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University of Nebraska, 2019 

Advisors: Simanti Banerjee and Taro Mieno 

 

Understanding barriers to adoption of Precision Agricultural Technologies (PATs) 

is important to the growth of agricultural productivity, efficiency, and sustainability. This 

thesis proposes and evaluates a model for estimating the impact of uncertainty, 

irreversibility, and loss aversion on producers’ adoption of crop canopy sensors in order 

to explain adoption behavior that contradicts previous expectations about the conditions 

necessary for technology adoption. The model is evaluated using estimated statistical 

distributions of price and field characteristics designed to match observations of actual 

corn and nitrogen prices, and of conventional and crop canopy sensor based nitrogen 

application. Results from this model using expected utility theory indicate that producers 

maximize their profit if they adopt crop canopy sensors immediately when their expected 

value becomes greater than the expected value of their previous nitrogen application 

method.  According to prospect theory, producers maximize their subjective utility when 

they defer adoption of crop canopy sensors until they become 1.03 times more profitable 

than uniform rate application, greatly reducing the speed at which we expect producers to 

adopt crop canopy sensors. This difference implies that risk preferences and the manner 
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in which producer utility/value under risk and uncertainty is modeled play a significant 

role in the adoption of PATs such as crop canopy sensors.    
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1  Introduction 
 

Precision agricultural technologies (PATs) have generated great interest among 

researchers since their formal introduction in the 1990’s.  Stafford (2000) touted PATs as 

the solution to growing economic and environmental problems associated with 

agriculture and even went so far as to say that by the end of the decade “most arable 

enterprises will have taken on the concept on a whole-farm basis.”  We find that this 

prediction turned out to be overly optimistic by reviewing a report by Schimmelpfennig 

(2016) that looks at the adoption of PATs.  In this report, Schimmelpfennig examines 

computer mapping, guidance systems, and variable rate technologies.  Using data from 

the Agricultural Resource Management Survey (ARMS), he finds that each has a positive 

impact on operating profit however adoption of these technologies has been slow and 

limited to larger farms. 

 

Certainly some non-adoption can be explained by market failures such as information 

asymmetry and transaction costs, however we find it important to consider the 

irreversible nature of the investment in crop canopy sensors because it forces producer 

into a long term commitment.  For many PATs, once they have been purchased, they 

offer little or no value outside of use in production leaving producers with few options 

but to be used until they complete their productive lifespan or until a new technology 

appears that can recoup the cost of the PATs, making the investment irreversible.  When 

an investment decision is irreversible, it forces decision-makers to evaluate risk in not 
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only the current time period, but also the following time periods.  When the risk in 

following time periods unknown, the decision maker faces uncertainty. 

 

Previous authors have examined agricultural technology adoption through the lens of 

irreversibility and uncertainty (Purvis et al. 1995, Tozer 2009).  These studies have 

focused on the methods presented by Dixit (1992) for examining the effects of 

irreversibility and uncertainty in investment decision-making.  While these studies 

explain a small degree of non-adoption, studies like Tozer (2009) have still inaccurately 

predicted high levels of PAT adoption while accounting for irreversibility and 

uncertainty.  We believe that this is caused by a failure to consider the dynamic nature of 

investment decision making and the failure to model producer value functions as non-

linear.   Given this context, in this thesis, we evaluate the magnitude of non-adoption 

attributable to the irreversibility of investment and uncertainty in a dynamic context 

where risk preferences are represented by Expected Utility Theory and Prospect Theory.   

 

In order to address this research objective, my thesis is organized as follows.  First we 

introduce a PAT of interest, crop canopy sensors, which will be used as an example to 

estimate the effects of incorporating a prospect value function into our analysis.  Then we 

will present a review of technology adoption studies that use price and production 

characteristics to perform an ex ante analysis of technology adoption rates.  Next we 

discuss the successes and shortcomings of previous ex ante technology adoption studies 

and present evidence that warrants the inclusion of loss aversion in our study through the 

consideration of a prospect theory value function.  We then present two models for 
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evaluating technology adoption among producers. The first assumes that producer 

behavior is in accordance with expected utility theory and the second explicitly 

incorporates prospect theory and loss aversion within the decision making framework.  

Finally, using historical corn and nitrogen price data and data from field trials using crop 

canopy sensors, we assign parameters to the two models to find the optimal investment 

behavior, conditional on individuals’ risk preferences. For this purpose, we use Monte 

Carlo simulations.  We find that when producers wait until crop canopy sensors are 

estimated to be 1.00 times more profitable than uniform rate application, they have the 

best chance to maximize their profit.  We also find that producers have the best chance to 

maximize subjective utility, based on a prospect value function when they wait crop 

canopy sensors are estimated to be 1.03 times more profitable than uniform rate 

application.  These results suggest that use of an investment trigger can improve decision 

making. They also illustrate the magnitude of impact that loss aversion can have on 

adoption. 

2  Crop Canopy Sensors  
 

Slow adoption of PATs is a topic of interest among researchers not only because they 

improve farm profits, but also because they offer a method for reducing the externalities 

caused by agricultural production, including nitrogen runoff caused by the application of 

nitrogen fertilizers on corn growing operations.  In Midwestern corn growing states such 

as Nebraska, Iowa, Illinois, Kansas, and Missouri, University researchers have done 

excellent work to define the impacts that nitrogen runoff has on water, soil, and 

ecosystem health (Wortman et al. 2006).  Excess nitrogen runoff is also detrimental to 
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human health (Townsend & Howarth 2010).  Mosheim and Ribaudo (2017) find that 

rural communities with small water systems face the highest costs of nitrogen abatement 

and often lack the technical knowledge and financing to properly manage groundwater.  

Beyond local impacts, there is also a great deal of concern about the implications of 

fertilizer runoff downstream away from the application site in the Gulf of Mexico 

(McLellan et al. 2018, Muenich et al. 2017).  This includes harmful algal blooms that 

threaten human health, aquatic ecosystems, and marine economies (Paerl & Scott 2010).   

 

To combat such issues, extensive work has been done to develop new technology and 

management practices that assist in the reduction of nitrogen application and hence 

runoff.  Crop canopy sensors are one of the promising PATs that reduce nitrogen 

application on corn growing operations by sensing and delivering only the exact amount 

of nitrogen needed by a plant.  Researchers at the University of Nebraska-Lincoln have 

conducted an extensive on-farm trial of the sensors titled Project SENSE.  From the years 

2015-2017 these researchers conducted 52 trials at different locations across southeastern 

Nebraska.  Results from these trials are presented in Table 1 and indicate that crop 

canopy sensors reduce the amount of nitrogen applied, while maintaining yield, therefore 

improving the per acre profitability of the operation.   

