature. The linear thermal expansion coefficients between 

300 and 600 K are about 8 · 10-6/K in both the a and c directions (Table 3.1). These values 

are smaller than those for Co and Fe, 13 · 10-6/K and 11.8 · 10-6/K, respectively, but close 

to that of Ti, 8.6 · 10-6/K.[47]  
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Figure 3.2: Temperature dependence of crystallographic properties: (a) particle size 

calculated from the diffraction peak widths and (b) lattice constants. 
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3.3.2 Separation of Magnetic and Magnetic Contributions 

To extract the magnetic contribution, we first estimated the Curie temperature Tc 

using the temperature-dependent magnetometry during heating in a field of 1 kOe, as 

shown in Fig. 3.3(a). The Tc extracted using linear extrapolation is shown in Table 3.1. 

Therefore, the neutron spectra above 500 K contain only minimal magnetic contribution, 

as also shown in Fig. 3.3(b-d). 

To evaluate the nuclear contribution to the diffraction intensity, we have exploited 

that the temperature dependence of In comes from the Debye-Waller factor e–2W(T), so long 

as there is no structural transition at high temperature. Based on W(T) =  T/(4d2),[23] the 

diffraction intensity above 500 K yields -values of 2.5, 2.0, and 12.0 · 10-4 Å2/K for Fe6Ti2, 

Fe5CoTi2, and Fe3Co3Ti2, respectively. The nuclear contribution can then be obtained from 

In = In(T1) exp[–2W(T) + 2W(T1)] and subtracted, where T1 is a reference temperature.  

Fig. 3.3(a-c) shows the integrated intensities of the magnetic part for the (008) and 

(010) peaks. All peak intensities in Fig. 3.3(a-c) decrease with increasing temperature, as 

expected from the temperature dependence of the magnetization. In Fig. 3.3(b-d), the (008) 

intensities are much smaller than the (010) intensities. Magnetic neutron diffraction detects 

mainly the part of magnetic moment perpendicular to the neutron wave vector transfer 𝐾⃗⃗ , 

so that the less intense (008) diffraction suggests that the magnetic moment is nearly 

parallel to the c axis. 

From Chapter 2.3.2, the ratio between the magnetic contribution and the nuclear 

contribution is 
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𝐼𝑚

𝐼𝑛
=

(𝛾𝑟0𝑔)2|∑ [𝑓𝑖
′(𝐾⃗ )𝑒𝑖𝐾⃗ ∙𝑟𝑖⃗⃗ ]𝑖 |

2
𝑆2𝑄2(𝐾⃗ )

2|∑ [𝑓𝑖𝑒
𝑖𝐾⃗ ∙𝑟𝑖⃗⃗ ]𝑖 |

2                          (3.1) 

Where Q2(𝐾⃗⃗ ) = 1– [𝑆 𝐾⃗⃗ /(SK)]2 and S is the average spin per atom 

First, we analyze Q2(𝐾⃗⃗ ). Since 𝑒𝑖𝐾⃗⃗ ∙𝑟𝑖⃗⃗⃗  , and 𝑓𝑖
′(𝐾⃗⃗ ) depend on the atomic structure 

only, and one can calculate the product 𝑆2𝑄2(𝐾⃗⃗ ) from the magnetic contribution in Fig. 

3.3. Introducing the angle   between the magnetic moment and the 𝐾⃗⃗  vector, Q2(𝐾⃗⃗ ) = 

sin2𝜃. The angles between a certain vector and three orthogonal coordinates in space satisfy 

∑ 𝑠𝑖𝑛2𝜃𝑖𝑖=𝛼,𝛽,𝛾 = 2. Since the vector (010) is perpendicular to the vector (008) and the 

vectors within the basal plane are equivalent due to the crystal symmetry, one has 

2Q2[(010)] + Q2[(008)] = 2. Using this relation, we obtained Q2[(010)] and Q2[(008)] for 

all three compounds. Furthermore, we calculated the average angle 𝜃c between the 

magnetization and the c axis at 100 K, which is displayed in Fig. 3.4(a).  

With Q2(𝐾⃗⃗ ) being calculated, S2 in Eq. (3.1) is the only unknown variable. This 

procedure yields the respective spin values 0.81 ± 0.03 µB/magnetic atom, 0.64 ± 0.06 

µB/magnetic atom, and 0.61 ± 0.06 µB/magnetic atom for Fe6Ti2, Fe5CoTi2, and Fe3Co3Ti2 

at 100 K. The corresponding magnetic moments per unit cell are 29 ± 1 µB, 23 ± 2 µB, and 

22 ± 2 µB for Fe6Ti2, Fe5CoTi2, and Fe3Co3Ti2. These values are consistent with the 

saturation magnetizations previously[24] extracted from the magnetometry measurements 

at 10 K, Fig. 3.4(b). 
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Figure 3.3: Temperature dependence of magnetization: (a) magnetic measurements during 

heating in a field of 1 kOe and (b-d) magnetic signal from neutron scattering. 
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Figure 3.4: Dependence of magnetic moment on chemical composition x: (a) direction of 

the moment at 100 K (neutron experiment) and (b) magnitude of the moment at 10 K [24]. 

 

3.3.3 Micromagnetic Analysis 

Figure 3.4(a) shows that the average misalignment angle c increases with Co 

content. We explain this trend as a combined intrinsic and micromagnetic effect. 

Intrinsically, the substitution of Co for Fe creates a chemical disorder (site disorder), 

leading to a local anisotropy distribution. The corresponding random-anisotropy 

contribution will be shown in this subsection to enhance c. 

The present alloys crystallize in a hexagonal structure and therefore exhibit the 

magnetocrystalline anisotropy-energy density[25] 

 = K1 sin2 + K2 sin4 + K3 sin6 + K'3 sin6 cos     (3.2) 

Here K1, K2, and K3 are the 2nd-, 4th-, and 6th-order uniaxial anisotropy constants, and K3' 

describes the 6th-order in-plane anisotropy of the crystals. The lower-order in-plane 

anisotropies K1' and K2' are zero in hexagonal crystals. By definition, magnetocrystalline 



48 
 

 
 

anisotropies are macroscopic, that is, averaged over several interatomic distances. 

Additional terms may exist on an atomic scale, for example, due to chemical disorder; they 

average to zero macroscopically but affect the anisotropy constants in Eq. (3.2). 

 

Figure 3.5: Spin directions in polycrystalline Fe3+xCo3-xTi2: (a-b) intrinsic (atomic-scale) 

effects and (c) extrinsic (nanoscale) effects. The thick lines in (a-b) show the c-axis, 

whereas the gray circles symbolize the a-b-plane. Hexagons in (c) represent grains. 

Published DFT anisotropy calculations[24] support the coexistence of easy-axis and easy-

plane anisotropies (a-b). Spin structures (a) and (b) differ by the absence or presence of 

interatomic exchange, respectively; the physically realized case is (b). 

 

Fig. 3.5 compares the intrinsic (atomic-scale) and extrinsic (nanoscale) mecha-

nisms operative in Fe3+xCo3-xTi2. The important point is that Eq. (3.2) does not fix the local 

magnetization direction because anisotropy energies are typically much smaller than 

interatomic exchange. In the present case, the temperature equivalents of anisotropy and 

exchange energies are of the orders of 0.1 K and 500 K, respectively. Without exchange 
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coupling, the spin direction would be determined by the local environment and lie, for 

example, along the c-axis or in the a-b basal plane, as illustrated in Fig. 3.5(a). However, 

the strong interatomic exchange means that neighboring spins are almost parallel[49], as 

in Fig. 3.5(b). Inhomogeneous magnetization states become important on a nanoscale, 

especially near grain-boundaries separating grains of different c-axis orientations (c). 

The 6th-order anisotropy constants K3 and K3' tend to be much smaller than K1 and 

are normally neglected. K2 can also be neglected in many cases, so the only surviving term 

is K1 sin2. Depending on the sign of K1, the preferred magnetization direction is easy-axis 

( = 0, K1 > 0) or easy-plane ( = /2, K1 < 0). These two scenarios correspond to the left 

and right parts of Fig. 3.5(a), respectively. However, great care is necessary when K1 is 

accidentally zero due to competing anisotropy-energy contributions if the easy-axis and 

easy-plane contributions nearly cancel each other. Depending on the values of K1 and K2, 

the spin structure may then be of the easy-cone type, where the macroscopic spin direction 

forms an angle c with the c-axis[10,25,30]. Easy-cone magnetism leads to characteristic 

singularities in the hysteresis loop[30], but our previous magnetization measurements[20] 

do not show any sign of such singularities. We, therefore, neglect K2 in the following 

analysis. 

The average c-axis misalignment angle <>o between randomly oriented grains is 

57.3º, and the change in spin direction is confined to a boundary region of thickness , Fig. 

3.5. The misalignment angle decays approximately exponentially with the distance r from 

the interface and obeys (r) ~ exp(–r/o), where o = (C/K1)
1/2 and C is a function of 

exchange energy.[25] The average angular deviation from the grains' c-axis is obtained by 



50 
 

 
 

integration over r and considering that the grain's surface area is approximately equal to 

6/D. This procedure leads to  

<> = 
3 o

D
  <>o     (3.3) 

Taking  = o = 3 nm,[25] calculated from K1 and C, and D = 40 nm yields <> = 13º. This 

estimate is in the right ballpark, but at the lower end of the experimental results, so the 

mechanism outlined in this paragraph partly explains the experimental data. 

A substantially improved description is obtained by including the competition 

between atomic-scale easy-axis and easy-plane anisotropies. In an extreme scenario, K1 = 

0 yields  = ∞ and a strongly enhanced c. However,  is de facto limited by the grain size 

and by the nonzero residual coherent anisotropy <K1>, so that <(x)> does not diverge but 

reaches a finite maximum on Co addition.  

For simplicity, we assume that a fraction 1 – p of all Fe/Co atoms has an easy-axis 

anisotropy of energy density Kosin2 , and the remaining fraction p has easy-plane 

anisotropy, –Kpsin2. Note that Ko and Kp are both positive in this definition. The parameter 

p reflects the chemical composition and may lead to a zero net anisotropy <K1> at some 

value xc because the two anisotropy contributions have opposite signs. Straightforward 

anisotropy averaging yields 

<K1> = (1 – p) Ko – p Kp     (3.4a) 

and <K1
2> = (1 – p) Ko

2 + p Kp
2          (3.4b) 

Physically, atoms with easy-axis and easy-plane anisotropy are randomly 

distributed in each grain, which leads to partial anisotropy competition.  
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The anisotropy fluctuations are described by an energy E obeying 

E2 = ∫ <K1(𝑟 ) K1(𝑟′⃗⃗ )> d𝑟 d𝑟′⃗⃗         (3.5) 

where the integration is over one grain. Assuming that the anisotropies of neighboring 

atoms are uncorrelated, we can write 

<K1(𝑟 ) K1(𝑟′⃗⃗ )> = Vo (𝑟  – 𝑟′⃗⃗ ) <K1
2>    (3.6) 

where Vo is the crystal volume per Fe/Co atom. Inserting Eq. (3.6) into Eq. (3.5) and 

performing the integration yields 

E2 = Vo Vg <K1
2>             (3.7) 

Here Vg is the grain volume. The energy E can be written in terms of a net anisotropy Keff 

arising from the anisotropy fluctuations: E = Keff Vg. From random-anisotropy 

ferromagnetism, it is known that the micromagnetic behavior of such effective anisotropies 

is similar to that of <K1>. For example, Keff results in a decreasing of coercivity field in 

nanocrystalline soft magnets[33]. 

To determine E, we need to evaluate <K1
2>. Near xc, we write p = pc +  (x – xc), 

where the parameter  describes how the chemical changes create atomic-scale easy-plane 

anisotropies. Substitution of p into Eq. (3.4a-b) and taking into account that <K1(pc)> = 0 

yields 

<K1> = –  (x – xc) (Ko + Kp)       (3.8a) 

and 

<K1
2> = Ko Kp+ (x – xc) (Kp

2 – Ko
2)                        (3.8b) 
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At x=xc, <K1> vanishes but <K1
2> = Ko Kp, which is nonzero. 

 Combining Eqs. (3.8b) and (3.7) yields E2 = VoVg[Ko Kp+ (x – xc)( Kp
2 – Ko

2)] 

and  

Keff = √
𝑉𝑜

𝑉𝑔
[𝐾𝑜𝐾𝑝 + 𝛾(𝑥 − 𝑥𝑐)(𝐾𝑜

2 − 𝐾𝑝
2)]                           (3.9) 

The magnitudes of the involved atomic anisotropies are all comparable magnitude, 

so we can assume Ko = Kp = K1  1 MJ/m3 and obtain the estimated Keff = (Vo/Vg)
1/2 K1 for 

x=xc. Vo/Vg leads to a grain-size-dependent reduction of the effective anisotropy, similar to 

the situation in other random-anisotropy magnets. Via eff = (C/Keff)
1/2, it yields an 

enhancement of the thickness eff of the grain-boundary region and, according to Eq. (3.3), 

an increase in the misalignment angle <>. 

