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 The purpose of this study was to simultaneously assess electromyographic (EMG) 

and mechanomyographic (MMG) signals to examine the time course of changes in EMG 

amplitude, EMG frequency, MMG amplitude, and MMG frequency from the vastus 

lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles during high-load 

(70%1 repetitions maximum; 1-RM) and low-load (30% 1-RM) concentric, dynamic 

constant external resistance (DCER) leg extension muscle actions to failure. Twelve men 

performed two randomized visits consisting of either 30 or 70% 1-RM DCER leg 

extension muscle actions to failure. Maximal voluntary isometric contractions (MVIC) 

and 1-RM measurements were performed before and after each protocol. 

Electromyographic amplitude, EMG frequency, MMG amplitude, and MMG frequency 

were measured from the VL, VM, and RF. The results indicated mode- (DCER versus 

isometric) and intensity-specific (30 versus 70% 1-RM) differences in the 1-RM and 

MVIC measurements. There were increases in EMG amplitude and MMG amplitude, but 

decreases in EMG frequency and MMG frequency during both the 30 and 70% 1-RM 

protocols. The time course of changes in neuromuscular responses, however, were unique 

to each protocol and muscle.  The 30% 1-RM protocol had three unique phases (1 to 30, 

30 to 60, and 60 to 100% of the repetitions to failure), but the 70% 1-RM protocol had 
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only one phase (1 to 100% of the repetitions to failure). These time course of changes in 

neuromuscular responses during both the 30 and 70% 1-RM protocols could be explained 

by Muscle Wisdom and the Onion Skin Scheme, but not the After-Hyperpolarization 

theory. The findings of the current study suggested that the time course of changes in 

neuromuscular responses can provide insight in muscle- and intensity- specific 

differences in the motor unit activation strategies used to maintain force production and 

allow for a greater understanding of the fatiguing process by identifying the time-points 

at which these neuromuscular parameters changed. 
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Chapter I 

Introduction 

Surface electromyography (EMG) and mechanomyography (MMG) are non-

invasive procedures that are used to examine neuromuscular function during isometric 

and dynamic muscle actions1-8. The amplitude of the EMG signal represents muscle 

activation and the frequency content is related to motor unit action potential conduction 

velocity (MUAP CV)1. The MMG signal, however, has been described as the mechanical 

counterpart of the motor unit electrical activity measured by EMG and quantifies the low-

frequency lateral oscillations of activated skeletal muscle fibers8-10. Under certain 

conditions, the amplitude of the MMG signal reflects motor unit recruitment and the 

frequency content is a qualitative indicator of the global motor unit firing rates of 

unfused, activated motor units9,10.  

 Simultaneous assessments of EMG and MMG have been used to examine 

factors associated with muscle function such as phonomechanical and electromechanical 

delay11, EMG and MMG versus isometric and isokinetic torque relationships2,12-14, 

skeletal muscle atrophy15, and the neuromuscular effects of resistance training4,7,16,17. 

Clinically, EMG and MMG have been used in the assessment of neuromuscular disorders 

including cerebral palsy18,19, myotonic dystrophy20, cranio-mandibular disorders21,22, and 

chronic and severe low back pain23, as well as to control externally powered 

prostheses24,25.  

 A primary application of the simultaneous measurements of EMG and MMG 

signals is to determine the dissociations between the electrical and mechanical events of 

excitation-contraction coupling that occur with fatigue9,12,26-31. Together, the time and 

frequency domain parameters of EMG and MMG signals can provide information 
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regarding the contributions of muscle activation (EMG amplitude)1, MUAP CV (EMG 

frequency)1, motor unit recruitment (MMG amplitude)9,10, and global motor unit firing 

rate (MMG frequency)9 to the motor unit activation strategies that modulate force 

production during fatiguing tasks. Typically, fatiguing, submaximal isometric and 

isokinetic muscle actions, as well as cycle ergometry result in increases in EMG and 

MMG amplitude, but decreases in frequency contents of the EMG and MMG signals. 

Thus, submaximal, fatiguing tasks are usually characterized by increases in muscle 

activation and motor unit recruitment, but decreases in MUAP CV and global motor unit 

firing rate. Fatiguing, maximal isometric and concentric isokinetic muscle actions, 

however, have been shown to result in decreases in the amplitude and frequency content 

of both the EMG and MMG signals12. During fatiguing, maximal eccentric muscle 

actions there are increases in MMG amplitude, decreases in EMG and MMG frequency, 

and no change in EMG amplitude32. Thus, the patterns of the neuromuscular responses to 

fatigue can be influenced by factors such as the force and/or power output (% maximal) 

of the task as well as the mode of muscle action (isometric vs. concentric vs. eccentric 

muscle actions). Although previous studies have examined the EMG and MMG 

responses to fatiguing isometric and isokinetic (concentric and eccentric) muscle actions, 

no previous studies have simultaneously examined the fatigue-related patterns of 

responses for the time and frequency domain parameters of EMG and MMG signals 

during dynamic constant external resistant (DCER) muscle actions to failure.  

 Neuromuscular responses have often been examined using polynomial regression 

models to examine the patterns of fatigue-related responses or pretest vs. posttest 

assessments of EMG and MMG parameters to determine the overall magnitude of the 
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effects of the fatiguing task. Since fatigue is a process that occurs throughout an 

exhaustive task, the time course of fatigue-related changes in neuromuscular parameters 

associated with motor unit activation strategies are dependent on which specific time or 

frequency domain parameter of the EMG or MMG signal is being assessed9,33. Thus, the 

time-dependent changes in the patterns of EMG and MMG time and frequency domain 

parameters may be valuable for identifying the changes in motor unit activation strategies 

used to meet the demands of various types of fatiguing tasks. Furthermore, the patterns of 

neuromuscular responses to fatigue are often muscle specific4,16. For example, Akima et 

al.16 reported greater muscle activation from the VL compared to the VM and RF and 

differences in muscle activation during high-load (70% 1-repetition maximum, RM)  and 

low-load (50% 1-RM) DCER leg extension muscle actions to failure. In addition, Jenkins 

et al.7 reported different rates of change in MUAP CV from the VL, VM, and RF during 

both high-load (80% 1-RM) and low-load (30% 1-RM) DCER leg extension muscle 

actions to failure. Therefore, the purpose of this study was to simultaneously assess EMG 

and MMG signals to examine the time course of changes in EMG amplitude, EMG 

frequency, MMG amplitude, and MMG frequency from the VL, VM, and RF muscles 

during high-load (70%1-RM) and low-load (30% 1-RM) concentric, DCER leg extension 

muscle actions to failure. This study is unique from previous studies because it 

simultaneously examines the fatigue-related time course of changes in time and 

frequency domain parameters of both EMG and MMG signals from the three superficial 

muscles of the quadriceps femoris during repeated, submaximal, DCER muscle action of 

the leg extensors to failure at two different loads.  
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 Based on the findings of Merletti et al.33 it is hypothesized that in the present 

study there will be increases in EMG amplitude and MMG amplitude, and decreases in 

EMG frequency and MMG frequency during both the high-load and low-load DCER leg 

extension muscle actions to failure. In addition, Merletti et al.33 suggested that the time 

course of changes in time and frequency domain parameters of the EMG signal and 

motor unit activation strategies are influenced by the intensity of the muscle action. 

Therefore, it is hypothesized that the time course of changes in the time and frequency 

domain parameters from the EMG and MMG signals will be different during the high-

load and low-load DCER leg extension muscle actions to failure. Specifically, the high-

load will result in a greater rate of increase in EMG amplitude and MMG amplitude 

compared to low-load DCER leg extension muscle actions to failure. In addition, the 

high-load will result in a decrease in EMG frequency and MMG frequency sooner than 

the low-load, however, there will be a greater decrease in EMG frequency and MMG 

frequency in the low-load compared to high-load DCER leg extension muscle actions.  
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Chapter II 

Review of Literature 

2.1 DCER and Isometric Mode Specific Fatigue Responses  

Akima and Saito (2013) 

The purpose of this investigation16 was to examine the neuromuscular parameters 

of the four quadriceps femoris muscles from nine male subjects (mean ± SD = 24.7 ± 7.7 

yrs) during dynamic constant external resistance (DCER) leg extensions with loads of 50 

and 70% one repetition maximum (1-RM) performed until exhaustion. 

Electromyographic (EMG) amplitude was recorded and analyzed separately for both the 

concentric (CON) and eccentric (ECC) portions of the muscle actions and at three 

different phases of the range of motion (ROM)(90 to 115°, 115 to 140°, and 140 to 165°) 

for the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), and vastus 

intermidius (VI). The results indicated that there were linear increases for the EMG 

amplitude for all muscles for both 50 and 70% 1-RM DCER leg extensions to exhaustion 

and during all phases of the range of motion. There were significant differences in EMG 

amplitude for the VM between 50 and 70% 1-RM protocols, however, there were no 

differences between the 50 and 70% 1-RM protocol for the VL, RF, and VI. The EMG 

amplitude from the VM was greatest when near full extension at 70% 1-RM compared to 

50% 1-RM. All four muscles of the quadriceps femoris had greater EMG amplitude near 

full leg extension for both protocols. The authors16 concluded that during fatiguing 

DCER muscle actions of the leg extensors, joint angle and intensity affect muscle 
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activation and the patterns of responses of the neuromuscular activations patterns from 

the VL, VM, RF, and VI.  

Masuda, Masuda, Sadoyama, et al. (1999)  

 The purpose of this investigation34 was to examine the changes in neuromuscular 

time and frequency domain parameters of the vastus lateralis (VL) from 19 male subjects 

(range = 19 – 73 yrs) during a sustained isometric muscle action of the leg extensors at 

50% maximal voluntary isometric contraction (MVIC) to failure. After 30-min of rest, 

dynamic constant external resistance (DCER) leg extensions to failure at 50% MVIC 

were performed. The results indicated that the sustained isometric muscle action of the 

leg extensors (mean = 75.7-s) was shorter in duration than the DCER leg extensions 

(mean = 149.7-s). Motor unit action potential conduction velocity (MUAP CV) during 

the sustained isometric muscle action increased from 0 to 15% of the time to exhaustion 

and then began to decrease at 20% of the time to exhaustion until failure. The MUAP 

CV, however, did not change during the DCER leg extension. The electromyographic 

(EMG) frequency began to decrease from the beginning of both the sustained isometric 

and DCER leg extensions, with the greatest rate of decline beginning at 60% of the time 

to exhaustion until failure. The EMG amplitude began to increase from the initiation of 

the muscle action until failure for both the sustained isometric and DCER leg extensions, 

however, DCER leg extensions resulted in greater EMG amplitude compared to the 

sustained isometric muscle actions throughout the time to exhaustion. The authors 

concluded that DCER muscle actions responded differently than sustained isometric 

muscle actions because of the stretch-shortening cycle that increases blood flow to the 

muscle and decreases the effects of metabolic byproducts.  
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Housh, Housh, and Weir (1996)  

 The purposes of this study35 were to examine the effects of eight weeks of 

unilateral concentric (CON) only dynamic constant external resistance (DCER) leg 

extension training on trained and untrained limbs one repetition maximum (1-RM), 

isokinetic torque-velocity curve, as well as the effects of eight weeks of detraining. 

Sixteen male subjects (mean ± SD = 24 ± 4 yrs) performed eight weeks of CON only 

DCER leg extension training three days a week at 80% 1-RM. The trained and untrained 

limbs showed an increase in DCER 1-RM post training and after the 8-wks of detraining. 

The effect of DCER leg extension training on the trained limb increased the isokinetic 

torque-velocity curve post training and after detraining at velocities greater and less than 

the velocity of the DCER training. The isokinetic torque-velocity curve from the 

untrained limb changed after post training and detraining. The authors concluded that 

DCER leg extension training resulted in increases in 1-RM for both the trained and 

untrained limb, as well as increased isokinetic torque from only the trained limb post 

training and after eight weeks of detraining. This suggested that cross-training is mode 

specific and that 86 to 93% of the increases in 1-RM strength can be retained following 

eight weeks of detraining. 

Hollander, Kraemer, Kilpatrick et al. (2007) 

 The purpose of this study36 was to determine the differences in maximal 

concentric (CON) and eccentric (ECC) dynamic constant external resistance (DCER) 

strength in both men and women. On two separate testing sessions 10 men (mean ± SD = 

25.3 ± 1.3 yrs) and 10 women (mean ± SD = 23.4 ± 1.4 yrs) performed CON only and 

ECC only DCER leg extension one repetition maximum (1-RM) testing. The results 
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indicated that men have greater 1-RM values than women, but women have a greater 

ECC to CON ratio (1.57) than men (1.38). In addition, the men’s average CON 1-RM 

was 25% less than the ECC 1-RM and females CON 1-RM was 39% less than the ECC 

1-RM. The authors concluded that there were differences between men and women for 

both CON and ECC 1-RM, ECC/CON ratios, and suggested that men and women 

training programs be analyzed separately to account for gender differences. 

Weir, Housh, Evens et al. (1993) 

 The purpose of this study37 was to examine the effects of dynamic constant 

external resistance (DCER) squat and leg extension training on isokinetic peak torque and 

constant joint angle torque-velocity curves from 0 to 5.03 rad·s-1.  Twelve men (mean ± 

SD = 21.7 ± 2.6 yrs) performed eight weeks of DCER squat and leg extension training 

three days a week (three sets x six repetitions at 6-RM). The results indicated increased 

squat (27%) and leg extension (36%) 6-RM strength, as well as increases in joint angle 

torque-velocity curves (6.3 to 10.7%) and isokinetic peak torque (8.1 to 10.9%) The 

authors concluded that DCER squat and leg extension training resulted in increased 6-

RM strength that transferred to increases in isokinetic leg extension peak torque and 

increased torque production at all constant joint angle torque-velocity curves.  