Table 1: Project SENSE Results 

Three Year Average (2015-2017) SENSE Method Grower Method1 

Total Nitrogen rate* (lb-N/ac) 161.1 189.8 
Yield* (bu/ac) 218.5 219.9 
Partial Profitability*2 ($/ac) 
[@3.65/bu and $0.65/lb-N] $692.82 $679.59 
Partial Profitability* ($/ac) 
[@3.05/bu and $0.41/lb-N] $600.39 $593.15 
1The term Grower Method, is a term used by Project SENSE researchers to describe a variety of approaches 
growers take to determine a constant or uniform Nitrogen-application rate.  
2Partial Profitability is profit resulting only from the cost of nitrogen and revenue from corn sales 
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Despite these promising results, adoption of SENSE technology has been limited 

prompting us to focus on the reasons behind producers not changing their behavior 

despite the presence of a more profitable technology. 

3  Literature Review  
 

3.1 Investment by Producers under Irreversibility, Risk, and Uncertainty  
 

Capital investments undertaken by agricultural producers typically involve varying 

degrees of irreversibility and risk.  Risks in future time periods are unknown, therefore 

producers are also subject to uncertainty.  Producers have the ability to postpone these 

investments until information about the costs and returns of the investment indicate a 

stronger chance of the investment being more profitable than other certain investment 

opportunities.  The degree of irreversibility and uncertainty associated with that 

irreversibility have a significant impact on a producer’s decision to invest, however they 

commonly go unaccounted for in capital budgeting and ex-ante technology adoption 

analysis (Pindyck 1991).  As a result, efforts to encourage technology adoption may be 

unsuccessful or inefficient due to inaccurate estimations of producer behavior.   

 

Focusing on irreversibility, Pindyck (1991) gives two reasons to explain why investment 

in physical capital is at least partially irreversible.  One is that physical capital is sector 

specific, and once procured given depreciation, the value of used machinery falls, and the 

other being that information about the quality of used capital is asymmetric. Regardless 

of the cause, irreversibility is important to consider because it increases firms sensitivity 

to uncertainty.  For example, consider a firm that has an opportunity to make an 
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investment with a 75% chance of recovering the investment cost.  The decision to invest 

is straightforward.  Now, consider the case where the investment is spread out over five 

years.  In the first year, the firm has a 75% chance of recovering 1/5th of the investment 

cost but the probabilities of recuperating the investment cost during the next four time 

periods are unknown.  This uncertainty makes the problem of deciding when to invest 

much more difficult to solve, and is not that different from the circumstances faced by 

agricultural producers.  Take for example a producer investing in irrigation equipment 

given impacts of climate change.  A producer may not need to irrigate now, however in 

ten years the situation could be very different.   

 

One way firms may account for uncertain investment outcomes is by deferring the 

investment decision until projected gains are sufficiently greater than the investment cost 

(Dixit 1992, Ekboir 1997, McDonald 2000, Tozer 2009, Liu 2013).  The degree to which 

returns must be greater than the investment cost is referred to as the hurdle rate by Dixit 

(1992).  The term hurdle rate is sometimes used to describe an arbitrarily high discount 

rate (McDonald 2000), however in our paper we will use the definition put forth by Dixit 

(1992).  The goal of a producer is then to set their hurdle rate at the point that captures the 

value of waiting, defined by risk and expected revenue of the investment (Dixit 1992).   

 

There are a few methods of determining what the optimal hurdle rate might be for a 

particular investment.  McDonald (2000) finds that many firms arbitrarily determine the 

hurdle rate based on previous investment experiences.  Other approaches include models 

of Real Options Analysis (ROA), which have been used to determine a population wide 
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optimal hurdle rate (Purvis et al. 1995, Carey & Zilberman 2002, Odening et al. 2005, 

Tozer 2009) for investment in agricultural technologies.  A population wide optimal 

hurdle rate is the optimal hurdle rate for a set of producers who were sampled from to 

determine typical costs and returns of the investment.  For example, if you wanted to 

determine the population wide optimal hurdle rate for adoption of center pivot irrigation 

in western Kansas, you would test the effectiveness of center pivots on randomly sampled 

farms in western Kansas to determine typical costs and returns of center pivot irrigation 

in the area.  Several of these ROA models are based primarily on the work done by Dixit 

and Pindyck titled Investment and Uncertainty (1994).  In their book, Dixit and Pindyck 

lay out a framework for determining the hurdle rate based on four values: the expected 

returns of the investment, the sunk cost of initiating the project, a risk adjusted discount 

rate of the opportunity cost of capital, and the variance of the expected returns of the 

investment.  This hurdle rate is then compared with the Marshallian investment trigger, 

which is the annual value needed to recoup the sunk cost of the investment.  The 

difference between these two values is equal to the value of postponing the investment.   

 

Determination of a population wide hurdle rate can be useful in a number of contexts.  

For example, Purvis et al. (1995) use ROA to estimate an uncertainty adjusted hurdle rate 

for the adoption of free stall dairy housing in Texas.  They use price and production 

datasets from early adopters to parameterize their model and estimate the cost of the free-

stall technology to be $996,200.  Based on this data, the authors find that the Marshallian 

investment trigger is $83,448 and the Net Present Value (NPV) of the investment is 

$145,695.  This result suggests that producers should adopt the new dairy stalls because 
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the NPV is greater than the Marshallian investment trigger.  The hurdle rate however is 

estimated to be $190,063, which is greater than the NPV indicating that producers are 

better off not adopting and waiting for conditions to improve.  The authors note that the 

free stall dairy housing technology, enhances social welfare.  Thus, given this contrary 

finding in order to encourage adoption, the authors suggest that state agencies should 

offer cost share for the capital investment equal to the difference between the NPV of the 

investment and the hurdle rate, $44,368.  In summary, this paper provides a thorough 

economic explanation for why adoption of this seemingly profitable technology was 

being postponed and how policy makers could encourage adoption. 

 

Tozer (2009) builds upon this work in the context of precision agricultural technologies 

(PATs), by applying this ROA framework to the adoption of variable rate fertilizer 

application in Australia. Tozer (2009) finds that the NPV of variable rate application 

exceeds the hurdle rate value, suggesting that adoption is likely to take place.  In 

contradiction to these results adoption of variable rate nitrogen fertilizer application has 

not been widespread in Australia (Say et al. 2018).  Several authors have presented 

explanations for why PATs as a whole are not being adopted, most of which have 

focused on access to PATs and user friendliness of PATs that might be creating barriers 

to adoption.  For example, Schimmelpfennig and Ebel (2016) postulate that producers are 

still in the process of determining which combination of PATs are best for operations 

with varying characteristics.  Others have examined links between producer 

characteristics and adoption, finding higher adoption among larger farms, irrigated farms, 
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and farms with more technologically literate producers (Bramley 2009, Castle and 

Lubben 2016).   

 

Tozer (2009) suggests that that the ROA model of variable rate technology may be 

inaccurate because it assumes that all machinery investment occurs during the first 

analysis period.  He suggests a need for investment timing to be considered in a 

stochastic dynamic model1.  Doing so will model decision-making in a way that 

accurately represents the conditions faced by producers in the real world. For example, 

we expect that most producers currently use a conventional uniform rate application 

approach and the decision to use variable rate technology is a decision to stop using the 

conventional system.  Assuming that sunk cost for the new and conventional technologies 

are similar and spread out across several time periods, like they are in the scenario 

presented by Tozer, we infer that the decision to invest in PATs is instead based upon the 

relative value of returns between the conventional technologies and PATs.  A stochastic 

dynamic model allows us to make these comparisons.   