For a quantitative estimate, we take into account that Vo/Vg = (do/D)3, where do  

0.29 nm is the distance between neighboring Fe/Co atoms. This yields 

eff = (D/do)
3/4 o        (3.10) 

Using D = 40 nm and Eq. (3.3) yields an enhancement of <> by a factor of 40, much more 

than required to bridge the disagreement between Eq. (3.3) and the experimental results. 

The reason for the overestimation is the inaccurate assumption of a full-fledged 

competition between atomic easy-axis and easy-plane anisotropies, <K1> = 0. 

The power-law established by Eq. (3.10), eff ~ D3/4 is remarkable because it means 

that the thickness of the magnetic boundary region ( = eff) increases nearly linearly with 

grain size. The physical expectation is that the atomic effects, such as competing for local 

anisotropies, vanish in the macroscopic limit. In fact, Eq. (3.10) predicts the average 
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misalignment angle <> to decrease with grain size D, but only very weakly, scaling as 

eff/D ~ 1/D1/4. For example, increasing the grain size from 40 nm to 1000 nm reduces <> 

by a factor of only 2.2. 

 

3.4 Summary 

In summary, we have used neutron powder diffraction to investigate the magnetic 

structure and magnetic anisotropy of polycrystalline Fe-Co-Ti alloys. The most interesting 

finding in this work is the non-zero misalignment angle 𝜃c, which indicates a non-zero 

projection of the magnetic moments onto both the c axis and basal plane and the 

dependence of 𝜃c on the Co content. We explain these findings as a type of random-

anisotropy effect caused by Co-Fe chemical disorder that translates into a micromagnetic 

spin canting. The added Co leads to a K1 distribution, that is, to an atomic-scale coexistence 

of easy-axis and easy-plane anisotropies, and this distribution enhances the width 𝛿 in Fig. 

3.5 and, therefore the angle 𝜃c. An interesting feature is the weak power-law dependence 

of  on D, which explains why the atomic-scale chemical-disorder effect is visible on a 

scale of about 40 nm. 
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Chapter Ⅳ: Effect of Boron Doping on Magnetic Anisotropy in Fe2Ni 

Alloy Grown by Spin Melting Method 

 

4.1 Introduction 

Magnetic anisotropy comes from structure anisotropy, and one example is L10-

FeNi. Fe and Ni are both soft magnetic while Fe has a body center cubic phase and Ni 

has a face center cubic face. Different ratios of iron and nickel results in different crystal 

structure and magnetic structure. One of the most famous compounds of Fe-Ni is called 

permalloy, with a Fe-Ni ratio of 20:80. Permalloy has a very low magnetic anisotropy 

energy which means it is a soft magnetic material. Fe70Ni30 is called invar alloys since the 

thermal expansion can be very close to zero over several degrees. L10-FeNi is a well-

ordered Fe50Ni50 intermetallic compound with a magnetic anisotropy as high as 1 

MJ/m3.[1] The crystal structure of L10-FeNi is shown in Fig. 4.1,[2] with a=b= 3.57Å 

and c=3.58Å. As a comparison, the magnetic anisotropy of Fe-Ni solid solution is usually 

lower than 50 kJ/m3
 (5×105 erg/cm3).[3] However, L10-FeNi requires millions of years to 

anneal, and it is only found in meteorites.  As a result, a well-ordered FeNi alloy with an 

appropriate annealing time might be a good candidate for hard magnets. 

 

Figure 4.1: Crystal structure of L10-FeNi. [2] 
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Boron’s unique chemical properties and its reactions with metals have yielded a 

large class of metal borides with compositions ranging from the most boron-rich YB66 to 

the most metal-rich Nd2Fe14B (the best permanent magnet to date). The latter compound 

is probably the most famous metal boride (neodymium magnet). Moreover, boron-rich 

material displays high stability toward radiation. For example, YB66 is used as 

monochromators for soft synchrotron radiation,[4] and LaB6 is used as a thermionic 

emitter.[5] In many crystal structures of metal-rich borides, the boron atoms are located 

in trigonal prisms built by metal atoms, but sometimes it is octahedral (boride 

perovskites[6]) or square antiprismatic (CuAl2-type borides[7]). Due to the small ionic 

radius of boron, it is always used in doping to refine the grain size of various magnetic 

materials, for example, Co88Hf[8] and Ni50Mn35In15[9]. The ability of boron to form 

strong chemical bonds with itself and with metallic elements has enabled us to construct 

new structures with desirable properties.[10] Doping boron in alloys does not always 

change the crystal structure of the material. However, boron plays a role in forming fine 

structures like dense lamella structures.[11] As a result, doping boron may play a positive 

role in forming a crystal structure different from the original one, which increases the 

magnetic anisotropy of the material.   

In this work, we focus on the crystal structure and magnetic anisotropy of the 

Fe4Ni2B compound. Mixing Fe and Ni result in either a face center cubic or body center 

cubic structure and the transition ratio is around Fe: Ni=2:1. So Fe4Ni2 has two possible 

crustal structures (face center cubic and body center cubic). However, Fe4Ni2 alloy has a 

low magnetic anisotropy of around 500J/m3 (5×103 ergs/cm3),[3] and the coercivity can 

be as low as 80 A/m (1 Oe).[12] By adding boron into Fe2Ni, theoretical prediction 
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shows that Fe4Ni2B has a tetragonal structure with a=b= 3.611Å and c=11.128Å. The 

predicted crystal structure of Fe4Ni2B is shown in Fig. 4.2, which can be treated as a 

combination of three distorted face center cubic. We found that adding boron increases 

the magnetic anisotropy energy to more than 6 kJ/m3 (6×104 ergs/cm3), which is 10 times 

larger than Fe2Ni alloy. This dramatic difference in magnetic anisotropy may come from 

the difference of crystal structure induced by boron bonds. 

 

Figure 4.2: Theoretical crystal structure of Fe4Ni2B. 

 

4.2 Experiment Details 

Two batches of Fe-Ni-B samples with different proportions of boron have been 

used to study the effect of B on crystal structure and magnetism. The nominal molar ratio 

of Fe, Ni, and B is 4:2:1 and 4:2:1.3, corresponding to a weight ratio of 111.69: 58.69: 

10.81 and 111.69: 58.69: 14.05, respectively. The polycrystalline samples are first 
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produced by arc melting. The samples are put in an arc melting furnace ABJ-338 and 

melted into a bulk alloy via an electric arc struck between a tungsten electrode and metals 

placed in a copper holder. In our experiment, the chamber is backfilled with Argon to 

avoid oxidation. Then, the melted Fe-Ni-B alloy is put into a melt-spinning instrument 

(Edmund Bühler GmbH melt spinner SC) with an argon environment. The melt spinning 

instrument drops melted liquid alloys onto a rotating wheel, which is cooled internally. In 

our experiment, a wheel speed of 57.5 m/s was used to produce rapidly quenched ribbons 

of approximate width of 2 mm and thickness of 40 μm. The produced alloy strips are 

annealed in MTI 1700C Compact Muffle Furnace in a vacuum environment with a 

temperature range between 570 K (300 °C) and 870 K (600 °C) . X-ray diffraction is 

carried out with PANalytical Empyrean Diffractometer using Cu Kα radiation of a 

wavelength of 1.5406 Å. A Quantum Design MPMS superconducting quantum-

interference device (SQUID) was used to measure the magnetic properties. 

 

4.3 Crystal Structure of Fe-Ni-B Alloy 

Sample XPS including Boron (at.%) Component with XPS data 

Fe4Ni2B nominal Fe: 57.1 

Ni: 28.7 

B: 14.2 

Fe4Ni2B 

Fe4Ni2B1.05 Fe: 59.3 

Ni: 31.1 

B: 9.6 

Fe4Ni2.09B0.65 

Fe4Ni2B1.2 Fe: 51.7 

Ni: 26.3 

B: 22.0 

Fe4Ni2.02B1.71 

Table 4.1: Composition analysis for Fe4Ni2B samples 
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X-ray Photoelectron Spectroscopy (XPS) is carried out to ensure the successful 

doping of boron. Table 4.1 shows the composition analysis for two sets of Fe4Ni2Bx. In 

both sets, boron doping is confirmed, and the B proportion is correlated to the nominal 

values. We can control the ratio of iron and nickel well, but the portion of boron is hard 

to control due to the extreme light weight of the boron element. However, in both cases, 

there is no doubt about the existence of boron. As a result, in this chapter, we will focus 

on the effect of boron instead of different compositions of boron in alloys. 
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Figure 4.3: X-ray diffraction pattern of (a) Fe4Ni2B1.3 and (b) Fe4Ni2B at different 

annealing temperatures. 
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Figure 4.4: Enlarged graphs of the X-ray diffraction pattern from Fig. 4.3 around the 

highest peak at 2=44° are shown in (a) and (b) for Fe4Ni2B1.3 and Fe4Ni2B, respectively. 
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The X-ray diffraction pattern is displayed in Fig. 4.3(a) and (b), with most peaks 

indexed. In addition to the as-grown samples, other samples have been annealed at a 

temperature range from 570 K (300 °C) to 870 K (600 °C).  

The peaks with the highest intensity always appear around 2 is equal to 44°, as 

displayed in two enlarged graphs in Fig. 4.4(a) and (b). We clearly found one body 

center cubic structure (BCC) and two face center cubic structures (FCC-1 and FCC-2) 

separated. The D-spacing of the material can be calculated by Bragg's law, 2dsin=nλ, 

where  is the incident angle of the x-ray, λ is the wavelength of the x-ray, and d is the 

distance between planes. The crystal structure and cell parameter are determined by 

peaks in a broad range, as shown in Fig. 4.3(a) and (b). The lattice constant of BCC can 

be calculated with peaks (110) (002) and (112), while the Lattice constant of FCC can be 

calculated with peaks (111) (002) (022) (113) and (222). Tables 4.2 to 4.7 show the peak 

position and calculated cell parameter for three structures, the average cell parameters for 

FCC-1, FCC-2 and BCC are 3.592 Å, 3.562 Å, and 2.865, respectively. As a comparison, 

the lattice constant for Fe and Ni is 2.855 Å and 3.499 Å, respectively.[13] The lattice 

constant for a face center cubic Fe2Ni is 3.58Å.[14] Table 4.8 compares L10-FeNi, FeNi 

alloy, Fe4Ni2B, and Ni.  The two FCC structures in Fe4Ni2B1.3 can be identified clearly in 

Fig. 4.4(a), especially for samples annealing at 670 K (400 °C) and 770 K (500 °C), and 

BCC structure only appears in 670 K (400 °C) annealing sample. However, two FCC 

structures for Fe4Ni2B is similar, and BCC structure appear in 670 K (400 °C),770 K 

(500 °C) and 870 K (600 °C) annealed samples. This may suggest that boron enhances 

the preference of Fe-Ni alloy to FCC structure. And more boron in Fe4Ni2B1.3 results in a 



68 
 

 
 

smaller lattice constant than that of the FCC-2 structure, which is consistent with 

previous study.[15] 

Annealing temperature Peak 

(111) 

Peak 

(002) 

Peak 

(022) 

Peak 

(113) 

Peak 

(222) 

770 K 

(500 °C) 

Peak position 2 (°) 43.58 50.78 74.66 90.65 95.93 

Lattice constant (Å) 3.594 3.593 3.592 3.593 3.593 

870 K 

(600 °C) 

Peak position 2 (°) 43.52 50.75 74.66 90.65 95.90 

Lattice constant (Å) 3.598 3.595 3.593 3.593 3.594 

Table 4.2: Peak position (2) and corresponding lattice constant of FCC-1 structure in 

Fe4Ni2B1.3. 

