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Let R be a commutative, Noetherian, local ring and M a finitely generated R-module.

Consider the module of homomorphisms HomR(R/a,M/bM) where b ⊆ a are param-

eter ideals of M . When M = R and R is Cohen-Macaulay, Rees showed that this

module of homomorphisms is isomorphic to R/a, and in particular, a free module

over R/a of rank one. In this work, we study the structure of such modules of homo-

morphisms for a not necessarily Cohen-Macaulay R-module M .
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Chapter 1

Introduction

This thesis makes a contribution to the study of systems of parameters of local rings

and modules over local rings. The module of study is well understood in the Cohen-

Macaulay case, and so our focus is on the non-Cohen-Macaulay case. In this thesis

rings are assumed to be commutative. Throughout, a local ring is a Noetherian ring

with a unique maximal ideal. The notation (R,m) indicates that R is a local ring

whose maximal ideal is m.

In this chapter, we provide background material. The notion of a Cohen-Macaulay

module centers on two key invariants of the module: the dimension and the depth. In

Section 1.1 we will focus on the dimension of a module and its systems of parameters.

In Section 1.2 we will define the depth of a module and related terms. In Section 1.3

we will define the I-torsion functor and state some basic properties of the functor. In

Section 1.4 we will define Cohen-Macaulay modules and indicate some relationships

among the notions defined in the first two sections when a module is Cohen-Macaulay.

In Section 1.5 we discuss the basics of free modules. In Section 1.6 we will discuss

the historical background necessary for understanding where the main results fit into

the larger picture. Finally, in Section 1.7 we will state the main results.
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1.1 Dimension and Systems of Parameters

A prime ideal of a ring R is a proper ideal p such that R/p is an integral domain. An

equivalent characterization is that p is prime if whenever a, b ∈ R with ab ∈ p, then

a ∈ p or b ∈ p. A chain of prime ideals

p0 ( p1 ( · · · ( pn

is said to have length n. The supremum of the lengths of chains of primes in a ring

R is called the dimension of R, written dimR.

Example 1.1. Consider the ring R = kJx, yK/(x2, xym) for m ≥ 1. Since R/(x) ∼=

kJyK and R/(x, y) ∼= k are integral domains and (x) ( (x, y), we know that the

dimension of R is at least one. To show that the dimension is at most one, we will

use the notion of a system of parameters.

For a ring R, recall that the radical of an ideal I ⊆ R is the ideal

√
I := {a ∈ R | an ∈ I for some n ∈ N}.

If
√
I = m is a maximal ideal, we say that I is m-primary.

Let (R,m) be a local ring of dimension d. There exist sets of d elements which

generate m-primary ideals, but no ideal generated by fewer than d elements is m-

primary. For a proof of this fact, see [7, Theorem 13.4]. By Krull’s Height Theorem [7,

Theorem 13.5], the height of an ideal generated by r elements is no more than r, so no

ideal generated by fewer than d elements is m-primary. A set of d elements generating

an m-primary ideal is called a system of parameters. An ideal generated by a system

of parameters is called a parameter ideal. We sometimes refer to an element of a
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system of parameters as a parameter.

Example 1.2. With R = kJx, yK/(x2, xym) as in Example 1.1, consider the ideal (y).

Since x2 = 0 ∈ (y), both x and y are in
√

(y) so that m = (x, y) ⊆
√

(y). Thus

m =
√

(y), and (y) is an m-primary ideal. In Example 1.1 we saw dimR ≥ 1. Thus

R has dimension one and y is a parameter of R.

We now extend the notions of dimension and system of parameters to modules.

Let R be a ring and M an R-module. The dimension of M , denoted dimRM , can be

defined to be the dimension of the ring R/ annR(M) where

annR(M) := {r ∈ R | rM = 0}

is the annihilator of M . Since annR(R) = (0) we recover the original definition when

the module is the ring itself. More generally, the dimension of the R-module R/I is

equal to the dimension of R/I as a ring.

Example 1.3. With R = kJx, yK/(x2, xym) as in Example 1.1 and Example 1.2,

consider the R-module M = ymR. For r ∈ R, we know rym = 0 only if r ∈ (x).

As ym ∈ M this tells us that annR(M) ⊆ (x). Since xM = xymR = 0, we see that

annR(M) = {r ∈ R | r(ymR) = 0} = (x). We can now compute the dimension of M .

Since R/(x) ∼= kJyK, we obtain

dimRM = dim(R/ annR(M)) = dim(R/(x)) = dim(kJyK) = 1.

Next we introduce systems of parameters for modules. Let R be a local ring

and M an R-module of dimension d. There exist sets of d elements a1, . . . , ad ∈ R

such that M/(a1, . . . , ad)M has finite length, that is, such that M/(a1, . . . , ad)M is
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both an Artinian and a Noetherian R-module. However for any a1, . . . , an ∈ R with

0 ≤ n < d, the module M/(a1, . . . , an)M has infinite length. For a proof of this fact,

see [7, Theorem 13.4].

A set of d elements a1, . . . , ad ∈ R with the property that M/(a1, . . . , ad)M has

finite length is called a system of parameters of M . As in the ring case, an ideal gen-

erated by a system of parameters is called a parameter ideal of M , and we sometimes

refer to an element of a system of parameters as a parameter. The next proposition

says that this definition agrees with the earlier one when M = R.

Proposition 1.4. Let (R,m) be a local ring and I any ideal of R. The R-module

R/I has finite length if and only if the ideal I is m-primary.

Proof. Recall [1, Proposition 1.14]: The radical of an ideal is the intersection of the

prime ideals that contain it. Also, if A → B is a homomorphism of rings and L

is a B-module, then the length of L as an A-module is the same as its length as a

B-module. Indeed, the A-submodules of L are precisely the B-submodules of L.

As R is Noetherian, so is R/I. Thus R/I has finite length if and only if it is

Artinian. Since R is Noetherian, we know R/I is Artinian if and only if R/I has

dimension zero [1, Theorem 8.5]. Moreover, the ring R/I has dimension zero if and

only if the maximal ideal of R is the only prime ideal which contains I, which is

equivalent to m =
√
I by [1, Proposition 1.14].

Example 1.5. With R = kJx, yK/(x2, xym) and M = ymR as in Example 1.3, we

claim that {y} is a system of parameters for M , and moreover, M/yM = (ym)/(ym+1)

has length one. Indeed, the map

R/(x, y)→ (ym)/(ym+1)
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given by 1 + (x, y) 7→ ym + (ym+1) is R-linear and bijective. Thus M/yM is a simple

R-module, M/yM has length one, and y is a parameter of M .

The next proposition is useful for the induction technique used in the proofs of

the main results.

Proposition 1.6. Let R be a commutative, local, Noetherian ring and M an R-

module. If {a1, . . . , ai} is part of a system of parameters of M , then

dimR(M/(a1, . . . , ai)M) = dimR(M)− i.

Proof. Set M = M/a1M , d = dimR(M), and δ = dimR(M). We proceed by induction

on i. Since a1 is a parameter of M , we can find elements x2, . . . , xd ∈ R such that

M/(a1, x2, . . . , xd)M has finite length. Note that

M/(x2, . . . , xd)M ∼= M/(a1, x2, . . . , xd)M,

which has finite length. Hence dimR(M) ≤ dimR(M) − 1. For the other inequality,

let b2, . . . , bδ be a system of parameters of M . Then

M/(a1, b2, . . . , bδ)M ∼= M/(b2, . . . , bδ)M

has finite length, and it follows that dimR(M) ≤ dimR(M) + 1. This completes the

proof for the case i = 1.

For i > 1, note that {a2, . . . , ai} is part of a system of parameters of M . The
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induction hypothesis then gives

dimR(M/(a2, . . . , ai)M) = dimR(M)− (i− 1)

= dimR(M)− 1− (i− 1)

= dimR(M)− i.

This is the desired result, since M/(a2, . . . , ai)M ∼= M/(a1, . . . , ai)M .