Weir, Housh, Housh et al. (1997) 

 The purposes of this investigation38 were to examine the effects of concentric 

(CON) only dynamic constant external resistance (DCER) leg extension training and 

detraining on joint angle specificity, cross-training, and the bilateral deficit. Sixteen male 

subjects were separated into a control group (n = 8, mean ± SD = 24.1 ± 5.0 yrs) or 

training group (n = 8, mean ± SD = 23.9 ± 3.9 yrs). The training group performed 
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unilateral CON only DCER leg extension training three days a week (five sets x six 

repetitions at 80% one repetition maximum (1-RM)), for eight weeks. A maximal 

voluntary isometric contraction (MVIC) and DCER 1-RM were measured pre training, 

post training, and after eight weeks of detraining from the trained limb, untrained limb, 

and bilateral leg extensor muscles. The results indicated that DCER strength training 

increased MVIC torque at all joint angles for each limb post training (13%), but not after 

detraining. In addition, DCER leg extension training increased the trained limb (29%), 

untrained limb (13%), and bilateral limbs (22%) 1-RM post training, and maintained 

these increases after detraining. There was not a bilateral deficit pre training, however, 

post training and after detraining there was a bilateral deficit for the trained limb. The 

authors concluded that DCER leg extension training is effective at increasing isometric 

strength at all joint angles. In addition, cross-training and bilateral deficit occurred as a 

result of unilateral CON only DCER leg extension training.  

Jenkins, Housh, Bergstrom et al. (2015) 

 The purposes of this study7 were to identify the changes in electromyographic 

(EMG) amplitude, EMG frequency, exercise volume, muscle activation, time under 

concentric (CON) load, and muscle cross-sectional area (CSA) during dynamic constant 

external resistance (DCER) leg extensions at 80% and 30% one repetition maximum (1-

RM) for three sets to failure. Bi-polar electrode arrangements were placed over the vastus 

lateralis (VL), vastus medialis (VM), and rectus femoris (RF) of nine trained men (mean 

± SD = 21.0 ± 2.4 yrs) and nine trained women (mean ± SD = 22.8 ± 3.8 yrs) during three 

sets of DCER leg extensions to failure at 80% and 30% 1-RM on two separate testing 

sessions. In addition, ultrasound was used to obtain the CSA immediately before and 
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after each testing session. The results indicated that the volume of work performed at 

each set during 30% 1-RM (set one = 2000 kg, set two = 1150 kg, set three = 900 kg) was 

greater than 80% 1-RM (set one = 1100 kg, set two = 800 kg, set three = 750). The total 

EMG amplitude from the composite of all muscles for 80% 1-RM was greater than 30% 

1-RM for each set. In addition, EMG amplitude from 80% 1-RM increased within sets, 

but did not change between sets. The EMG amplitude from 30% 1-RM increased within 

sets, and EMG amplitude during set 3 increased (15%) from set 1 and set 2. The EMG 

frequency during the 80% 1-RM for each set began to decrease from the initial repetition 

and continued until failure, however, during 30% 1-RM EMG frequency did not begin to 

decrease until 50% of the repetitions to failure. In addition, EMG frequency from 30% 1-

RM decreased greater than 80% 1-RM. Cross-sectional area following 30% 1-RM were 

greater than 80% 1-RM for the VL and RF. The authors concluded that muscle activation 

was lower for 30% 1-RM than 80% 1-RM. Also, greater EMG frequency decreases 

occurred during 30% 1-RM compared to 80% 1-RM despite fatigue-induced increases in 

EMG amplitude for both 30% and 80% 1-RM. These findings suggested that both 30% 1-

RM and 80% 1-RM may induce hypertrophy, however, greater increases in strength will 

likely result from training at 80% 1-RM. 

Pincivero, Gandhi, Timmons et al. (2006) 

 The purpose of this study39 was to examine the differences between genders 

electromyographic (EMG) responses during dynamic constant external resistance 

(DCER) leg extensions at 50% one repetition maximum (1-RM) until failure. Bipolar 

EMG electrodes were placed over the vastus lateralis (VL), vastus medialis (VM), and 

rectus femoris (RF) of 15 men (mean ± SD = 25.7 ± 3.9 yrs) and 15 women (mean ± SD 
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= 22.4 ± 2.4 yrs) to identify the EMG amplitude and EMG frequency responses to a 

single set of DCER leg extensions to failure at 50% 1-RM. The results indicated that 

EMG amplitude from the VM and VL were greater for the women compared to the men. 

The EMG amplitude increased from the VL (25%), VM (15%), and RF (20%), and EMG 

frequency decreased from the VL (25%), VM (20%), and RF (30%) during the concentric 

(CON) phase of the DCER leg extensions to failure. The authors concluded that during 

the CON phase of the DCER leg extensions there was a buildup of metabolic byproducts 

that reflected a decrease in EMG frequency, and the muscle activation increased 

throughout the DCER leg extensions, however, there was a gradual decline in quadriceps 

femoris muscle recruitment near the end of the DCER leg extensions.  These findings 

suggested a difference between men and women’s responses to DCER leg extensions. In 

addition, these findings suggested that DCER leg extensions to fatigue resulted in an 

increase in the buildup of metabolic byproducts and an increase in muscle activation.  

 Pincivero, Coelho, Campy (2008) 

 The purpose of this study40 was to examine the gender differences in 

electromyographic (EMG) amplitude and EMG frequency during dynamic constant 

external resistance (DCER) leg extensions at varying percent’s of one repetition 

maximum (1-RM). Fifteen men (mean ± SD = 25.1 ± 4.0 yrs) and 15 women (mean ± SD 

= 22.9 ± 3.2 yrs) performed two repetitions every 10% of their 1-RM in a randomized 

order between 20 – 90% 1-RM. The results indicated that as the percent of the 1-RM 

increased, velocity decreased for both men and women. Men had greater velocities than 

women during the concentric (CON) phase, however, there were no differences in 

velocity during the eccentric (ECC) phase. The EMG amplitude from the vastus lateralis 
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(VL) was greater for men compared to women during the DCER leg extensions, 

however, the EMG amplitude from the rectus femoris (RF) was lower for men compared 

to women. The EMG frequency was greater for men compared to women for all 

measurements. The authors concluded that EMG signals recorded during DCER muscle 

actions differ between genders, and suggested that DCER leg extensions relied heavily 

upon the VL for both genders. These findings suggested that EMG signals recorded from 

men and women during DCER muscle actions should be analyzed separately.  

Remaud, Cornu, Guevel (2010) 

 The purpose of this study41 was to identify the differences in neuromuscular 

adaptations between isotonic and isokinetic strength training. Thirty men (mean ± SD = 

20.7 ± 2.3 yrs) were equally separated into a control group, isokinetic training group, and 

isotonic training group. The isokinetic training group performed concentric (CON) only 

isokinetic training, five sets x eight repetitions three days a week, at 40% peak torque for 

eight weeks. The isotonic training group performed CON only isotonic training, five sets 

x eight repetitions 3 days a week, at 40% 1-RM for eight weeks. Pretest and posttest 

maximal voluntary isometric contractions (MVIC) were performed for all groups. In 

addition, bipolar electromyographic (EMG) electrodes were placed over the vastus 

lateralis (VL), vastus medialis (VM), and rectus femoris (RF) for all pretest and posttest 

measurements to identify the neuromuscular adaptations associated with isokinetic and 

isotonic strength training. The results indicated that there were increases in isotonic one 

repetition maximum (1-RM) for both the isokinetic (16.1%) and isotonic (13.3%) training 

groups, but not for the control group. Isokinetic peak torque also increased at all 

velocities for both the isokinetic and isotonic training group, but not for the control 
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group. In addition, MVIC torque values increased for the isokinetic (13.3%) and isotonic 

(7.6%) training groups, as well as increases in muscle activity (EMG amplitude) for both 

the isokinetic (31.7%) and isotonic (33.5%) training groups. The total muscle activity 

(EMG amplitude) during isotonic 1-RM increased for the isokinetic (11.6%) and isotonic 

(12.9%) training groups compared to pretest measurements. The total muscle activity 

(EMG amplitude) during isokinetic peak torque measurements increased for the 

isokinetic (21.9%) and isotonic (28.8%) training groups compared to pretest 

measurements. The authors concluded that isokinetic and isotonic training increased 

muscle activation (EMG amplitude), which resulted in increased strength during static 

and dynamic muscle actions. In addition, eight weeks of dynamic CON only strength 

training increased strength at all velocities and modes of exercise (isokinetic and 

isotonic). These findings suggested that increases in muscle activity (EMG amplitude) 

and strength following dynamic CON only training is not dependent on the velocity or 

mode of exercise being performed. 

Walker, Davis, Avela et al. (2012) 

 The purpose of this study42 was to examine the changes in neuromuscular 

parameters following maximal strength and hypertrophic dynamic constant external 

resistance (DCER) leg press exercise. Thirteen men (mean ± SD = 28.4 ± 3.7 yrs) 

performed a maximal strength (10 sets x one repetition at 100% one repetition maximum 

(1-RM)) and hypertrophic (five sets x 10 repetitions at 80% 1-RM) protocol while 

electromyographic (EMG) measurements were taken from the vastus lateralis (VL) and 

vastus medialis (VM).  In addition, blood lactate samples were obtained from fingertip 

samples during both protocols. Pretest, posttest, and 15-min posttest maximal voluntary 
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isometric contraction (MVIC) measurements were measured during either protocol. The 

EMG amplitude from the maximal strength protocol increased from set one to set three, 

and then began to decrease from set three to set 15. The EMG amplitude from the 

hypertrophic protocol increased from set two to set five. The posttest MVIC torque 

values were lower than MVIC torque values, and 15-min posttest MVIC torque values 

were greater then posttest values but did not return to pretest values for both protocols. 

Blood lactate levels increased for both protocol, however, the hypertrophic protocol 

lactate levels were greater than maximal strength protocol. The authors concluded that 

the muscle activation strategies are load dependent and that maximal strength training 

fatigue was a result of neural drive to the muscle and hypertrophic training is a result of 

peripheral fatigue.  

2.2 Time and Frequency Domain Parameters 

Roy, De Luca, Schneider (1986) 

 The purpose of this study43 was to examine the effects of electrode location on the 

motor unit action potential conduction velocity (MUAP CV) and median frequency 

estimates from the electromyographic (EMG) signal obtained from 10 men (range = 23 – 

40) during three isometric muscle actions of the anterior tibialis at 20% and 80% 

maximal voluntary isometric contraction (MVIC). The results of the study indicated that 

median frequency values were similar to the MUAP CV. In addition, electrode locations 

located over the innervation zone (IZ) and tendinous regions of the muscle resulted in 

greater frequency values compared to electrode locations recorded away from the IZ or 

tendinous regions. The authors concluded that electrode placements should avoid the IZ 

and tendinous region of the muscle because they result in increased frequency 
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measurements. It was also concluded that median frequency measurements closely 

reflected MUAP CV and therefore are an indicator of MUAP CV when a linear array of 

electrodes are not available. 

Arendt-Nielsen and Mills (1988) 

 The purpose of this study44 was to examine the effects of submaximal fatiguing 

muscle actions above 60% maximal voluntary isometric contraction (MVIC) on motor 

unit action potential conduction velocity (MUAP CV), electromyographic (EMG) 

frequency, and force production. Five men (range = 22 – 39 yrs) performed sustained 

isometric muscle actions of the leg extensors to failure every 10% from 60% to 100% 

MVIC while recording EMG signals were taken from the vastus lateralis (VL). The 

results indicated that MUAP CV and EMG frequency decreased during all sustained 

isometric muscle actions from 60% to 100% MVIC, however, the greater the % MVIC 

the greater the decreases in MUAP CV. The EMG frequency decreased greater at 60, 70, 

and 80% MVIC compared to 90% and 100% MVIC. This was likely a result of greater 

time to failure from the 60, 70, and 80% MVIC compared to 90, 100% MVIC sustained 

isometric muscle actions. Electromyographic amplitude increased during all the sustained 

isometric muscle actions from 60 to 100% MVIC, and the greater the % MVIC the 

greater the rate of increase in EMG amplitude. In addition, the greater the % MVIC 

performed during sustained isometric muscle actions, the greater the decline in maximal 

force production that occurs. The authors concluded that EMG frequency represents 

MUAP CV. In addition, fatiguing muscle actions at and above 60% MVIC resulted in 

decreases in MUAP CV and EMG frequency as a result of the buildup of metabolic 

byproducts as well as the recruitment of less fatigued motor units with faster MUAP CV. 
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The EMG amplitude tracks force production and increases during fatiguing tasks until 

force begins to decline. The results indicated that during the intermittent isometric muscle 

actions at low weights there were no changes in mechanomyographic (MMG) amplitude. 

In addition, as the weight increased so did MMG amplitude, and as the weight decreased 

MMG amplitude decreased for both the intermittent and sustained isometric muscle 

actions. The authors concluded that MMG amplitude reflects increases in muscle 

activation and is associated with increases in force. 

Barry, Geiringer, and Ball (1985) 

 The purpose of this study45 was to examine the mechanomyographic (MMG) 

amplitude from the biceps brachii during sustained and intermittent isometric muscle 

actions. During the intermittent isometric muscle actions five subjects held weights (zero, 

five, 10, 12.5, 15, and 20 lbs) out with the elbow bent at a 90° angle for 20-s followed by 

10-s of rest between each weight. Ten subjects performed a sustained isometric muscle 

action of the biceps brachii that required each subject to begin at 75% maximal voluntary 

isometric contraction (MVIC) and continue until subjects could no longer maintain 35% 

MVIC. The results indicated an increase in MMG amplitude with an increase in force. 

When force decreased as a result of fatigue, MMG amplitude did not decrease 

substantially, however, when force was decreased voluntarily MMG amplitude 

decreased. The authors concluded that MMG amplitude reflects muscle activity and is a 

direct indicator of muscular contraction. In addition, it was suggested that analyzing 

EMG signals concurrently with MMG signals allows for a greater identification of motor 

unit activation strategies. 

Dimitrov, Arabadziev, Mileva et al. (2006) 
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 The purpose of this study46 was to examine the effectiveness of new 

electromyographic (EMG) spectral indices designed for assessing peripheral muscle 

fatigue during dynamic leg extensions. The EMG signal from the rectus femoris (RF) was 

collected from seven subjects (mean ± SD = 28.7 ± 7.0 yrs) that performed dynamic 

constant external resistance (DCER) leg extensions, three sets x 15 repetitions, at 50% 

one repetition maximum (1-RM) with a pretest and posttest MVICs. The concentric 

(CON) and eccentric (ECC) phases of the DCER leg extensions were analyzed 

separately. The new EMG spectral indices method for detecting muscle fatigue during 

dynamic muscle actions identifies the ratio of change between the spectral moments. The 

results indicated that the new EMG spectral indices were more sensitive to changes in the 

CON and ECC phases across repetitions than mean power frequency or median power 

frequency when analyzing fatiguing dynamic muscle actions of the leg extensors. 

Therefore, the authors concluded that the new spectral indices identify the changes in 

EMG frequency more accurately than mean power frequency alone.        