 

 

Annealing temperature Peak 

(111) 

Peak 

(002) 

Peak 

(022) 

Peak 

(113) 

Peak 

(222) 

770 K 

(500 °C) 

Peak position 2 (°) 43.68 50.81 74.78 90.80 96.02 

Lattice constant (Å) 3.586 3.591 3.588 3.588 3.590 

870 K 

(600 °C) 

Peak position 2 (°) 43.57 50.81 74.65 90.77 96.04 

Lattice constant (Å) 3.595 3.591 3.593 3.589 3.590 

Table 4.3: Peak position (2) and corresponding lattice constant of FCC-1 structure in 

Fe4Ni2B. 
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Annealing temperature Peak 

(111) 

Peak 

(002) 

Peak 

(022) 

Peak 

(113) 

Peak 

(222) 

570 K 

(300 °C) 

Peak position 2 (°) 44.12 51.40 75.80 92.05 97.21 

Lattice constant (Å) 3.552 3.553 3.547 3.550 3.557 

620 K 

(350 °C) 

Peak position 2 (°) 43.92 51.24 75.63 92.42 97.65 

Lattice constant (Å) 3.568 3.563 3.554 3.539 3.545 

670 K 

(400 °C) 

Peak position 2 (°) 44.24 51.31 75.82 92.13 97.54 

Lattice constant (Å) 3.553 3.558 3.546 3.548 3.548 

770 K 

(500 °C) 

Peak position 2 (°) 44.05 51.12 75.55 92.27 97.66 

Lattice constant (Å) 3.558 3.570 3.557 3.544 3.544 

Table 4.4: Peak position (2) and corresponding lattice constant of FCC-2 structure in 

Fe4Ni2B1.3. 

 

Annealing temperature Peak 

(111) 

Peak 

(002) 

Peak 

(022) 

Peak 

(113) 

Peak 

(222) 

570 K 

(300 °C) 

Peak position 2 (°) 43.67 51.05 75.07 91.25 97.13 

Lattice constant (Å) 3.587 3.575 3.576 3.574 3.559 

620 K 

(350 °C) 

Peak position 2 (°) 43.60 51.10 74.95 91.22 97.08 

Lattice constant (Å) 3.593 3.572 3.581 3.575 3.561 

670 K 

(400 °C) 

Peak position 2 (°) 43.62 50.95 75.16 91.19 97.26 

Lattice constant (Å) 3.591 3.581 3.572 3.576 3.555 

Table 4.5: Peak position (2) and corresponding lattice constant of FCC-2 structure in 

Fe4Ni2B. 
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Annealing temperature Peak (110) Peak (002) Peak (112) 

670 K 

(400 °C) 

Peak position 2 (°) 44.69 65.07 82.376 

Lattice constant (Å) 2.865 2.865 2.865 

Table 4.6: Peak position (2) and corresponding lattice constant of BCC structure in 

Fe4Ni2B1.3. 

 

Annealing temperature Peak (110) Peak (002) Peak (112) 

670 K 

(400 °C) 

Peak position 2 (°) 44.64 65.07 82.43 

Lattice constant (Å) 2.868 2.865 2.864 

770 K 

(500 °C) 

Peak position 2 (°) 44.66 65.12 82.35 

Lattice constant (Å) 2.867 2.863 2.866 

Table 4.7: Peak position (2) and corresponding lattice constant of BCC structure in 

Fe4Ni2B. 

 

 Lattice constant (Å) Anisotropy constant (J/m3) 

L10-FeNi 3.57 0.5-1×106 

Fe2Ni alloy 3.58 500 

Fe4Ni2B FCC1: 3.592 6000-12000 

FCC2: 3.562 

Ni 3.499 -5000 

Table 4.8: Lattice constant and magnetic anisotropy constant of L10-FeNi, FeNi alloy, 

Fe4Ni2B, and Ni. All of them are face center cubic structures. XRD shows Fe4Ni2B has 

two face center cubic structures. 
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Figure 4.5: Composition ratio of three structures for different annealing temperatures. 

 

Fig. 4.5 shows the proportion of different structures for samples of different 

annealing conditions. The Data is determined by the area of the highest peak around 

2=44°. For the as-grown sample and the samples of low annealing temperature (570 K 

/300 °C and 620 K/350 °C ), there is only the FCC-2 structure with a cell parameter of 

around 3.56 Å. As the annealing temperature increases, the BCC and the FCC-1 

structures start to appear at the cost of the FCC-2 structure. On the other hand, both the 

FCC-2 and the BCC structures appear to be intermediate structures because, for a high 

annealing temperature (870 K/600 °C), only the FCC-1 structure is left. For the 

Fe4Ni2B1.3 sample, the range of annealing temperature for which the BCC structure 

occurs is very narrow such that there is no obvious coexistence of the BCC and the FCC-

1 structures. Since the two batches of samples only differ in boron composition, a higher 

boron concentration destabilizes the BCC structure and promotes the FCC-1 structure. 
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4.4 Magnetic Behavior of Fe-Ni-B Alloy 

 

Figure 4.6: SQUID data for (a) Fe4Ni2B1.3 and (b) Fe4Ni2B for different temperatures. 

 

Fig. 4.6 is the magnetization-field relation measured using SQUID for Fe4Ni2B1.3 

and Fe4Ni2B at room temperature in the field range -1000 Oe to 1000 Oe. No subtraction 

of the background signal is necessary since the signal from samples are dominant (> 

99%). The coercivity field is about 50 Oe, while saturation magnetization is around  

1×10-4 A·m2/g (0.1 emu/mg), in comparison, saturation magnetization for Fe and Ni is 

2.2×10-4 A·m2/g (0.22 emu/g) and 5.6×10-5 A·m2/g (0.056 emu/g), respectively[16].  
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Figure 4.7: Anisotropy constant of Fe4Ni2B1.3 and Fe4Ni2B compared to Fe4Ni2 

 

We use the law of approach to saturation method (LAS) to estimate the 

magnetocrystalline anisotropy constant K1.[17,18] The experimental magnetization data 

from Fig. 4.6 in the high field range (higher than 500Oe) were fitted using the expression 

M=Ms(1-A/H2)+χH, where χ is the high-field susceptibility, and A is a parameter related 

to K1 and the saturation magnetization Ms through 𝐴 =
4𝐾1

2

5𝑀𝑠
2. The anisotropy constant is 

compared with that of Fe4Ni2 (also written as Fe2Ni or Fe0.67Ni0.33). As Fig. 4.7 shows, 

we see a clear increase in the anisotropy constant when adding boron into the iron-nickel 

alloy.  

Boron should play an important role in Fe4Ni2B. Although we cannot resolve the 

exact crystal structure of Fe4Ni2B, previous work suggested that the strong covalent 
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metal−boron bonds in metal borides change the crystal structure.[10,11] The detailed 

structure difference between Fe2Ni and Fe4Ni2B shown in Table 4.8 may include a 

change in structural anisotropy. This structural anisotropy is expected to be the reason 

that the magnetic anisotropy constant increases from 500J/m3 (5×103 ergs/cm3) to 

6000J/m3 (6×104 ergs/cm3).  

 

4.5 Summary 

To increase the magnetic anisotropy of Fe2Ni alloy, we studied the effect of boron 

in FeNi alloy. We dope boron into Fe2Ni with arc melting and melt spinning. Structure 

analysis with X-ray diffraction shows face center cubic or body center cubic structure in 

Fe4Ni2B alloy according to different annealing temperatures. Magnetic analysis with 

SQUID shows that the presence of boron dramatically increases the anisotropy of 

Fe4Ni2B by changing the lattice constant due to the strong metal-boron bonds. These 

results indicate that boron plays an important role in increasing the magnetic anisotropy 

of metal alloy, and Fe4Ni2B is a good candidate for rare-earth-free permanent magnets.  
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Chapter Ⅴ: Magnetic Moments and Spin Structure in Single-Phase B20 

Co1+xSi1-x (x=0.043) 

 

5.1 Introduction 

The large atomic radius of metalloids, i.e., Si and Ge suppresses the electron 

transfer between transition metal (M) atoms and enlarges both the local density of states 

and spin-orbit coupling due to hybridization between M (Mn, Fe, Co) and Si/Ge states[1], 

typically leading to B20 crystal structures.[2–8] As illustrated in Fig. 5.1(a), the B20 

structure can be viewed as a rock-salt structure with a dimerization-type distortion 

involving displacement of M and Si/Ge atoms along the [111] direction[2], resulting in a 

crystal structure of non-centrosymmetric P213 space group with chirality, which induces 

the Dzyaloshinskii-Moriya (DM) exchange interaction,[9,10] favoring helical spin 

structures.  The chiral structure of B20 materials also leads to a topological electronic 

structure with chiral fermions that produce transport properties of topological 

features.[11–15] In the helical phase, the spin directions rotate while propagating along 

the symmetry axis, resulting in short-range ferromagnetic and long-range 

antiferromagnetic alignments.[3–5,16] Helical spin structures with multiple propagation 

directions lead to the skyrmions spin texture.[17]   
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Figure 5.1:(a) Crystal structure of B20 Co-Si. Co atoms are indexed for describing spin 

structures. (b) Powder neutron diffraction pattern of Co-Si at 320 K and the fitting using 

the B20 structure. 

 

The magnetic properties of B20 materials are sensitive to atomic species of the M 

site. As one of the most studied B20 materials,[2,16–18] MnSi exhibits a helical spin 

structure propagating along the [111] direction with a period of around 19 nm;[17] the 

magnetic moment is 0.4 µB/Mn atom[2] while the Curie temperature Tc is only 29.5 

K.[17] In contrast, CoSi and FeSi are diamagnetic and paramagnetic, respectively.[4] 

Interestingly, solid solutions of CoSi and FeSi, i.e.,  FexCo1-xSi, have helical spin 

structures for 0.2 < x < 0.95,[3,4,19] with maximum magnetic ordering temperature about 

59 K [4], maximum moment 0.17 µB/(Co/Fe), and helical period between 30 nm and 230 

nm respectively[3]. CoxMn1-xSi and FexMn1-xSi are helimagnetic for x < 0.08 and x < 0.19 

respectively.[3,6] 
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Replacing Si with Ge in MnSi leads to MnGe, another helimagnetic material with 

a B20 structure, a much higher ordering temperature (170 K), a much higher magnetic 

moment of 1.5 µB/Mn, and a much smaller helical period (3 - 6 nm related to 

temperature).[5,20]  FeGe is a helimagnetic material with a magnetic moment of 1.0 

µB/Fe atom and ordering temperature around 278 K, and a period of approximately 70 

nm;[7,21–23] CoxFe1-xGe is also helimagnetic for x ≤ 0.8, whose helical period strongly 

depends on x.[8,24] The formation of a helical phase in Fe-Ge is not restricted to B20 

structures but also occurs with similar periodicity in amorphous materials with short-

range order.[25]  

Besides the atomic species on the M site and that on the Si/Ge site, relative 

stoichiometry between the M and Si/Ge sites also has a significant impact on the 

magnetic properties. Replacing a small portion of Si with Co (Co1+xSi1-x) induces 

magnetic ordering above a critical excess Co content of xc = 0.028.[26] According to 

density-functional-theory (DFT) calculations, the excess Co atoms exhibit a large 

magnetic moment (1.7 B/Co) and also spin polarizing the surrounding Co atoms, which 

subsequently cause magnetic ordering in Co1+xSi1-x through a quantum phase transition 

above xc. The magnetometry measurements show magnetic transition temperatures of 

about 275 K and 328 K for Co1.029Si0.971  and Co1.043Si0.957, respectively.[26] Co1.043Si0.957 

reveals further helimagnetic order and skyrmion lattices with a helical period of 17 nm at 

300 K.[26]  The small skyrmion dimension at high temperatures (λ ∼ 17 nm) makes 

Co1.043Si0.957 an intriguing system from the viewpoint of understanding its spin structures 

and exploring skyrmions for practical room-temperature applications.  
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On the other hand, the question remains for the average Co magnetic moment in 

Co1+xSi1-x. For Co1.043Si0.957, the theory predicts a moment of 0.18 µB/Co, similar to that 

in FexCo1-xSi.[3] In contrast, magnetometry measurements show a magnetization of 0.11 

µB/Co at 70 kOe and 2 K, which still increases with the field.[26] The slow saturation 

suggests a robust conical state related to the small helical periodicity[27] in Co1.043Si0.957.  

In this work, we report the magnetism and spin structure in single-phase B20 

Co1.043Si0.957 (here referred to as Co-Si) using neutron powder diffraction (NPD) and x-

ray magnetic circular dichroism (XMCD) spectroscopy. NPD allows for probing both the 

spin structure and the magnetic moment once the magnetic and nuclear contributions are 

separated, and the spin structure is taken into account. XMCD spectroscopy with total 

electron yield quantifies the normal moments near the surface (2-5 nm)[28] averaged 

over 100 µm in the lateral direction. The measured moments, (0.3 ± 0.1) µB/Co at 0 kOe 

(NPD) and (0.18 - 0.31) µB/Co at 3 kOe (XMCD), are both substantially larger than the 

high-field magnetometry value, confirming the emergence of high-field conical states in 

Co-Si. 