1.2 Depth

Depth is another important invariant of a ring and its modules. Roughly speaking,

depth measures how many independent elements of the ring behave like indetermi-

nates. An element of a ring R is called a regular element on a module M if it is not

a zero-divisor on M . That is, r ∈ R is a regular element on M if rm 6= 0 for any

nonzero m ∈M .

A sequence r1, . . . , rn ∈ R is called a weak regular sequence on M if ri is a regular

element on M/(r1, . . . , ri−1)M for all i = 1, . . . , n. We take the ideal generated by

the empty set to be the zero ideal, so the condition for i = 1 is that r1 is a regular

element on M/(0)M = M . A sequence r1, . . . , rn ∈ R is a regular sequence on M if it

is a weak regular sequence on M and, in addition, M/(r1, . . . , rn)M 6= 0. A maximal

regular sequence is a regular sequence that cannot be extended to a longer one.

All maximal regular sequences which are contained in a fixed ideal have the same

length. See [7, Theorem 16.7] for a proof of this fact. For a local ring (R,m), the

depth of an R-module M is defined to be the length of any maximal regular sequence

contained in m.
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Example 1.7. With R = kJx, yK/(x2, xym) and M = ymR, as in Example 1.3 and

Example 1.5, we claim that R has depth zero and M has depth one.

First suppose p ∈ R is a non-unit. Then p = ax + by for some a, b ∈ R and

pxym−1 = ax2ym−1 + bxym = 0 in R. Thus the only regular elements of R are units;

however, if p ∈ R is a unit, then R/(p) = (0). Hence, there are no regular sequences

on R of length one and R has depth zero.

Next note that the element y ∈ R is a regular element on M . Moreover, M/yM =

(ym)/(ym+1) 6= 0, and so y is a regular sequence on M . We claim that y is a maximal

regular sequence. To see this directly, let r ∈ R. If r is a non-unit we may write

r = ax+ by for some a, b ∈ R. Then rym = axym + bym+1 ∈ (ym+1) = yM . Thus r is

not a regular element on (ym)/(ym+1) = M/yM . If r ∈ R is a unit, then (r, y) = R,

so M/(r, y)M = (0). Thus y is a maximal length regular sequence on M and M has

depth one.

1.3 The I-torsion Functor

Let R be a ring, I ⊆ R an ideal, M an R-module, and N ⊆ M a submodule. We

define (N :M I) to be the set

(N :M I) := {m ∈M | mI ⊆ N}.

This is a submodule of M . When M is clear from context, we sometimes write (N : I)

instead of (N :M I). When I = (a) is a principal ideal, we typically write (N :M a)

instead of (N :M (a)).

Let R be a commutative Noetherian ring, I ⊆ R an ideal, and M an R-module.
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The submodule ΓI(M) of M is defined as

ΓI(M) :=
∞⋃
i=1

(0 :M I i).

For any R-linear map f : M → N , we define ΓI(f) : ΓI(M)→ ΓI(N) to be the map

induced by f . This makes ΓI(−) a covariant functor from the category of R-modules

to itself.

Example 1.8. Consider the ring R = kJx, yK/(x2, xym) and module M = ymR from

Example 1.7. The ring R is local with maximal ideal m = (x, y). For i ≥ m it is clear

that mi = (yi) since all other degree i monomials in x and y are zero. It is also easy

to see that (0 :R mi) = (0 :R y
i) = (x) for i ≥ m and (0 :M mi) = (0 :ymR y

i) = (0) for

i ≥ m. Thus Γm(R) = (x) and Γm(M) = (0).

It is straightforward to verify the following properties of the I-torsion functor.

Proposition 1.9. Let R be a Noetherian ring, I ⊆ R an ideal, and M a finitely

generated R-module.

(a) The I-torsion functor, ΓI(−), is left exact; [5, Exercise 7.2].

(b) If J is an ideal of R with
√
J =
√
I, then ΓJ(M) ∼= ΓI(M); [5, Proposition 7.3].

Now suppose R is a local ring with maximal ideal m.

(c) M has depth zero if and only if Γm(M) 6= 0; [5, Remark 9.4].

(d) Γm(M) is Artinian; [5, Exercise 7.7].
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1.4 Cohen-Macaulay Modules

Let R be a ring. If M is a nonzero R-module, then there is an inequality:

depthR(M) ≤ dimR(M);

see [3, Proposition 1.2.12]. In the extremal case when the depth and dimension are

equal, or when M = 0, we say that M is Cohen-Macaulay. We say a local ring R is

Cohen-Macaulay if it is Cohen-Macaulay as a module over itself.

Example 1.10. In Example 1.3, Example 1.5 and Example 1.7, we saw that R =

kJx, yK/(x2, xym) has dimension one but depth zero and M = ymR has dimension

and depth both equal to one. Thus R is not a Cohen-Macaulay ring, but M is a

Cohen-Macaulay module.

Example 1.11. Consider the ring R = kJx, yK/(x2). It is easy to see that (x) ( (x, y)

is a chain of prime ideals of R and
√

(y) = (x, y) = m. Thus R has dimension one

and {y} is a system of parameters of R. To see that R has depth one, we need only

produce a regular element of R which is not a unit, since the depth cannot exceed the

dimension. It is clear that y is such a regular element and R is a Cohen-Macaulay

ring.

In the ring R = kJx, yK/(x2, xym), the parameter y is not a regular element as

R has depth zero. However, in the ring R = kJx, yK/(x2), the parameter y forms

a regular sequence on R. More generally, for any Cohen-Macaulay module M , the

elements a1, . . . , ai ∈ R are part of a system of parameters of M if and only if a1, . . . , ai

is a regular sequence on M [3, Theorem 2.1.2(d)].
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1.5 Free Modules

Let R be a ring. An R-module F is said to be free if there is a linearly independent

set of generators of F . That is, if there is a set of generators, {xα}α∈A, that satisfies

the property:
∑

α∈A rαxα = 0 if and only if rα = 0 for all α ∈ A. We say a set of

linearly independent generators is a basis of the free module F . If F is a nonzero free

R-module, then annR(F ) = (0). Indeed, let {xα}α∈A be a basis of the free module F .

If r ∈ R and rF = 0, then in particular rxα = 0 for all α ∈ A. However, by linear

independence of the basis, we know that rxα = 0 implies that r = 0.

Consider a commutative ring R, an ideal I, and an R/I-module M . Note that M

is also an R-module via the action r ·m := (r+I)m for any r ∈ R and m ∈M . Clearly

I ⊆ annR(M). If M is R/I-free then a ∈ annR(M) also implies a + I ∈ annR/I(M).

Equivalently, if M is a free R/I-module and a ∈ annRM , then a+ I = 0 in R/I, i.e.

a ∈ I. Thus for any R/I-module M we know annR(M) ⊇ I, and we have equality

when M is free.

However, there are non-free R/I-modules M such that annR(M) = I. For exam-

ple, for any ring R and proper ideals I ( J of R. The R/I-module M = R/I ⊕R/J

is not free, but annR(M) = I.

1.6 Rees’ Theorem

The purpose of this section is to provide historical context in order to see how the

main results fit into the larger picture. We begin by recalling Rees’ Theorem [9,

Theorem 2.1], as reformulated in the book by Bruns and Herzog [3, Lemma 1.2.4].

Theorem 1.12. Let R be a ring, M,N be R-modules, and x1, . . . , xn elements of
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annR(N) which form a weak regular sequence on M . Then

ExtnR(N,M) ∼= HomR(N,M/(x1, . . . , xn)M).

The following proposition is a direct consequence of Rees’ Theorem.

Proposition 1.13. Let R be a local ring, M a Cohen-Macaulay R-module of dimen-

sion d and b ⊆ a parameter ideals of M . Then

HomR(R/a,M/bM) ∼= M/aM.

Proof. Let a and b be generated by the systems of parameters {a1, . . . , ad} and

{b1, . . . , bd} respectively. Since M is Cohen-Macaulay, both a1, . . . , ad and b1, . . . , bd

are regular sequences onM [3, Theorem 2.1.2(d)]. Applying Theorem 1.12 to b1, . . . , bd

and then to a1, . . . , ad yields the following isomorphisms:

HomR(R/a,M/bM) ∼= ExtdR(R/a,M)

∼= HomR(R/a,M/aM)

∼= HomR/a(R/a,M/aM)

∼= M/aM.