Gonzalez-Izal, Malanda, Navarro-Amezqueta et al. (2010) 

 The purpose of this study47 was to examine the sensitivity of surface 

electromyographic (EMG) indices using discrete and stationary wavelet transform to 

estimate fatigue induced changes of the EMG signal during dynamic muscle actions. 

Fifteen men (mean ± SD = 34.2 ± 5.2 yrs) performed five sets x 10 repetitions of 

concentric (CON) only dynamic leg press at 10 repetition maximum (10-RM). The EMG 

signals were recorded from the vastus medialis (VM) and were processed through 

stationary wavelet transform (SWT) and discrete wavelet transform (DWT). The SWT 

and DWT both showed increases in EMG amplitude, and decreases in EMG frequency, 
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however, the SWT was more sensitive to changes in frequency during fatiguing, high-

powered, dynamic muscle actions. The authors concluded that when performing wavelet 

based EMG signal analyses the SWT method was more sensitive during dynamic muscle 

actions and can detect subtle changes in frequency even with the Gaussian noise and 

signal cancellation associated with bipolar surface EMG. 

Fortune and Lowery (2007) 

 The purpose of this study48 was to examine the effects of extracellular potassium 

(K+) concentration on motor unit action potential conduction velocity (MUAP CV) using 

a simulated model. The model was developed in Matlab, and consisted of increased 

extracellular K+ by simulating fatigue induced changes in the surface membrane 

capacitance, temperature, tubular lumen conductance, fiber radius, length of fiber 

segment, tubular membrane capacitance, and time intervals.  Extracellular K+ was 

simulated at five, six, seven, eight, nine, and 10 mM. The results indicated that as 

extracellular K+ increased, MUAP CV decreased. In addition, at lower temperatures the 

MUAP CV was slower than at higher temperatures for all simulated K+ levels. The 

resting membrane potential also increased with increased extracellular K+. The authors 

concluded that increased extracellular K+ results in decreased amplitude, reduction in 

MUAP CV, and broadening of the action potential.  

Kuiken, Lowery, Stoykov (2003) 

 The purpose of this study49 was to examine the effects of subcutaneous fat on the 

surface electromyographic (EMG) signal and cross-talk of nearby muscle. A model made 

from skin, fat, muscle, and bone from a human arm was used to measure the effects of 

different subcutaneous fat layers on the EMG signal obtained from bipolar electrodes. 
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The motor unit action potentials (MUAP) were simulated and continuously transmitted 

through 500 single muscle fibers in the arm model. Four different fat thicknesses were 

measured (zero mm, three mm, nine mm, and 18mm) and electrodes were placed around 

the circumference of the model every 7.5°. The results indicated that as the fat thickness 

increased, EMG amplitude decreased (up to 241%) and the amount of cross-talk 

increased (up to 68%). The authors concluded that subcutaneous fat decreased EMG 

amplitude and increased cross-talk from nearby muscles, therefore, it may be beneficial 

to measure subjects with less subcutaneous fat or select locations that have less 

subcutaneous fat.  

2.3 EMG and MMG Patterns of Responses and Motor Unit Activation Strategies during 

Fatiguing Muscle Actions 

Tarata (2003)  

 The purpose of this study29 was to identify the differences between 

mechanomyography (MMG) and electromyography (EMG) in monitoring fatigue during 

a sustained isometric muscle action to failure of the biceps brachii and brachialis at 25% 

MVIC from 18 participants (range = 23 – 35 yrs). The results indicated that during a 

fatiguing muscle action EMG and MMG amplitude increases, and EMG and MMG 

frequency decreases. The MMG frequency decreased similarly to the decrease of EMG 

frequency, but, MMG frequency values were lower than EMG MPF. The EMG 

amplitude and MMG amplitude values tracked each other throughout the fatiguing 

muscle action, however, MMG amplitude plateaued during the last five percent of the 

time to failure. The authors concluded that both EMG and MMG provide insight into 

central and peripheral fatigue factors. In addition, the MMG signal, in conjunction with 
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the EMG signal, can be used to identify the amount of muscle activation and 

development of fatigue throughout a fatiguing muscle action.  

Beck, Stock, and DeFreitas (2014) 

 The purpose of this study50 was to examine the changes in electromyographic 

(EMG) spectral shape from the vastus lateralis (VL), vastus medialis (VM), and rectus 

femoris (RF) of 12 men (mean ± SD = 22.2 ± 1.3 yrs) during 50 concentric (CON) only 

fatiguing muscle actions on an isokinetic dynamometer at 180°s-1. The results indicated a 

decrease in EMG mean power frequency from the VL, VM, and RF following the 

fatiguing muscle actions. When the EMG frequency was analyzed using the wavelet 

analyses there were decreases in the high-frequency band, and an increase in the low-

frequency band of the power spectrum. In addition, during dynamic fatiguing muscle 

actions of the leg extensors the RF fatigued quickest, followed by the VL then the VM. 

These findings suggested that during dynamic fatiguing muscle actions there is a shift to 

the low-frequency end of the power spectrum and resulted in a decrease in EMG mean 

power frequency.  

Dalton, Hons, and Stokes (1993) 

 The purpose of this study51 was to examine the effects of fatiguing isometric 

muscle actions of the leg extensors and non-fatiguing dynamic muscle actions of the 

forearm flexors. The mechanomyographic (MMG) microphones were located over the 

rectus femoris (RF) (n = six) or biceps brachii (n = seven) (range = 17 – 32 yrs). The 

fatiguing isometric muscle actions of the leg extensors began at 75% maximal voluntary 

isometric contraction (MVIC) and continued until the subjects could no longer maintain 



21 
 

40% MVIC. Each muscle action was performed for 10 seconds followed by 10 seconds 

of rest. The subjects in the forearm flexion protocol performed a concentric (CON) and 

eccentric (ECC) dynamic muscle action of the forearm flexors using weights between 

zero to 8.5 kg. A three second isometric hold was performed between each CON and 

ECC muscle action. The results indicated an increase in MMG frequency with an 

increase in intensity during the isometric muscle actions of the leg extensors. The MMG 

frequency during the dynamic muscle actions increased from zero to 5.5kg, and then 

decreased from 5.5 to 8.5kg. The MMG frequency did not increase during the ECC 

phase, but did increase during the CON phase. The authors concluded that the MMG 

frequency may reflect motor unit activation strategies during isometric and dynamic 

muscle actions. It was also suggested that factors such as muscular stiffness, tremors, and 

muscle temperature may affect the MMG signal. In conclusion, the MMG frequency is 

capable of detecting changes in motor unit firing rate and the number of activated motor 

units during isometric and dynamic muscle actions. 

Akataki, Mita, Watakabe et al. (2001) 

 The purpose of this study52 was to examine the effects of aging on muscle 

activation and motor unit recruitment from the biceps brachii using mechanomyography 

(MMG) during isometric ramp muscle actions. Ten elderly men (range = 66 – 79 yrs) and 

15 young men (range = 21 – 26) performed a ramp protocol beginning at 10% maximal 

isometric muscle contraction (MVIC) and continued up to 80% MVIC. The results 

indicated greater MMG amplitude and MMG frequency in the young men compared to 

the elderly men. The young men also had greater force production than the elderly men. 

The authors concluded that the MMG force relationship is able to detect changes in motor 
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unit activation strategies in both the young and older populations. During two isometric 

ramp muscle actions there were increases in MMG amplitude and MMG frequency, 

which represent increased muscle activation and motor unit recruitment, respectively. In 

addition, there was a greater amount of slow-twitch motor units and fewer fast-twitch 

motor units in the elderly men compared to young men. These findings suggested that 

fatiguing studies measuring MMG should compare the elderly and young separately to 

allow for valid comparisons of the MMG responses.  

Solomonow, Baratta, Shoji et al. (1990) 

 The purpose of this study3 was to examine the effects of motor unit activation 

strategies and force generation rate on the electromyographic (EMG) force relationship of 

the gastrocnemius muscle of six cats during isometric muscle actions by stimulating the 

sciatic nerve. The sciatic nerve was stimulated with different discharge rates and voltages 

to identify 100, 90, 80, 70, 60, and 50% of motor unit recruitment and maximum force. 

The results indicated that all motor units become activated before maximal force is 

obtained, and that increases in discharge rates are responsible for the increased force 

following the activation of all motor units. In addition, during submaximal contractions 

there was a concurrent increase in motor unit activation and firing rate to achieve the 

required force. The authors concluded that the EMG-force relationship depends on the 

motor unit recruitment and discharge rate strategies. In addition, the normalized EMG 

values suggested that when the muscle is fatigued, force decreases at a slower rate than 

the motor unit discharge rate. Therefore, it is suggested that the EMG signal should not 

be used to predict force. The EMG signal, however, can be a useful tool to identify what 

motor unit activation strategies are modulating force during a fatiguing contraction.   
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Farina, Fosci, and Merletti (2002) 

 The purpose of this study53 was to examine the sensitivity of the 

electromyography (EMG) frequency signals ability to identify motor unit recruitment 

strategies. A simulated model was used that stimulated synthetic motor unit action 

potentials (MUAP), muscle, fat, and skin during simulated sustained isometric muscle 

actions. The density and distribution was uniformly disturbed between 50 and 450 motor 

units. In addition, 10 men (mean ± SD = 26.3 ± 4.3 yrs) performed three ramp isometric 

muscle actions at torque values between zero to 80% maximal voluntary isometric 

contraction (MVIC) separated by two minutes of rest, followed by a sustained isometric 

muscle action at 80% MVIC for 11 seconds. The results indicated EMG frequency and 

MUAP conduction velocity (CV) were highly correlated, however, in the simulated 

experiment it was suggested that unstable motor unit pools may affect the correlation 

between EMG frequency and MUAP CV. In addition, during the fatiguing muscle actions 

from the simulation and composite of all subjects, EMG frequency and MUAP CV 

decreased at similar rates. During the ramp protocol, however, EMG frequency and 

MUAP CV increased with the increase in force requirement. The authors concluded that 

in unfatigued muscle the EMG frequency and MUAP CV increased with increases in 

force. During the sustained muscle actions, however, EMG frequency and MUAP CV 

decreased. These findings suggested that EMG frequency does not track the changes in 

torque, and therefore, EMG frequency alone may lead to inaccurate interpretations of the 

motor unit activation strategies used to modulate torque production during fatiguing and 

non-fatiguing isometric muscle actions.  

Smith, Housh, Herda et al. (2015) 
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 The purpose of this study was to identify the time course of changes in the 

electromyographic (EMG) and meachnomyogrpahic (MMG) signals during a sustained 

isometric muscle action of the leg extensors. Eleven subjects (mean ± SD = 22.5 ± 2.1 

yrs) performed a sustained isometric muscle action of the leg extensors at 50% maximal 

voluntary isometric contraction (MVIC) to failure while EMG and MMG signals were 

measured from the vastus lateralis (VL). The results indicated that muscle activation 

(EMG amplitude) began to increase from the initiation of the muscle action and 

continued to increase until failure. Motor unit action potential conduction velocity 

(MUAP CV), EMG frequency, and global motor unit firing rate, MMG frequency, began 

to decrease at 30% of the time to exhaustion. Motor unit activation (MMG amplitude) 

increased from 10 – 30% of the time to exhaustion, and then decreased from 40-70% of 

the time to exhaustion, and then markedly increased from 70% of the time to exhaustion 

to failure. The authors concluded that motor unit activation strategies changed at about 

30% and 70% of the time to exhaustion during a sustained isometric muscle action.  

Jenkins, Housh, Buckner et al. (2015) 

 The purpose of this study17 was to examine the changes in electromyographic 

(EMG) amplitude from the biceps brachii of 15 men (mean ± SD = 21.7 ± 2.47 yrs) 

during three sets to failure of dynamic constant external resistance (DCER) forearm 

flexion at a high-load (80% one repetition maximum (1-RM)) and low-load (30% 1-RM). 

The results indicated that the low-load group performed a greater number of repetition 

and volume compared to the high-load group. The results also indicated that EMG 

amplitude was greater in the high-load compared to the low-load group. The EMG 

amplitude increased at a greater rate during the low-load compared the high-load group.  
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The authors concluded that EMG amplitude increased during low-loads at a greater rate 

than high-loads, and that volume was lower during the high-load group compared to the 

low-load group. In addition, the authors suggested that the EMG responses may be 

dependent on the mode of exercise being performed and muscle being measured and 

suggested that future research examine the motor unit activation strategies during DCER 

leg extensions.  

Rainoldi, Falla, Mellor et al. (2008) 

 The purpose of this study54 was to examine the ability of the EMG signal to detect 

the differences in myoelectric manifestations of muscle fatigue between the vastus 

lateralis (VL) and vastus medialis (VM). Nine subjects (mean ± SD = 31.3 ± 8.6) 

performed isometric leg extensions at 60% and 80% maximal voluntary isometric 

contraction (MVIC) for 10 second and 60 second, respectively. The results indicated that 

EMG frequency from the VL and VM were greater during the 80% MVIC muscle action 

than the 60%MVIC muscle action. The EMG frequency recorded from the VL was 

greater compared to the VM. The EMG amplitude recorded from the VL and VM were 

greater during the 80% MVIC muscle action compared to the 60% MVIC muscle action. 

The EMG amplitude from the VL was greater compared to the VM. The VL had a greater 

overall decrease in EMG frequency than the VM. The authors concluded that the muscles 

of the quadriceps have different motor unit activation strategies and the EMG signal is a 

useful tool for identifying the time course of changes during sustained isometric muscle 

actions.  

2.4 Mechanisms of Fatigue 
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Bouissou, Estrade, Goubel et al. (1989) 

 The purpose of this study55 was to examine the effects of varying intramuscular 

pH on the electromyographic (EMG) power spectrum from the vastus lateralis (VL) of 

eight men (mean ± SD = 23.7 ± 4.0) during an exhaustive cycle ergometer ride at a power 

output of 375 watts. The subjects were randomized into a placebo or alkalosis group, and 

muscle biopsies were taken before and after the exhaustive ride. The results indicated that 

after the exhaustive exercise blood pH and blood lactate concentrations were greater in 

the alkalosis group compared to the placebo group. There was no difference in muscle pH 

between groups, however, the alkalosis group had greater muscle lactate compared to the 

placebo group. In addition, there was a decrease in EMG frequency and an increase in 

EMG amplitude during the exhaustive exercise for both the placebo and alkalosis group. 