 

5.2 Experiment Details 

The Co1.043Si0.957 ribbons with an approximate width of 2 mm and thickness of 40 

μm were synthesized via melt-spinning.[26] For this, high-purity Co and Si with 

appropriate amounts were melted using a conventional arc-melting process to prepare the 

Co1.043Si0.957 alloy. The arc-melted alloy was then re-melted to a molten state in a quartz 

tube and subsequently ejected onto the surface of a water-cooled copper wheel rotating 
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with a speed of 15 m/s to form the ribbons. The cooling rate is of order 106 Ks−1. Our 

earlier study shows that the non-equilibrium rapid-quenching process creates Co1+xSi1-x 

alloys with a maximum Co solubility of x = 0.043. The ribbons were mechanically 

grinded into powders suitable for neutron powder diffraction (NPD) measurements. The 

composition of Co1+xSi1-x (x=0.043) was measured by energy dispersive x-ray 

spectroscopy (EDS). Rietveld refinement of XRD patterns and a linear increase of lattice 

constant on increasing Co content confirm that the excess Co atoms replace Si, and our 

alloy is a substitutional alloy of the solid-solution type.[26] Temperature-dependent high-

resolution NPD measurements were carried out without an external magnetic field on the 

time-of-flight (TOF) powder diffractometer, POWGEN. POWGEN is a third-generation 

powder diffractometer and has the highest resolution to probe large unit cells in the 

powder suite at the Spallation Neutron Source Oak Ridge National Laboratory.  The data 

were collected with neutrons with a central wavelength of 2.665 Å. A cryofurnace was 

used as the sample environment to cover the temperature region between 20 K and 360 

K. The sample mass was 3.53 g. The neutron diffraction patterns were analyzed using the 

Rietveld method, and the structure refinement was carried out using the FullProf 

program.[29] X-ray absorption spectroscopy (XAS) and x-ray magnetic circular 

dichroism (XMCD) spectroscopy were performed by detecting the total electron yield at 

beamline 4.0.2 at the Advanced Light Source, Berkeley, CA, which performs high 

resolution spectroscopy using circularly and linearly polarized X-rays. For these 

measurements, the ribbon sample was thinned into a thin film with a thickness ≈ 100 nm 

using an ion-milling process at the Molecular Foundry, Berkeley, CA. 
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5.3 Spin Structure and Magnetic Moment from NPD 

5.3.1 Crystal Structure 

The powder neutron diffraction pattern of Co1.043Si0.957 at 320 K is displayed in 

Fig. 5.1(b) as a function of the spacing between diffraction planes d (called d-spacing). 

Taking advantage of the substantial contrast of the neutron scattering length of Co (2.49 

fm) and Si (4.15 fm), the experimental spectrum can be fit using the B20 structure and 

the Co1.043Si0.957 composition with a random distribution of Co on Si sites by varying the 

lattice constants and atomic positions using the software FullProf.[29] All peaks are 

identified with the Miller indices (h, k, l), as marked in Fig. 5.1(b), except for the two 

peaks from the aluminum container. The diffraction peaks shift toward a larger d 

direction with increasing temperature, indicating thermal expansion [Figs. 5.2(a-c)]. The 

lattice constant is extracted using structural refinement and displayed in Fig. 5.2(d) as a 

function of temperature. Above 200 K, the thermal expansion is essentially linear with a 

coefficient of approximately 1.1×10-5/K. 
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Figure 5.2: Neutron diffraction patterns at various temperatures for (a) (004), (b) (123), 

and (c) (012) peaks. (d) Temperature dependence of the lattice constants a. 

 

5.3.2 Analysis of NPD Peak Broadening 

Peak width is a parameter independent of peak intensity and position. In powder 

diffraction, peak width is determined by the size of the crystallites. Therefore, diffraction 

peak width is not expected to change with temperature as long as the temperature is not 

high enough to cause the change in crystallite size. 
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On the other hand, as the temperature changes, NPD peak width broadening has 

been observed for Co1.043Si0.957 studied in this work. As shown in Fig. 5.3(a), after 

shifting and renormalization, the two (123) peak profiles measured at 20 and 320 K are 

plotted together as an example. A broadening of the 320 K peak compared to the 20 K peak 

is visible. The broadening is described using a factor called peak width ratio (PWR) using 

the 20 K peak profile as a reference. Essentially, the horizontal coordinate of the 320 K 

peak is scaled by the peak width ratio, which is varied to match the 20 K peak profile. The 

extracted peak width ratio is plotted in Fig. 5.3(b).  

Various processes can cause peak broadening. One possibility is the structural 

transition, e.g., from a cubic structure to a tetragonal structure. In this case, the single 

diffraction peak in the cubic structure may split in the tetragonal structure. When the 

splitting is too small to resolve, it manifests as a peak broadening. In this case, the relative 

splitting can be estimated from the broadening. Assuming the high-symmetry axis is c, Fig. 

5.3(b) shows the calculated expansion of the c axis based on the lattice constants of 

Co1.043Si0.957, which is on the order of 10−3Å; this value is too small to be meaningful. 

Another possibility is that the diffraction peak consists of a main peak and hidden 

satellite peaks. In this case, the broadening suggests shifting of the satellite peaks. 
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Figure 5.3: (a) peaks (123) at 20 K and 320 K which show a difference in peak width. (b) 

peak width ratio and possible expansion on the c axis. Due to thermal expansion, there is a 

slightly difference in peak position with the same peak at different temperature, “after 

shifting” in (a) means we move the peak at 20 K along x axis to be comparable to the same 

peak at 320 K. 

 

5.3.3 Separation of Magnetic and Nuclear Contributions of the NPD 

In Chapter 2.3, we separate the magnetic and nuclear contributions according to 

neutron powder diffraction data. 

For magnetic materials, the neutron powder diffraction with an unpolarized beam 

contains nuclear (In) and magnetic (Im) contributions, i.e., the total intensity 𝐼(𝑇, 𝑘⃗ ) =

𝐼𝑛(𝑇, 𝑘⃗ ) + 𝐼𝑚(𝑇, 𝑘⃗ ), where T is temperature and 𝑘⃗  is the wave-vector transfer, which is 

along the direction normal to the diffraction planes that can be expressed in reciprocal 

space vectors[30]. Notice that the experimental data in Fig. 5.1(b) and Fig. 5.2(a-c) 

corresponds to 𝐼(𝑇, 𝑘⃗ ) summed over 𝑘⃗  of different direction but the same magnitude 
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|𝑘⃗ | =
2𝜋

𝑑
, or ∑ 𝐼(𝑇, 𝑘⃗ )

|𝑘⃗ |=
2𝜋

𝑑

. Typically, the nuclear contribution decreases gradually with 

temperature due to the fluctuation of atomic positions at high temperature. The magnetic 

contribution, on the other hand, is expected to vanish at the magnetic ordering 

temperature. Our observations in Figs. 5.2(a) to (c) reveal a rapidly decreasing 

diffraction intensity at low temperature which becomes nearly constant at around 320 K, 

consistent with the magnetic transition occurring at around 320 K.[26] 

The nuclear contribution In(T) can be predicted if the Debye-Waller factor and In 

are known at a certain temperature since Fn is typically temperature independent as long 

as the structural symmetry is preserved. Lacking magnetic order at 320 K [26], the 

magnetic diffraction intensity is expected to be minimal. The function W(T,d) can be 

written as W(T,d) = βT/(4d2), which represents the effect of thermal fluctuation of atomic 

positions.[31] One can fit the peak intensity as a function of d at 320 K using the linear 

relation between ln(In)/T and 1/(4d2), yielding β = 6×10-4 Å2/T. The nuclear term is 

obtained as 𝐼𝑛(𝑇, 𝑘⃗ ) = 𝐼𝑛(𝑇1, 𝑘⃗ )𝑒
−2β(𝑇−𝑇1)/𝑑

2
 with 𝑇1 = 320 K. The magnetic 

contribution Im(T) is then extracted by subtracting the nuclear contribution, 𝐼𝑚(𝑇, 𝑘⃗ ) =

𝐼(𝑇, 𝑘⃗ ) − 𝐼𝑛(𝑇, 𝑘⃗ ). Fig. 5.4(a) displays the magnetic contribution after removal of the 

Debye-Waller factor and the 𝐵(𝐾⃗⃗ ) , i.e., ∑
𝐼𝑚(𝑇,𝑘⃗ )

𝐵(𝐾⃗⃗ )𝑒−2𝑊(𝑇,𝑑)|𝑘⃗ |=
2𝜋

𝑑

, where 𝐵(𝐾⃗⃗ ) is the 

multiplicity (number of possible 𝑘⃗  of the same |𝑘⃗ |) of a diffraction peak at certain d. 

Overall, the magnetic contribution decreases with temperature and vanishes at about 320 

K, while the magnitude varies significantly between diffraction peaks of different 𝑘⃗  (or 

d).  
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Figure 5.4: Experimental magnetic contribution as a function of temperature obtained by 

removing the nuclear contribution, multiplicity, and the Debye-Waller factor (see text) 

from the measured intensity (peak area). 
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Figure 5.5: Experiment value of magnetic contribution as a function of d calculated by 

summing the data in Fig. 5.4 over temperature. Also plotted are the best fit of the theoretical 

magnetic contribution 𝐴𝐹𝑚
2(𝑘⃗ ) to the experimental values by varying the factor A for 

different spin structures. Dashed lines are guidelines for eyes. The “error bars” of the 

theoretical contributions correspond to the variation when the spins are along different 

directions. 
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To highlight the dependence of the magnetic contribution on d, data in Fig. 5.4 

were summed over T and scaled with the peak multiplicity, i.e., ∑  
𝐼𝑚(𝑇,𝑘⃗ )

𝐵(𝐾⃗⃗ )𝑒−2𝑊(𝑇,𝑑)|𝑘⃗ |=
2𝜋

𝑑
,𝑇

 

(Fig. 5.5).This dependence of the magnetic contribution on d is the key to analyzing the 

underlying spin structure. 

With Chapter 2.3.3, we can calculate the magnetic contribution of neutron powder 

diffraction, the magnetic contribution is related to the spin structure.  

𝐹𝑚
2(𝑘⃗ ) =

1

2
(𝛾𝑟0𝑔)2 |∑𝑞 (𝑘⃗ , 𝑟 )𝑓′(𝑘⃗ ,𝑟 ) exp(𝑖𝑘⃗ ⋅𝑟 )

𝑟 

|

2

                        (5.1) 

with 

𝑞 (𝑘⃗ , 𝑟 ) ≡ 𝑠 (𝑟 ) − 𝑘̂[𝑘̂ ⋅ 𝑠 (𝑟 )].                                                 (5.2) 

A helical structure with a propagation vector 𝑘⃗ 𝑠 , can be considered by writing 

𝑠 (𝑟 ) = 𝑠 0(𝑢⃗ )𝑒
−𝑖𝑘⃗ 𝑠⋅𝑅⃗  and 𝑞 (𝑘⃗ , 𝑟 ) = 𝑞 0(𝑘⃗ , 𝑢⃗ )𝑒

−𝑖𝑘⃗ 𝑠⋅𝑅⃗ , yielding  

 ∑ 𝑞 (𝑘⃗ , 𝑟 )𝑓′(𝑘⃗ , 𝑟 )𝑒𝑖𝑘⃗ ⋅𝑟 
𝑟 = ∑ 𝑞 0(𝑘⃗ , 𝑢⃗ )𝑓′(𝑘⃗ , 𝑢⃗ )𝑒

𝑖𝑘⃗ ⋅𝑢⃗⃗ 
𝑢⃗⃗ ∑ 𝑒𝑖(𝑘⃗ 𝑠+𝑘⃗ )⋅𝑅⃗ 

𝑅⃗                    (5.3) 

As shown in Fig. 5.1(a), there are 4 Co sites in the B20 unit cell. While the site Co1 

is on the [111] axis, the other three sites, Co2, Co3, and Co4, are related by the three-fold 

rotation along the [111] axis. The spin structure is described by the spin vectors on these 

Co sites 𝑠 0(𝑢⃗ ) and the propagation vector 𝑘⃗ 𝑠. 
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5.3.4 Group Theory Analysis of Spin Structures Allowed by the B20 

Crystal Structure 

In the following, we examine possible spin structures allowed by the P213 space 

group of the B20 structure using group theory.[32] The magnetic diffraction contribution 

simulated according to these spin structures will be compared with the experimental 

observation of Co-Si to determine the most likely spin structures. 

First, we consider the case with no superstructure, i.e., ks = 0 or uniform 

magnetization. According to the group theory analysis[32], the spin structure can be 

described by 4 irreducible Γ1 to Γ4 representations of the P213 space group, as displayed in 

Table 5.1. While the one-dimensional Γ1 to Γ3 appear only once, the three-dimensional Γ4 

appears three times. All spin structures have a zero net magnetic moment for the unit cell, 

meaning antiferromagnetic (AFM) order, except for Γ4,1, which is ferromagnetic. More 

specifically, the AFM structures of Γ1, Γ4,2, and Γ4,3 are collinear, while Γ2 and Γ3 are non-

collinear. Compared with the experimental observation, only the ferromagnetic spin 

structure Γ4,1 generates a magnetic contribution that matches reasonably well, while other 

spin structures do not (Fig. 5.5).  