 

Stochastic dynamic models have been used in the past to solve similar questions about 

investment decision-making.  Ekboir (1996) uses a stochastic dynamic model to describe 

capital investment behavior.  In this model, the producer possesses an initial level of 

capital.  The producer also has a desired level of capital that changes over time with 

changes in economic conditions to reflect the profit maximizing quantity of capital.  The 

producer however does not change levels of capital to the profit maximizing level of 

																																																								
1	Stochastic	dynamic	models	set	of	processes	designed	to	mimic	how	things	like	
prices	and	productivity	change	over	time	(Ross	2014)	
2	Grower-chosen	methods	refers	to	uniform	rate	application	methods	chosen	by	
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capital when desired capital changes due to the irreversible and risky nature of the 

investment.  Instead the producer waits until desired capital reaches some upper or lower 

bound such that frequent switching is avoided.  Ekboir describes these upper and lower 

bounds as functions of the investments’ technical and economic characteristics.  These 

bounds are similar to the optimal investment trigger in the sense that they represent the 

degree to which a producer should wait to ensure that their investment would be profit 

enhancing.  In that sense, Ekboir (1996) provides a framework to understand how to 

induce capital expansion in a manner to maximize profit and utility while ensuring that 

producers’ uncertainty is managed.  

 

While the context is slightly different, Ekboir’s methods for estimating the optimal upper 

and lower bounds translate well to a technology adoption problem. Therefore, we employ 

a stochastic dynamic model instead of model that resembles the work inspired by Dixit 

(1992), to estimate optimal adoption behavior.  This optimal investment trigger will 

represent the degree to which returns from an investment must be different from those 

associated with the current technology in order to maximize a producer’s utility.  This 

difference in returns will be dependent on the variability of each production method 

driven by the nature of the nitrogen application method as well as variability of external 

economic factors such as corn and nitrogen price.   

 

3.2 Prospect Theory and Technology Adoption 
 

Given the risk and uncertainty associated with prices and production outcomes when 

deciding to adopt a new technology, it is important to evaluate how producers risk 
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preferences influence the adoption decision. The importance of considering individual 

risk preferences when analyzing technology adoption has been highlighted by studies 

such as those by Feder et al. (1985), Liu (2013), and Anand et al. (2019). In the Feder et 

al. (1985) paper, the authors summarize previous work done on technology adoption and 

argue that farmers’ technology adoption decisions are based upon subjective 

probabilities.  Furthermore, they argue that an estimate of a producer’s level of risk 

aversion can sometimes be used to explain technology adoption.  Liu (2013) uses survey 

information and field experiments to elicit risk preferences from Chinese farmers in the 

context of adoption of Bt Cotton.  She finds that these risk preferences have a significant 

impact on adoption and that risk preferences represented by Prospect Theory is more 

suited to explaining producer adoption decisions than expected utility theory.  Anand et al 

(2019) applies prospect theory to their work on the adoption of bioenergy crops.  They 

find a significant difference in the adoption of different bioenergy crops when 

incorporating a prospect value function into the decision process.    

 

There are multiple reasons as to why Prospect Theory is appropriate for the study of 

technology adoption given producer risk and uncertainty. First, there is strong evidence 

that decision-making agents in both agricultural and non-agricultural contexts behave 

with respect to a reference point which is in keeping with how Prospect Theory is 

defined.  Experimental research to confirm the existence of this effect was pioneered by 

Kahneman and Tversky (1979) and since has been replicated in several other contexts 

(Tversky and Kahneman 1992, Gneezy and Potters 1997, Thaler et al. 1997, Schmidt and 

Traub 2002, Liu 2013).  Empirical analyses outside of laboratory settings also provide a 
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strong case for the existence of non-linear probability weighting and loss aversion among 

decision-making agents, two key aspects of prospect theory (Thaler & Benartzi 1995, 

Bowman et al. 1999, Genesove & Mayer 2001, Liu 2013).  Thaler & Benartzi (1995) 

shows that decisions between stocks and bonds can be modeled according to prospect 

theory such that the predicted outcomes match observed values of behavior.  Bowman et 

al. (1999) find evidence of behavioral asymmetries in response to income losses and 

gains.  Specifically, the authors found in datasets from several countries that when wages 

change, consumption changes more sharply in response to losses opposed to gains.  

Genesove & Mayer (2001) find evidence in the housing market by looking at differences 

in pricing when sellers have either made a loss or a gain on their original purchase price.    

 

While the existence of these behavioral tendencies may not be debated, it remains 

difficult to apply these ideas to some economic settings due to confusion over precise 

definitions of gains, losses, and reference points (Barberis 2013).  Barberis (2013) gives 

the example of a stockholders portfolio.  Should stocks be viewed individually or as an 

aggregate? Should gains be viewed in reference to their purchase price or in reference to 

their expected values?  There is certainly much room for interpretation and this is no 

different when thinking about technology adoption.  For example, when a producer 

considers purchasing a new seed variety do they compare gains and losses from just the 

sale of the crop or do they consider gains and losses at the operation level?  Do they use 

the previous year’s profitability as a reference point or do they look back at several 

years?  Do they evaluate the potential outcomes from the new seed variety in isolation 

and ignore other relevant risks?  In our case specifically we will need to decide what 
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portion of a producers portfolio we focus on and what the reference point is for this 

portion of the producers portfolio. 

 

To decide which portion of the producer’s portfolio we should focus on we look to the 

work of Barberis, Huang, & Thaler (2003) on narrow framing.  In this paper the authors 

study decision making under risk and find that the concept of narrow framing, in which 

individuals analyze risks in isolation from other risks they already face, was the best 

explanation of individual decision making in the experiments they conducted.  Barberis, 

Huang, & Thaler (2003) use this result to argue that individuals analyze risks individually 

rather than as a whole.  In the context of crop canopy sensor adoption this implies that 

producers would only be concerned with gains and losses attributable to crop canopy 

sensors, therefore we use information about the gains and losses from nitrogen expenses 

and corn yield to define our decision making process.   

 

The work of Koszegi and Rabin (2006, 2007, 2009) provides some guidance for thinking 

about where the values needed to evaluate a decision according to prospect theory come 

from.  Kosezegi and Rabin argue that reference points are rational expectations based on 

individual recent outcomes.  Work done on reference points used by agricultural 

producers corroborates the idea that reference points are based on individual recent 

outcomes (Mattos & Zinn 2016, Tonsor 2018).  Tonsor (2018) concludes that in cattle 

markets, producers use their best-experienced outcome as a reference point in their 

decision-making.  This literature leads us to believe that the profit reference point that 
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corn producers use when making decisions is a value somewhere between the maximum 

profit they’ve previously received and their average profit. 

4  Methods and Data 
	
4.1 Farmer’s Optimization Problem   
 

4.11 Expected Utility Theory 
	
The farmer solves the following optimal switching problem: 

 
𝑚𝑎𝑥
!

 𝐸 𝜎!!!
!

!!!