The rate of decline in EMG frequency was greater in the alkalosis group compared to the 

placebo group. The authors concluded that the decrease in EMG frequency resulted from 

the buildup of metabolic byproducts. The authors also suggested a disassociation between 

intramuscular pH and EMG frequency, however, the methods used to detect changes may 

not have been sensitive enough to detect shifts towards the low-frequency band of the 

power spectrum.    

Cady, Jones, Lynn et al. (1989) 

 The purpose of this study56 was to examine the relationship between intracellular 

phosphorus metabolites, hydrogen ions, and force during fatiguing muscle actions. Four 

subjects (range = 21 – 43 yrs) performed two different fatiguing isometric muscle action 

of the first dorsal interosseous muscle. The fatiguing protocols required the subjects to 

perform three consecutive, 15 second maximal voluntary isometric contractions (MVIC). 
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Blood flow was occluded by an inflatable cuff placed around the upper arm at the onset 

of the first contraction in the first protocol, and then occluded blood flow for three 

minutes prior to performing the MVICs. Pretest and posttest measurements of Pi, PCr, 

ATP, H+, pH, and ADP were performed on all subjects to measure the changes in 

metabolites. The results indicated a greater decrease in force the longer the muscle was in 

an ischemic state, however, force began to recover once blood flow was returned to the 

muscle. There was no relationship between ATP and force production. Pi increased 

throughout both fatiguing tasks, but increased the longer blood flow occlusion occurred. 

The pH of unfatigued muscle was 7.0, but decreased to 6.5 following the fatiguing 

MVICs. The accumulation of intracellular H+ resulted in decreases in force. The ADP 

and ATP were not sensitive enough to draw conclusion between the changes in ADP and 

ATP levels and fatigue during brief MVIC muscle actions, however, PCr decreased as the 

muscle became more fatigued. The authors concluded that the buildup of metabolic 

byproducts (Pi and H+) caused a greater decrease in force production than changes in 

energy stores (ATP, ADP, and PCr). These findings suggested that the buildup of 

metabolic byproducts results in fatigue by slowing motor unit action potential conduction 

velocity, decreasing cross-bridge recharging, and disrupting the excitation-contraction 

coupling.   

Clausen (2013) 

 The purpose of this study57 was to examine the effects of potassium (K+) and 

sodium (Na+) on membrane excitability and muscular fatigue. Potassium and Na+ were 

measured from rat extensor digitorum longus muscles before and after a 60 second 

sustained stimulation at 60 Hz and 300 second sustained stimulation at five Hz. The 
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results indicated a net decrease of K+, but an increase in extracellular K+ and Na+ 

following both sustained stimulations, however, following 600 seconds of rest both the 

K+ and Na+ returned to baseline. In addition, the decreased K+ resulted in the impaired 

uptake of Cl, which effected the detection of depolarization during longer lasting 

contractions, causing a slowing of motor unit action potentials (MUAP). These findings 

suggested that during fatiguing muscle actions there is a down-regulation of the Na+K+ 

pumps functional capacity that causes a greater buildup of metabolic byproducts, slowing 

down membrane excitability. The authors concluded that the buildup of extracellular K+ 

following a fatiguing muscle action resulted in muscular fatigue by slowing membrane 

excitability.  

Juel (1988) 

 The purpose of this study58 was to examine the changes in electromyographic 

(EMG) signal, pH, extracellular potassium (K+), and sodium (Na+) gradient of mouse 

soleus and extensor digitorum longus muscles following electrical stimulated 

contractions. The results indicated that motor unit action potential conduction velocity 

(MUAP CV) measured from the EMG signal decreased over time. The decrease in 

MUAP CV was attributed to an increase in extracellular K+, a decrease in intracellular 

pH, but extracellular pH and the Na+ gradient did not affect MUAP CV. The authors 

concluded that MUAP CV is affected by extracellular K+ and intracellular pH, and that 

the EMG signal can detect changes in MUAP CV.  

Lindstrom, Magnusson, and Peterson (1970) 

 The purpose of this study59 was to examine the changes in electromyographic 

(EMG) frequency and motor unit action potential conduction velocity (MUAP CV) from 
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the biceps brachii from six men (range = 24 – 30 yrs) during a fatiguing  (two kg 

isometric muscle action for 20 seconds, followed by a maximal contraction for 30 

seconds, then another two kg isometric muscle action for 20 seconds). The results 

indicated that during a fatiguing muscle action MUAP CV decreases, and the power 

spectrum shifts towards the low-frequency band. A greater decrease in EMG frequency 

occurs as the muscle becomes more fatigued and indicates slowing of the MUAP CV. 

The authors concluded that during fatiguing muscle actions, EMG frequency and MUAP 

CV decreased as a result of decreased membrane excitability.  

Bigland-Ritchie, Johansson, Lippold et al. (1983) 

 The purpose of this study60 was to examine the relationship between contractile 

speed and the electromyographic (EMG) signals during a 60 second sustained maximal 

voluntary isometric contraction (MVIC) of the adductor pollicis muscle from eight 

subjects (range = 25 – 55 yrs). The 60 second sustained MVIC was performed three 

times. The first sustained MVIC was uninterrupted, the second sustained MVIC were 

briefly interrupted every 10 seconds to measure relaxation rates of the muscle, and the 

third was uninterrupted. An inflatable cuff was used to occlude the blood flow during the 

relaxation phase of the second isometric muscle action to allow the measurement of 

relaxation time from the muscle while under ischemic conditions. The results indicated 

that with practice, subjects could maximally activate all available muscle fibers (EMG 

amplitude). During the sustained MVIC there were decreases in force and contractile rate, 

however, there were no decreases in EMG amplitude once all available muscle was 

activated. The EMG frequency decreased during the sustained MVIC, but after 10 

minutes of rest EMG frequency returned to pretest values. In addition, there were 50 – 
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70% decreases in MUAP CV, which was greater than the loss of force (30 – 50%). The 

authors concluded that maximal muscle activation can be obtained voluntarily, and the 

EMG amplitude increases during a fatiguing muscle action and can stay maximally 

activated even during a decrease in maximal force. In addition, during a sustained MVIC 

there was a progressive slowing of contraction speed, suggesting that the excitation rate 

required for maximal force production is reduced. Thus, decreases in EMG frequency 

may not be related to a loss of force production.  
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Chapter III 

Methods 

3.1 Subjects 

Twelve men (mean ± SD age 21.9 ± 2.4 yr; body mass 76.7 ± 9.3 kg; height 175.8 

± 4.3 cm) volunteered to participate in this study. The subjects ranged between 19 to 26 

years of age and were free from any musculoskeletal injuries or neuromuscular disorders, 

and performed resistance training for at least six months prior to the study. This study 

was approved by the University of Nebraska – Lincoln Institutional Review Board, and 

all subjects signed a written informed consent and completed a health history 

questionnaire prior to participation. 

3.2 Experimental Design 

 A within subjects design was used for this study. The subjects visited the 

laboratory on three occasions including a familiarization session, as well as randomly 

ordered 30% 1-RM and 70% 1-RM protocols that include repeated unilateral CON-only 

DCER leg extensions to failure with the dominant leg (based on kicking preference). In 

addition, the subjects performed pretest and posttest unilateral CON-only 1-RM tests and 

MVIC muscle actions (Figure 1) before and after the 30% 1-RM and 70% -1-RM 

protocols. Each visit was separated by at least 48 hours and the subjects were asked to 

refrain from performing lower body resistance training between visits.  

1-RM MVIC Rest 30% or 70% 1-RM Protocol 1-RM MVIC 

Figure 1. Testing order for the 30% and 70% 1-RM fatiguing DCER leg extension protocols. 

3.3 One Repetition Maximum and Maximal Voluntary Isometric Contraction 
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 The pretest unilateral CON-only 1-RM tests were performed using the dominant 

leg and in accordance with to the National Strength and Conditioning Association’s 

guidelines61. The subjects performed a warm-up set of five to 10 repetitions at 

approximately 50% 1-RM, and three to five repetitions at approximately 75% 1-RM. The 

subjects then performed a series of single repetitions to determine the unilateral CON-

only 1-RM within 1.13 kg. The unilateral CON-only 1-RM was defined as the greatest 

amount of weight that was moved through the full range of motion during the DCER leg 

extension. The posttest unilateral CON-only 1-RM tests were performed immediately 

following the 30% and 70% 1-RM protocols. Weight was added until the greatest amount 

of weight that could successfully be move through the full range of motion was 

determined (± 1.13 kg). This usually required 2 to 3 trials.  

 The six second MVIC muscle actions were performed following the unilateral 

CON-only 1-RM tests at a knee joint angle of 120°62. The isometric force production was 

measured using a custom-fitted load cell (Omegadyne, model LC402, range 0–500 lbs, 

Stamford, CT) attached to the shin pad of the leg extension machine. 

3.4 Fatiguing Protocols 

 During the 30% 1-RM and 70% 1-RM protocols the subjects performed unilateral 

CON-only DCER leg extensions to failure with the dominant leg. Failure was defined as 

the inability to extend the knee to full extension during the CON phase of the leg 

extension or the inability to complete the CON phase of the leg extension within 1.5 

seconds. During each repetition an investigator lowered the lever arm at the end of each 

CON phase of the leg extension to the starting position to eliminate the ECC phase of the 



33 
 

muscle action. All testing was performed on a Hammer Strength Iso-Lateral Leg 

Extension machine (LifeFitness, Rosemont, IL). 

3.5 Electromyography and Mechanomyography 

 Bipolar electrode arrangements (Ag/AgCl, AccuSensor, Lynn Medical, Wixom, 

MI, USA) were placed on the VL, VM, and RF of the dominant leg with an interelectrode 

distance of 30mm during the unilateral CON-only 1-RM tests, MVIC muscle actions, 

30% 1-RM protocol, and 70% 1-RM protocol. For the VL, the bipolar electrode 

arrangements were placed 66% the distance between the anterior superior iliac spine 

(ASIS) and the lateral border of the patella and orientated at a 20° angle to approximate 

the pennation angle of the muscle fibers63,64. For the VM, the bipolar electrode 

arrangements were placed 80% the distance between the ASIS and the joint space in front 

of the anterior border of the medial ligament and orientated at a 53° angle to approximate 

the pennation angle of the muscle fibers63. For the RF, the bipolar electrode arrangements 

were placed 50% the distance between the ASIS and the superior border of the patella63. 

A reference electrode was placed over the ASIS. The skin was dry shaven, abraded, and 

cleaned with isopropyl alcohol prior to placing the electrodes. The MMG signal was 

measured using accelerometers (EGAS-FT-10/V05, Measurement Specialties, Inc., 

Hampton, VA) placed between the bipolar electrode arrangements on the VL, VM, and 

RF using double-sided adhesive foam tape.  

3.6 Signal Processing 

 The EMG and MMG signals were zero-meaned and bandpass filtered (fourth-

order Butterworth) at 10-500 Hz and 5-100 Hz, respectively. The EMG amplitude (root 

mean square: RMS), EMG frequency (mean power frequency: MPF), MMG RMS, and 
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MMG MPF values were calculated between a knee joint angles of 110° and 160° during 

each unilateral CON-only 1-RM test, as well as for each repetition at every 10% of the 

repetitions to failure during the 30% 1-RM and 70% 1-RM protocols. A goniometer was 

placed along the long axis of the femur and tibia of each subject to determine the knee 

joint angle throughout the range of motion. The EMG RMS, EMG MPF, MMG RMS, 

and MMG MPF values were normalized as a percent of the first repetition to examine the 

time course of changes in neuromuscular parameters during the unilateral CON-only 

DCER leg extensions to failure at 30% 1-RM and 70% 1-RM. Repetitions were 

normalized as a percentage of the total repetitions completed and if the percent to failure 

was between repetitions, the repetition immediately following were selected (i.e., if 10% 

of the time to failure was at repetition 5.5, repetition six was used as the 10% of the time 

to failure). The EMG RMS, EMG MPF, MMG RMS, and MMG MPF from the MVIC 

muscle actions were calculated from a two second time period corresponding to the 

middle 33% of each six second MVIC. All signal processing was performed using 

custom programs written with LabVIEW programming software (Version 15.0, National 

Instruments, Austin TX).  

3.7 Statistical Analysis 

3.7.1 Time Course of Changes in Neuromuscular Parameters  

 Polynomial regression analyses were used to determine whether there were 

significant linear, quadratic, or cubic relationships for the normalized EMG RMS, EMG 

MPF, MMG RMS, and MMG MPF from the VL, VM, and RF versus normalized 

repetition to failure (% total repetitions) relationships for the composite data of all 

subjects. Eight, separate, 3 (muscle: VL, VM, and RF) by 2 (Protocol: 30% 1-RM and 
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70% 1-RM) by 2 (Time: pretest and posttest) repeated measures ANOVAs were 

performed to compare the EMG RMS, EMG MPF, MMG RMS, and MMG MPF from 

the unilateral CON-only 1-RM strength and MVIC force. When appropriate, separate, 2 

(Protocol: 30% 1-RM protocol and 70% 1-RM protocol) by 2 (Time: pretest and posttest) 

repeated measures or 3 (Muscle: VL, VM, and RF) by 2 (Protocol: 30% 1-RM and 70% 

1-RM) repeated measures ANOVAs were performed to compare the EMG RMS, EMG 

MPF, MMG RMS, MMG MPF, unilateral CON-only 1-RM strength, and MVIC force 

from the pretest versus posttest measurements. Twenty-four, separate, one-way repeated 

measure ANOVAs, each neuromuscular parameter by time (% repetition to failure), were 

performed to determine the time course of changes in EMG RMS, EMG MPF, MMG 

RMS, and MMG MPF from the VL, VM, and RF with Student Newman-Keuls post-hoc 

tests performed when appropriate. An alpha of p ≤ 0.05 was considered statistically 

significant for all statistical analyses (SPSS Version 22.0, Armonk, NY). 
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Chapter IV 

Results 

4.1 30 versus 70% 1-RM Protocols Repetitions to Failure 

 Table 1 shows the descriptive statistics for the amount of weight lifted, repetitions 

completed, and pretest to posttest 1-RM strength and MVIC force measurements for the 

30 and 70% 1-RM protocols. Table 2 shows the descriptive statistics for the pretest to 

posttest neuromuscular responses during the 1-RM and MVIC measurements for the 30 

and 70% 1-RM protocols. 