With a propagation vector 𝑘⃗ 𝑠 || [111], the arrangement Co magnetic moment can be 

divided into two groups, Co1 in group I and Co2 – Co4 for group II. Table 5.2 shows the 

spin structure of the spin helix for 𝑘⃗ 𝑠 || [111] allowed by the P213 space group for Co group 

I. The two helical spin structures Γ2(I) and Γ3(I) of opposite chirality are one-dimensional. 

Both spins are perpendicular to the [111] axis and rotate along the axis from unit cell to 

unit cell [see Fig. 5.3]. Table 5.3 shows the spin structure for the Co group II, where Γ2(II) 
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and Γ3(II) form helical structure as Γ2,1(II) + 𝑒−
𝑖2𝜋

3 Γ2,2(II) + 𝑒−
𝑖4𝜋

3 Γ2,3(II) and Γ3,1(II) +

𝑒
𝑖2𝜋

3 Γ3,2(II) + 𝑒
𝑖4𝜋

3 Γ3,3(II) for Co group II, respectively. The additional restriction from the 

exchange interaction, which is not considered in the group-theory analysis, connects the 

spins of the two groups. For B20 material, the short-range exchange interaction is generally 

ferromagnetic,[3,8,24,26] meaning the magnetic moments are almost perfectly parallel 

within one unit cell. Under this constriction, two helical structures are formed, including 

all the Co atoms: [Γ2(I)𝑒
𝑖𝑘𝑠𝑎

√3 , Γ2,1(II) + 𝑒−
𝑖2𝜋

3 Γ2,2(II) + 𝑒−
𝑖4𝜋

3 Γ2,3(II)], and [Γ3(I)𝑒
𝑖𝑘𝑠𝑎

√3 , 

Γ3,1(II) + 𝑒
𝑖2𝜋

3 Γ3,2(II) + 𝑒
𝑖4𝜋

3 Γ3,3(II)], for opposite chirality, respectively [Fig. 5.6(a)].  

Another propagation direction that leads to helical spins is 𝑘⃗ 𝑠 || [100]. There are 

also two groups of Co atoms: group I (Co1 and Co2) and group II (Co3 and Co4). Table 

5.4 shows the allowed spin structures for groups I and II with 𝑘⃗ 𝑠 || [100]. Again, helical 

structures are formed within both atomic groups. The restriction of exchange interaction 

connects the two groups and results in the helical structures, including all Co atoms: 

[Γ1,2(I) + 𝑖Γ1,3(I) , Γ1,2(II) + 𝑖Γ1,3(II)]  and [Γ1,2(I) − 𝑖Γ1,3(I) , Γ1,2(II) − 𝑖Γ1,3(II)]  for 

opposite chirality [Fig. 5.6(b)].  
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Figure 5.6: Schematic illustration of helical spin structures for propagation vector (a) 𝑘⃗ 𝑠 || 

[111] and (b) 𝑘⃗ 𝑠 || [100].  

 

 
Co1 Co2 Co3 Co4 

Γ1 (1, 1, 1) (-1, -1, 1) (-1, 1, -1) (1, -1, -1) 

Γ2  (1,e−
i2π

3 , e
i2π

3 ) (-1,e
iπ

3 , e
i2π

3 ) (-1,e−
i2π

3 , e−
iπ

3 ) (1,e
iπ

3 , e−
iπ

3 ) 

Γ3  (1,e
i2π

3 , e−
i2π

3 ) (-1,e−
iπ

3 , e−
i2π

3 ) (-1,e
i2π

3 , e
iπ

3 ) (1,e−
iπ

3 , e
i𝜋

3 ) 

Γ4,1 (1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

(1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

(1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

((1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

Γ4,2 (1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

(-1, 0, 0) 

(0, 1, 0) 

(0, 0, -1) 

(1, 0, 0) 

(0, -1, 0) 

(0, 0, -1) 

(-1, 0, 0) 

(0, -1, 0) 

(0, 0, 1) 

Γ4,3 (1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

(1, 0, 0) 

(0, -1, 0) 

(0, 0, -1) 

(-1, 0, 0) 

(0, -1, 0) 

(0, 0, -1) 

(-1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 
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Table 5.1. Directions of the magnetic moments (basis vectors) on different Co atoms [see 

Fig. 5.1(a)] for the allowed spin structures when there is no magnetic superstructure (𝑘𝑠 = 

0). 

 

 

 

  Co1 

Γ2(I) (1, 𝑒−
𝑖2𝜋

3 , 𝑒
𝑖2𝜋

3 ) 

Γ3(I) (1, 𝑒
𝑖2𝜋

3 , 𝑒−
𝑖2𝜋

3 ) 

Table 5.2. Directions of the magnetic moments on Group I Co atom for the allowed spin 

structures when the propagation vector 𝑘⃗ 𝑠 is along the [111] direction. 

 

 

 

 

  Co2 Co3 Co4 

Γ2,1(II) (1,0,0) 
(0, 𝑒−

𝑖2𝜋

3 ,0) (0,0, 𝑒
𝑖2𝜋

3 )  

Γ2,2(II) (0,1,0) 
 (0,0, 𝑒−

𝑖2𝜋

3 ) ( 𝑒
𝑖2𝜋

3 ,0,0) 

Γ2,3(II) (0,0,1) 
( 𝑒−

𝑖2𝜋

3 ,0,0)  (0, 𝑒
𝑖2𝜋

3 ,0) 

Γ3,1(II) (1,0,0) 
(0, 𝑒

𝑖2𝜋

3 ,0) (0,0, 𝑒−
𝑖2𝜋

3 ) 

Γ3,2(II) (0,1,0) 
(0,0, 𝑒

𝑖2𝜋

3 ) ( 𝑒−
𝑖2𝜋

3 ,0,0) 

Γ3,3(II) (0,0,1) 
( 𝑒

𝑖2𝜋

3 ,0,0) (0, 𝑒−
𝑖2𝜋

3 ,0) 

Table 5.3. Directions of the magnetic moments on Group II Co atom for the allowed spin 

structures when the propagation vector 𝑘⃗ 𝑠 is along the [111] direction. 
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  Co1 (Co3) Co2 (Co4) 

𝚪𝟏,𝟐 (0,1,0)  (0, 𝑒−𝑖𝑘𝑎/2,0) 

𝚪𝟏,𝟑 (0,0,1) (0,0, 𝑒−𝑖𝑘𝑎/2) 

𝚪𝟐,𝟐 (0,1,0) (0, −𝑒−𝑖𝑘𝑎/2,0) 

𝚪𝟐,𝟑 (0,0,1) (0,0, −𝑒−𝑖𝑘𝑎/2) 

Table 5.4. Directions of the magnetic moments on the Group I (and II) Co atoms for the 

allowed spin structures when the propagation vector 𝑘⃗  is along the [100] direction. 

 

According to Eq. (5.3), the magnitude of the magnetic part depends on the vector 

structure factor 𝑓 𝑠 ≡ ∑ 𝑞 0(𝑘⃗ , 𝑢⃗ )𝑓(𝑘⃗ , 𝑢⃗ )𝑒𝑖𝑘⃗ ⋅𝑢⃗⃗ 
𝑢⃗⃗  but not on 𝑘⃗ 𝑠  which determines the 

diffraction angles, as long as the helical period is much larger than one unit cell. In other 

words, except for the diffraction angles, the magnetic contributions of the helical spin 

structure and the ferromagnetic spin structure Γ4(1) are expected to be nearly the same [Fig. 

5.5]. Therefore, the helical spins whose periods are much larger than the unit cell, also 

match the experimentally observed magnetic parts. 

The result that the zero-field helical propagation vector is along either the [111] or 

the [001] directions [see Appendix B] is consistent with the micromagnetic analysis in the 

earlier work[33]. Experimentally, the helical spin structure of B20 magnets, such as 

MnSi[17] and FexCo1-xGe[8], has a propagation vector 𝑘⃗ 𝑠  along the threefold rotation 

symmetry axis [111]. Helical propagation vector along [111] and [100] have been reported 

in B20 FeGe[34] and MnGe[5]. 
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5.3.5 Magnitude of the Magnetic Moment 

Once the magnetic and nuclear contributions to the NPD are separated, and the spin 

structure is known, one can estimate the magnitude of the spin by comparing the magnetic 

contribution and the nuclear contribution written as  

𝐹𝑛
2 = |∑ 𝑓𝑛(𝑘⃗ , 𝑟 ) exp(𝑖𝑘⃗ ⋅ 𝑟 )𝑟 |

2
                   (5.4). 

where 𝑓𝑛(𝑘⃗ , 𝑟 ) is the isotope-specific nuclear structure form factor. Notice that this is 

typically not the case for small-angle neutron diffraction that only measures the magnetic 

contribution[22]. According to Eqs. (5.3) and (5.4), the ratio of the magnetic to the nuclear 

contribution is, for the ferromagnetic spin structure Γ4,1 and the helical spin structure, solely 

determined by the magnitude of the spins (magnetic moments) [30,35], which is found to 

be 0.3 ± 0.1 µB/Co, where the magnetic contribution is an average for T< 320 K. 
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5.4 Surface Magnetization Probed by XMCD Spectroscopy 

  

 

Figure 5.7: (a) X-ray absorption spectra (XAS) measured with left and right circular 

polarized light at 300 K near Co L3,2 edges (2p → 3d) and (b) XMCD spectra temperatures 

for Co1.043Si0.957. The dashed (black) curves in (a) and (b) correspond to the integrals of 

room-temperature XAS (r) and XMCD (q) spectra and p is an integral point used for 

determining spin moment (ms). (c) Spin and orbital (mo) moments at different temperatures. 

(d) Total magnetic moment mj = mo+ms.  

 

XAS spectra near the Co L3,2 edges (760 – 830 eV) were measured at different 

temperatures from 100 K to 300 K in an external magnetic field (±3 kOe) applied normal 
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to the sample surface. To exclude possible degradation of the free-standing film under the 

beam, observed in previous experiments, the following temperature series were used: 300, 

200, 100, 150, and 250 K. Figure 5.7(a) shows the room-temperature XAS spectra for the 

photon angular momentum parallel (
+

) and antiparallel (
−

) to the applied magnetic field. 

The X-ray magnetic circular dichroism (XMCD) signal is obtained from the difference 

between the corresponding blue (
−

) and red (
+

) curves and is shown for different 

temperatures in Fig. 5.7(b). The integrals of both XAS and XMCD spectra, r =

∫ (
+
 + 

−
) 𝑑

 

𝐿3 + 𝐿2
 , 𝑞 = ∫ (

+
 −  

−
) 𝑑

 

𝐿3 + 𝐿2
, and 𝑝 = ∫ (

+
 −  

−
) 𝑑

 

𝐿3
 , were 

used to quantify the orbital moment (𝑚0 ) and spin moment ( 𝑚𝑠 ) using the sum rule by 

following  𝑚𝑜 = −
4𝑞

3𝑟
 𝑛ℎ  and 𝑚𝑠 = −

6𝑝−4𝑞

𝑟
 𝑛ℎ , where nh is the hole density per Co 

atom.23,24 Orbital and spin moments and average moment mj = mo+ms are shown as a 

function of temperature in Figs. 5.7(c) and 5.7(d), respectively. The spin and, hence, total 

magnetic moment increases linearly with temperature from 0.18 to 0.31 B/Co (Fig. 5.7(d)), 

which agrees with the NPD values of (0.3 ± 0.1) µB/Co. The unusual increase of the 

magnetic moment with temperature (Fig. 5.7) mimics the trend of peak broadening in NPD 

(see Fig. 5.3). It is unclear whether this trend is related to the temperature-dependent 

transition from helical to skyrmion spin structures around room temperature[26], an 

interesting aspect that calls for future studies. 
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5.5 Discussion 

 The (0.3 ± 0.1) µB/Co value extracted from zero-field NPD corresponds to the 

magnetic moment after accounting for the spin alignment in the magnetic structure. The 

XMCD values in the range of (0.18-0.31) µB/Co are most likely only a small portion of the 

helical period due to surface sensitivity with a 2-5 nm probing depth. In addition, the 

weaker coupling of spins at the surface due to a smaller coordination number implies a 

stronger response to external magnetic fields (larger normal moment), which increases with 

temperature. Both NPD and XMCD values coincide with density functional theory (0.18 

µB/Co)[26] and differ substantially from magnetometry which measures the bulk net 

magnetization (0.11 µB/Co at 2 K and 0.07 µB/Co at 300 K)[26]. Magnetometry shows that 

the field-dependent magnetization curves at 2 K and 300 K do not saturate in fields up to 

70 kOe.[26] This is inconsistent with the ferromagnetic ordering since the incomplete 

saturation cannot be explained by the small magnetocrystalline anisotropies (1.8 and 0.043 

Merg/cm3 at 2  K and 300 K, respectively).[26] Instead, the slow saturation originates from 

helimagnetism in the Co-Si alloy, as indicated by DC susceptibility and Lorentz 

transmission electron microscopy, and the transformation from helical to conical phase at 

a high magnetic field.  