𝑈 𝜙 𝑡 + 𝐸 𝜎!!!𝑈 𝜙 𝑡
!

!!!!!

 (1) 

 

where k is the decision variable (the time period at which the farmer adopts the SENSE 

technology), U(·) is the utility function, φ(t) is the profit in year t. Let Y(t) and N(t) 

denote yield and nitrogen application rate in year t. Further, let PC(t) and PN(t) denote the 

price of corn and nitrogen in year t, respectively. Then, profit in year φ(t) can be written 

as follows.  

 𝜙 𝑡 = 𝑃! 𝑡 ×𝑌 𝑡 −  𝑃!(𝑡)×𝑁(𝑡) (2) 

 

The distribution of both prices stay the same over the years as the adoption of SENSE 

technology should not affect the market prices. Their joint distribution is denoted as 

h(Pc,PN). The joint distribution of yields and nitrogen rate differ before and after the 

adoption of the SENSE technology. Let f(Y,N) and g(Y,N) represent the joint distribution 

of yield and nitrogen before and after the adoption of the SENSE technology, 

respectively. Then, the fully explicit version of the optimal switching problem 

represented by equation (1) can be written as follows: 
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 𝑚𝑎𝑥
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+ 𝜎!!!
!

!!!

𝑈 𝑃! 𝑡 ×𝑌 𝑡 −  𝑃! 𝑡 ×𝑁 𝑡 ℎ 𝑃! ,𝑃! 𝑔 𝑌,𝑁 ∙ 𝑑𝑃! ∙ 𝑑𝑃! ∙ 𝑑𝑌 ∙ 𝑑𝑁 

(3) 

 

4.12 Prospect Theory 
	
When we assume that the producer behaves according to prospect theory, the following 

optimization problem is solved   

 
𝑚𝑎𝑥
!

 𝐸 𝜎!!!
!

!!!

𝑈 𝜙 𝑡 + 𝑃 𝜎!!!𝑈 𝜙! 𝑡 + 𝜙! 𝑡
!

!!!!!

 (4) 

 

where φ+(t) is the utility from gains in year t and φ-(t) is the utility from losses in year t.  

If the producer reaps a gain φ+(t), the losses are replaced by zero and similarly upon 

incurring a loss of φ-(t), gains are replaced by zero in the objective function.  Gains and 

losses are determined in relation to the reference point f, which represents a producer’s 

rational expectation of profit.  The degree to which producers are averse to losses is 

denoted λ and α represents the degree to which gains and losses become weighted more 

or less according to their distance from the reference points.  Then, the two components 

that determine utility in year t φ+(t) and φ-(t) can be written as follows.  

 𝜙! 𝑡 = 𝑓 + 𝑃! 𝑡 ×𝑌 𝑡 −  𝑃! 𝑡 ×𝑁 𝑡 ! − 𝑓
!

 (5) 

 

 𝜙! 𝑡 = 𝑓 − 𝜆 𝑓 − 𝑃! 𝑡 ×𝑌 𝑡 −  𝑃! 𝑡 ×𝑁 𝑡 ! !
 (6) 

 

Then, the fully explicit version of the optimal switching problem subject to a prospect 

value function represented by equation (4) can be written as follows: 
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 𝑚𝑎𝑥
!

 𝜎!!!
!

!!!

𝑈 𝑃! 𝑡 ×𝑌 𝑡 −  𝑃! 𝑡 ×𝑁 𝑡 ℎ 𝑃! ,𝑃! 𝑓 𝑌,𝑁 ∙ 𝑑𝑃! ∙ 𝑑𝑃! ∙ 𝑑𝑌 ∙ 𝑑𝑁

+ 𝜎!!!𝑈 𝑓 + 𝑃! 𝑡 ×𝑌 𝑡 −  𝑃! 𝑡 ×𝑁 𝑡 ! − 𝑓
!

!

!!!!!

+ 𝑓 − 𝜆 𝑓 − 𝑃! 𝑡 ×𝑌 𝑡 −  𝑃! 𝑡 ×𝑁 𝑡 ! !
ℎ 𝑃! ,𝑃! 𝑔 𝑌,𝑁 ∙ 𝑑𝑃! ∙ 𝑑𝑃! ∙ 𝑑𝑌 ∙ 𝑑𝑁 

(7) 

 

4.2 Data and Model Parameterization 
 

 

In order to model commodity prices and to select the most appropriate one for our model 

we consider two criteria.  First, the model should produce a schedule of prices consistent 

with general fluctuations in corn price.  We are not interested in the effects of specific 

events, but in typical price movements because it is unlikely that events such as the 

ethanol boom are incorporated into a producer’s expectations about prices.  In other 

technology adoption studies we find a similar approach to modeling future prices (Anand 

et al. 2019). 

 

4.21 Corn and Nitrogen Price  
 

Corn and Nitrogen prices are key parameters that determine the profitability of the two 

nitrogen application options. We will model the joint distribution of corn and nitrogen 

prices change (h(PC, PN)) over time in two steps. (Schnitkey 2016). We first model corn 

price using the Ornstien-Uhlenbeck (OU) process, and then, we use the relationship 

between corn and nitrogen prices developed in Schnitkey (2016) to find nitrogen price. 
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The OU process has been used to model commodity prices in previous studies of 

financial decision (Schwartz 1997, Schwartz and Smith 2000, Duffie 2010). The OU 

process is considered suitable for modeling commodity prices as it can model mean-

reversion. Mean reversion refers to a stochastic process in which values tend to revert 

back to a long-term mean, and some commodity prices are considered to follow such a 

process (Schwartz 1997).  The OU process is written mathematically as follow: 

 

 𝑑𝑆! =  𝛷 𝜇 − 𝑆!!! 𝑑𝑡 + 𝜎𝑑𝑊! (8) 

 

where Φ is the mean reversion rate, µ is the long term mean, σ is a measure of variability, 

and St is the value of the stochastic process in time period t, in our case this is the value 

of corn price during time period t. To calibrate these parameters, we use historical corn 

price data from the USDA’s ARMS database on commodity prices.  We use a sample of 

monthly prices at the national level from 2014 to 2018.  This time period is chosen 

because it overlaps with the Project SENSE test period and leads up to the present.  This 

allows the results of our simulation to be compared with the results gathered by project 

SENSE and tested against observed rates of adoption going forward.  Table 2 shows the 

results of the Augmented Dickey Fuller (ADF) test of unit root. We use this test to 

confirm that the ARMS data on corn prices exhibits mean reverting behavior in order to 

justify use of an OU process in simulating the corn prices in our model.  
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Table 2: ADF Test for Mean Reversion 

 

 

While we cannot reject the null hypothesis of no drift (Type 1), we do when the test 

allows for it with a lag of 0 (Type 2).  By rejecting the null hypothesis in Type 2 of our 

test, the result indicates that our sample of corn price data is trend stationary and can be 

used to parameterize our utility maximization model.   