 

4.2 Pretest versus Posttest for Strength and Neuromuscular parameters during the 1-RM 

Tests 

4.2.1 1-RM Strength 

 The 2 (Protocol: 30% 1-RM and 70% 1-RM) by 2 (Time: pretest and posttest) 

repeated measures ANOVA for 1-RM values indicated a significant protocol by time 

interaction. Post-hoc analyses indicated that 1-RM strength decreased significantly from 

pretest to posttest for both the 30% 1-RM and 70% 1-RM protocols (Figure 2). There was 
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no significant difference between 30% 1-RM and 70% 1-RM pretest strength values. 

There was, however, a significant difference between the 30% and 70% 1-RM posttest 

strength (70% 1-RM > 30% 1-RM) (Figure 2).  

 
Figure 2. Pretest to posttest 1 repetition maximum (1-RM) strength for the 30 and 70% 1-RM protocols. * 

Indicates significantly less then pretest. 
 

4.2.2 1-RM EMG RMS 

 The results of the 3 (muscle: VL, VM, and RF) by 2 (Protocol: 30% 1-RM and 

70% 1-RM) by 2 (Time: pretest and posttest) repeated measures ANOVA for EMG RMS 

indicated no significant interactions or main effects. (Table 1).  

4.2.3 1-RM MMG RMS 

 The results of the 3 (muscle: VL, VM, and RF) by 2 (Protocol: 30% 1-RM and 

70% 1-RM) by 2 (Time: pretest and posttest) repeated measures ANOVA for MMG 

RMS indicated no significant interactions or main effects. (Table1).  

4.2.4 1-RM EMG MPF 

The results of the 3 (muscle: VL, VM, and RF) by 2 (Protocol: 30% 1-RM and 

70% 1-RM) by 2 (Time: pretest and posttest) repeated measures ANOVA for EMG MPF 

indicated a significant 3-way interaction. The follow up 2 (Protocol: 30% 1-RM and 70% 
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1-RM) by 2 (Time: pretest and posttest) repeated measures ANOVAs by muscle for 

EMG MPF from the VL indicated a significant 2-way interaction. Post-hoc analyses 

indicated that pretest were greater than posttest EMG MPF values for both the 30% 1-RM 

and 70% 1-RM protocols (Table 1). For the VM there was no significant 2-way 

interactions, but there was a significant main effect for time (pretest > posttest). For the 

RF there was a significant 2-way interaction. Post-hoc analyses indicated that pretest 

were greater than posttest EMG MPF values for the 30 and 70% 1-RM protocols.  

4.2.5 1-RM MMG MPF 

The results of the 3 (muscle: VL, VM, and RF) by 2 (Protocol: 30% 1-RM and 

70% 1-RM) by 2 (Time: pretest and posttest) repeated measures ANOVA for MMG MPF 

indicated no significant 3-way interaction, but a significant 2-way interaction for protocol 

by time (Table 1). The follow up 2 (Protocol: 30% 1-RM and 70% 1-RM) by 2 (Time: 

pretest and posttest) repeated measures ANOVA (collapsed across muscle) for MMG 

MPF indicated a significant 2-way interaction. Post-hoc analyses indicated that there was 

no significant difference between pretest and posttest MMG MPF values for the 30% 1-

RM protocol, however, there was a significant decrease from pretest to posttest for the 

70% 1-RM protocol. 

4.3 Pretest versus Posttest for Torque and Neuromuscular parameters during the MVIC 

Tests 

4.3.1 MVIC Torque 

 The 2 (Protocol: 30% 1-RM and 70% 1-RM) by 2 (Time: pretest and posttest) 

repeated measures ANOVA for MVIC torque indicated a significant 2-way interaction. 
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Post-hoc analyses indicated that MVIC torque decreased significantly from pretest to 

posttest for both the 30% 1-RM and 70% 1-RM protocols (Figure 3). There was no 

significant different between 30% 1-RM pretest and 70% 1-RM pretest MVIC torque 

values. There was, however, a significant difference between the 30% 1-RM and 70% 1-

RM posttest MVIC torque values (70% 1-RM > 30% 1-RM) (Figure 3).  

 

Figure 3. Pretest to posttest maximal voluntary isometric contraction (MVIC) force for the 30 and 70% 1 

repetitions maximum (1-RM) protocols. * Indicates significantly less then pretest. 

 

4.3.2 MVIC EMG RMS 

The results of the 3 (muscle: VL, VM, and RF) by 2 (Protocol: 30% 1-RM and 

70% 1-RM) by 2 (Time: pretest and posttest) repeated measures ANOVA for EMG RMS 

indicated no significant 3-way interaction, but a significant 2-way interaction for muscle 

by time (Table 2). The follow up 3 (Muscle: VL, VM, and RF) by 2 (Time: pretest and 

posttest) repeated measure ANOVA (collapsed across protocol) for EMG RMS indicated 

a significant 2-way interaction. Post-hoc analyses indicated that there were no significant 

differences between pretest and posttest EMG RMS values for the VL, VM, and RF. 

4.3.3 MVIC EMG MPF 
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 The results of the 3 (muscle: VL, VM, and RF) by 2 (Protocol: 30% 1-RM and 

70% 1-RM) by 2 (Time: pretest and posttest) repeated measures ANOVA for EMG MPF 

indicated no significant 3-way interaction, but significant 2-way interactions for protocol 

by time and muscle by time (Table 2). Separate follow up 2 (Protocol: 30% 1-RM and 

70% 1-RM) by 2 (Time: pretest and posttest) repeated measures ANOVAs for EMG 

MPF for each muscle indicated significant 2-way interactions for the VL, VM, and RF. 

Post-hoc analyses indicated that pretest were greater than the posttest EMG MPF values 

from the VL, VM, and RF for the 30% 1-RM and 70% 1-RM protocol. 

4.3.4 MVIC MMG RMS 

 The results of the 3 (muscle: VL, VM, and RF) by 2 (Protocol: 30% 1-RM and 

70% 1-RM) by 2 (Time: pretest and posttest) repeated measures ANOVA for MMG 

RMS indicated no significant 3-way interaction, but a significant 2-way interaction for 

muscle by time (Table 2). The follow up 3 (Muscle: VL, VM, and RF) by 2 (Time: 

pretest and posttest) repeated measures ANOVA (collapsed across protocol) for MMG 

RMS indicated a significant 2-way interaction. Post-hoc analyses indicated that pretest 

were greater than posttest MMG RMS values from the VL, VM, and RF. 

4.3.5 MVIC MMG MPF 

 The results of the 3 (muscle: VL, VM, and RF) by 2 (Protocol: 30% 1-RM and 

70% 1-RM) by 2 (Time: pretest and posttest) repeated measures ANOVA for MMG MPF 

indicated no significant 3-way interaction, but a significant 2-way interaction for muscle 

by time (Table 1). The follow up 3 (Muscle: VL, VM, and RF) by 2 (Time: pretest and 

posttest) repeated measures ANOVA (collapsed across protocol) for MMG MPF 
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indicated a significant 2-way interaction. Post-hoc analyses indicated that pretest were 

greater than posttest MMG MPF values from the VL, VM, and RF. 

 

4.4 Time Course of Changes in Neuromuscular Parameters During 30% 1-RM Muscle 

Actions to Failure 

 Figure 4 shows the results of the polynomial regression analyses and one-way 

repeated measure ANOVAs with post-hoc Student Newman-Keuls tests for the 

normalized EMG RMS, EMG MPF, MMG RMS, and MMG MPF versus repetition 

relationships from the VL at 30% 1-RM. There were significant cubic relationships for 

the EMG RMS (R2 = 0.98) and MMG RMS (R2 = 0.63) versus repetition from the VL at 

30% 1-RM that were greater than the initial repetition from 10 to 100% of the total 

repetitions (Figure 4). There were significant negative quadratic relationships for EMG 

MPF (R2 = 0.96) and MMG MPF (R2 = 0.94) versus repetition from the VL at 30% 1-RM 
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that began to decrease from the initial repetition at 20 and 60% to 100% of the total 

repetitions, respectively (Figure 4).  

 
Figure 4. Time course of changes in neuromuscular responses from the vastus lateralis (VL) during the 

30% 1-RM protocol. * Indicates significantly different than the initial repetition. 

Figure 5 shows the results of the polynomial regression analyses and one-way 

repeated measure ANOVAs with post-hoc Student Newman-Keuls tests for the 

normalized EMG RMS, EMG MPF, MMG RMS, and MMG MPF versus repetition 

relationships from the VM at 30% 1-RM. There were significant cubic relationships for 

the EMG RMS (R2 = 0.95) and MMG RMS (R2 = 0.67) versus repetition  from the VM at 

30% 1-RM that were greater than the initial repetition from 10 to 100% of the total 

repetitions (Figure 5). There were significant negative quadratic relationships for EMG 

MPF (R2 = 0.97) and MMG MPF (R2 = 0.91) versus repetition from the VM at 30% 1-

RM that began to decrease from the initial repetition at 90 and 60% to 100% of the total 

repetitions, respectively (Figure 5). 
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Figure 5. Time course of changes in neuromuscular responses from the vastus medialis (VM) during the 

30% 1-RM protocol. * Indicates significantly different than the initial repetition. 

 

Figure 6 shows the results of the polynomial regression analyses and one-way 

repeated measure ANOVAs with post-hoc Student Newman-Keuls tests for the 

normalized EMG RMS, EMG MPF, MMG RMS, and MMG MPF versus repetition 

relationships from the RF at 30% 1-RM. There were significant cubic relationships for 

the EMG RMS (R2 = 0.97) and MMG RMS (R2 = 0.77) versus repetition from the RF at 

30% 1-RM that were greater than the initial repetition from 10 to 100% of the total 

repetitions (Figure 6). There were significant negative quadratic relationships for EMG 

MPF (R2 = 0.95) and MMG MPF (R2 = 0.91) versus repetition from the RF at 30% 1-RM 

that began to decrease from the initial repetition at 60 and 30% to 100% of the total 

repetitions, respectively (Figure 6). 
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Figure 6. Time course of changes in neuromuscular responses from the rectus femoris (RF) during the 30% 

1-RM protocol. * Indicates significantly different than the initial repetition. 

 

4.5 Time Course of Changes in Neuromuscular Parameters During 70% 1-RM Muscle 

Actions to Failure 

 Figure 7 shows the results of the polynomial regression analyses and one-way 

repeated measure ANOVAs with post-hoc Student Newman-Keuls tests for the 

normalized EMG RMS, EMG MPF, MMG RMS, and MMG MPF versus repetition 

relationships from the VL at 70% 1-RM. There were significant cubic relationships for 

the EMG RMS (R2 = 0.98) and MMG RMS (R2 = 0.89) versus repetition from the VL at 

70% 1-RM that were greater than the initial repetition from 10 to 100% of the total 

repetitions (Figure 7). There was a significant negative quadratic relationship for EMG 

MPF (R2 = 0.98) versus repetition from the VL at 70% 1-RM that decreased from the 

initial repetition from 60 to 100% of the total repetitions (Figure 7). There was a 

significant cubic relationship for MMG MPF (R2 = 0.90) versus repetition from the VL at 

70% 1-RM that decreased from the initial repetition from 10 to 100% of the total 

repetitions (Figure 7).  
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Figure 7. Time course of changes in neuromuscular responses from the vastus lateralis (VL) during the 

70% 1-RM protocol. * Indicates significantly different than the initial repetition. 

Figure 8 shows the results of the polynomial regression analyses and one-way 

repeated measure ANOVAs with post-hoc Student Newman-Keuls tests for the 

normalized EMG RMS, EMG MPF, MMG RMS, and MMG MPF versus repetition 

relationships from the VM at 70% 1-RM. There was a significant positive quadratic 

relationship for the EMG RMS (R2 = 0.97) versus repetition from the VM at 70% 1-RM 

that was greater than the initial repetition from 20 to 100% of the total repetitions (Figure 

8). There was a significant positive linear relationship for the MMG RMS (R2 = 0.45) 

versus repetition from the VM at 70% 1-RM that was greater than the initial repetition 

from 20 to 100% of the total repetitions (Figure 8). There were significant negative 

quadratic relationships for EMG MPF (R2 = 0.96) and MMG MPF (R2 = 0.84) versus 

repetition from the VM at 70% 1-RM that began to decrease from the initial repetition at 

80 and 20% to 100% of the total repetitions, respectively (Figure 8). 
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Figure 8. Time course of changes in neuromuscular responses from the vastus medialis (VM) during the 

70% 1-RM protocol. * Indicates significantly different than the initial repetition. 
 

Figure 9 shows the results of the polynomial regression analyses and one-way 

repeated measure ANOVAs with post-hoc Student Newman-Keuls tests for the 

normalized EMG RMS, EMG MPF, MMG RMS, and MMG MPF versus repetition 

relationships from the RF at 70% 1-RM. There was a significant cubic relationship for 

the EMG RMS (R2 = 0.96) versus repetition from the RF at 70% 1-RM that was greater 

than the initial repetition from 10 to 100% of the total repetitions (Figure 9). There was a 

significant positive linear relationship for the MMG RMS (R2 = 0.48) versus repetition 

from the RF at 70% 1-RM that was greater than the initial repetition from 10 to 100% of 

the total repetitions (Figure 9). There were significant negative quadratic relationships for 

EMG MPF (R2 = 0.96) and MMG MPF (R2 = 0.92) versus repetition from the RF at 70% 

1-RM that began to decrease from the initial repetition at 80 and 70% to 100% of the 

total repetitions, respectively (Figure 9). 



47 
 

 

Figure 9. Time course of changes in neuromuscular responses from the rectus femoris (RF) during the 70% 

1-RM protocol. * Indicates significantly different than the initial repetition. 
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Chapter V 

Discussion 

5.1 Neuromuscular Responses and Force from Pretest to Posttest Measurements 

5.1.1 1-RM Strength and Neuromuscular Responses from Pretest to Posttest excrement  

In the present study, there were 76 and 36% decreases in 1-RM strength after the 

30 and 70% 1-RM protocols, respectively, but no changes in EMG RMS or MMG RMS 

from the VL, VM, or RF following either protocol (Figure 2). The EMG MPF, however, 

decreased from all three muscles following both protocols (Table 2). There were no 

changes in MMG MPF from any of the muscles following the 30% 1-RM protocol, but 

there were decreases from all muscles following the 70% 1-RM protocol (Table 2). These 

findings were in agreement with Pincivero et al.39 who reported no pretest to posttest 

changes in EMG RMS during 1-RM measurements, but decreases in EMG MPF from the 

VL, VM, and RF after DCER leg extension muscle actions to failure at 50% 1-RM. 

