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Generalized Linear Randomized
Response Modeling using GLMMRR
by Jean-Paul Fox, Konrad Klotzke and Duco Veen

Abstract Randomized response (RR) designs are used to collect response data about sensitive
behaviors (e.g., criminal behavior, sexual desires). The modeling of RR data is more complex since it
requires a description of the RR process. For the class of generalized linear mixed models (GLMMs),
the RR process can be represented by an adjusted link function, which relates the expected RR
to the linear predictor for most common RR designs. The package GLMMRR includes modified
link functions for four different cumulative distributions (i.e., logistic, cumulative normal, Gumbel,
Cauchy) for GLMs and GLMMs, where the package lme4 facilitates ML and REML estimation.
The mixed modeling framework in GLMMRR can be used to jointly analyze data collected under
different designs (e.g., dual questioning, multilevel, mixed mode, repeated measurements designs,
multiple-group designs). Model-fit tests, tools for residual analyses, and plot functions to give
support to a profound RR data analysis are added to the well-known features of the GLM and
GLMM software (package lme4). Data of Höglinger and Jann (2018) and Höglinger, Jann, and
Diekmann (2014) are used to illustrate the methodology and software.

Introduction

Response distortion is known to be a potential threat to accurate (survey) results. The methodological
literature shows many examples of misreporting of embarrassing or socially undesirable behaviors
in surveys (Tourangeau and Yan, 2007; Tourangeau and Smith, 1996). The randomized response
technique (RRT) has been developed to encourage respondents to answer truthfully to questions
about sensitive behaviors. The RRT is designed to collect responses in an indirect way, where
respondents are instructed to answer a sensitive question truthfully only with a certain probability.
Therefore, an affirmative response to a sensitive question is masked by a random device at the
individual level. The traditional way of direct questioning (DQ) about sensitive topics is known to
lead to socially desirable responses or non-cooperation of the respondents. Honest responding is
encouraged by RRT by increasing anonymity and confidentiality.

After the introduction of the randomized response (RR) design by Warner (1965), many ran-
domized response (RR) designs have been introduced to improve RRT performance in collecting
sensitive information. Warner’s design is based on a deck of cards containing cards with the sensitive
question and cards with its negation. Since then, different randomizing devices have been introduced
to improve the privacy protection of the respondent. Outcomes of rolling dice or spinning a spinner
have been used to determine at random one of the possible routings to response for a respondent.
Another non-sensitive question has been introduced to make the design easier to implement, where
the response to the non-sensitive question is used to steer the response process at random. For online
surveys, an online randomizing device, such as a digital dice or spinner, is less reliable since the
computer outcomes can be stored. Therefore, techniques have been developed where user interaction
is requested to generate a random outcome, which cannot be digitally stored. Currently, there are
many ways to randomize the response in an online survey, where the randomizing design properties –
the level of privacy protection and the efficiency of the design – are still under the control of the
investigator.

The flexibility in RR designs has also improved the utility of the RRT. They can be applied
to survey items (Lensvelt-Mulders et al., 2005; van den Hout et al., 2010) but also to scale items
for measuring sensitive constructs (Fox, 2005; Fox and Meijer, 2008; Fox et al., 2013). Different
RRT implementations have been introduced and applied in many research fields. Together with
this expansion of the RRT to different domains, statistical tools have been developed to improve
the analysis of RR data. Scheers and Dayton (1988) developed a (logistic) linear regression method
for RR data to explore relationships between variables in addition to estimating prevalence rates
of the sensitive attribute. Since then, more advanced statistical regression models for RR data
have been developed. For instance, randomized item-response theory (RIRT) models for measuring
sensitive constructs (Fox, 2012) and mixture RR models to deal with non-cooperating participants
(Fox et al., 2013). To further stimulate the use of RRT, software tools are needed to make the
developed methods and designs for RR data widely available.

Recently, two packages for RR data have become available in R. The package rr of Blair et al.
(2015) was developed for univariate power analysis to measure the sensitive item prevalence for four
RR designs. It also comprehends a logistic regression function for RR data collected with a single RR
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design. The package RRreg of Heck and Moshagen (2018) has logistic and linear regression routines,
which can include random effects, and tools for power analysis for different RR designs (including
those for continuous data). However, both packages are restricted to single-group RR designs and
do not allow joint analysis of different randomization schemes across items and/or participants.