This is the desired result.

When M = R is Cohen-Macaulay and b ⊆ a are parameter ideals of R, Proposi-

tion 1.13 says that we have the following isomorphism of R/a-modules:

HomR(R/a, R/b) ∼= R/a.
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That is, the module of homomorphisms is a free R/a-module of rank one, and hence

is indecomposable. Recently, K. Bahmanpour and R. Naghipour [2, Theorem 2.4]

proved the following converse of this statement.

Proposition 1.14. If R is not Cohen-Macaulay there exist parameter ideals b ⊆ a

such that the R/a-modules HomR(R/a, R/b) and R/a are not isomorphic.

The focus of this work is to study the structure of the module of homomorphisms

HomR(R/a,M/bM) when M is not Cohen-Macaulay and b ⊆ a are parameter ideals.

We focus on showing conditions under which HomR(R/a,M/bM) is decomposable

and conditions that imply HomR(R/a, R/b) is not a free R/a-module.

1.7 Main Results

In this section we state the main results and compare them to each other. This first

result is only for modules of dimension one and depth zero. We show that the module

HomR(R/aR,M/bM) is decomposable if the parameter b is chosen to be a multiple

of a sufficiently high power of the parameter a.

Theorem 1.15. [10, Theorem 3.1] Let (R,m) be a local ring, and M a nonzero

finitely generated R-module of dimension one and depth zero. Choose an integer n

such that mnM ∩ Γm(M) = (0). For any parameter a of M , and any parameter b of

M with b ∈ (an+1), the following R-module is decomposable:

HomR(R/aR,M/bM).

For higher dimensional modules, we also have a theorem to show that the module

HomR(R/a,M/bM) is decomposable; however, this result is weaker since it is not as
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explicit as the result for modules of dimension one.

Theorem 1.16. [10, Theorem 4.1] Let R be a local ring and M a finitely generated

R-module of dimension d. If M is not Cohen-Macaulay, then, for any system of

parameters a = a1, . . . , ad of M , there exist positive integers n1, . . . , nd such that the

following R-module is decomposable:

HomR(R/(a),M/(an1
1 , . . . , a

nd
d )M).

For a dimension one ring, we show that HomR(R/(a), R/(b)) is decomposable and

not a free R/(a)-module if the parameter a is chosen to be in a sufficiently high power

of the maximal ideal and the parameter b is a multiple of a2.

Theorem 1.17. [10, Theorem 3.3] Let (R,m) be a local ring of dimension one and

depth zero, and n an integer such that mn ∩Γm(R) = (0). For any parameter a in mn

and any parameter b in (a2), the R/(a)-module

HomR(R/(a), R/(b))

is decomposable and has a non-free summand.

For higher dimensional rings, we also have a theorem to show that HomR(R/a, R/b)

is decomposable and is not R/a-free; however, as was the case when comparing The-

orem 1.15 to Theorem 1.16, this result is weaker as it is less explicit than the result

for one dimensional rings.

Theorem 1.18. [10, Theorem 4.2] Let R be a local ring of dimension d. If R is

not Cohen-Macaulay, then for any system of parameters a1, . . . , ad of R, there ex-

ist integers n1, . . . , nd, N1, . . . , Nd ∈ N with Ni ≥ ni for i = 1, . . . , d such that the
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R/(an1
1 , . . . , a

nd
d )-module

HomR(R/(an1
1 , . . . , a

nd
d ), R/(aN1

1 , . . . , aNd
d ))

is decomposable and has a non-free summand.

Theorem 1.15 and Theorem 1.17 are for one dimensional rings and modules re-

spectively and are explicit in indicating when HomR(R/a,M/bM) is decomposable

and when it has a non-free summand. Theorem 1.16 and Theorem 1.18 are similar,

but for higher dimensional rings and modules.

In Chapter 2 we will state some preliminary results and prove the main results

stated in this section. In Chapter 3 we will provide examples in order to explore some

questions about the powers appearing in the main results.
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Chapter 2

Proof of Results

In this chapter we present proofs of our main results. In Section 2.1 we present some

preliminary results. Section 2.2 focuses on our results in dimension one. These results

are stronger and more explicit than those in Section 2.3, which focuses on our results

in higher dimensions.

2.1 Preliminary Results

In this section we include proofs of many of the results due to lack of adequate

references. Recall the support of an R-module, M , is defined to be

SuppR(M) := {p ∈ SpecR |Mp 6= 0}.

An R-module M is said to be faithful if annR(M) = 0. If M is a faithful R-

module, then dimRM = dimR. Indeed, by definition of faithful, annR(M) = 0. The

next two results are well-known.



16

Lemma 2.1. Let R be a ring, I ⊆ R an ideal of R, and M a finitely generated,

faithful R-module. Then SuppR(R/I) = SuppR(M/IM).

Proof. If p is a prime ideal of R such that p /∈ SuppR(R/I), then Ip = Rp. Thus

IpMp = RpMp = Mp so that p /∈ SuppR(M/IM).

For the other inclusion, suppose p is a prime ideal ofR such that p /∈ SuppR(M/IM).

Then Mp = IpMp. Nakayama’s Lemma [7, Theorem 2.2] gives the existence of an ele-

ment x ∈ Rp such that xMp = 0 and x−1 ∈ Ip. Say x−1 = a
t

with a ∈ I and t ∈ R\p.

Rewriting this gives x = 1+ a
t

or equivalently xt = t+ a
1
. As xtMp = t(xMp) = 0 then

(t+ a
1
)Mp = 0. As M is finitely generated, this means that there exists some s ∈ R\p

such that s(t+ a)M = 0. As M is a faithful R-module, s(t+ a) = 0 ∈ p. Since s /∈ p

this implies that t+ a ∈ p. Hence a /∈ p, since otherwise we would also have t ∈ p, a

contradiction. We have thus found an element a ∈ I \ p and so (R/I)p = 0 and hence

p /∈ SuppR(R/I).

Lemma 2.2. Let (R,m) be a local ring and M a nonzero finitely generated R-module.

Then SuppR(M) = {m} if and only if M has finite length.

Proof. First suppose that M has finite length. We’ll show SuppR(M) = {m} by

induction on the length of M . When M has length one, 0 ( M is a composition

series. In other words, M is a simple R-module, so is isomorphic to R/m. Since

AssR(R/m) = {m}, we know that AssR(M) = {m}. Since AssR(M) ⊆ SuppR(M)

and their minimal elements coincide [7, Theorem 6.5], we have that SuppR(M) = {m}

as well. Now suppose that M has length t and that every nonzero R-module of length

less than t has m as the only element of its support. Let

0 = M0 (M1 ( · · · (Mt−1 (Mt = M
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be a composition series of M . As m is the only maximal ideal of R, we know that

Mi/Mi−1 ∼= R/m for each i = 1, . . . , t. Consider the short exact sequence

0→Mt−1 →M →M/Mt−1 → 0.

We know that Mt−1 has length t − 1 and so SuppR(Mt−1) = {m}. Also, M/Mt−1 ∼=

R/m and so SuppR(M/Mt) = {m} as well. If p ∈ SuppR(M), either Mt−1 or M/Mt−1

is nonzero upon localization at p since localization is exact. Since this only holds for

p = m, we know that SuppR(M) = {m} as claimed.

Now suppose that SuppR(M) = {m}. This implies AssR(M) = {m}. We wish

to show that M has finite length. Since m ∈ AssRM , we may choose a nonzero

submoduleM1 ofM withM1
∼= R/m. ThusM has finite length submodules, and since

M is Noetherian, there exists a submodule M ′ maximal with respect to having finite

length. We wish to show M ′ = M . If not, then M/M ′ 6= 0 so that SuppR(M/M ′) =

{m}. As this implies m ∈ AssR(M/M ′), there is an injection R/m ↪→ M/M ′. We

thus have a submodule M ′′ ⊆ M with M ′′ ) M ′ and M ′′/M ′ ∼= R/m. As the length

of M ′′ is thus one more than the length of M ′, we have arrived at a contradiction.