These findings were also in agreement with Akima et al.16 who reported no changes in 

EMG RMS from the VL, VM, and RF after DCER leg extension muscle actions to failure 

at 50 and 70% 1-RM. It was suggested16,39 that the decrease in pretest to posttest strength, 

without changes in EMG RMS, were a result of excitation contraction coupling failure. 

Thus, the current findings were in agreement with previous studies39,16 which suggested 

no changes in muscle activation (EMG RMS), but decreases in MUAP CV (EMG MPF) 

during the 1-RM measurements following submaximal, DCER leg extension muscle 

actions to failure. The current findings suggested intensity-specific (30 versus 70% 1-

RM) differences in MMG MPF patterns following fatiguing, submaximal DCER leg 
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extension workbouts to failure that likely reflected differences in motor unit firing rate 

responses. 

5.1.2 MVIC Torque and Neuromuscular Responses from Pretest to Posttest 

 In the present study, there were 14 and 11% decreases in MVIC torque after the 

30 and 70% 1-RM protocols, respectively. In addition, there were no changes in pretest to 

posttest EMG RMS values from the VL, VM, and RF, but increases in MMG RMS from 

all three muscles after both the 30 and 70% 1-RM protocols (Figure 3). The EMG MPF 

and MMG MPF, however, decreased from pretest to posttest for the VL, VM, and RF 

after both the 30 and 70% 1-RM protocols (Table 2). These findings were not in 

agreement with the findings of  Croce et al.65 who reported a 76% pretest to posttest 

decrease in MVIC torque that was accompanied by decreases in MMG RMS (55, 60, and 

39%), EMG MPF (20, 20, and 36%), and MMG MPF (22, 18, and 30%) from the VL, 

VM, and RF, respectively, but no changes in EMG RMS following CON-only, maximal, 

isokinetic leg extension muscle actions to failure. The increase in MMG RMS in the 

current study, but decrease in MMG RMS reported by Croce et al.65 may be due to mode- 

(DCER versus isokinetic) and/or intensity-specific (maximal versus submaximal) 

differences in the neuromuscular responses.  

 In the current study, both protocols resulted in decreases in pretest to posttest 1-

RM strength and MVIC force. In addition, all three muscles had the same neuromuscular 

responses during the 30 and 70% 1-RM protocols for both the 1-RM and MVIC 

measurements. There were, however, intensity-specific (30 versus 70% 1-RM) 

differences in the neuromuscular responses during the 1-RM measurements which 

suggested that the 70% protocol resulted in a fatigue-induced decreases in MMG MPF, 
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which reflects global motor unit firing rate, but not the 30% 1-RM protocol. During the 

MVIC measurements there were increases in MMG RMS, decreases in MMG MPF and 

EMG MPF, but no changes in EMG RMS after both the 30 and 70% 1-RM protocols. 

These neuromuscular responses suggested increases in motor unit recruitment (MMG 

RMS), but decreases in global motor unit firing rate (MMG MPF) and MUAP CV (EMG 

MPF) during the MVIC measurements after both the 30 and 70% 1-RM protocol. 

Therefore, there were no muscle-related differences in neuromuscular responses, but 

were mode- and intensity-specific, pretest to posttest neuromuscular responses as a result 

of the fatiguing DCER workbouts when measured during 1-RM versus MVIC muscle 

actions. 

5.2 30% 1-RM Protocol Time Course of Changes in Neuromuscular Responses 

5.2.1 Vastus Lateral: 30% 1-RM Protocol 

 The results of the present study indicated four unique phases (1 to 20, 20 to 60, 60 

to 80, and 80 to 100% of repetitions to failure) of the neuromuscular responses from the 

VL during the 30% 1-RM protocol (Figure 4). During the first 20% of the repetitions to 

failure there were increases in EMG RMS and MMG RMS, but no changes in EMG MPF 

or MMG MPF. These findings were similar to Gonzalez-Izal et al.66 who reported a 45% 

increase in EMG RMS, but no change in EMG MPF during the first 10 of 20 maximal 

CON-only isokinetic leg extension muscle actions. Thus, the neuromuscular responses in 

the present study suggested that during the first 20% of the repetitions to failure there 

were increases in muscle activation and motor unit recruitment, but no changes in MUAP 

CV or global motor unit firing rate. From 20 to 60% of the repetitions to failure there was 

an increase in EMG RMS, decreases in MMG RMS and EMG MPF, but no change in 
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MMG MPF. These findings were similar to Ebersole et al.67 who reported an increase in 

EMG RMS, decrease in MMG RMS and EMG MPF, but no change in MMG MPF from 

the VL during 50 CON-only isokinetic leg extension muscle actions. Ebersole et al.67 

suggested that the decrease in MMG RMS was likely due to intramuscular fluid pressure 

having a greater effect than increases in recruitment on the MMG signal. Specifically, 

during prolonged static and dynamic muscle actions, increasing intramuscular fluid 

pressure may restrict the lateral muscle fiber oscillations, decreasing MMG RMS. 

Therefore, the decrease in MMG RMS from 20 to 60% of the repetitions to failure may 

have reflected a balance of competing effects of motor unit recruitment (which can 

increase MMG RMS) and intramuscular fluid pressure (which can decrease MMG RMS) 

acting on the MMG signal68. The decrease in EMG MPF suggested a buildup of 

metabolic byproducts that slowed MUAP CV59, which further supported the fatiguing 

nature of the workbout. During 60 to 80% of the repetitions to failure there was an 

increase in EMG RMS, but decreases in MMG RMS, EMG MPF, and MMG MPF. These 

findings were similar to Jenkins et al.7 and Pincivero et al.39 who reported increases in 

EMG RMS and decreases in EMG MPF during DCER leg extensions to failure at 30 and 

50% 1-RM, respectively. The continued decrease in MMG RMS, in the present study, 

suggested that intramuscular fluid pressure still had a greater affect than recruitment on 

the MMG signal. In addition, unlike 20 to 60% of the repetitions to failure, there was a 

decrease in MMG MPF that suggested a decrease in the global firing rate of the activated 

motor units during 60 to 80% of the repetition to failure. It has been suggested69,70 that a 

decrease in global motor unit firing rate allows for a greater fusion of activated motor 

units to maintain the required force. During the final phase (80 to 100% of the repetitions 
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to failure) there were increases in EMG RMS and MMG RMS, and decreases in EMG 

MPF and MMG MPF. These findings were similar to previous studies7,66,67 of dynamic 

leg extension muscle actions that have reported increases in EMG RMS and MMG RMS, 

as well as decreases in EMG MPF and MMG MPF. For example, Ebersole et al.67 

reported an increase in EMG RMS and MMG RMS, but decreases in EMG MPF and 

MMG MPF from the VL during the final 10 of 50 CON-only isokinetic leg extension 

muscle actions. Thus, the increase in MMG RMS from 80 to 100% of the repetitions to 

failure in the present study suggested that the increases in recruitment overcame the 

competing influences of intramuscular fluid pressure on the MMG signal. In addition, the 

continued decrease in MMG MPF suggested that the decrease in global motor unit firing 

rate persisted to failure. Therefore, during the 30% 1-RM protocol, the VL exhibited four 

unique phases (1 to 20, 20 to 40, 60 to 80, and 80 to 100%) of neuromuscular responses 

that contributed to the overall force production of the quadriceps femoris during CON-

only DCER leg extension muscle actions to failure.  

5.2.2 Vastus Medialis: 30% 1-RM Protocol 

 The results of the present study indicated four unique phases (1 to 30, 30 to 60, 60 

to 90, and 90 to 100% of the repetitions to failure) of the neuromuscular responses from 

the VM during the 30% 1-RM protocol (Figure 5). During the first 30% of the repetitions 

to failure there were increases in EMG RMS and MMG RMS, but no change in EMG 

MPF or MMG MPF. These findings were different than those of Pincivero et al.39 who 

reported an increase in EMG RMS, but decrease in EMG MPF from the VM during the 

first 30% of DCER leg extensions to failure at 50% 1-RM. In addition, these findings 

were different than those of Ebersole et al.67 who reported increases in EMG RMS and 
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MMG RMS, decreases in MMG MPF, and no change in EMG MPF from the VM during 

the first 15 of 50 maximal CON-only isokinetic muscle actions of the leg extensors. 

These findings40,67 suggested mode- (isokinetic versus DCER) and intensity-related 

(maximal versus submaximal) differences in neuromuscular responses during dynamic 

muscle actions. During the second phase (30 to 60% of the repetitions to failure) there 

was an increase in EMG RMS, decrease in MMG RMS, and no changes in EMG MPF or 

MMG MPF. The MMG RMS responses were similar to Ebersole et al.67 who reported a 

decrease in MMG RMS from the VM during repetitions 15 to 40 of 50 maximal CON-

only isokinetic leg extension muscle actions. The decrease in MMG RMS was likely a 

result of intramuscular fluid pressure having a greater affect than motor unit recruitment 

on the MMG signal. In addition, these findings were similar to the neuromuscular 

patterns exhibited by the VL during the middle phase of the 30% 1-RM protocol and, 

therefore, further supported the increase in intramuscular fluid pressure during the middle 

phases of the fatiguing workbout. During the third phase (60 to 90% of the repetitions to 

failure), however, there were increases in EMG RMS and MMG RMS, decrease in MMG 

MPF, but no change in EMG MPF. These findings were similar to Ebersole et al.67 who 

reported increases in EMG RMS, MMG RMS, decrease in MMG MPF, and no change in 

EMG MPF from the VM during repetitions 40 to 50 of 50 maximal CON-only isokinetic 

muscle actions of the leg extensors. The increases in EMG RMS and MMG RMS 

suggested that motor unit recruitment overcame the competing effects of intramuscular 

fluid pressure on the MMG signal67. In addition, the decrease in MMG MPF suggested a 

decrease in the global motor unit firing rate of activated motor units69,70. During the final 

phase (90 to 100% of the repetitions to failure) there were increases in EMG RMS and 
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MMG RMS, but decreases in EMG MPF and MMG MPF. These findings were similar to 

Jenkins et al.7 who reported an increase in EMG RMS and decrease in EMG MPF from 

the VM during DCER leg extension muscle actions to failure at 30% 1-RM. In addition, 

these findings were similar to Pincivero et al.39 who reported increases in EMG RMS and 

decreases in EMG MPF from the VM during the CON phase of DCER leg extension 

muscle actions to failure at 50% 1-RM. The decrease in EMG MPF in the present study 

suggested a buildup of metabolic byproducts that slowed MUAP CV, which further 

supported the fatiguing nature of the workbout. Therefore, during the 30% 1-RM protocol 

the VM exhibited four unique phases (1 to 30, 30 to 60, 60 to 90, and 90 to 100%) of 

neuromuscular responses that contributed to the overall force production of the 

quadriceps femoris during CON-only DCER leg extension muscle actions to failure.  

5.2.3 Rectus Femoris: 30% 1-RM Protocol 

 The results of the present study indicated three unique phases (1 to 30%, 30 to 

60%, and 60 to 100% of repetition to failure) of the neuromuscular responses from the 

RF during the 30% 1-RM protocol (Figure 6). During the first 30% of the repetitions to 

failure there were increases in EMG RMS and MMG RMS, but no changes in EMG MPF 

or MMG MPF. These findings were not consistent with those of Pincivero et al.39 who 

reported an increase in EMG RMS and decrease in EMG MPF from the RF during the 

first 30% of DCER leg extensions to failure at 50% 1-RM. The current findings were also 

not consistent with those of Ebersole et al.67 who reported increases in EMG RMS and 

MMG RMS, but decreases in EMG MPF and MMG MPF from the RF during the first 15 

of 50 maximal CON-only isokinetic muscle actions of the leg extensors. Together, the 

current and previous studies7,40,67 suggest mode- (isokinetic versus DCER) and intensity-
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related (maximal versus submaximal) differences in the neuromuscular responses during 

the initial 30% of a fatiguing workbout. During 30 to 60% of the repetitions to failure 

there were increases in EMG RMS, decreases in MMG RMS and MMG MPF, and no 

change in EMG MPF. These findings were similar to those of Jenkins et al.7 and 

Pincivero et al.39 who reported increases in EMG RMS, but decreases in EMG MPF from 

the RF during DCER leg extension muscle actions to failure at 30 and 50% 1-RM, 

respectively. In addition, the decrease in MMG RMS in the present study was similar to 

Ebersole et al.67 who suggested that the decrease in MMG RMS during the fatiguing 

muscle actions likely resulted from greater intramuscular fluid pressure. During the final 

phase (60 to 100% of repetitions to exhaustion) there were increases in EMG RMS and 

MMG RMS, but decreases in EMG MPF and MMG MPF. These were similar to those of 

Ebersole et al.67 who also reported increases in EMG RMS and MMG RMS, but 

decreases in EMG MPF and MMG MPF from the RF during 50 maximal isokinetic leg 

extension muscle actions. The decrease in EMG MPF supported the fatiguing nature of 

the workbout and the increase in MMG RMS suggested that motor unit recruitment 

overcame the effects of intramuscular fluid pressure on the MMG signal. Thus, during 

the 30% 1-RM protocol, the RF exhibited three unique (1 to 30, 30 to 60, and 60 to 100% 

of repetitions to exhaustion) phases of neuromuscular responses that contributed to the 

overall force production of the quadriceps femoris during CON-only DCER leg extension 

muscle actions to failure.  

5.3 70% 1-RM Protocol Time Course of Changes in Neuromuscular Responses 

5.3.1 Vastus Lateral: 70% 1-RM Protocol 
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 In the present study, there were four unique phases (1 to 20, 20 to 60, 60 to 80, 

and 80 to 100% of the repetitions to failure) of the neuromuscular responses from the VL 

during the 70% 1-RM protocol (Figure 7). During the first 20% of the repetitions to 

failure there were increases in EMG RMS and MMG RMS, but no changes in EMG MPF 

or MMG MPF. These findings were similar to Akima et al.16 who reported increases in 

EMG RMS from the VL during the first 25% of repetitions to failure of DCER leg 

extension muscle actions at 70% 1-RM. These findings were not in agreement with Croce 

et al.65 who reported an increase in EMG RMS, but decreases in MMG RMS, EMG MPF, 

and MMG MPF from the VL during the first 15% of maximal, CON-only isokinetic leg 

extension muscle actions to failure. Thus, the current study and previous studies16,65 

suggested intensity- (maximal versus submaximal) and mode-specific (isokinetic versus 

DCER) differences during the first 20% of leg extension repetitions to failure. In 

addition, these neuromuscular responses suggested an increase in muscle activation and 

motor unit recruitment, but no changes in global motor unit firing rate or MUAP CV. 