Correlating the experimental with modeled magnetic contributions suggests that 

both ferromagnetic and helical spin structures (with a period exceeding the size of the unit 

cell) are most likely (Fig. 5.5). According to Eq. (5.3), the information of the helical period 

or 𝑘⃗ 𝑠 is included in the factor ∑ 𝑒𝑖(𝑘⃗ 𝑠+𝑘⃗ )⋅𝑅⃗ 
𝑅⃗  which determines the diffraction angle. In other 

words, the helical period may be extracted from the positions of the satellite peaks 𝑘⃗ ± 𝑘⃗ 𝑠 

in neutron diffraction. Unfortunately, broadening effects due to chemical disorder and 
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multiple values of |𝑘⃗ ± 𝑘⃗ 𝑠| smear the satellite peaks, which prevent us from identifying 

satellite peaks in the powder neutron diffraction patterns. If satellite peaks are not observed 

due to the broadening of the main peaks, we can put a lower limit of helical period which 

is 120 nm. 

 

5.6 Summary 

In summary, the results of NPD measurements on Co1.043Si0.957 are consistent with 

the helical spin structure. The magnitude of the magnetic moment extracted from NPD (0.3 

± 0.1 µB/Co) coincides with theoretical estimates (0.18 µB/Co) and the surface 

magnetization retrieved from XMCD spectroscopy (0.18 – 0.31 µB/Co). All these values 

are substantially larger than the magnetometry value (0.11 µB/Co), the data reflect the 

evolution of a coplanar helical spin structure into a noncoplanar conical spin structure with 

nonzero magnetization. The smaller magnetic moment measured by magnetometry 

suggests that the external field produced by magnetometry is not enough to get fully 

aligned spins in Co1.043Si0.957, which is exactly the behavior of helical spin. 
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Chapter Ⅵ: Conclusion and Outlook 

This dissertation focuses on understanding and improving the magnetic properties 

of rare-earth-free magnetic material. The intermetallic magnet alloys are synthesized by 

arc melting and melt-spinning. The crystal and magnetic properties are analyzed by X-ray 

diffraction, neutron diffraction, and superconducting quantum interference device. 

The magnetic anisotropy of rare-earth-free magnets is one of the significant 

concerns compared to rare-earth magnetics like Nd2Fe14B and Sm2Co17. In chapter Ⅲ, we 

analyze the polycrystalline Fe-Co-Ti spin structure by neutron powder diffraction. The 

noncollinear spin structure comes from the random-anisotropy effect, leading to a K1 

distribution. This effect increases the boundary region between magnetic domains, which 

is visible on a scale of 40 nm. In chapter Ⅵ, we dopped boron inside the Fe2Ni 

compound to increase the magnetic anisotropy of Fe-Ni alloys. We saw a significant 

increase in anisotropy energy for Fe4Ni2B alloys. We explain the large anisotropy in 

Fe4Ni2B as the structure difference compared to Fe2Ni induced by the strong metal-boron 

bonds. 

The spin structure is also important in magnetic materials. In chapter Ⅴ, we 

investigate the spin structure of Co-Si, which is famous for its B20 structure. We found 

that replacing a small amount of Si with Co, Co1.043Si0.957 shows a helical spin structure 

different from CoSi with diamagnetism.  

So far, we have studied three kinds of rare-earth magnetic with magnetic 

anisotropy and spin structure topics. However, there is yet any rare-earth-free magnetic 

that can replace Nd2Fe14B or Sm2Co17. The effort to find suitable substitutes is still 

needed in the future. 
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Appendix A: Magnetism of Cobalt-Nitride Measured by Neutron 

Diffraction 

This appendix discusses the thin-film neutron diffraction of Co3.3N deposited on 

Si substrate, which is done in DEMAND beamline in Oak Ridge National Laboratory. 

 

A.1 Introduction 

New materials discovery has governed the development of science and technology 

for decades.[1–3] Many of the most important magnetic materials were discovered through 

enlightened solid-state chemistry and intermetallic-compound research.[4–6] This 

approach often has been focused on Fe or Co-based compounds since Fe and/or Co are 

required to achieve high saturation magnetic polarization Js (Js = 4Ms, where Ms is the 

saturation magnetization) and Curie temperature (Tc). Magnetic anisotropy is another 

fundamental intrinsic property, essential to develop coercivity (Bc = µ0Hc) in magnetic 

materials or thermal stability in nanomagnets. Magnetocrystalline anisotropy is a combined 

effect of spin-orbit coupling and crystal-field interactions and often requires rare-earth or 

expensive elements.[7] In contrast to the earlier methods, there are three relatively 

unexplored approaches to the problem of new magnetic-materials discovery. These include 

(i) the production of new structures by incorporation of gases such as nitrogen, (ii) the use 

of non-equilibrium methods to generate novel structures, and (iii) the use of high-speed 

computational methods stimulated by the materials genome initiative. In this research, we 

combine uniquely all of these approaches to achieve promising magnetic properties in Co-

N compounds. 
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 Considering the above-mentioned three approaches separately, it has been shown 

that the interstitial modification of N can improve the Ms, K1, and Tc values of Fe-rich 

magnetic materials such as Fe16N2 and Sm2Fe17N3.[8] Some stoichiometric Co-N 

interstitial compounds have been reported such as Co3N and Co2N, but these exhibit poor 

magnetic properties.[9–11] An example is the hexagonal compound Co3N, which 

crystallizes in the well-known -Fe3N structure (space group P6322) but exhibits a low 

magnetization (about 31 kA/m or 31 emu/cm3) at 5K.[9] The second approach that of non-

equilibrium processing has focused on techniques such as sputtering and rapid quenching 

from the melt. These methods have produced interesting examples of magnetic compounds 

such as Co3Si by sputtering[12] and TbCu7 and ThMn12-type structures by rapid 

quenching.[13–15] Finally, theoretical and computational tools for new materials 

discovery have significantly developed in recent years. First-principal calculations and 

machine-learning techniques show much potential for high-throughput computational 

materials design. Ideally, this approach can accelerate the discovery of new materials with 

high efficiency and speed by guiding synthesis methods on the composition and structure 

of new compounds. Several reviews of advances in this rapidly developing field have 

appeared recently.[16–21] 

 Transition-metal nitrides form a rich class of compounds with diverse electronic 

structures and properties. They are relatively unexplored compounds compared to oxides, 

yet they have properties ranging from metallic to semiconducting, with potential 

applications such as ceramics, magnets, catalysis, and others.[22–26] Nanoparticle 

syntheses have recently shown great potential for developing new Co-rich magnetic 

compounds with high magnetocrystalline anisotropy and magnetization.[12,27–30] In this 
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chapter, we investigate the magnetic property of new Co3N compounds by neutron 

diffraction. 

 

A.2 Experiment Details 

Our nanoparticle experiments were carried out by cluster deposition using an inert-

gas condensation.[12] In this method, which produces highly monodisperse metal and alloy 

nanoparticles, an atomic Co vapor produced using direct-current plasma sputtering is 

condensed in a cooled inert-gas atmosphere to form nanoparticles in the gas-aggregation 

chamber. To form Co3N nanoparticles, we have fed nitrogen gas (N2) into the gas-

aggregation chamber. Stoichiometry and crystal structure was controlled by nitrogen flow 

rate, deposition pressure, and growth rate. The nanoparticles were then extracted from the 

gas-aggregation chamber to another chamber for room-temperature deposition on 

substrates. Dense nanoparticle films were deposited on Si (111) to measure x-ray 

diffraction (XRD) using a Cu K wavelength of about 1.54 Å and magnetic properties using 

SQUID. Neutron diffraction was performed in the DEMAND beamline in Oak Ridge 

National Laboratory. 

 

A.3 Crystal Structure of Co-N 

Fig. A.1(A) shows the experimental XRD patterns for the nanoparticle samples 

prepared at different N2 flow rates in standard cubic centimeters per minute (SCCM). 

Without the addition of N2 into the gas-aggregation chamber, the sputtered Co atoms 

aggregate to form pure Co nanoparticles, which exhibit a mixture of hcp and fcc Co phases 
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as indexed in black and green fonts, respectively, in the XRD pattern (black curve in Fig. 

A.1(A)). At N2 flow rates of about 25 SCCM (red curve) and 30 SCCM (blue curve), the 

XRD patterns of the nanoparticles are different from that of the Co nanoparticles (black 

curve) and existing equilibrium phases in the Co-N binary phase diagram,[31] and indicate 

the formation of new structures. Higher nitrogen flow rates cause the nanoparticles to 

crystallize in zincblende-type cubic CoN, as exemplified by the XRD pattern for 100 sccm 

(brown curve in Fig. A.1(A)). Crystal structures of the new cobalt nitrides were searched 

using the adaptive genetic algorithm [26,32,33], which was developed based on real-space 

cut-and-paste operations to generate descendent structures.[34] The searches were carried 

out at zero pressure and zero temperature with energy as the selection criteria to optimize 

the candidate structures. Out of several calculated structures, XRD patterns of the 

nanoparticles prepared at 25 SCCM (red curve) and 30 SCCM (blue curve) can be indexed 

with the new hexagonal (space group: P63/mmc, prototype: CdMg3) and rhombohedral 

(space group: R3̄c) Co3N structures, respectively. XPS results also show the Co/N atomic 

ratio for the hexagonal and rhombohedral nanoparticles as 3.3 and 2.8, respectively, and 

the corresponding stoichiometric values will be used while discussing the hexagonal and 

rhombohedral nanoparticles.   While the rhombohedral-type Co2.8N nanoparticles are 

single-phase, the XRD pattern of the substituted hexagonal Co3.3N nanoparticles exhibits 

a low-intensity (111) peak corresponding to fcc Co. 

 We also have performed XRD profile analysis for the nanoparticles using the 

Rietveld refinement method, as shown in Fig. A.1(B). The experimental XRD patterns of 

the nanoparticle samples prepared at the nitrogen flow rates of 25 and 30 SCCM are in 

good agreement with the simulated XRD patterns for the hexagonal and rhombohedral-
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type Co3N structures, respectively. Rietveld refinement yields a volume fraction of 3% fcc 

Co, as well as lattice parameters of a = 5.042 Å and c = 4.090 Å (hexagonal phase) and a 

= 4.611 Å and c = 13.062 Å (rhombohedral). 

  Note that the rhombohedral structure is an interstitial type, and the hexagonal Co3N 

phase is a substitutional compound. Fig. A.1(C-D) shows the corresponding unit cells. In 

the rhombohedral structure, the nitrogen atoms form a sublattice by occupying some 

octahedral interstitial sites in the hcp-Co host lattice. The substituted hexagonal compound 

crystallizes in the CdMg3-type hexagonal structure. As in the rhombohedral structure, the 

nitrogen atoms form an ordered sublattice, corresponding to the Cd atoms in the prototype, 

but the structure is that of hcp cobalt, where one-fourth of the Co atoms are replaced by 

nitrogen.  