Multiple-group RR designs are particularly interesting in online surveys, where different RR
designs and different random devices can be easily varied. For instance, the level of protection
can be moderated by varying the design parameters, and RR designs can be varied across survey
items to improve truth-telling. For validation studies, multiple-group RR designs are relevant to
make comparisons between groups questioned with different RR designs (Höglinger and Jann, 2018;
Höglinger et al., 2016). For a meta-analysis, a joint analysis of the available data can improve
the measurement of a sensitive prevalence. Furthermore, differences in prevalence estimates can
be examined across studies. More recently, there has been an increased interest in measuring the
efficacy of the RRT to improve the honest disclosure of sensitive information (John et al., 2018).
This is usually done through validation studies where a DQ group serves as the baseline, and it is
investigated whether higher prevalence estimates are obtained with a single-group RRT. The huge
amount of literature on the topic and mixed results about the benefits of RRT has led to skeptical
positions toward RRT (Wolter and Preisendörfer, 2013). However, the RR design parameters (the
random-device properties), as well as the type of RR design, can influence the response behavior, and
care must be taken in designing the RRT to reduce the level of misreporting. It is not likely that a
fixed privacy level encourages truth-telling in a uniform way across participants. The performance of
RRT will vary across subgroups and participants, and different RR designs can vary in performance
across subgroups depending on the level of sensitivity of the question.

The R package GLMMRR extends existing implementations by providing generalized regression
tools for multiple-group RR designs. It builds in a natural way on common regression methods of the
system package stats to make them suitable for RR data. The R package GLMMRR gives support
to generalized linear (mixed effects) regression modeling of binary RR data and extends the popular
generalized linear regression routines in R to handle RR outcomes by including RR-specific link
functions for a wide variety of RR designs. The GLMMRR provides several important contributions
for the joint regression analysis of binary RR data:

1. Different link functions (logit, probit, complementary log-log, cauchit) are supported to
optimize the link between the linear predictor and the response and to avoid restrictions on
the range of the (expected) response. The complementary log-log and cauchit link functions
approach the asymptotes of zero and one asymmetrically.

2. Each link function is modified to an RR-link function to make it suitable for various RR
designs (Warner, Unrelated question, Forced response, Kuk, Crosswise, Triangular), where
two design parameters specify the properties of the RR design.

3. The package supports a joint regression analysis of RR data sampled with different RR designs
and different design parameters. Each response observation is either indirectly observed with
an RR design with unique design parameters or directly observed without an RR design.

4. For randomized item-response data, RR-design specific (weighted) prevalence rates and
confidence intervals can be computed for each item. Trait levels can be estimated, where the
items serve as indicators of a sensitive trait.

5. Extensive residual tools are available for the evaluation of the fit of the model. This includes
Pearson, deviance and response residuals, goodness-of-fit statistics (Pearson’s and deviance
chi-square statistic, Hosmer-Lemeshow statistic), and the Akaike’s Information Criterion
(AIC) and the Bayesian Information Criterion (BIC).

6. The RRglm is used to fit a GLM, and an object of class "RRglm" is created, which extends
the class "glm" with RR data. The glm methods are applicable to an object of class "RRglm".
The function summary or print can be used to obtain a summary of the results. Other useful
features can be extracted using the well-known generic functions, such as coefficients,
effects, fitted.values, and anova.

7. The RRglmer for fitting a GLMM returns an object of class "RRglmerMod" which extends the
class "glmerMod" and "merMod" with RR data. The methods for an object of class "glmerMod"
are applicable for an object of class "RRglmerMod" (the methods can be found in the lme4
documentation).