Hence M ′ = M and M has finite length.

The next result is also well known. We provide a proof for completeness.

Proposition 2.3. Let a1, . . . , ad be elements of R and a1, . . . , ad their images in

R/ annR(M). Then {a1, . . . , ad} is a system of parameters of M if and only if

{a1, . . . , ad} is a system of parameters of the ring R/ annR(M).

Proof. Note {a1, . . . , ad} is a system of parameters of M as an R-module if and only

if {a1, . . . , ad} is a system of parameters of M as an R/ annR(M)-module. We may
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thus assume annR(M) = 0. The desired result is thus that {a1, . . . , ad} is a system

of parameters of M if and only if {a1, . . . , ad} is a system of parameters of R.

Suppose {a1, . . . , ad} is a system of parameters of M and write a = (a1, . . . , ad), so

M/aM has finite length as an R-module. By Lemma 2.2 we know SuppR(M/aM) =

{m}. Lemma 2.1 then tells us that SuppR(R/a) = {m}. By Lemma 2.2 we have that

R/a has finite length and a = (a1, . . . , ad) is a parameter ideal of R.

For the other direction, suppose {a1, . . . , ad} is a system of parameters of R and

write a = (a1, . . . , ad) so that R/a has finite length. As the length of R/a as an

R-module is the same as its length as an R/a-module, we know that R/a is both an

Artinian and Noetherian ring. (Of course, all Artinian rings are Noetherian [1, The-

orem 8.5].) As M/aM is a finitely generated R/a-module, it must be both Artinian

and Noetherian as well, and hence have finite length as an R/a-module. The length

of M/aM as an R-module is the same as its length as an R/a-module, and hence

M/aM has finite length as an R-module as well. Thus a = (a1, . . . , ad) is a parameter

ideal of M .

The integer n appearing in the next result plays a key role in the main results.

Lemma 2.4. Let (R,m) be a local ring and M a finitely generated R-module. There

exists an integer n such that mnM ∩ Γm(M) = (0).

Proof. Since Γm(M) is Artinian (see Proposition 1.9), the descending chain of sub-

modules

(mM ∩ Γm(M)) ⊇ (m2M ∩ Γm(M)) ⊇ · · ·

must stabilize. That is, there is some n ∈ N such that

mn+iM ∩ Γm(M) = mnM ∩ Γm(M)
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for all integers i ≥ 0. Thus

mnM ∩ Γm(M) =
⋂
i≥n

(miM ∩ Γm(M))

⊆
⋂
i≥1

miM

= (0).

The last equality is by the Krull Intersection Theorem [7, Theorem 8.10].

Remark 2.5. In fact, for any finite-length submodule L ⊆ M , we have L ⊆ Γm(M),

and hence mnM ∩ L = (0) where n is the integer of Lemma 2.4.

The next result is in the spirit of [8, Prop 4.7.13]. We include a proof in order to

obtain specific bounds on the powers of a in this special case.

Proposition 2.6. Let R be any commutative ring, M an R-module, and a, b ∈ R.

Then, for arbitrary positive integers p ≤ q ≤ r, we have an equality

(barM : ap) = ar−q(baqM : ap) + (0 :M ap).

Proof. First let x ∈ (barM : ap). Then apx = bary for some y in M . Now

ap(x− bar−py) = 0,

so that x− bar−py ∈ (0 :M ap). Additionally,

bar−py = ar−q · baq−py ∈ ar−q(baqM : ap).
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We now have

x = bar−py + (x− bar−py) ∈ ar−q(baqM : ap) + (0 :M ap).

For the other inclusion, it is clear that (0 :M ap) ⊆ (barM : ap), so it suffices to

prove ar−q(baqM : ap) ⊆ (barM : ap). To that end, let ar−qy ∈ ar−q(baqM : ap) with

y ∈ (baqM : ap). We can write apy = baqw for some w in M . Thus we may rewrite

ap · ar−qy as follows:

apar−qy = ar−qapy

= ar−qbaqw

= barw,

which is in barM . Thus ar−q(baqM : ap) + (0 :M ap) ⊆ (barM : ap) as desired.

The next result will be applied in Section 2.3 in the situation where I = (a1, . . . , ad)

is a parameter ideal and J is of the form (an1
1 , a2, . . . , ad) for a positive integer n1.

Lemma 2.7. Let R be a Noetherian ring, J ⊆ I proper ideals of R with
√
I =
√
J ,

and N an R-module. If HomR(R/J,N) is decomposable, then so is HomR(R/I,N).

Proof. Suppose that HomR(R/J,N) = X⊕Y where X and Y are nonzero R-modules.

Since Hom and ⊗ are adjoint functors, there are isomorphisms

HomR(R/I,N) ∼= HomR((R/I)⊗R (R/J), N)

∼= HomR(R/I,HomR(R/J,N))

∼= HomR(R/I,X ⊕ Y )

∼= HomR(R/I,X)⊕ HomR(R/I, Y ).
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By symmetry, it suffices to show that HomR(R/I,X) 6= 0. It is clear that JX = (0)

since X ⊆ HomR(R/J,N). Choose p ∈ AssRX and note that J ⊆ p. Indeed, we

know JX = (0) and any p ∈ AssR(X) has the form p = ann(x) for some x ∈ X.

Since Jx = (0), we obtain that J ⊆ p. Since
√
J =

√
I, one has I ⊆ p, so there are

maps

R/I � R/p ↪→ X.

The composition of these maps is nonzero, and so HomR(R/I,X) 6= (0) as desired.

Remarks 2.8. 1. The hypothesis that J ⊆ I is necessary. For any pair of ideals

I, J , if we let N = R/I, then

HomR(R/I,N) = HomR(R/I,R/I) ∼= R/I

is indecomposable. However, it is possible that HomR(R/J,N) is decomposable.

For instance, let k be a field and consider the ring R = kJx, yK/(x2, xy) along

with the ideals I = (y2), J = (y) of R. Here
√
I =
√
J = (x, y) but J 6⊂ I. In

Example 3.2 we will show

HomR(R/J,R/I) = HomR(R/(y), R/(y2)) ∼=
(y)

(y2)
⊕ (x, y2)

(y2)
.

2. The hypothesis that
√
I =
√
J is also necessary. For example, let k be a field,

R = kJx, y, zK/(x2, xyz), N = R/(y2), I = (y, z), and J = (y). We have J ⊆ I,

but
√
J = (x, y) ( (x, y, z) =

√
I. Using this notation we obtain

HomR(R/J,N) ∼=
(y2) : y

(y2)
=

(y)

(y2)
⊕ (xz, y2)

(y2)
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decomposes but

HomR(R/I,N) ∼=
(y2) : (y, z)

(y2)
=

(xy, y2)

(y2)

is cyclic, and hence indecomposable.

This next result will be used in Section 2.3 in an induction argument.

Lemma 2.9. Let R be a local ring and M an R-module of dimension d ≥ 2. If M is

not Cohen-Macaulay, then for any system of parameters a1, . . . , ad of M , there exist

positive integers i and s such that M/asiM is not Cohen-Macaulay.

Proof. If some ai is M -regular, then M/aiM is not Cohen-Macaulay, so we may

assume that each ai is a zero-divisor on M . Suppose, by way of contradiction, that

M/as1M is Cohen-Macaulay for each s ≥ 1. Then a2, . . . , ad is a regular sequence

on M/as1M for all integers s ≥ 1. In particular a2 is M/as1M -regular for all integers

s ≥ 1. We claim this implies a2 is M -regular. Indeed, suppose a2m = 0 for some

m ∈ M . Then a2m = 0 in M/as1M for all integers s ≥ 1, so that m ∈ as1M for all

integers s ≥ 1. By the Krull Intersection Theorem [7, Theorem 8.10], we have m = 0

and hence a2 is M -regular which gives the desired contradiction.