 As compared to hcp Co and fcc Co, the rhombohedral Co2.8N nanoparticles have 

several distinct and intense x-ray diffraction peaks at 2 = 39.12, 58.32, 70.89, 77.79, 

85.23 and 87.58, corresponding to (110), (116), (030), (119), (306), and (223) reflections, 

respectively (blue curve in Fig. A.1(A)). On the other hand, it is important during the 

structural determination of Co3.3N nanoparticles using XRD to properly distinguish 

between the hcp Co and substituted CdMg3-type structures, which are closely related and 

have similar XRD patterns. The main difference is the larger unit cell, which means that 

hcp (h k l) peaks correspond to CdMg3 (2h 2k l) peaks. A few distinct XRD peaks at lower 

angles from (100), (101), and (110) reflections are expected for the CdMg3-type structure, 

but the intensities of (100) and (110) peaks are small as compared to the intense XRD peaks 

such as (200), (002), and (201) and the substrate peak covers the (101) peak. However, a 

weak intensity peak corresponding to the (100) reflection of the CdMg3-type structure is 
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visible in the experimental XRD pattern (red curve in Fig. A.1(A) and (B)). Note that the 

intensity ratio between the (100) and (200) reflections from the experimental XRD pattern 

is I(100)/I(200)  0.58, comparable with the standard theoretical intensity ratio 

I(100)/I(200) = 0.37 for Co3.3N nanoparticles with the CdMg3-type structure. In support of 

this result, the analysis of the intensity of the (002) XRD peak and electron diffraction 

results also indicates that the hexagonal phase is CdMg3, not the crystallographically very 

similar hcp Co; in addition, XPS measurements also show that the stoichiometry is close 

to Co3N (see below)  

 Note that the (002) peak often has been observed to be the most intense XRD peak 

for hcp Co nanoparticles,[35–39] and this is also true for the pure Co nanoparticles reported 

in the present study (black curve in Fig. A.1(A)). In contrast, the most intense diffraction 

peak in the XRD pattern of the hexagonal Co3.3N nanoparticles is (201) as expected for the 

CdMg3-type structure.   
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Figure. A.1 XRD patterns: (A) The experimental patterns measured using Cu K 

wavelength of about 1.54 Å for the nanoparticles prepared at different N2 flow rates:  Co 

(0 SCCM), hexagonal Co3N (25 SCCM), rhombohedral Co3N (30 SCCM), and cubic CoN 

(100 SCCM). (B) The experimental patterns of the hexagonal (red) and rhombohedral (blue) 

nanoparticles are fitted with the corresponding structures using Rietveld analysis (black 

curve). New Co3N structures: (C) Rhombohedral and (D) CdMg3-type hexagonal. 
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A.4 Neutron Diffraction of Co3.3N 

 

Figure A.2: Easy-axis aligned hexagonal-type Co3.3N nanoparticles: (A) Out-of-plane 

XRD patterns measured for the unaligned (red curve) and aligned (blue curve) samples. 

The XRD patterns are indexed to the CdMg3-type hexagonal structure. (B) Neutron 

diffraction intensity of the (002) peak for the aligned nanoparticle film shows a transition 

for both warming (circle) and cooling (square) between 500 K and 600 K, whereas the red 

line is a guide to the eye. The inset shows the rocking curve of the (002) peak, whereas the 

red line is the Gaussian fit to the data. (C) Magnetic hysteresis loops measured at 10 K 

along the easy (x) and hard (y) axes. The anisotropy field Ba ≡ μ0Ha is indicated by an arrow. 

(D) Magnetization was measured as a function of temperature for the hexagonal Co3N 

nanoparticles in a magnetic field of 1.0 dT (1.0 kG) during warming (red curve) and cooling 

(blue curve). The magnetization is normalized with the room-temperature value. The depth 

of warming curve means a transition temperature around 600K. 
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To study the magnetic transition and phase stability of the hexagonal Co3.3N 

nanoparticles, we performed neutron diffraction on a thin-film sample composed of easy-

axis-aligned hexagonal Co3.3N nanoparticles. The nanoparticles were aligned by applying 

a magnetic field parallel to the substrate during the deposition, i.e., the field was applied 

along the x-direction with respect to the substrate. Fig A.2(A) compares the out-of-plane 

(z-axis) XRD patterns of the unaligned (isotropic) and aligned nanoparticles. It is clearly 

seen that the intensity of the (002) peak significantly decreases and that of the (200) peak 

increases in the XRD pattern of the aligned nanoparticles as compared to those 

corresponding intensities in the XRD pattern of the isotropic nanoparticles.  This result 

indicates that the c-axis of the hexagonal Co3N crystal is the easy direction for 

magnetization and is aligned along the direction of the magnetic field Hx, which is applied 

along the substrate plane during the deposition.   

Generally, neutron diffraction consists of nuclear and magnetic contributions. 

Nuclear diffraction measures the ordering of atoms; it is more sensitive to N than to Co 

because the scattering length of N is about 3 times as large as Co.[40] On the other hand, 

magnetic diffraction measures the ordering of magnetic moments. The important result is 

that the temperature dependence of the (002) diffraction intensity shows a clear transition 

between 500 K and 600 K, as shown in Fig. A.2(B), and this transition appears to be 

reversible (warming followed by cooling). Since neutron diffraction is sensitive to N, our 

result indicates that the structural decomposition of Co3.3N nanoparticles in terms of N loss 

is minimal up to 600 K. The transition observed between 500 and 600 K in Fig. A.2(B) is 

consistent with the magnetic transition shown by the temperature-dependent magnetization 

curve (Fig. A.2(D)). Therefore, there is a sizable magnetic contribution to the neutron 
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diffraction, which suggests a magnetic ordering. One can observe the magnetic transition 

in the (002) diffraction indicates a non-zero magnetic moment perpendicular to the c axis, 

which could be due to the exchange interaction between the partially aligned particles.[41] 

As shown in the inset of Fig. A.2(B), the rocking curve of (002) diffraction was 

measured to study the relation between the crystalline direction and the substrate 

orientation as well as to obtain the degree of magnetic alignment from the distribution of 

(002) intensity. The crystalline c axis appears to be closely aligned with the substrate plane 

in which the magnetic field was applied during the growth, with a 20-degree FWHM (full 

width at half maximum) angular dispersion.  Rocking scans performed by the 4-circle 

neutron diffractometer probe the distribution of magnetic moment and (002) orientation. 

 

A.5 Summary 

The anisotropy of the hexagonal Co3.3N nanoparticles is in the range of several rare-

earth-free permanent-magnet materials that have shown high coercivities and room-

temperature energy products upon nanostructuring.[27,42,43] Therefore, they can have 

potential uses in microelectromechanical systems (MEMS) and also can be used to create 

future rare-earth-free permanent magnets, if scale-up methods are developed. X-ray and 

neutron diffraction shows that Co3.3N aligns well by applying a magnetic field parallel to 

the substrate during the deposition. 
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Appendix B: Symmetry Analysis of the Spin Structure for CoSi by the 

Group Theory 

Here we discuss the possible spin structure for the B20 structure with different 

propagation vectors. 

B.1 Crystal Symmetry and Space Group 

The symmetry of a crystal structure is described by the space group. The crystal 

structure returns to its equivalent position after a symmetry operation within the group. 

This sets the symmetry of the system. When properties of the system change with the 

symmetry operations, their behaviors (transformation) are representations of the groups. 

The irreducible representations are the basis that can be used to describe all possible 

behaviors. 

Here we are concerned with the space group P213 (198). There are 12 members in 

the group. The basic information of the group is displayed in the tables below. Sm means 

symmetry operation. 

  Inverse 

Sm1 x, y, z Sm1 

Sm2 x+1/2, -y+1/2, -z Sm2 

Sm3 -x, y+1/2, -z+1/2 Sm3 

Sm4 -x+1/2, -y, z+1/2 Sm4 

Sm5 z, x, y Sm9 

Sm6 z+1/2, -x+1/2, -y Sm12 

Sm7 -z, x+1/2, -y+1/2 Sm10 

Sm8 -z+1/2, -x, y+1/2 Sm11 

Sm9 y, z, x Sm5 

Sm10 y+1/2, -z+1/2, -x Sm7 

Sm11 -y, z+1/2, -x+1/2 Sm8 
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Sm12 -y+1/2, -z, x+1/2 Sm6 

I: inversion. R(X180): rotation along the x-axis by 180 degrees. 

The multiplication table: 

 Sm1 Sm2 Sm3 Sm4 Sm5 Sm6 Sm7 Sm8 Sm9 Sm10 Sm11 Sm12 

Sm1 Sm1 Sm2 Sm3 Sm4 Sm5 Sm6 Sm7 Sm8 Sm9 Sm10 Sm11 Sm12 

Sm2 Sm2 Sm1 Sm4 Sm3 Sm6 Sm5 Sm8 Sm7 Sm10 Sm9 Sm12 Sm11 

Sm3 Sm3 Sm4 Sm1 Sm2 Sm7 Sm8 Sm5 Sm6 Sm11 Sm12 Sm9 Sm10 

Sm4 Sm4 Sm3 Sm2 Sm1 Sm8 Sm7 Sm6 Sm5 Sm12 Sm11 Sm10 Sm9 

Sm5 Sm5 Sm7 Sm8 Sm6 Sm9 Sm11 Sm12 Sm10 Sm1 Sm3 Sm4 Sm2 

Sm6 Sm6 Sm8 Sm7 Sm5 Sm10 Sm12 Sm11 Sm9 Sm2 Sm4 Sm3 Sm1 

Sm7 Sm7 Sm5 Sm6 Sm8 Sm11 Sm9 Sm10 Sm12 Sm3 Sm1 Sm2 Sm4 

Sm8 Sm8 Sm6 Sm5 Sm7 Sm12 Sm10 Sm9 Sm11 Sm4 Sm2 Sm1 Sm3 

Sm9 Sm9 Sm12 Sm10 Sm11 Sm1 Sm4 Sm2 Sm3 Sm5 Sm8 Sm6 Sm7 

Sm10 Sm10 Sm11 Sm9 Sm11 Sm2 Sm3 Sm1 Sm4 Sm6 Sm7 Sm8 Sm8 

Sm11 Sm11 Sm10 Sm12 Sm9 Sm3 Sm2 Sm4 Sm1 Sm7 Sm8 Sm8 Sm5 

Sm12 Sm12 Sm9 Sm11 Sm10 Sm4 Sm1 Sm3 Sm2 Sm8 Sm8 Sm7 Sm6 

 

Character table 

 Class 1  

Sm1 

Class 2 (3) 

Sm2-sm4 

Class 3 (4) 

Sm5-sm8 

Sm4 (4) 

Sm9-sm12 

 

𝚪𝟏 1 1 1 1 1 

𝚪𝟐 1 1 
exp (𝑖

2𝜋

3
) exp (−𝑖

2𝜋

3
) 

1 

𝚪𝟑 1 1 
exp (−𝑖

2𝜋

3
) exp (𝑖

2𝜋

3
) 

1 

𝚪𝟒 3 -1 0 0 3 

𝚪𝑪𝒐𝑺𝒊 12 0 0 0  

 

Below we analyze the possible spin structures allowed by the crystal structure. 
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B.2 Propagation Vector 𝒌⃗⃗ = (𝟎, 𝟎, 𝟎) 

In this case, the full symmetry of the original P213 space group retains. Therefore, 

we do not have to make any changes to the group. This is also what we call the “Large 

representation”. 

Basis vectors of the decomposed representations 

For the propagation vector 𝑘⃗ = (0,0,0), the representation is magnetic moments on 

4 Co atoms: 𝑚⃗⃗ 𝑖 , 𝑖 = 1,2,3,4. 

We only need to consider the magnetic atoms whose positions are: 

Atom1: (x, x, x) 

Atom2: (-x+1/2, -x, x+1/2) 

Atom3: (-x, x+1/2, -x+1/2) 

Atom4: (x+1/2, -x+1/2, -x) 

where x represents the small distortion from the face center cubic structure. 

The dimension of the representation is 𝑙 = 3 ∗ 4 = 12 . The basis of the 

representation is {𝑚1,𝑥,𝑚1,𝑦,𝑚1,𝑧, 𝑚2,𝑥,𝑚2,𝑦 ,𝑚2,𝑧 ,𝑚3,𝑥, 𝑚3,𝑦,𝑚3,𝑧, 𝑚4,𝑥,𝑚4,𝑦,𝑚4,𝑧} 

Each irreducible representation corresponds to a subspace defined by a linear 

combination of 𝑙𝑖 vectors and an eigen energy, where 𝑙𝑖 is the dimension of the subspace. 

The vectors can be found using the software BasIreps in the FullProf package. 
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Atom1 Atom2 Atom3 Atom4 

Γ1 (1, 1, 1) (-1, -1, -1) (-1, 1, -1) (1, -1, -1) 

Γ2  (1,e−
i2π

3 , e
i2π

3 ) (-1,e
iπ

3 , e
i2π

3 ) (-1,e−
i2π

3 , e−
iπ

3 ) (1,e
iπ

3 , e−
iπ

3 ) 

Γ3  (1,e
i2π

3 , e−
i2π

3 ) (-1,e−
iπ

3 , e−
i2π

3 ) (-1,e
i2π

3 , e
iπ

3 ) (1,e−
iπ

3 , e
i𝜋

3 ) 

Γ4,1 (1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

(1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

(1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

(1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

Γ4,2 (1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

(-1, 0, 0) 

(0, 1, 0) 

(0, 0,- 1) 

(1, 0, 0) 

(0, -1, 0) 

(0, 0, -1) 

(-1, 0, 0) 

(0, -1, 0) 

(0, 0, 1) 

Γ4,3 (1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

(1, 0, 0) 

(0, -1, 0) 

(0, 0, -1) 

(-1, 0, 0) 

(0, -1, 0) 

(0, 0, -1) 

(-1, 0, 0) 

(0, 1, 0) 

(0, 0, 1) 

 

Γ1, Γ2 and Γ3 are non-collinear AFM states.  