OLS estimate of the three parameters using the USDA ARMS data are Φ = 0.2969,  µ = 

3.4765, and σ = 0.1279. Given these parameters, we are able to create simulated corn 

price schedules that will be used in our simulation.  To generate nitrogen price schedules, 

we plug the corn price values into the following yield-nitrogen price equations developed 

by Schnitkey (2016) that estimates per ton nitrogen price (PN) as a function of per bushel 

corn price (PC) and per cubic thousand feet natural gas price (z).   

 

𝑃!  =  −255.14+ 123.83𝑃! + 42.72𝑧 (9) 

 

Equation 9 is a simple linear model created by Schnitkey (2016) using datasets from the 

USDA’s ERS and ARMS as well as the Energy Information Agency (EIA).  Both corn 

price and natural gas price are used as explanatory variables in determining nitrogen 
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price.  Corn price is included because a higher price of corn spikes the demand for 

nitrogen, increasing its price.  Natural gas price is included because it is an important 

component in the manufacture of nitrogen fertilizer production.  The r-squared of the 

model is 0.88.  Lastly, to incorporate the impact of varying natural gas prices into our 

equation for determining nitrogen price we use a simple normal distribution based on a 

natural gas historical price dataset provided by the EIA.   

 

4.22 Yield-Nitrogen relationship  
 

Our goal in this section is to create the joint distributions f(Y,N) and g(Y,N) of field 

characteristics that match observations made in the field trials carried out by Project 

SENSE.  The field trials carried out by Project SENSE tested grower-chosen2 and sensor-

based3 nitrogen application rates for their profitability.  These trials were carried out from 

the years 2015 to 2017 at 52 sites in south central Nebraska.  Some sites participated in 

each of the three years, while some sites only participated once.  Results from field trials 

were recorded annually.  For each application treatment two variables were recorded: 

corn dry yield4 in bushels per acre and pounds of nitrogen per acre. 

 

																																																								
2	Grower-chosen	methods	refers	to	uniform	rate	application	methods	chosen	by	
producers.		While	producers	may	have	used	different	methods	in	determining	the	
constant	rate	of	N	application,	such	as	historical	rates	or	soil	sampling,	they	each	
applied	N	at	a	constant	rate	across	their	operation.			
3	Sensor	based	nitrogen	application	used	equipment	provided	by	the	University	of	
Nebraska-Lincoln	to	apply	nitrogen	on	an	as	needed	basis	across	the	field	then	
averaged	to	find	a	per	acre	application	rate.		
4	Dry	yield	is	the	weight	of	corn	grain	when	the	moisture	content	is	equal	to	15%.	
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To model field characteristics as stochastic variables that capture the range and variation 

exhibited by the two application practices during field trials, we employ a two-step 

process.  First we select mean values for the amount of nitrogen applied per acre and 

yield per acre from a theoretical distribution that matches the distribution observed in 

field trials.  Second, we allow the values for each of these two variable to vary annually 

based on the year to year variation observed within field trial variations.   

 

Intuitively we expect these variables to be strongly correlated to one another.  Calculating 

the Pearson correlation coefficients (presented in Table 3), we find that the amount of 

nitrogen applied using each application method is significantly correlated with each 

other, as well as the yield using each application method.  Based on this information we 

find it appropriate to assign values of field characteristics for each iteration using a 

multivariate distribution.   

Table 3: Field Characteristic Correlation Test 
Item  Pearson 

Correlation 
Coefficient 

p-value 

SENSE-N SENSE-Y 0.050 0.736 
SENSE-N Grower-N 0.294 0.044 
SENSE-Y Grower-N -0.047 0.749 
SENSE-N Grower-Y -0.054 0.717 
SENSE-Y Grower-Y 0.950 0.000 
Grower-N Grower-Y 0.086 0.561 
 

These distributions are presented in Figure 1 which indicate that the distributions of 

applied N are symmetric and the yield distributions are skewed.  Testing the project 

SENSE data for skewness yields the values in Table 4.  They indicate distributions for 

applied N are symmetric, while distributions of yield are moderately skewed.  



	 21	

 

Figure 1: Density Distribution of Observed Yield (bu/acre) & N-Rate (lbs/acre) 

 

 

Table 4: Moment Coefficient of Skewness in Observed Field Characteristics 
Item Skewness 
SENSE - N 0.307 
SENSE - Y -0.925 
Grower - N 0.507 
Grower - Y -1.839 
 

To account for the distributions asymmetry we employ a multivariate skewed normal 

distribution.  This distribution is similar to that of a multivariate normal distribution, with 

the addition of a skewness term.  We use the R package ‘sn’ to parameterize a 

distribution from the SENSE observations that we can sample from.  While there may be 

no appropriate test to compare the observed and sampled distributions as a whole, we can 

compare the individual elements of using Kolmogorov-Smirnov tests.  Results from these 
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tests are presented below and indicate how well the sampled data matches the observed 

data.   

 

Table 5 Two-sample Kolmogorov-Smirnov test 
Item D P-Value 
SENSE - N 0.090 0.846 
SENSE - Y 0.098 0.758 
Grower - N 0.086 0.884 
Grower - Y 0.150 0.245 
 

The D value in Table 5 indicates the maximum distance between the cumulative 

distribution functions of the two samples.  

 

The multivariate distribution of yields and N-rates matches observed data well from 

Project SENSE plots, but in order to produce a schedule of yields and N-rates that 

matches the values a single producer faces we need to consider the variation within 

subjects of observed field data.  Unfortunately not every observation has multiple years.  

Out of 41 there are about 10 operations that only did the study one year and the rest did 

two or three.  Since this data is somewhat limiting, we take a simple approach to 

estimating annual change using another multivariate normal distribution.   
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Figure 2: Cumulative Distribution Functions of Observed and Sampled Field 

Characteristics 

 

 

To create a multivariate distribution of annual changes we restructure our dataset to now 

show us the annual changes in each field characteristic value.  For each plot that has more 

than one year of observed data we find the average absolute value of annual change.  

Since we only have three years of data we cannot assume any type of trend and assume 

that these annual changes are just as likely to be positive, as they are negative giving rise 

to an increasing or decreasing trend.  Therefore, we use the variance and covariance of 

the absolute values of change to create a multivariate normal distribution to describe the 

typical magnitudes in annual variation.   
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Table 6: Field Characteristic Annual Change Correlation Test 
Item              cor            p 
SENSE-N  SENSE-Y -0.164 0.557 
SENSE-N Grower-N -0.174 0.534 
SENSE-Y Grower-N -0.000 0.999 
SENSE-N Grower-Y -0.394 0.145 
SENSE-Y Grower-Y 0.865 0.000 
Grower-N Grower-Y 0.042 0.879 
 

Using these two distributions we can now simulate a set of potential field characteristics, 

or “states of the world”, that a producer might encounter.  We start by first drawing from 

our skewed normal distribution to select a set of baseline characteristics that a producer 

faces.  Then in each time period we randomly select a change value from our second 

distribution.  Finally, we repeat this process for the number of time periods included in 

our simulation.  