The next example, noticed by Ryan Karr, shows that even when every element in

a of the parameters is a zero-divisor, M may have positive depth.

Example 2.10. Consider the ring R = kJx, y, zK/(x2, xyz). It is clear that the rings

R/(x, y, z) ∼= k, R/(x, y) ∼= kJzK, and R/(x) ∼= kJy, zK are all domains and so the

dimension of R is at least 2. Since x is nilpotent, we have x ∈
√

(y, z) so that√
(y, z) = (x, y, z) = m. Hence the dimension of R is 2 and {y, z} is a system of

parameters of R. Both y and z are zero-divisors in R since xz · y = xy · z = 0 and

xz, xy 6= 0 in R.
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To see that R has positive depth, note that AssRR = {(x), (x, y), (x, z)}. As

y − z /∈ (x) ∪ (x, y) ∪ (x, z) we know that it is a regular element on R [7, Theorem

6.1(ii)]. We saw in Example 1.7 that R/(y − z) ∼= kJx, yK/(x2, xy2) has depth zero.

Hence y − z is a maximal length regular sequence on R and R has depth one. Thus

we have found a ring of positive depth where the system of parameters consists only

of zero-divisors.

Note that both R/(y) and R/(z) are Cohen-Macaulay rings of dimension one in

this example, but that R/(yn) and R/(zn) have dimension one and depth zero for all

integers n ≥ 1.

The next example shows that for an arbitrary parameter a of a non-Cohen-

Macaulay module, M , it is possible that M/asM is Cohen-Macaulay for all s. Hence,

we cannot strengthen Lemma 2.9 to say that for any parameter a of a non-Cohen-

Macaulay module M , there is an integer s such that M/asM is non-Cohen-Macaulay.

Example 2.11. Consider the ring R = kJx, y, zK/(x2, xy). It is clear that the rings

R/(x, y, z) ∼= k, R/(x, y) ∼= kJzK, and R/(x) ∼= kJy, zK are all domains and so the

dimension of R is at least two. Since x is nilpotent, x ∈
√
I for every ideal I of R.

Thus,
√

(y, z) = (x, y, z) is the maximal ideal of R. Hence R has dimension two and

{y, z} is a system of parameters of R. As z is a regular element of R which is in the

maximal ideal, R must have at least depth one. However, R/(z) ∼= kJx, yK/(x2, xy)

has depth zero; see Example 1.7. Thus z is a maximal length regular sequence and

R has depth one.

Next, we consider the quotients Sn := R/(yn) = kJx, y, zK/(x2, xy, yn) for n ∈ N.

We claim these quotients are all Cohen-Macaulay rings of dimension one. Indeed,

Sn/(x, y, z)Sn ∼= k and Sn/(x, y)Sn ∼= kJzK are both domains, so Sn has dimension at

least one for all n. Since
√

(y)Sn = (x, y, z)Sn for all n ∈ N we have that {y} is a
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system of parameters for Sn. Thus dimSn = 1 for all n. To see that Sn has depth

one, we simply need to note that z is a regular element in the maximal ideal of Sn.

2.2 Dimension One

We start the proofs of the main results with those for modules of dimension one

and depth zero since we are able to obtain stronger bounds in this case. We show

HomR(R/aR,M/bM) decomposes if the parameter b is chosen to be in a sufficiently

high power of the ideal generated by an arbitrary parameter a. Recall:

Theorem 1.15. [10, Theorem 3.1] Let (R,m) be a local ring, and M a nonzero

finitely generated R-module of dimension one and depth zero. Choose an integer n

such that mnM ∩ Γm(M) = (0). For any parameter a of M , and any parameter b of

M with b ∈ (an+1), the following R-module is decomposable:

HomR(R/aR,M/bM).

Remark 2.12. The integer n in the statement exists by Lemma 2.4. Note that n ≥ 1

because Γm(M) 6= (0); see Proposition 1.9.

Proof of Theorem 1.15. Set S := R/ annR(M), and let (¯) denote the image in S.

Then a and b are parameters of M as an S-module. Moreover there is an R-module

isomorphism

HomS(S/aS,M/bM) ∼= HomR(R/aR,M/bM).

By replacing R with S, we may thus assume that M is a faithful R-module.

Write b = can+1. Since M is faithful, we have
√

(a) = m (see Proposition 2.3)
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and so

(0 :M a) ⊆ Γ(a)(M) = Γm(M).

Thus we know

(0 :M a) ∩ canM ⊆ Γm(M) ∩mnM = (0). (2.1)

By Proposition 2.6, with p = q = 1 and r = n+ 1, we have

(can+1M : a) = an(caM : a) + (0 :M a). (2.2)

We now claim that

an(caM : a) = canM.

Indeed, it is clear that canM ⊆ an(caM : a). For the reverse inclusion, let x be in

an(caM : a) and write x = anm for some m ∈ (caM : a). We have am = cam′ for

some m′ ∈M . Then

x = anm = an−1 · am = canm′ ∈ canM.

Equation (2.2) is thus equivalent to

(bM : a) = canM + (0 :M a). (2.3)

Next we claim that

can+1M = canM ∩
[
(0 :M a) + can+1M

]
. (2.4)

It is clear that can+1M ⊆ canM ∩ [(0 :M a) + can+1M ]. For the other inclusion, let x
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be in canM ∩ [(0 :M a) + can+1M ], and write

x = cany = z + can+1w

for some y, w ∈M and z ∈ (0 :M a). Then

z = cany − can+1w

∈ (0 :M a) ∩ canM = (0) by (2.1).

Equation (2.4) follows. Now there are isomorphisms

HomR(R/aR,M/bM) ∼=
(bM : a)

bM

∼=
canM + (0 :M a)

can+1M
by (2.3)

∼=
canM

can+1M
⊕ (0 :M a) + can+1M

can+1M
by (2.4).

All that remains to prove is that both summands are nonzero.

If the summand on the left were zero, then canM = (a) ·canM so that canM = (0)

by Nakayama’s Lemma. This would be a contradiction as can+1 = b is a parameter

of M .

If the summand on the right were zero, then

(0 :M a) ⊆ can+1M.

By Equation (2.1) we would then have

(0 :M a) = (0 :M a) ∩ can+1M = (0).
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This would also give a contradiction as depthRM = 0. Thus HomR(R/aR,M/bM)

is decomposable, as desired.

When R is a Cohen-Macaulay ring, we know from Proposition 1.13 that the R/a-

module HomR(R/a, R/b) ∼= R/a is not only indecomposable, but also free. When R

is one-dimensional and not Cohen-Macaulay, we can prove that in addition to being

decomposable, this module will be non-free if the parameters are chosen to be in

sufficiently high powers of the maximal ideal. In comparing this to Theorem 1.15 we

see that the requirements for showing HomR(R/a, R/b) is not a free R/a-module are

greater than those required to show that it is decomposable since the integer n in the

two theorems is the same when M = R. Recall:

Theorem 1.17. [10, Theorem 3.3] Let (R,m) be a local ring of dimension one and

depth zero, and n an integer such that mn ∩Γm(R) = (0). For any parameter a in mn

and any parameter b in (a2), the R/(a)-module

HomR(R/(a), R/(b))

is decomposable and has a non-free summand.

Remark 2.13. Again, the integer n in the statement exists by Lemma 2.4 and must

be positive since Γm(R) 6= (0); see Proposition 1.9.

Proof of Theorem 1.17. We will first prove that the module decomposes. Both the

proof of this fact and the decomposition obtained are similar to those found in the

proof of Theorem 1.15. Write I = Γm(R). For any x ∈ mn, we know (x) ∩ I = (0)

and hence xI = (0). If x ∈ mn is also a parameter, then we know
√

(x) = m and so

Γ(x)(R) = I, and (0 : x) = I as well. To see that (0 : x) = I, note that
√

(x) = m
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and xI = 0 imply

I ⊆ (0 : x) ⊆ Γ(x)(R) = I,

whence (0 : x) = I.