This paper is organized as follows. In the next section, the RR-link functions are introduced,
and the GLM and GLMM modeling framework for RR data is introduced. A general introduction
is given where the responses are distributed according to a distribution of the exponential family,
and the RR-link function is used to link the linear predictor to the expected (randomized) response.
In Section 2.3, the ML and REML estimation method is discussed for the GLM(M) with RR-link
functions. Then, the RIRT modeling approach for measuring sensitive constructs is discussed.
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Section 2.5 discusses different methods to evaluate the fit of the model. Different residuals are
defined (Pearson, deviance, response) for a GLM. For a GLMM, a conditional residual is defined
as the difference between the observation and the conditional expected value (given the random
effect estimate). Goodness-of-fit statistics are introduced by grouping the Pearson and deviance
residuals. For a fixed number of groups, the Hosmer-Lemeshow (H-L), the Pearson, and the deviance
statistic are approximately chi-square distributed and can be used to evaluate the global fit of a
GLM. In Section 2.6, the two main functions of the package are discussed for fitting GLMs and
GLMMs with RR data. In Section 2.7, an illustration of the package is shown by analyzing data
from the validation study of Höglinger and Jann (2018), where differences in outcomes between
RR designs are evaluated. Furthermore, the prevalence of student misconduct is analyzed with a
randomized item-response theory model where students were assigned to different treatment groups,
each assigned to a specific RR design. A joint modeling approach is carried out to examine differences
between treatment groups. Then, in Section 2.8, the conclusions are given.

General randomized-response probability model

When collecting RR data, each observation is randomized before it is observed. The RR process
makes it impossible to directly relate an observed RR to the sensitive question. It masks the answers
of respondents. To ease the notation, a distinction is made between respondents with index i and
items with index k. A further specification is possible where participants and/or items are grouped,
which will be shown in the real data examples in Section 2.7. Thus, respondent’s i prevalence to
the sensitive question k, denoted as π̃ik, cannot be directly measured. Instead, the RR probability,
denoted as πik, is measured.

Fox et al. (2018) showed that for the common RR designs for binary data, the RR probability
for the observed RR data can be related to the prevalence of the sensitive question through a linear
equation. This linear relationship is given by,

πik = cik + dikπ̃ik. (1)

The RR parameters c and d determine the type of RR design. A variety of RR designs can be
represented by Equation (1): Warner’s design (Warner, 1965), Unrelated Question (UQM) design,
Forced response (FR) design (Boruch, 1971), Kuk’s design (Kuk, 1990), Triangular design (Yu et al.,
2008), and the Crosswise (CW) design (Yu et al., 2008). The RR parameters c and d are retrieved
from the RR design parameters. For instance, for Warner’s design, a positive response is given to the
sensitive question with probability p1 or a negative response to its negation with probability 1 − p1,

πik = p1π̃ik + (1 − p1)(1 − π̃ik)

= (1 − p1)︸ ︷︷ ︸
cik

+ (2p1 − 1)︸ ︷︷ ︸
dik

π̃ik.

The parameters cik and dik describe the random response process, which are allowed to vary across
questions and respondents such that the data-collection design is defined for every single response.
Fox et al. (2018) give an overview in which the RR-design parameters are represented as RR
parameters for various RRTs.

Although the RR designs work in different ways, a general RR model can be defined, which
relates the RR data to the prevalence of the sensitive question. This general RR model is extended
to a GLM and GLMM by linking the prevalence π̃ik to a linear predictor. The GLMMRR functions
require the RR design parameters p1 and p2. The function getRRparameters provides the RR
parameters c and d given the type of RR design and corresponding parameter values. This is
illustrated in our applications in Section 2.7, where the RR designs UQM, FR, and CW are used,
and the DQ design serves as a baseline.

Modified link functions for GLMs and GLMMs

The object is to define the natural link function, which relates the expected RR to a linear predictor
for the prevalence π̃ik. The RR parameters cik and dik are integrated into the link function to
relate the expected RR observation to this linear predictor without explicitly parameterizing the
prevalence. In this approach, the natural link functions for Bernoulli distributed observations are
modified to account for the RR parameters. Simply by adjusting the natural link functions, the
class of GLMs and GLMMs is extended to (binary) RR data.

Let Yik denote the (binary) RR observation of respondent i to item k. For binary data, the
expected response is equal to the RR probability, πik. The expected response is related to a linear
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predictor denoted as ηik, which is a linear combination of predictor variables for respondent i related
to the response to item k. For binary RR data, the expected RR observation is equal to the RR
probability, πik, and the relationship with the ηik can be represented by

E (Yik | ηik) = πik

= cik + dik π̃ik

= cik + dikg−1 (ηik)

= cik + dikg−1 (
xt

ikβ + zt
ikbi

)
, (2)

where the explanatory variables xik have fixed effects (i.e., common across respondents) and the
zt

ik have random effects (i.e., vary across respondents). The random effect bi is assumed to have
a multivariate normal distribution with mean zero and variance Σb. For cik = 0 and dik = 1, the
g−1() is the mean function for (non-randomized) Bernoulli distributed observations. It follows
that the natural link function for Bernoulli distributed data, g(), needs to be modified to link the
expected RR to the linear predictor for the prevalence π̃ik,

g

(
πik − cik

dik

)
= ηik. (3)