 

4.3 Monte Carlo Simulation  
 

Faced with an uncertain choice between maintaining uniform rate nitrogen application 

and switching to crop canopy sensor based nitrogen application, corn producers select the 

time period they switch (k) based on an investment trigger that maximizes their utility 

given the uncertainty.  While producers may do this heuristically, we estimate the optimal 

investment trigger by conducting a Monte Carlo simulation of the producer’s decision-

making process.  By evaluating the optimal investment trigger in multiple simulation 

iterations and finding the mean of these iterations we will estimate a population wide 

optimal investment trigger that leads producers to maximize their chances of obtaining 

the highest level of profit possible.  We will evaluate this optimal investment trigger 
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under both Expected Utility Theory and Prospect Theory and test to see if there is a 

difference in optimal behavior between the two utility functions.   

 

To estimate a producer’s optimal investment trigger, we employ a method called 

stochastic approximation.  The idea of stochastic approximation was first presented by 

Robbins and Monro in 1951 as an approach to solving optimization problems subject to 

noise.  Kiefer and Wolfowitz augmented this process in 1952 to solve for a maximum 

using a gradient like process of finite steps.  Their work forms the theoretical basis of our 

model and provides a novel approach to finding the optimal switching point.  One reason 

for employing stochastic approximation is because it does not force us to find a 

theoretical solution.  This allows us to easily test and modify our functional form to 

account for changes in stochastic processes or value functions.  Solving a stochastic 

approximation problem requires a significant number of computations and to do this we 

employ a Monte Carlo simulation. 

 

Using the distributions h(Pc,PN),  f(Y,N) and g (Y,N) we simulate to produce a set of 

potential states of the world that a producer might face. We repeat this process a total of n 

times so that we have a diverse array of potential situations a producer might face.  With 

these states of the world defined, we find the economic returns for each n using a given 

investment barrier.  We begin by finding the profit a producer will receive in a given time 

period using the traditional uniform rate and the new variable rate SENSE application 

method.  Producer profit in time point t using method m is given by 
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 𝜋!(𝑡) = 𝑌!(𝑡)×𝑃!(𝑡)− 𝑁!(𝑡)×𝑃!(𝑡) (10) 

 

The profit calculated in equation (10) will define the value that producers receive in time 

period t. However, the decision about what production method to use will be made using 

an expected value for time period t based on field and price information from time period 

t-1 as is common in Markov models of decision making (Sonnenberg and Beck 1993).  

Equation 11 & 12 below show the parameters for determining the expected value in a 

given time period, where m=0 is the grower method and m=1 is the SENSE method. 

 

 𝐸 𝜋! 𝑡 =  𝑌 𝑡 ×𝑃! 𝑡 − 1 − 𝑁 𝑡 ×𝑃! 𝑡 − 1 𝑓 𝑌,𝑁 𝑑𝑌𝑑𝑁 (11) 

 

 𝐸 𝜋! 𝑡 =  𝑌 𝑡 ×𝑃! 𝑡 − 1 − 𝑁 𝑡 ×𝑃! 𝑡 − 1 𝑔 𝑌,𝑁 𝑑𝑌𝑑𝑁 (12) 

 

By creating a schedule of expected values for both Uniform and SENSE application, we 

can observe the time period that a producer chooses to adopt SENSE application, given 

their investment criteria which is explained later in equation 15.  Using this approach, 

their income in each time period is given by the following. 

 

 𝜋(𝑡) = 𝜋!(𝑡) , 𝐸(𝜋!(𝑡))  ≤ 𝐸(𝜋!(𝑡))
𝜋!(𝑡), 𝐸(𝜋!(𝑡))  > 𝐸(𝜋!(𝑡))

 (13) 

 

If producers were able to switch back and forth between technologies, Equation 13 would 

describe their profit in each time period.  Due to the irreversible nature of the investment 
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in consideration, if a producer adopts the SENSE technology, profit in the subsequent 

time periods is defined using the SENSE field characteristics.  To account for this 

irreversibility we add additional notation in Equation 14 to define profit subject to 

irreversibility.  

 

 
𝜋∗ (𝑡) =

𝜋(𝑡) , 𝜋∗ (𝑡 − 1)  ≠  𝜋!(𝑡 − 1)
𝜋!(𝑡), 𝜋∗ (𝑡 − 1) =  𝜋!(𝑡 − 1)

 (14) 

 

Solving equation 13 for each t will give us a schedule of producer profits by time period.   

 

4.31 Optimal Investment Subject to Expected Utility Theory 
 

In order to find the optimal investment trigger under expected utility theory we must 

evaluate profits using different investment barriers.  To do this we must evaluate 

Equations 12 & 13 with an additional term j.  This term j will represent each investment 

barrier we are interested in, taking on a finite sequence of values j = 1.00, 1.01, 1.02…j.  

Intuitively what this means is that expected profit using SENSE application must be 

greater than expected profit using uniform application by a factor of j for investment to 

occur.  Equations 15 & 16 show modified versions of Equations 13 & 14 with the 

inclusion of our j term.   

 

 
𝜋!(𝑡) =

𝜋!!(𝑡) , 𝐸(𝜋!(𝑡))  ≤ 𝐸(𝜋!(𝑡)) × 𝑗
 𝜋!!(𝑡), 𝐸(𝜋!(𝑡))  > 𝐸(𝜋!(𝑡)) × 𝑗 (15) 

 



	 28	

 
𝜋!∗(𝑡) =

𝜋!(𝑡) , 𝜋!∗(𝑡 − 1)  ≠  𝜋!!(𝑡 − 1)
𝜋!!(𝑡), 𝜋!∗(𝑡 − 1) =  𝜋!!(𝑡 − 1)

 (16) 

 

 

Once we evaluate equations 15 & 16 for each t & j, we have a set of vectors that describe 

the producer’s returns subject to each j.  The process is then repeated such that another 

hypothetical producer is created using the same parameters set forth.  We then find the 

producers returns using each investment barrier again until we have a number of profit 

schedules that sufficiently captures all likely outcomes a producer is to face.  

 

From here we take the Kiefer-Wolfowitz gradient approach5 to solve for the investment 

barrier that maximizes producer utility.  Let j be a value from the finite sequence 

investment barriers and n be the number of iterations in the simulation.  Equations 17 thru 

18 below show the process for finding the average value of returns under each j. 

 

 
𝑥!" =  

1
𝑡 𝜋!"(𝑡)

!

!!!

 (17) 

 

 
𝑥! =  

1
𝑛 𝑥!"

!

!!!

 (18) 

 

																																																								
5	The	Kiefer-Wolfowitz	gradient	approach	is	a	method	to	stochastically	estimate	the	
maximum	of	a	function	when	the	exact	specification	of	the	function	is	unknown.		
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This approach provides us with the average value of returns using each investment 

trigger.  By finding the maximum value of 𝑥!, we solve our optimization problem and 

find the optimal investment trigger (j`) for our given set of producers.  This process is 

described by equation 19.   

 

 𝑗`  = 𝑚𝑎𝑥
!

𝑥! (19) 

 

4.32 Optimal Investment Subject to Prospect Theory 
 

In order to find a producer’s optimal switching point subject to loss aversion we use a 

prospect theory value function put forth by Kahneman and Tversky (1992) to evaluate 

gains and losses using the alternative technology.  Let f represent the reference point used 

by the producer which is obtained from their production history, λ be the coefficient of 

loss aversion, and α be the coefficient of risk aversion.   