Let a ∈ mn and b ∈ (a2) be parameters and write b = ca2. Applying Proposi-

tion 2.6 with p = q = 1 and r = 2, we obtain the equality

((ca2) : a) = a((ca) : a) + (0 : a). (2.5)

We now note that a((ca) : a) = (ca). We may thus rewrite Equation (2.5) as

((b) : a) = (ca) + I. (2.6)

Next we wish to show that

(ca2) = (ca) ∩
[
I + (ca2)

]
. (2.7)

The inclusion ⊆ is clear. For the other inclusion, let x ∈ (ca) ∩ [I + (ca2)] and write

x = rca = s+ r′ca2 for some r, r′ ∈ R and s ∈ I. Then

s = rca− r′ca2

∈ (a) ∩ I

⊆ mn ∩ I = (0).

Thus s = 0 and x = r′ca2 ∈ (ca2). This gives the existence of the following isomor-
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phisms of R/(a)-modules:

HomR(R/(a), R/(b)) ∼=
((b) : a)

(b)

∼=
(ca) + I

(ca2)
by (2.6)

∼=
(ca)

(ca2)
⊕ I + (ca2)

(ca2)
by (2.7).

Next we show that both summands are nonzero.

If the summand on the left were zero, then Nakayama’s Lemma would imply that

ca = 0, a contradiction as ca2 = b is a parameter and hence nonzero.

If the summand on the right were zero, then I ⊆ (ca2) so that

Γm(R) = I = I ∩ (ca2) ⊆ I ∩ (a) = (0),

a contradiction as the depth of R is zero (see Proposition 1.9).

We now show that the summand on the left, that is, (ca)/(ca2), is not a free

R/(a)-module. To that end, recall that I ∩ (a) = (0), but I 6= (0), so we can choose

an element y ∈ I \ (a). We know ya = 0 since aI = (0). In particular, yca ∈ (ca2).

Thus y + (a) is a nonzero element of

annR/(a)

(
(ca)

(ca2)

)
,

and hence (ca)/(ca2) is not free as an R/(a)-module.

2.3 Higher Dimensions

In higher dimensions, we can also prove a decomposition theorem. Recall:
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Theorem 1.16. [10, Theorem 4.1] Let R be a local ring and M a finitely generated

R-module of dimension d. If M is not Cohen-Macaulay, then, for any system of

parameters a = a1, . . . , ad of M , there exist positive integers n1, . . . , nd such that the

following R-module is decomposable:

HomR(R/(a),M/(an1
1 , . . . , a

nd
d )M).

Proof. As in the proof of Theorem 1.15, we may reduce to the case that M is a

faithful module. We proceed by induction on d, the case d = 1 being covered by

Theorem 1.15.

Assume, now, that d ≥ 2. By Lemma 2.9, we can find some positive integer

i ≤ d and a positive integer ni such that M/ani
i M is not Cohen-Macaulay. We may

harmlessly assume i = 1. Set

R := R/(an1
1 ), M := M/an1

1 M, and a := (a2, . . . , ad).

Then a is a parameter ideal of M . Since M has dimension d − 1 and is not Cohen-

Macaulay, by induction there are positive integers n2, . . . , nd such that the R-module

U := HomR(R/a,M/(a2
n2 , . . . , ad

nd)M)

is decomposable. Since there is an isomorphism

U ∼= HomR(R/(an1
1 , a2, . . . , ad),M/(an1

1 , a
n2
2 , . . . , a

nd
d )M),

we apply Lemma 2.7, with N = M/(an1
1 , . . . , a

nd
d )M , I = (a1, . . . , ad), and J =

(an1
1 , a2, . . . , ad), to obtain the existence of the desired decomposition.
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Recall the result below, which is a version of Theorem 1.17 for rings of arbitrary

dimension.

Theorem 1.18. [10, Theorem 4.2] Let R be a local ring of dimension d. If R is

not Cohen-Macaulay, then for any system of parameters a1, . . . , ad of R, there ex-

ist integers n1, . . . , nd, N1, . . . , Nd ∈ N with Ni ≥ ni for i = 1, . . . , d such that the

R/(an1
1 , . . . , a

nd
d )-module

HomR(R/(an1
1 , . . . , a

nd
d ), R/(aN1

1 , . . . , aNd
d ))

is decomposable and has a non-free summand.

Proof. We proceed by induction on d.

For d = 1, we choose n such that mn∩Γm(R) = (0) and set n1 and N1 to be n and

2n, respectively. Theorem 1.17 then gives the desired decomposition and existence of

a non-free summand.

Now suppose that d ≥ 2. By Lemma 2.9, we can find integers i and ni such that

R/(ani
i ) is not Cohen-Macaulay. We may harmlessly assume i = 1. Set S := R/(an1

1 )

let (¯) denote the image in S. Then a2, . . . , ad is a system of parameters of S and, by

induction, there exist integers n2, . . . , nd, N2, . . . , Nd such that the S/(a2
n2 , . . . , ad

nd)-

module

U := HomS(S/(a2
n2 , . . . , ad

nd), S/(a2
N2 , . . . , ad

Nd))

is decomposable and has a non-free summand. Note that

S/(a2
n2 , . . . , ad

nd) ∼= R/(an1
1 , . . . , a

nd
d )
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and

S/(a1
N2 , . . . , ad

Nd) ∼= R/(an1
1 , a

N2
2 , . . . , aNd

d ).

Setting N1 = n1 we then have

U ∼= HomR(R/(an1
1 , . . . , a

nd
d ), R/(aN1

1 , . . . , aNd
d )),

and this is decomposable and has a non-free summand.
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Chapter 3

Examples

Choosing b = at in Theorem 1.15 gives HomR(R/aR,M/atM) is decomposable for

all integers t ≥ n + 1. Similarly, if a is a parameter of R, Theorem 1.17 says that

HomR(R/(at), R/(aT )) is decomposable and has a non-free summand for t ≥ n and

T ≥ 2t. Thus, these theorems provide lower bounds sufficient to show that the module

is decomposable and not free. One natural question to ask is whether or not these

bounds are optimal, that is, are there smaller values of t and T that will also cause

these modules to be decomposable and have non-free summands.

Theorem 1.16 and Theorem 1.18, which are for higher dimensional rings and

modules, say there exist integers ηi, ni, and Ni such that both

A := HomR(R/a,M/(aη11 , . . . , a
ηd
d )M)

and

B := HomR(R/(an1
1 , . . . , a

nd
d ), R/(aN1

1 , . . . , aNd
d ))

are decomposable and B has a non-free summand. These statements are not explicit

about the powers which will work; however, the proofs indicate a method for itera-



34

tively choosing the integers to be sufficiently large so that the modules will decompose

and B will have a non-free summand. For d ≥ 2, examples seem to indicate that

HomR(R/a, R/(an1
1 , . . . , a

nd
d ))

decomposes for all ni ≥ N with N chosen to be sufficiently large. However, Exam-

ple 3.6 shows that Theorem 1.15 is not strong enough to use the induction technique

in Theorem 1.16 to prove the existence of such an integer N . So the question remains:

Can we find bounds on the powers of the parameters that guarantee the modules A

and B above are decomposable and B has a non-free summand?

The purpose of this chapter is to explore this question by way of examples. In

particular, we focus on the structure of the R/a-module HomR(R/a, R/b) for concrete

examples of R, a, and b.

Let us take M = R in Theorem 1.16. Our first example shows that sometimes

HomR(R/(a1, . . . , ad), R/(a
n1
1 , . . . , a

nd
d ) ∼= R/(a1, . . . , ad)

even when R is not Cohen-Macaulay and at least one of the ni’s is greater than one.