Γ4,1 is an FM magnetic structure. 

Γ4,2 and Γ4,3 can be both collinear and non-collinear AFM magnetic structures. 

 

B.3 Propagation Vector 𝒌⃗⃗  // [100] 

Here we need to use the multiplier group. In this case, we first pick the {𝑅|𝜏} 

members where 𝑅𝑘⃗ = 𝑘⃗ . This leads to only two members. Sm1 (x, y, z) and Sm2 (x+1/2, 

-y+1/2, -z). 
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Character table 

 Class 1  

Sm1 

Class 2 (1) 

Sm2 

 

𝚪𝟏 1 −𝑒𝑖𝑘𝑎/2  3 

𝚪𝟐 1 −𝑒𝑖𝑘𝑎/2  3 

𝚪𝑪𝒐𝑺𝒊 6 0  

Representation decomposition 

There are two representations, and each of them contains two atoms. 

  Inverse 

Sm1 x, y, z Sm1 

Sm2 x+1/2, -y+1/2, -z Sm2 

 

The irreducible representations can be found as the following. 

For Atom 1 and Atom 2 (group I) 

  Atom 1 Atom 2 

𝚪𝟏,𝟏(𝐈) (1,0,0) (−𝑒−𝑖𝑘𝑎/2,0,0) 

𝚪𝟏,𝟐(𝐈) (0,1,0)  (0, 𝑒−𝑖𝑘𝑎/2,0) 

𝚪𝟏,𝟑(𝐈) (0,0,1) (0,0, 𝑒−𝑖𝑘𝑎/2) 

𝚪𝟐,𝟏(𝐈) (1,0,0) (𝑒−𝑖𝑘𝑎/2,0,0) 

𝚪𝟐,𝟐(𝐈) (0,1,0) (0, −𝑒−𝑖𝑘𝑎/2,0) 

𝚪𝟐,𝟑(𝐈) (0,0,1) (0,0, −𝑒−𝑖𝑘𝑎/2) 

 

The result is identical for Atom 3 and Atom 4 (group II) 

  Atom 3 Atom 4 

𝚪𝟏,𝟏(𝐈𝐈) (1,0,0) (−𝑒−𝑖𝑘𝑎/2,0,0) 

𝚪𝟏,𝟐(𝐈𝐈) (0,1,0)  (0, 𝑒−𝑖𝑘𝑎/2,0) 

𝚪𝟏,𝟑(𝐈𝐈) (0,0,1) (0,0, 𝑒−𝑖𝑘𝑎/2) 

𝚪𝟐,𝟏(𝐈𝐈) (1,0,0) (𝑒−𝑖𝑘𝑎/2,0,0) 

𝚪𝟐,𝟐(𝐈𝐈) (0,1,0) (0, −𝑒−𝑖𝑘𝑎/2,0) 

𝚪𝟐,𝟑(𝐈𝐈) (0,0,1) (0,0, −𝑒−𝑖𝑘𝑎/2) 
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For a helical spin structure, the following conditions are required: (1) All the spins 

are perpendicular to 𝑘⃗ . (2) Phase difference between spins follows propagation 𝑆 (𝑟 ) =

𝑆 0𝑒
−𝑖𝑘⃗ ⋅𝑟 . (3) The magnitude of the spins is constant. 

For a helical spin structure of 𝑘⃗  // [100], one expects an intrinsic phase difference 

between atoms 1&3 and atoms 2&4 according to 𝑒−𝑖𝑘⃗ ⋅𝑟 = 𝑒−
𝑖𝑘𝑎

2 , which can be clearly seen 

in 𝚪𝟐,𝟏 , 𝚪𝟏,𝟐 , and 𝚪𝟏,𝟑 , for both atom groups I and II. Among them, 𝚪𝟏,𝟐 , and 𝚪𝟏,𝟑  are 

perpendicular to 𝑘⃗ .  

To make the spin rotate along 𝑘⃗ , one needs to combine 𝚪𝟐,𝟏 and 𝚪𝟏,𝟐. Consider the 

spin structures formed using a linear combination  

𝚪𝒉(𝐈, 𝐈𝐈) = 𝚪𝟏,𝟐(𝐈, 𝐈𝐈) + 𝑒𝑖𝜙𝚪𝟏,𝟑(𝐈, 𝐈𝐈)                                (𝑩. 𝟏) 

atom 1 and atom 3 have the spin state (0,1, 𝑒𝑖𝜙) 𝑒−𝑖𝑘⃗ ⋅𝑟  while atom 2 and atom 4 have spin 

states of (0, 1, 𝑒𝑖𝜙) 𝑒−(
𝑖𝑘𝑎

2
+𝑖𝑘⃗ ⋅𝑟 )

. Using (0,1, 𝑒𝑖𝜙) 𝑒−𝑖𝑘⃗ ⋅𝑟  as an example, the spin magnitude 

is √cos2(𝑘⃗ ⋅ 𝑟 ) + cos2(𝑘⃗ ⋅ 𝑟 − 𝜙).  To make it constant, 𝜙 = ±
𝜋

2
 is required, which 

corresponds to the opposite chirality.  

Therefore, the helical spin structure is  

𝚪𝒉(𝐈, 𝐈𝐈) = 𝚪𝟏,𝟐(𝐈, 𝐈𝐈) ± 𝑖𝚪𝟏,𝟑(𝐈, 𝐈𝐈)                                    (𝑩. 𝟐) 
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One can verify that this satisfies all three conditions. In particular, when 𝑘 is small 

(wavelength much longer than the unit cell), the spins within a unit cell are nearly parallel 

to each other.  

The exchange interaction that requires nearly parallel alignment between the 

nearest neighbors connects the two groups. Hence, the helical structures including all atoms 

are  

[𝚪𝟏,𝟐(𝐈) + 𝑖𝚪𝟏,𝟑(𝐈) and 𝚪𝟏,𝟐(𝐈𝐈) + 𝑖𝚪𝟏,𝟑(𝐈𝐈)] and  

[𝚪𝟏,𝟐(𝐈) − 𝑖𝚪𝟏,𝟑(𝐈) and 𝚪𝟏,𝟐(𝐈𝐈) − 𝑖𝚪𝟏,𝟑(𝐈𝐈)] for the opposite chirality. 

 

B.4 Propagation Vector 𝒌⃗⃗  // [111] 

In this case, we first pick the {𝑅|𝜏} members where 𝑅𝑘⃗ = 𝑘⃗ . This leads to three 

members: Sm1 (x, y, z), Sm5 (z, x, y), Sm9 (y, z, x). 

Character table 

 Class 1  

Sm1 

Class 2  

Sm5 

Class 3 

Sm9 

 

𝚪𝟏 1 1 1 1 

𝚪𝟐 1 a b 1 

𝚪𝟑 1 b a 1 

𝚪𝑪𝒐𝑺𝒊 3 0 0  

𝑎 = 𝑒
𝑖2𝜋
3 , 𝑏 = 𝑒

𝑖4𝜋
3  
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Representation decomposition 

There are two representations. 

  Inverse 

Sm1 x, y, z Sm1 

Sm5 z, x, y Sm9 

Sm9 y, z, x Sm5 

 

One contains one atom (atom1) at (x, x, x). The other contains three other atoms. 

The irreducible representations can be found using the software BasIreps. 

For Atom 1 (group I) 

  Atom 1 

Γ1(I) (1,1,1) 

Γ2(I) 
(1, 𝑒−

𝑖2𝜋

3 , 𝑒
𝑖2𝜋

3 ) 

Γ3(I) 
(1, 𝑒

𝑖2𝜋

3 , 𝑒−
𝑖2𝜋

3 ) 

 

For Atom 2, Atom 3, and Atom 4 (group II) 

  Atom 2 Atom 3 Atom 4 

𝚪𝟏,𝟏(II) (1,0,0) (0,1,0) (0,0,1) 

𝚪𝟏,𝟐(II) (0,1,0) (0,0,1) (1,0,0) 

𝚪𝟏,𝟑(II) (0,0,1) (1,0,0) (0,1,0) 

𝚪𝟐,𝟏(II) (1,0,0) 
(0, 𝑒−

𝑖2𝜋

3 ,0) (0,0, 𝑒
𝑖2𝜋

3 )  

𝚪𝟐,𝟐(II) (0,1,0) 
 (0,0, 𝑒−

𝑖2𝜋

3 ) ( 𝑒
𝑖2𝜋

3 ,0,0) 

𝚪𝟐,𝟑(II) (0,0,1) 
( 𝑒−

𝑖2𝜋

3 ,0,0)  (0, 𝑒
𝑖2𝜋

3 ,0) 

𝚪𝟑,𝟏(II) (1,0,0) 
(0, 𝑒

𝑖2𝜋

3 ,0) (0,0, 𝑒−
𝑖2𝜋

3 ) 

𝚪𝟑,𝟐(II) (0,1,0) 
(0,0, 𝑒

𝑖2𝜋

3 ) ( 𝑒−
𝑖2𝜋

3 ,0,0) 

𝚪𝟑,𝟑(II) (0,0,1) 
( 𝑒

𝑖2𝜋

3 ,0,0) (0, 𝑒−
𝑖2𝜋

3 ,0) 
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One may verify that Γ2(I) and Γ3(I) already satisfies all the condition for helical 

spin structures for atom 1, corresponding to the opposite chirality.  

𝚪𝟐(II) and 𝚪𝟑(II) also naturally form two subspaces in which the sum of the spins 

forms the helical structure with opposite chirality. To form a helical structure, 𝑆 (𝑟 ) =

𝑆 0(𝑟 )𝑒
𝑖𝑘⃗ ⋅𝑟  needs to be satisfied, where 𝑘⃗  is along the [111] direction. The spins should be 

the same for atom 2, atom 3, and atom 4. Taking 𝚪𝟐(II) as an example, a linear combination 

𝚪𝟐,𝟏(𝐈𝐈) + 𝑒−
𝑖2𝜋
3 𝚪𝟐,𝟐(𝐈𝐈) + 𝑒−

𝑖4𝜋
3 𝚪𝟐,𝟑(𝐈𝐈)                                     (𝑩. 𝟑) 

makes the spins on atoms 2-4 rotate along 𝑘⃗ . 

To include both groups of atoms, the phase difference between the atom group I 

and the atom group II can be calculated as 𝑒𝑖𝑘⃗ ⋅𝑟 = 𝑒
−

𝑖𝑘𝑎

√3 .  

Hence, the helical structures including all atoms are 

[Γ2(I)𝑒
𝑖𝑘𝑎

√3 and 𝚪𝟐,𝟏(𝐈𝐈) + 𝑒−
𝑖2𝜋

3 𝚪𝟐,𝟐(𝐈𝐈) + 𝑒−
𝑖4𝜋

3 𝚪𝟐,𝟑(𝐈𝐈)], and 

[Γ3(I)𝑒
𝑖𝑘𝑎

√3 and 𝚪𝟑,𝟏(𝐈𝐈) + 𝑒
𝑖2𝜋

3 𝚪𝟑,𝟐(𝐈𝐈) + 𝑒
𝑖4𝜋

3 𝚪𝟑,𝟑(𝐈𝐈)], for the opposite chirality respectively. 

 

B.5 Propagation Vector 𝒌⃗⃗  // [110] 

In this case, we first pick the {𝑅|𝜏} members for the multiplier group where 𝑅𝑘⃗ =

𝑘⃗ . This leads to only one member: Sm1 (x, y, z). 
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Character table 

 Class 1 

Sm1 

 

𝚪𝟏 1 3 

𝚪𝑪𝒐𝑺𝒊 3  

 

Representation decomposition 

  Inverse 

Sm1 x, y, z Sm1 

 

The irreducible representation can be easily described as, 

 
Atom 1/Atom 2/Atom 3/Atom 4 

𝚪𝟏 (1,0,0) 

𝚪𝟐 (0,1,0) 

𝚪𝟑 (0,0,1) 

 

Unlike the case with 𝑘⃗  // [111] and 𝑘⃗  // [100], where the intrinsic helical structure 

characteristics are built on the spin structure basis, for 𝑘⃗  // [110], no such connections 

between spins are seen, which means that the formation of helical structures is unlikely. 
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Figure B.1: Illustration of spin structure basis for 𝑘⃗ s // [111]. Atoms with the same color 

represent the same relative position in the unit cell. (a) magnetic structure Γ2(I) of atoms in 

group I. (b)-(d) three one-dimensional magnetic structures Γ2,1 (II), Γ2,2 (II), and Γ2,3 (II) of 

atoms in group II. Note that these are only the basis of spins structures allowed by the 

crystal structures. The real spin structure may be their combination under additional 

constrictions (e.g., exchange interaction, see text). 
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