 

 𝜋′!(𝑡) =
𝑓 + (𝜋!(𝑡)− 𝑓)!  , 𝑓 ≤  𝜋!(𝑡)

𝜋!(𝑡)− 𝜆 𝑓 − 𝜋!(𝑡) ! , 𝑓 >  𝜋!(𝑡)
 (20) 

 

Using this prospect value function, we re-evaluate the value of returns generated by 

equation 16.  If the returns in a given time period were generated using uniform rate 

application technology, they remain unchanged.  If the returns in a given time period 

were generated using SENSE application their value is evaluated according to Equation 

20.  This process is described by equation 21 below.  
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𝜋!`(𝑡) =

𝜋!(𝑡) , 𝐸(𝜋!(𝑡))  ≤ 𝐸(𝜋!(𝑡))×𝑗
𝜋!` (𝑡), 𝐸(𝜋!(𝑡))  > 𝐸(𝜋!(𝑡))×𝑗

 (21) 

 

We again apply our Kiefer-Wolfowitz approach to find the optimal investment barrier.  

This is done by repeating equations 17 thru 19 using the prospect theory altered values.  

This allows us to determine the value of waiting when we assume that producers’ risk 

preferences are in accordance with prospect theory rather than expected utility theory.    

 

4.4 Numerical Solution 
 

With the parameters for our price and field characteristics defined by the equations and 

distributions developed in section 3.2 we can now run our simulation.  The simulation is 

composed of 1,000 iterations with t=45 individual time periods occurring in each 

iteration.  The process for each iteration is as follows.  Using the methods from the 

previous section schedules of corn price, nitrogen price, SENSE nitrogen quantity, 

SENSE yield, grower nitrogen quantity, and grower yield are created.  The expected 

values of yield and nitrogen using either method is equal to the value selected as the 

producers baseline productivity, before these values are allowed to vary annually.  Using 

the price and grower values from the time periods t(1:15) we calculate the returns per 

acre during this time period.  We use these values to establish a grower’s expectations 

about uniform rate application.  These values are what we use to determine the reference 

point used in each iteration.  Based on the literature we reviewed that tries to empirically 

estimate reference points used by agricultural producers (Mattos and Zinn 2016, Tonsor 
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2018) we select a reference point equal to the third quartile of the values calculated in this 

section.   

 

Once the reference point has been selected we next determine the producers switching 

behavior using 51 different investment barrier levels (j).  We chose to use 51 barrier 

levels because testing any more or less only increases the computational strain without 

any significant change in the value of the result.  The barriers we evaluate range from 

0.75 to 1.25 with an interval of 0.01.  Values below 0.75 and above 1.25 aren’t tested 

because adoption is either complete or nonexistent respectively at these investment 

barriers.  For each level of j we record the time periods during t(16:30) where the use of 

SENSE application is more profitable than Grower application, given the investment 

barrier.  Since investment is irreversible, we are interested in the first time period in 

which expected profits using SENSE application are greater than expected profits using 

Grower application, given the investment barrier. 

 

With this information we can now create a vector of the producer’s annual per acre profit 

for each j.  If during the time periods t(16:30) the producer does not switch, the vector 

will contain producer revenue for time periods t(16:30) using only the grower method.  If 

the producer does switch, the revenue before the time period of the switch t* will be 

determined using the Grower variables.  After the switch the revenue from the next 15 

time periods will be determined using the SENSE variables for N application rate per 

acre and yield per acre.  The reason we use this amount of time periods is because the 

technology experts estimate that the lifespan of the investment is 15 years.  The result 
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will be a vector containing the revenue in each time period pre-switch and the revenue in 

15 time periods post-switch.   

 

Next we create an alternate set of vectors where the returns from investment are 

subjective values of utility characterized by Prospect Theory.  We use the initial estimates 

made by Kahneman and Tversky (1992) for the loss aversion parameter (λ = 2.25) and 

the risk aversion parameter (α = 0.88).  Work done by Liu (2013) has shown that these 

parameters may be affected by producer characteristics, however previous authors such 

as Anand et al. (2019) have used the values of λ and α estimated by Kahneman and 

Tversky for simplicity.  Using the previously described Value function in Equation 1.10, 

we evaluate the value of returns in each time period such that returns using the grower 

method are unchanged, but the value of returns using the SENSE technology are now 

reference dependent.  To determine a producers reference point we establish a 

distribution of their returns across growing seasons, then select the value of the upper 

quartile as the reference point.    

 

Now that we have a vector for each j for both EUT and PT formulations, we find the 

mean value of returns for each j.  If we were looking at only this iterations optimal 

investment barrier, we would select the barrier with the greatest average return.  Since we 

are looking for a general optimal investment barrier we store the average returns for each 

barrier in each iteration and repeat this process for a total of 1,000 iterations.  With this 

data stored we find the average optimal investment barrier subject to each value function.  

This value represents the optimal investment barrier given a producers risk preferences.   
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5  Results and Implications 
 

5.1 Optimal investment barrier under expected utility and prospect theory 
	
We first conduct simulation for the case where investment is irreversible and the 

investment lifespan is 15 years.  Figure 2 below shows the distribution of optimal 

switching points.  If producers are not loss averse and risk preferences are characterized 

by expected utility theory, we find the mean optimal investment barrier to be 1.00.  If 

producers are loss averse and Prospect Theory characterizes their decision making under 

risk, we obtain the mean optimal investment barrier to be 1.03. 

 

Figure 3: Optimal Investment Timing Using Expected Utility Theory and Prospect 

Theory 
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Thus, a producer’s investment barrier is higher under Prospect Theory, a finding that has 

been obtained in the non-adoption of new seed varieties (Liu 2013) and in the financial 

context of the equity premium puzzle (Benartzi & Thaler 1995).  A two-sample Wilcoxon 

test with Continuity Correction indicates that the two investment barriers obtained under 

the two theoretical specifications are statistically significantly different from each other at 

the 1% level of significance. Thus, the manner in which decision making under risk is 

theoretically modeled and empirically represented has significant bearing on the rate at 

which a new technology is expected to be adopted by a group of stakeholders, here corn 

producers.  

 

5.2 Varying Costs 
 

Up to this point we have assumed that the equipment necessary to operate crop canopy 

sensors have a per acre cost equal to that of uniform rate application.  This may be the 

case for producers who use high clearance applicators for their regular uniform rate 

application or producers who’s costs are distributed widely across their operation.  

Whatever the case, it is likely that for some producers the cost of equipment needed to 

operate crop canopy sensors is greater than that of the equipment needed to operate using 

a uniform rate approach.  Therefore, we estimate the optimal adoption triggers under both 

Expected Utility Theory and Prospect Theory when the equipment needed to use crop 

canopy sensors is $10 more expensive per acre.   