Example 3.1. Let R = kJx, yK/(x2, xy2). This ring has dimension one and depth

zero as was shown in Examples 1.2 and 1.7. Consider the parameter y of R. Let

r ∈ R and write r using coset notation:

r = r0 + r1x+ r2y + r3xy + r4y
2 + r5y

3 + · · ·+ (x2, xy2)

with with ri ∈ k. Looking at

ry = r0y + r1xy + r2y
2 + r3xy

2 + r4y
3 + r5y

4 + · · ·+ (x2, xy2)
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we see that ry ∈ (y2) ⊂ R if and only if r0 = r1 = 0. This happens exactly when

r ∈ (y) ⊂ R. Thus

HomR(R/(y), R/(y2)) ∼=
(y2) :R y

(y2)
=

(y)

(y2)
∼= R/(y).

The second isomorphism is given by ry + (y2)←[ r + (y).

The next example shows that the bound in Theorem 1.15 is close to optimal.

Example 3.2. Let R = kJx, yK/(x2, xym). This ring has dimension one and depth

zero as was shown in Example 1.2 and Example 1.7. Consider the parameter y of

R = kJx, yK/(x2, xym) and set

Ut := HomR(R/(y), R/(yt)) ∼=
(yt) : y

(yt)
.

We will show Ut is cyclic (and hence indecomposable) for t ≤ m and decomposable

for t > m. For any r ∈ R we may write r in coset notation:

r =
∞∑
i=0

riy
i +

m−1∑
i=0

r′ixy
i + (x2, xym)

with ri, r
′
i ∈ k. In this notation

ry =
∞∑
i=0

riy
i+1 +

m−2∑
i=0

r′ixy
i+1 + (x2, xym). (3.1)

Let t ≤ m. We know that ry ∈ (yt) ⊂ R if the only nonzero terms of the sums in

(3.1) are those with i+ 1 < t. So ry ∈ (yt) ⊂ R if and only if ri = r′i = 0 for i < t−1.
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This gives that r ∈ ((yt) :R y) if and only if

r =
∞∑

i=t−1

riy
i +

m−1∑
i=t−1

r′ixy
i + (x2, xym).

That is, r ∈ ((yt) :R y) if and only if r ∈ (yt−1) ⊂ R. Hence Ut ∼= (yt−1)/(yt) is cyclic.

Now let t > m. Since xym = 0 we now have that ry ∈ (yt) if and only if the only

nonzero terms in (3.1) are those with in the first sum with i+ 1 < t. This gives that

ry ∈ (yt) if and only if

r =
∞∑

i=t−1

riy
i + r′m−1xy

m−1 + (x2, xym).

That is, r ∈ ((yt) :R y) if and only if r ∈ (yt−1, xym−1). Since t > m we know xyt−1 = 0

in R. As kJx, yK has unique factorization, we have (yt−1) ∩ (xym−1, yt) = (yt) in R.

Thus

Ut ∼=
(yt−1, xym−1)

(yt)
∼=

(yt−1)

(yt)
⊕ (xym−1, yt)

(yt)

is decomposable for all t > m.

Note that mi = (yi) for i ≥ m+ 1. For i ≥ m+ 1 and r ∈ R we have that ryi = 0

if and only if r ∈ (x) and so

Γm(R) =
∞⋃
i=1

(0 : mi) =
∞⋃

i=m+1

(x) = (x).

Moreover mi ∩Γm(R) = (0) precisely when i ≥ m+ 1 and so Theorem 1.15 gives only

that Ut decomposes for t ≥ m + 2. Since our computations showed that Ut actually

decomposes for t ≥ m+1, the bound obtained in Theorem 1.15 is, at worst, one away

from a tight bound.

Before we present the next example, we recall the following well-known result:
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Proposition 3.3. [6, Proposition 3.1, Theorem 3.7] Let R be a ring and M an R-

module of finite length. The non-units of the non-commutative ring EndR(M) form

a two-sided ideal if and only if M is indecomposable.

In particular, this means that for parameter ideals a, b of an R-module, M , the

module U := HomR(R/a,M/bM) is indecomposable if and only if the non-units of

EndR(U) form a two-sided ideal.

The next example shows that it is possible that the module HomR(R/a, R/b) is

neither cyclic nor decomposable. It also shows that the bound in Theorem 1.15 may

be quite far from optimal.

Example 3.4. Consider the parameter y2 of R = kJx, yK/(x2, xym) for m ≥ 3. Set

Ut := HomR(R/(y2), R/(yt)).

We claim that Ut is


cyclic, if t < m+ 1,

indecomposable, but not cyclic, if t = m+ 1

decomposable, if t > m+ 1.

(3.2)

For small values of t, this is easily seen to be cyclic (and hence indecomposable).

If t = 0, then

Ut = HomR(R/(y2), R) ∼= (0) : y2 = (xym−2)

is cyclic. When t = 1, we have that

Ut = HomR(R/(y2), R/(y)) ∼=
(y) : y2

(y)
= R/(y)
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is also cyclic. When t = 2, then

Ut = HomR(R/(y2), R/(y2)) ∼=
(y2) : y2

(y2)
= R/(y2)

is also cyclic. For what follows, we’ll focus on the case that t ≥ 3 and the representa-

tion of Ut as
(yt) : y2

(yt)
. We will also use the following notation. Let r ∈ R and write

r in coset notation:

r =
∞∑
i=0

aiy
i +

m−1∑
i=0

bixy
i + (x2, xym). (3.3)

In this notation

ry2 =
∞∑
i=0

aiy
i+2 +

m−3∑
i=0

bixy
i+2 + (x2, xym). (3.4)

Suppose that 3 ≤ t < m + 1. We show that Ut is cyclic for all such values of t.

We have that ry2 ∈ (yt) if and only if the only nonzero terms of (3.4) are those in

either sum with i + 2 ≥ t. This means that ai = bi = 0 for i = 0, 1, . . . , t − 1. As

t− 2 ≤ m− 2 this gives that ry2 ∈ (yt) if and only if

r =
∞∑

i=t−2

aiy
i +

m−2∑
i=t−2

bixy
i + (x2, xym).

That is, r ∈ ((yt) : y2) if and only if r ∈ (yt−2). Thus, whenever 3 ≤ t < m + 1, the

module Ut ∼= (yt−2)/(yt) is cyclic.

Next consider the case that t > m + 1. We again have that ry2 ∈ (yt) if and

only if the only nonzero terms of (3.4) are those in either sum with i + 2 ≥ t. Since

t − 2 > m − 2 we know that the only nonzero summands appear in the first sum.

This means that ai = 0 for i = 0, 1, . . . , t − 1 and bi = 0 for i = 0, . . . ,m − 3. Thus
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ry2 ∈ (yt) if and only if

r =
∞∑

i=t−2

aiy
i +

m−1∑
i=m−2

bixy
i + (x2, xym).

That is, r ∈ ((yt) : y2) if and only if r ∈ (yt−2, xym−2). Moreover, we claim that

(yt−2) ∩ (xym−2, yt) = (yt).

Indeed, we have that t ≥ m+ 2 and so writing f ∈ (yt−2) ∩ (xym−2, yt) as

f = ayt−2 = bxym−2 + cyt

with a, b, c ∈ R we see that bxym−2 must be of the form b′xyt−2 = 0, since R is

a quotient of the unique factorization domain kJx, yK. Hence f ∈ (yt). The other

inclusion is clear. This gives the desired decomposition for t > m+ 1:

Ut ∼=
(yt) : y2

(yt)
=

(xym−2, yt−2)

(yt)
∼=

(xym−2, yt)

(yt)
⊕ (yt−2)

(yt)
.

We finally consider the case where t = m + 1. For this case we have that ry2

is in (yt) = (ym+1) if and only if the only nonzero terms of (3.4) are those with

i + 2 ≥ m + 1, or equivalently i ≥ m− 1. Since m− 1 > m− 3 all of these nonzero

terms are in the first sum of (3.4). Thus ry2 ∈ (yt) if and only if ai = 0 for i < m− 1

and bi = 0 for i < m − 2. This gives r ∈ ((yt) : y2) if and only if r ∈ (xym−2, ym−1)

so that

Ut = HomR(R/(y2), R/(yt)) ∼=
(yt) : y2

(yt)
=

(xym−2, ym−1)

(yt)
.