From 20 to 60% of the repetitions to failure in the present study, there were increases in 

EMG RMS and MMG RMS, a decrease in MMG MPF, and no change in EMG MPF. 

These findings were in agreement with Masuda et al.34 who reported an increase in EMG 

RMS, but no change in EMG MPF from the VL during 20 to 60% of the repetitions to 

failure of DCER leg extension muscle actions at 50% 1-RM. In addition, the current 

findings were in agreement with Akima et al.16 who reported an increase in EMG RMS 

from the VL during 25 to 75% of the repetitions to failure of DCER leg extension muscle 

actions at 70% 1-RM. Therefore, from 20 to 60% of the repetitions to failure there were 

increases in muscle activation and motor unit recruitment, a decrease in global motor unit 
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firing rate, but no change in MUAP CV during DCER leg extension muscle actions at 

70% 1-RM. During the third phase (repetitions 60 to 80% of the repetitions to failure) 

there was a plateau in EMG RMS and MMG RMS, and decreases in EMG MPF and 

MMG MPF. These findings were similar to those of Croce et al.65 who reported a plateau 

in EMG RMS and MMG RMS, but decrease in EMG MPF and MMG MPF from the VL 

during 60 to 75% of the repetitions to failure of maximal isokinetic leg extension muscle 

actions. These findings suggested that from 60 to 80% of the repetitions to failure there 

was no change in muscle activation or motor unit recruitment, but decreases in global 

motor unit firing rate and MUAP CV. From 80 to 100% of the repetitions to failure there 

was a plateau in EMG RMS, an increase in MMG RMS, and decreases in EMG MPF and 

MMG MPF. These findings were in agreement with Pincivero et al.39 who reported a 

plateau in EMG RMS and decreases in EMG MPF from the VL during DCER leg 

extension muscle actions to failure at 50% 1-RM. Thus, from 80 to 100% of the 

repetitions to failure there was an increase in motor unit recruitment accompanied by a 

decrease in global motor unit firing rate and MUAP CV. Therefore, during the 70% 1-

RM protocol, the VL exhibited four unique phases (1 to 20, 20 to 60, 60 to 80, and 80 to 

100% of the repetition to failure) of fatigue-induced neuromuscular responses that 

contributed to the overall force production of the quadriceps femoris during CON-only 

DCER leg extension muscle actions.  

5.3.2 Vastus Medialis: 70% 1-RM 

 The results of the present study indicated three unique phases (1 to 20, 20 to 80, 

and 80 to 100% of the repetitions to failure) of the neuromuscular responses from the VM 

during the 70% 1-RM protocol (Figure 8). During the first 20% of the repetitions to 
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failure there were no changes in EMG RMS, MMG RMS, EMG MPF, and MMG MPF 

from the VM. These findings were not in agreement with Akima et al.16 who reported an 

increase in EMG RMS from the VM during the first 25% of the repetitions to failure of 

DCER leg extension muscle actions to failure at 70% 1-RM. In addition, these findings 

were not in agreement with Pincivero et al.39 who reported an increase in EMG RMS and 

a decrease in EMG MPF from the VM during the first 20% of the repetitions to failure of 

DCER leg extension muscle actions to failure at 50% 1-RM. The fatigue-related 

differences in neuromuscular responses may be explained by the differences in protocol. 

Specifically, the present study only included the CON phase of the leg extension muscle 

actions, but Akima et al.16 and Pincivero et al.39 performed the CON and eccentric (ECC) 

phases of the leg extension muscle actions. Thus, the confounding effects of the ECC 

phase following the CON phase may result in earlier fatigue-related changes in the 

neuromuscular responses than during CON-only DCER leg extension muscle actions. 

During the middle phase (20 to 80% of the repetitions to failure) there were increases in 

EMG RMS and MMG RMS, decrease in MMG RMS, but no change in EMG MPF. 

These findings were in agreement with Akima et al.16 who reported an increase in EMG 

RMS from the VM during 25 to 75% of the repetitions to failure of DCER leg extension 

muscle actions to failure at 70% 1-RM. The current study was not in agreement, 

however, with Croce et al.65 who reported a decrease in EMG RMS, MMG RMS, and 

MMG MPF, but a plateau in EMG MPF from the VM during 15 to 75% of the repetitions 

to failure of maximal isokinetic muscle actions. The differences in the present study and 

those of Croce et al.65 suggested mode- (isokinetic versus DCER) and intensity-related 

(maximal versus submaximal) differences in neuromuscular responses. Thus, during the 
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middle phase (20 to 80% of the repetitions to failure) there were increases in muscle 

activation and motor unit recruit that were accompanied by a decrease in global motor 

unit firing rate. From 80 to 100% of the repetitions to failure there was a plateau in EMG 

RMS, an increase in MMG RMS, but decreases in EMG MPF and MMG MPF. These 

findings were similar to those of Akima et al.16 who reported a plateau in EMG RMS 

from VM during 75 to 100% of the repetitions to failure of DCER leg extension muscle 

actions to failure at 70% 1-RM. In addition, these findings were in agreement with 

Pincivero et al.39 who reported a plateau in EMG RMS and a decrease in EMG MPF from 

VM during 80 to 100% of the repetition to failure of DCER leg extension muscle actions 

at 50% 1-RM. Thus, the neuromuscular responses from 80 to 100% of the repetitions to 

failure suggested an increase in motor unit recruitment, but decreases in global motor unit 

firing rate and MUAP CV. Therefore, during the 70% 1-RM protocol there were three 

unique phases (1 to 20, 20 to 80, and 80 to 100% of the repetitions to failure) of 

neuromuscular responses that contributed to the overall force production of the 

quadriceps femoris during CON-only DCER leg extension muscle actions to failure.  

5.3.3 Rectus Femoris: 70% 1-RM Protocol 

 The results of the present study indicated three unique phases (1 to 50, 50 to 70, 

and 70 to 100% of the repetitions to failure) of the neuromuscular responses from the RF 

during the 70% 1-RM protocol (Figure 9). During the first 50% of the repetitions to 

failure there were increases in EMG RMS and MMG RMS, but no changes in EMG MPF 

or MMG MPF. These findings were not in agreement with Jenkins et al.7 and Pincivero et 

al.39 who reported increases in EMG RMS and decreases in EMG MPF from the RF 

during the first 50% of the repetitions to failure of DCER leg extension muscle actions at 
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80 and 50% 1-RM, respectively. The differences in neuromuscular responses in the 

current study and those of Jenkins et al.7 and Pincivero et al.39 may be explained by a 

protocol-related (CON-only versus CON and ECC) differences in neuromuscular 

responses and motor unit activation strategies during DCER leg extension muscle actions 

to failure. Thus, the current neuromuscular response suggested that during the first 50% 

of the repetitions to failure there were increases in muscle activation and motor unit 

recruitment, but no changes in global motor unit firing rate or MUAP CV.  From 50 to 

70% of the repetitions to failure there was a plateau in EMG RMS, an increase in MMG 

RMS, but no change in EMG MPF or MMG MPF. These findings were in agreement 

with Akima et al.16 who reported an increase in EMG RMS from the RF during 25 to 

75% of the repetitions to failure of DCER leg extension muscle actions at 70% 1-RM. 

The current findings were not in agreement with Croce et al.65, however, who reported 

decreases in EMG RMS, MMG RMS, and MMG MPF, but a plateau in EMG MPF from 

the RF during 30 to 75% of the repetitions to failure of maximal, isokinetic leg extension 

muscle actions. These findings suggested mode- (isokinetic versus DCER) and intensity-

related (maximal versus submaximal) differences in the neuromuscular responses from 

the RF during the middle phase (50 to 70% of the repetitions to failure). In addition, the 

middle phase (50 to 70% of the repetitions to failure) suggested an increase in motor unit 

recruitment, a plateau in muscle activation, and no changes in global motor unit firing 

rate or MUAP CV. During the final phase (70 to 100% of the repetitions to failure), there 

was a plateau in EMG RMS, an increase in MMG RMS, and decreases in MMG MPF 

and EMG MPF that began at 70 and 80% of the repetitions to failure, respectively. These 

findings were in agreement with Pincivero et al.39 who reported a plateau in EMG RMS, 
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but a decrease in EMG MPF from the RF during 80 to 100% of the repetitions to failure 

of DCER leg extensions at 50% 1-RM. In addition, these findings were in agreement with 

Akima et al.16 who reported a plateau in EMG RMS from the RF during 75 to 100 of the 

repetitions to failure of DCER leg extension muscle actions at 70% 1-RM. Thus, from 70 

to 100% of the repetitions to failure there was an increase in motor unit recruitment, and 

no change in muscle activation, but decreases in global motor unit firing rate (at 70% of 

the repetitions to failure) and MUAP CV (at 80% of the repetitions to failure). Therefore, 

during the 70% 1-RM protocol, the RF exhibited three unique phases (1 to 50, 50 to 70, 

and 70 to 100% of the repetitions to exhaustion) of neuromuscular responses that 

contributed to the overall force production of the quadriceps femoris during CON-only 

DCER leg extension muscle actions to failure.  

5.4 Motor Unit Activation Strategies 

 There have been a number of fatigue-related motor unit activation strategies69,71-74 

proposed using simulation, stimulation, and voluntary studies. Three commonly used 

strategies are: 1) After-Hyperpolarization theory (AHP)71; 2) Muscle Wisdom theory69; 

and 3) Onion Skin Scheme73. Each strategy is characterized by unique neuromuscular 

responses and suggests that the maintenance or modulation of force during the process of 

fatigue is determined by a different set of physiological mechanisms. 

 The AHP theory was based on stimulation studies by Eccles et al.71 and Kernell et 

al.74,75 and is characterized by fatigue-induced increases in muscle activation, motor unit 

recruitment, and firing rate. According to the AHP theory, a fatigue-related buildup of 

metabolic byproducts causes a gradient shift from intracellular to extracellular potassium 

[K+] and decreases the membrane potential below resting levels following depolarization 
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which has been termed after-hyperpolarization71,74,75 (Figure 10). The after-

hyperpolarization then signals the central nervous system to increase motor unit 

recruitment and firing rate to maintain force production76. Therefore based on the AHP 

theory, the process of fatigue should be characterized by increases in EMG RMS, MMG 

RMS, and MMG MPF due to the increases in motor unit recruitment and firing rate. 

 

Figure 10. Depiction of a motor unit action potential and the after-hyperpolarization in unfatigued (a) and 

fatigued (b) muscle. The unfatigued after-hyperpolarization (a) would stimulate lower firing rates of the 

activated motor units than the fatigued after-hyperpolarization (b). 

 

 The Muscle Wisdom theory was based on a stimulation study by Marsden et al.69 

and is characterized by fatigue-induced increases in muscle activation and motor unit 

recruitment, but decreases in firing rate and MUAP CV. Specifically, during a fatiguing 

task the Muscle Wisdom theory69 describes a progressive prolongation of relaxation time 

and a decrease in motor unit firing rate which, theoretically, allow for greater fusion of 

motor unit twitches and optimal force production. These findings were supported by 

Marsden et al.69 and Bigland-Ritchie et al.60 who demonstrated that stimulated motor 

units maintained the greatest force production during a sustained contraction when the 

frequency of the stimulation was progressively decreased.  

The Onion Skin Scheme was based on a simulation study by De Luca and Erim73 

and, like the Muscle Wisdom Theory, is characterized by fatigue-induced increases in 

muscle activation and motor unit recruitment, but decreases in firing rate and MUAP CV. 

The Onion Skin Scheme suggests that at any time or force level, earlier recruited motor 
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units have higher firing rates than later recruited motor units. This theory results in an 

orderly nesting of firing rate curves under one another, which resembles the skin of an 

onion. Thus, higher threshold motor units require lower firing rates to produce their 

maximal force than do lower threshold motor units. It has been hypothesized73 that the 

lower firing rates observed in high threshold motor units may be due to their greater 

fatigability compared to low threshold motor units (Figure 11). Therefore, theoretically, 

the neuromuscular system activates high threshold motor units at lower firing rates to 

balance maximal force production with the duration that the force can be sustained. 

 

 

Figure 11. Representation of the Onion Skin Scheme. 

 Enoka and Stuart77 suggested that delineating the differences between motor unit 

activation strategies may allow for identification of the mechanisms that result in task 

failure. In the current study, three motor unit activation strategies (AHP, Muscle Wisdom, 

and Onion Skin Scheme) are being considered, however, each have limitations70,78,79. For 

example, Fuglevand and Keen78 suggested that Muscle Wisdom may not be an overall 

activation strategy during fatigue and that decreases in the frequency of stimulations may 
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not optimize the duration of a fatiguing muscle action. In addition, De Luca and 

Contessa70 suggested that the AHP theory does not always explain the process of fatigue 

because there is often, but not always, a decrease in firing rate. These studies used either 

stimulation78 or simulation70 models which have their own limitations and, therefore, no 

one theory can be disregarded based on stimulation or simulation studies alone. In 

addition, Barry and Enoka80 have suggested that the motor unit activation strategies used 

during a fatiguing task may be intensity-, mode-, and muscle-specific. Therefore, the 

current study applied three commonly used motor unit activation strategies (AHP71, 

Muscle Wisdom69, and Onion Skin Scheme73) to identify the mechanisms that maintain 

force production at different time-points during the time course of fatigue-induced 

changes in the neuromuscular responses from DCER leg extension muscle actions to 

failure.  