 

When the price of the equipment needed to operate crop canopy sensors is greater by $10  

we observe that if producers are not loss averse and risk preferences are characterized by 
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expected utility theory, the mean optimal investment barrier is 1.00.  If producers are loss 

averse and Prospect Theory characterizes their decision making under risk, we obtain the 

mean optimal investment barrier to be 1.03.  These values are the same as the condition 

where uniform and sensor application are the same price.  They are also found to be 

different from one another using a two-sample Wilcoxon test with Continuity Correction.  

While the optimal investment behavior may not be different, we find that increasing the 

price has implications for diffusion that are discussed in the following section.   

 

5.3 Rate of Diffusion of Crop Canopy Sensors 
	
Using the same parameters of determining corn prices, nitrogen prices, and field 

characteristics that were used to determine the optimal investment trigger we estimate the 

rate of diffusion of crop canopy sensors, when producers use the computed optimal 

investment triggers. When producers behave according to their optimal investment 

barrier under expected utility, we would expect to see approximately 54% of corn 

producers to be using crop canopy sensors 15 years from the current period.  We choose 

to look at 15 years because this is the estimated lifespan of crop canopy sensors.  Using 

the barrier estimated under Prospect Theory we would expect 24% of the population to 

use SENSE application in 15 years. 

 

Under the assumption that crop canopy sensors are $10 more expensive per acre than 

uniform custom application we obtain a different outcome. When we use the optimal 

investment barrier according to expected utility theory we expect that around 37% of 

producers will use crop canopy sensors by the end of the 15 year time period.  Using the 
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optimal investment trigger according to prospect theory, we find that this value drops 

such that we only expect roughly 14% of producers to use crop canopy sensors by the end 

of the 15 year time period.  

Figure 4: Predicted Diffusion of SENSE Technology 

 

 

In Figure 4 we observe the predicted diffusion using both the investment barriers 

estimated according to Expected Utility Theory and Prospect Theory under conditions of 

equal cost and an additional $10 cost.  We see that both the additional cost of equipment 

and inclusion of loss aversion decrease the amount of adoption that is projected to occur.  

 

 

 



	 37	

5.4 Yield, Nitrogen Use, and Profit 
 

Potential adoption of crop canopy sensing technologies is likely to cause some reduction 

in N use among producers and alter the overall productivity of corn operations.  Using the 

same 15 year period of characteristics that we use to study diffusion, we can investigate 

different special cases to find the impacts on average per acre yield, nitrogen rate, and 

profit.  Table 7 shows the results for 7 different cases.  First we look at outcomes when 

producers only use crop canopy sensors regardless of investment barrier.  Next we look at 

outcomes when producers only use uniform application regardless of which option is 

more profitable for producers.  Then we look at three more cases when adoption is 

irreversible and producers employ investment barriers at 1.00, 1.06, and 1.11.  Finally we 

look at two cases of custom application using investment barriers of 0.94 and 1.06 as 

obtained previously.  

 

Table 7: Average Yield, N-Rate, and Profit during 15 Year Diffusion Period 

Special Case Yield (bu/acre) N-Rate (lbs/acre) Profit 
($/acre) 

Crop Canopy 
Sensor application 
Only 

221.11 159.66 717.79 

Uniform Rate 
Application Only  

222.98 188.33 715.19 

1.00 Investment 
Barrier  

223.69 
 

175.54 721.23 

1.03 Investment 
Barrier 

223.72 184.62 716.42 

1.00 Investment 
barrier with added 
cost  

223.98 181.12 717.01 

1.03 Investment 
barrier with added 
cost 

223.25 186.07 715.16 
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From the table we first see that yield remains similar in each case.  However with high 

year to year variability of required nitrogen rate and yield, and the choice of nitrogen 

application method predicated on the results of the previous year’s growing season this 

profit premium begins to make some sense.  A conclusion that we can draw from this 

finding is that producers are better off when they look at conditions over an aggregate of 

several years when making their decisions, rather than changing their application method 

when they see one bad year.   

 

In this table we also observe that risk preferences have a negative impact on the amount 

of profit received by producers.  In the case of equal costs we see that profit is $5less per 

acre on average when producers maximize utility according prospect theory compared to 

when they maximize utility according to expected utility. This result closely mirrors the 

equity premium puzzle presented by Mehra and Prescot (1988).  The equity premium 

puzzle describes the situation that despite stocks greatly outperforming bonds, many 

individuals still choose to invest in bonds.  Benartzi and Thaler (1993) explain this 

phenomena using prospect theory by showing that when the potential losses from 

investing in stocks are weighted more heavily, investors should prefer bonds.  In the 

context of crop canopy sensors, overweighting losses not only results in decreased profit, 

it also greatly increases average nitrogen use.   

 

Next, we observe that loss aversion has a positive impact on the amount of nitrogen 

applied by producers.  In the case of equal costs we see that on average 9 more pounds of 

nitrogen are applied per acre when producers maximize utility according prospect theory 
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compared to when they maximize utility according to expected utility.  This difference 

has extensive implications for environmental quality.  

 

Finally, we observe that additional equipment costs decrease the magnitude of differences 

between the Expected Utility case and the Prospect Utility case.  This is a result of less 

total producers switching to crop canopy sensors.   

 

6 Conclusion 
 

The results of our simulation indicate that the diffusion of crop canopy sensor technology 

will differ significantly based on the degree of irreversibility associated with the 

investment and the manner in which producers’ risk preferences are modeled – either on 

the basis of Expected Utility Theory or Prospect Theory.  As evidence grows to support 

the use of prospect theory to represent risk preferences in agricultural decision making 

contexts, it is more and more likely that ex ante technology adoption research will 

overestimate the speed and breadth of adoption among agricultural producers.  

Underestimation may lead to inefficient policy responses and overproduction among 

agricultural technology providers.  Whatever the difference may be for optimal 

investment timing between estimates using expected utility and prospect utility, the 

results of our simulation indicate that waiting for optimal investment conditions can 

increase both producer profit and utility.  This provides an economically centered 

explanation as to why agricultural producers to forgo adoption of a technology that 

improves long run farm profitability. 
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Taking irreversibility and risk preference into account may allow policymakers and 

private firms to increase adoption and decrease nitrogen runoff.  This may come in the 

form of changes in insurance policies that provide additional support to farmers who 

adopt crop canopy sensors.  Extension agents may encourage producers to evaluate long 

term gains rather than making decisions based on annual fluctuations.  Cost share 

programs may be a tool to increase adoption to desired levels.  Whatever the case may be 

it is made clear by our results that risk preferences and irreversibility present two factors 

which need to be considered when focusing on rate of technology adoption.   

 

It is important to note that the three main factors studied in this paper, uncertainty, 

irreversibility, and loss aversion, are unlikely to be the only forces driving non adoption 

or slow adoption rates.  Heterogeneity of cost structures, timing and credit constraints, 

and explanations using non-economic factors such as information availability, social 

networks, environmental motivations, and education should all be considered when 

studying technology adoption.  In the future, extensive ex post analysis of crop canopy 

sensor adoption should consider the items mentioned in this paragraph as well as 

uncertainty, irreversibility, and loss aversion.  In doing so we can test the predictive 

accuracy of these models and continually improve upon them.   
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