We now claim that this module is indecomposable. To that end, note that the
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set {ym−1, ym, xym−2, xym−1} forms a k-basis for Ut. We will show the non-units

of EndR(Ut) form a two-sided ideal. Let φ ∈ EndR(Ut) and write

φ(ym−1) = aym−1 + bym + cxym−2 + dxym−1

and

φ(xym−2) = eym−1 + fym + gxym−2 + hxym−1

where a, b, c, d, e, f, g, h ∈ k. Since φ isR-linear, we know that yφ(xym−2) = φ(xym−1) =

xφ(ym−1). Hence,

eym + gxym−1 = yφ(xym−2) = xφ(ym−1) = axym−1

which implies e = 0 and g = a. In turn, this gives

φ(ym) = yφ(ym−1) = aym + cxym−1.

We may thus represent φ as a matrix in M4(k) using ym−1, ym, xym−2, xym−1 as the

ordering of the basis:

φ =



a 0 0 0

b a f 0

c 0 a 0

d c h a


.

Hence EndR(Ut) is the set of all matrices of the form of φ. Note that the determinant

of such a matrix is a4 and so φ ∈ EndR(Ut) is a unit if and only if the diagonal entry

in the matrix representation of φ is nonzero. Let I ⊆ EndR(Ut) be the set of all
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non-units of EndR(Ut). That is, I is the set of matrices in M4(k) of the form



0 0 0 0

b 0 f 0

c 0 0 0

d c h 0


where b, c, d, f, h ∈ k. The sum of any two matrices in I is clearly in I. Also, letting

X ∈ I and Y ∈ EndR(Ut) we have

XY =



0 0 0 0

b 0 f 0

c 0 0 0

d c h 0


·



a′ 0 0 0

b′ a′ f ′ 0

c′ 0 a′ 0

d′ c′ h′ a′


=



0 0 0 0

a′b+ fc′ 0 a′f 0

a′c 0 0 0

a′d+ b′c+ c′h a′c f ′c+ a′h 0


and

Y X =



a′ 0 0 0

b′ a′ f ′ 0

c′ 0 a′ 0

d′ c′ h′ a′


·



0 0 0 0

b 0 f 0

c 0 0 0

d c h 0


=



0 0 0 0

a′b+ f ′c 0 a′f 0

a′c 0 0 0

bc′ + ch′ + a′d a′c f ′c+ a′h 0


which are both elements of I. Thus, I is a two sided ideal of EndR(Ut) so that Ut is

an indecomposable R-module by Proposition 3.3.

This completes the proof of the assertions in (3.2). We showed in Example 3.2

that mi ∩Γm(R) = (0) if and only if i ≥ m+ 1. Theorem 1.15 thus only predicts that

Ut decomposes for t ≥ 2m+4 and so in this case the bound obtained in Theorem 1.15

is especially poor for large values of m.
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Remark 3.5. A more efficient way to compute EndR(Um+1) for a fixed value of m and

field k in Example 3.4 is using Macaulay2 [4]. The following code, generated with the

help of Frank Moore, determines the form of an arbitrary element of EndR(Ut) given

a module Ut which is an ideal in a quotient of a polynomial ring R:

linearMaps = method()

linearMaps (Module, Symbol) := (Ut, T) -> (

--- We first set up the objects we need to work with.

R := ring Ut;

gensUt := flatten entries gens Ut;

dimenUt := numgens source basis Ut;

numgensUt := #gensUt;

varList := toList(T_(1,1)..T_(numgensUt,dimenUt));

B := QQ[varList,MonomialOrder=>Lex];

rGens := gens R;

idealR := ideal R;

Q := B[rGens];

S := Q/sub(idealR,Q);

--- This builds the k-matrix representing an R-linear map.

basisUt := sub((gens Ut) * (matrix basis Ut),S);

M1 := transpose sub(genericMatrix(B,dimenUt,numgensUt),S);

M2 := (transpose basisUt);

genMatr := M1 * M2;

M3 := transpose genMatr * sub(matrix basis Ut,S);

Temp1 := coefficients(M3, Monomials=>flatten entries basisUt);

myMatrix := last Temp1;
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--- Now we find the relationships between the coefficients

--- coming from the fact that some elements of the basis

--- can be obtained in more than one way.

syzMatr := transpose genMatr * syz sub(matrix {gensUt},S);

Temp2 := flatten entries basisUt;

Temp3 := coefficients(syzMatr, Monomials => Temp2);

myEquations := select(flatten entries last Temp3, f -> f != 0);

--- Finally, we apply the relations to the k-matrix

--- to obtain an arbitrary element of End_R(Ut).

C := B/apply(myEquations,f -> sub(f,B));

QQQ := C[rGens];

SS := QQQ/sub(idealR, QQQ);

sub(myMatrix,C)

)

With this algorithm in Macaulay2, we are prepared to compute an arbitrary el-

ement of EndR(Ut). In order to do this for the example R = QJx, yK/(x2, xym) and

Ut = HomR(R/(y2), R/(yt)) with m = 3 and t = 4 we use the following input. The

first two input lines define the ring R and module Ut.

i1 : R = QQ[x,y]/ideal(x^2,x*y^3);

i2 : Ut = Hom(coker matrix{{y^2}},coker matrix{{y^4}});

i3 : M = linearMaps(Ut,T)

The output for the third line is

o3 = | T_(2,3) 0 0 0 |

| T_(1,2) T_(2,3) T_(2,2) 0 |
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| T_(1,3) 0 T_(2,3) 0 |

| T_(1,4) T_(1,3) T_(2,4) T_(2,3) |

which is an arbitrary element of EndR(Ut). By making the following identification of

the coefficients used in Example 3.4 and by Macaulay2:

T_(1,1) = a = T_(2,3)

T_(1,2) = b

T_(1,3) = c

T_(1,4) = d

T_(2,1) = e = 0

T_(2,2) = f

T_(2,4) = h

we see that this is the same as the matrix as the one painstakingly computed by hand

in Example 3.4.

Theorem 1.15 and Theorem 1.17, which give bounds on the powers needed to make

the module HomR(R/a,M/bM) decompose and be non-free, apply only in dimension

one. However, examples seem to indicate that the R/a-module

HomR(R/a, R/(an1
1 , . . . , a

nd
d ))

is neither free nor indecomposable if the ni are large enough. One such example is

explained below.

Example 3.6. Consider the ring R = kJx, y, zK/(x2, xyz). We saw in Example 2.10

that this ring has dimension two and depth one. Note that {y, z} is a system of

parameters of R. If n1 ≥ 2, then Sn1 := R/(yn1) is not Cohen-Macaulay. Indeed, as

yn1 is a parameter, Sn1 has dimension one. The depth of Sn1 is zero since the nonzero

element xyn1−1 is in the socle. Letting m be the maximal ideal of Sn1 we have

mi ∩ Γm(Sn1) = 0 if and only if i ≥ n1 + 2. By symmetry, the same holds for the ring
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Tn2 := R/(zn2). Thus Theorem 1.15 gives that Un1,n2 := HomR(R/(y, z), R/(yn1 , zn2)

decomposes for all n1, n2 ≥ 2 with |n1− n2| > 2. However, direct computation shows

that Un1,n2 actually decomposes as

Un1,n2
∼=

(xyn1−1, yn1 , zn2)

(yn1 , zn2)
⊕ (xzn2−1, yn1 , zn2)

(yn1 , zn2)
⊕ (yn1−1zn2−1, yn1 , zn2)

(yn1 , zn2)

for all n1, n2 ≥ 2. See Figure 3.1 for a visual representation of this.

n1

n2

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

Figure 3.1: In this figure, a lattice point (n1, n2) corresponds to the module
HomR(R/(y, z), R/(yn1 , zn2)) from Example 3.6. The modules corresponding to lat-
tice points in the light grey regions are known to decompose due to Theorem 1.15.
The modules corresponding to lattice points in the middle dark grey region are known
to decompose by direct computation. The modules corresponding to lattice points
where n1 = 1 or n2 = 1 are indecomposable since R/(y) and R/(z) are both Cohen-
Macaulay rings.
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