5.5 Strategies of the Quadriceps Femoris during the 30% 1-RM Protocol 

 The neuromuscular responses from the VL, VM, and RF for the 30% 1-RM 

protocol suggested that during the first 30% of the repetitions to failure, force production 

was primarily maintained by increases in muscle activation (EMG RMS) and motor unit 

recruitment (MMG RMS), without a significant contribution from rate coding (MMG 

MPF). These fatigue-related neuromuscular responses were not consistent with the AHP 

theory71 which predicts an increase in firing rate and, therefore MMG MPF, to 

accompany the recruitment of higher threshold motor units during this early phase of the 

fatigue process. In the present study, however, the regression analysis indicated a 

decreasing pattern for MMG MPF throughout the fatiguing workbout that became 

significant at 30% of the repetitions to failure (Figure 4, 5, and 6). Both Muscle 
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Wisdom69 and the Onion Skin Scheme73 predict fatigue-related increases in muscle 

activation and motor unit recruitment, but decreases in the global motor unit firing rate 

and, therefore MMG MPF, during the 30% 1-RM protocol to failure. Thus, during the 

initial 30% of the fatigue process, either Muscle Wisdom or the Onion Skin Scheme 

could explain the neuromuscular responses to the 30% 1-RM protocol. According to 

Muscle Wisdom and the Onion Skin Scheme, the increases in EMG RMS and MMG 

RMS were likely due to motor unit recruitment. According to Muscle Wisdom69, 

however, the decrease in MMG MPF was due to a central nervous system strategy 

designed to decrease motor unit firing rate, cause elongation of the twitch response, 

greater fusion of motor unit twitches to optimize force production, and delay the process 

of fatigue. The Onion Skin Scheme73 hypothesizes that the decrease in motor unit firing 

rate, as reflected in the MMG MPF responses, was due to later recruited motor units 

having lower firing rates than the initially recruited motor units.  

 From 30 to 60% of the repetitions to failure during the 30% 1-RM protocol there 

were muscle-specific differences in neuromuscular responses. For the VL and VM there 

were no changes in global motor unit firing rate as evidence by the MMG MPF 

responses, but there was a decrease in MMG MPF for the RF. All three muscles, 

however, exhibited increases in muscle activation (EMG RMS), but a decrease in MMG 

RMS. The MMG RMS responses (Figure 4, 5, and 6) from the VL, VM, and RF 

suggested that increases in intramuscular fluid pressure (which decreases MMG RMS) 

had greater effects on the MMG signal then did motor unit recruitment (which increases 

MMG RMS) from 30 to 60% of the repetitions to failure81. In addition, the decrease in 

MMG MPF from the RF, but not the VL and VM, suggested a fatigue-related, muscle-
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specific, difference during the middle phase of low-intensity (30% 1-RM) DCER leg 

extension muscle actions to failure. Specifically, the RF demonstrated an earlier decrease 

in global motor unit firing rate (MMG MPF) than the VL and VM. Hu et al.82 suggested 

that these muscle-specific differences may be explained by differences in muscle 

architecture with the RF being a bi-pennate architecture and a bi-articulate structure, 

while the VL and VM are uni-pennate and uni-articulate muscles82,83. In addition, Hu et 

al.82 suggested that the RF was more fatigable than the VL and VM due to a greater type 

II fiber ratio. In the current study, the decrease in global motor unit firing rate, as 

reflected by MMG MPF, could not be explained by the AHP theory71 which would 

suggest an increase in firing rate during a fatiguing workbout. Therefore, like the first 

30% of the repetitions to failure, the AHP theory71 was unable to explain the changes in 

neuromuscular responses from 30 to 60% of the repetitions to failure. Like the first 30% 

of the repetitions to failure, Muscle Wisdom69 and the Onion Skin Scheme73 may explain 

the neuromuscular responses from 30 to 60% of the repetitions to failure. Muscle 

Wisdom69 suggests that the continued decrease in firing rate is a result of greater 

elongation of the twitch response, however, the Onion Skin Scheme73 suggests that the 

greater decrease in firing rate is from newly recruited motor units having progressively 

slower firing rates. Thus, unlike the first 30% of the repetitions to failure, there were 

muscle-specific (VL and VM versus RF) differences in neuromuscular responses. 

 The neuromuscular responses from the VL, VM, and RF for the 30% 1-RM 

protocol suggested that from 60 to 100% of the repetitions to failure, force production 

was maintained by increases in muscle activation (EMG RMS) and motor unit 

recruitment (MMG RMS), but a decrease in global motor unit firing rate (MMG MPF).  
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In addition, all three muscles exhibited decreases in MUAP CV which were reflected in 

EMG MPF (Figure 4, 5, and 6). Unlike 30 to 60% of the repetitions to failure, there was 

an increase in MMG RMS which suggested that the increases in recruitment (which 

increases MMG RMS) overcame the effects of intramuscular fluid pressure (which 

decreases MMG RMS) on the MMG signal67,81. In addition, the decrease in EMG MPF 

suggested a fatigue-related buildup of metabolic byproducts that slowed MUAP CV and 

further supported the fatiguing nature of the workbout48,57. The increases in muscle 

activation and motor unit recruited accompanied by decreases in global motor unit firing 

rate during the fatiguing workbout may be explained by the AHP theory71, Muscle 

Wisdom69, or the Onion Skin Scheme73. The AHP theory71 suggests that during the initial 

phases of a fatiguing workbout there are increases in recruitment and firing rate, 

however, as the process of fatigue continues there is a buildup of metabolic byproducts 

which slows MUAP CV and also results in decreases in firing rates. Muscle Wisdom69 

suggests that a continued increase in recruitment, greater muscle relaxation times, and 

decreases in motor unit firing rate optimize force production. The Onion Skin Scheme73, 

however, suggests a continued increase in recruitment during the fatiguing process and 

that these newly recruited motor units have slower firing rates than previously recruited 

motor units. Therefore, the AHP theory71, Muscle Wisdom69, and the Onion Skin 

Scheme73 could each explain the neuromuscular responses during the final phase (60 to 

100% of the repetitions to failure) of the 30% 1-RM protocol.  

5.6 Strategies of the Quadriceps Femoris during the 70% 1-RM Protocol 

 During the 70% 1-RM protocol, there were increases in EMG RMS and MMG 

RMS, but decreases in MMG MPF from the VL, VM, and RF (Figure 7, 8, and 9). 
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Specifically, the regression analyses indicated increases in EMG RMS and MMG RMS 

throughout the fatiguing workbout that became significantly greater than the initial 

repetition at 10, 20, and 10% of the repetitions to failure for the VL, VM, and RF, 

respectively. The regression analyses for MMG MPF from the VL, VM, and RF, 

however, indicated decreasing patterns throughout the fatiguing workbout that became 

significant at 10, 20, 70% of the repetitions to failure, respectively. Unlike the 30% 1-RM 

protocol, the neuromuscular responses from the 70% 1-RM protocol were the same for all 

three muscles throughout the fatiguing workbout. The neuromuscular responses during 

the 70% 1-RM protocol were not consistent with the AHP theroy71, which would predict 

increases in motor unit firing rate (MMG MPF) during the initial phases of a fatiguing 

workbout. The increases in MMG RMS and decreases in MMG MPF could be explained 

by both Muscle Wisdom69 and the Onion Skin Scheme73 which would predict fatigue-

induced increases in motor unit recruitment, but decreases in firing rate. The mechanisms 

underlying the expected decrease in motor unit firing rate, as reflected by MMG MPF, 

however, differ between Muscle Wisdom69 and the Onion Skin Scheme73. Muscle 

Wisdom69 suggests that the central nervous system employs a specific activation strategy 

that includes decreases in motor unit firing rate to maintain force production during 

fatigue. The Onion Skin Scheme, however, suggests a natural reserve of motor units and 

that earlier recruited motor units are firing at greater rates than later recruited ones.  

 In the current study, the 30% 1-RM protocol had three unique phases (1 to 30, 30 

to 60, and 60 to 100% of the repetitions to failure) of neuromuscular responses and the 

70% 1-RM protocol had only one (1 to 100% of the repetitions to failure). The 

neuromuscular responses were similar during the first 30% of the repetitions to failure 
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from the VL, VM, and RF during the 30 and 70% 1-RM protocols, which exhibited 

increases in EMG RMS and MMG RMS, but decreases in MMG MPF. From 30 to 60% 

of the repetitions to failure there were decreases in MMG RMS during the 30% 1-RM 

protocol, but increases during the 70% 1-RM protocol. These findings suggested that 

low-load (30% 1-RM) CON-only DCER leg extensions are affected by greater 

intramuscular fluid pressure than high-load (70% 1-RM). This difference in 

intramuscular fluid pressure may be due to the greater total volume of work performed 

during the low-load (30% 1-RM) compared to the high-load (70% 1-RM) (Table 1)7,81. 

The last 40% of the repetitions to failure for the 30 and 70% 1-RM protocols exhibited 

increases in EMG RMS and MMG RMS, but decreases in MMG MPF. Together, these 

findings indicated an intensity-specific (30 versus 70% 1-RM) difference in 

neuromuscular responses during CON-only DCER leg extension muscle actions to 

failure. In addition to the differences in neuromuscular responses, three commonly used 

motor unit activation strategies (AHP theory71, Muscle Wisdom69, and the Onion Skin 

Scheme73) were used to compare the differences in the strategies used to maintain force 

production during low-load (30% 1-RM) and high-load (70% 1-RM) CON-only DCER 

leg extension muscle actions. The AHP theory was able to explain the neuromuscular 

responses from the final phase (60 to 100% of the repetitions to failure) of the 30% 1-RM 

protocol, but none of the phases from the 70% 1-RM protocol. Muscle Wisdom and the 

Onion Skin Scheme, however, were able to explain all phases of neuromuscular 

responses during both the 30 and 70% 1-RM protocols. Therefore, the findings of the 

current study suggested intensity- (30 versus 70% 1-RM) and muscle-specific (RF versus 

VL and VM) differences in the neuromuscular responses and that Muscle Wisdom69 or 
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the Onion Skin Scheme73 better explained the maintenance of force than the AHP 

theory71.    

During the 30 and 70% 1-RM protocols, there were increases in EMG RMS and 

MMG RMS, decreases in EMG MPF and MMG MPF, but differences in the time-points 

at which these neuromuscular parameters changed. During the 30% 1-RM protocol, EMG 

MPF began to decrease earlier and decreased to a greater extent than during the 70% 1-

RM protocol. This intensity-related (30 versus 70% 1-RM) difference in EMG MPF 

suggested a greater buildup of metabolic byproducts during the 30% 1-RM protocol 

compared to the 70% 1-RM protocol, which was likely related to the total amount of 

work performed. The increases in muscle activation (EMG RMS) and motor unit 

recruitment (MMG RMS) began at the initiation of the fatiguing workbouts for both 

protocols, however, the time course of changes in motor unit firing rate (MMG MPF) 

differed. The decrease in global motor unit firing rate, as reflected in MMG MPF, from 

the VL and VM occurred later in the 30% 1-RM protocol compared to the 70% 1-RM 

protocol. The decrease in firing rate from the RF, however, occurred earlier during the 

30% 1-RM protocol than the 70% 1-RM protocol. These findings suggested intensity- 

(30 versus 70% 1-RM) and muscle-specific (RF versus VL and VM) differences in the 

time course of changes of global motor unit firing rate (MMG MPF). In addition, during 

the 70% 1-RM protocol, the later decrease in firing rate from the RF compared to the VL 

and VM may have been due to differences in muscle architecture, structure, and fiber 

type ratios82,83. The maintenance of force production, however, during both the 30 and 

70% 1-RM protocols was primarily a result of increases in motor unit recruitment (MMG 

RMS). In addition, these findings suggested that the neuromuscular responses during 
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both the 30 and 70% 1-RM protocols could be explained by Muscle Wisdom69 or the 

Onion Skin Scheme73, but not the AHP theory71. Thus, the general patterns of 

neuromuscular responses were similar for both protocols, however, the time course of 

changes were different. 

5.7 Summary 

 There were decreases in pretest to posttest 1-RM and MVIC force after both the 

30 and 70% 1-RM protocols. Furthermore, all three muscles exhibited the same 

neuromuscular responses for the 30 and 70% 1-RM protocols during both the 1-RM and 

MVIC measurements. During the 1-RM measurements, there were decreases in EMG 

MPF, and no changes in EMG RMS or MMG RMS after the 30 and 70% 1-RM 

protocols. In addition, there were decreases in MMG MPF after the 70% 1-RM protocol, 

but not the 30% 1-RM protocol. These neuromuscular responses suggested that there 

were decreases in MUAP CV (EMG MPF) during the 1-RM measurements for all 

muscles after both the 30 and 70% 1-RM protocols, but decreases in global motor unit 

firing rate (MMG MPF) after the 70% 1-RM protocol only. During the MVIC 

measurements, there were increases in MMG RMS, no change in EMG RMS, and 

decreases in MMG MPF and EMG MPF after both the 30 and 70% 1-RM protocols. 

These neuromuscular responses suggested increases in motor unit recruitment (MMG 

RMS), and decreases in MUAP CV (EMG MPF) and global motor unit firing rate (MMG 

MPF) during the MVIC measurements after the 30 and 70% 1-RM protocols. Therefore, 

there were mode- and intensity-specific, but no muscle-specific pretest to posttest 

neuromuscular responses after the DCER leg extension muscle actions to failure during 

the 1-RM and MVIC measurements.  
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There were three unique phases of neuromuscular responses during the 30% 1-

RM protocol, but only one phase during the 70% 1-RM protocol. During the initial phase 

(1 to 30% of the repetitions to failure) of the 30% 1-RM protocol there were increases in 

EMG RMS and MMG RMS, but decreases in MMG MPF. The second phase (30 to 60% 

of the repetitions to failure), however, exhibited decreases in MMG RMS and MMG 

MPF, but increases in EMG RMS. The final phase (60 to 100% of the repetitions to 

failure) of the 30% 1-RM protocol exhibited increases in EMG RMS and MMG RMS, 

but decreases in EMG MPF and MMG MPF. The 70% 1-RM protocol resulted in 

increases in EMG RMS and MMG RMS, but decreases in EMG MPF and MMG MPF 

throughout the fatiguing DCER workbout. Thus, the neuromuscular responses during 

both the 30 and 70% 1-RM protocols suggested increases in muscle activation (EMG 

RMS) and motor unit recruitment (MMG RMS), but decreases in global motor unit firing 

rate (MMG MPF) and MUAP CV (EMG MPF). The time-points at which MMG MPF 

became significantly less than the initial repetitions, however, were later for the VL and 

VM than the RF during the 30% 1-RM protocol compared to the 70% 1-RM protocol. 

These time course of changes in neuromuscular responses during the 30 and 70% 1-RM 

protocols could both be explained by Muscle Wisdom69 and the Onion Skin Scheme73, 

but not the AHP theory71. The findings of the current study suggested that the time course 

of changes in neuromuscular responses can provide insight into muscle- and intensity-

specific differences in the motor unit activation strategies used to maintain force 

production and allow for a greater understanding of the fatiguing process by identifying 

the time-points at which these neuromuscular parameters changed. 
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