Consider the Bernoulli distributed RR observation with success probability πik, for which four
different cumulative distribution functions can be applied (i.e., logistic, probit, Gumbel, Cauchy).
Then, the distribution of the RR is given by

Yik ∼ B (πik) (4)
πik = cik + dikg−1 (ηik) (5)

=


cik + dik

exp(ηik)
1+exp(ηik)

Logistic
cik + dikΦ (ηik) Probit
cik + dik (1 − exp (1 − exp (ηik))) Gumbel
cik + dik

(
arctan (ηik) /π + 1

2
)

Cauchy.

(6)

Next, four different link functions are defined by modifying the linear predictor’s relation with
the prevalence, such that it relates to the expected RR observation. The possible (modified) link
functions are given by,

ηik = g ((πik − cik)/dik) (7)

=


ln

(
πik−cik

cik+dik−πik

)
Logit Link

Φ−1 (
πik−cik

dik

)
Probit Link

ln
(
− ln

(
cik+dik−πik

dik

))
Complementary log-log Link

tan
(
π

(
πik−cik

dik

))
Cauchit Link.

(8)

The considered four different link functions are modified versions of the common link functions as
defined in, for example, McCullagh and Nelder (1989) and Tutz (2011). When cik = 0 and dik = 1,
the common link functions for directly observed responses are given.

Exponential family distributions

The modified (natural) link functions can be employed for (Bernoulli) exponential family distributed
RR data. Assume the observed RR data is distributed according to a distribution of the exponential
family; that is,

p (yik | θik, ϕik) = exp
(

yikθik − A (θik)

ϕ
+ C (yik, ϕ)

)
. (9)

Then, the log-likelihood of the parameter θik and ϕ is expressed as

l (θik, ϕ; y) = log p (y | θik, ϕ) =
∑
i,k

yikθik − A (θik)

ϕ
+ C (yik, ϕ) . (10)

The θik is the canonical parameter and depends via a linear predictor on explanatory variables. The
dispersion parameter is usually unknown and used to model the variance of the response data. The
functions A(.) and C(.) are known and determined by the specified distribution of the family. Then,
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for Bernoulli distributed RR observations the natural form of the parameters is given by

θik = log
(

cik + dikπ̃ik

1 − (cik + dikπ̃ik)

)
(11)

A(θik) = log (1 + exp (θik)) (12)
ϕ = 1. (13)

Thus, the general properties of the exponential family distributions can be used to make inferences
about the parameters. For instance, the maximum likelihood estimate for the population prevalence
π̃ can be derived. The log-likelihood has a unique maximum at θ̂ which is the solution to∑

i,k

yik = A′(θ̂) =
∑
i,k

(
1 + exp(−θ̂ik)

)−1

∑
i,k

yik =
∑
i,k

(cik + dikπ̂)

π̂ =

∑
i,k

yik −
∑
i,k

cik

 /
∑
i,k

dik = (y − c)/d. (14)

This maximum likelihood (ML) estimate for the prevalence is referred to as a weighted (ML) estimate,
where the weights are defined by the RR parameters.

Furthermore, the inverse of the function A′(θ) represents the natural link function. Thus, the
modified natural link function for Bernoulli distributed RR data can be derived using this property
of the exponential family distribution:

πik = A′ (θik)

=

[
1 + exp

(
− log

(
cik + dikg−1(ηik)

1 − (cik + dikg−1(ηik))

))]−1

= cik + dikg−1(ηik)

ηik = g ((πik − cik)/dik) ,

where g−1(.) is the cumulative distribution function for (non-randomized) Bernoulli distributed
data as defined in Equation (6). The corresponding link functions are defined in Equation (8).

ML and REML estimation

It can be shown that the maximum likelihood (ML) equations for the GLM for RR data resemble the
general form of the GLM ML-equations (Fox et al., 2018, Appendix B). The only difference is that
the conditional expected RR observation includes the RR parameters, and a modified link function
is needed to link the conditional expected response to the linear term. The GLM parameters are
usually estimated by ML methods using the iterative weighted least squares (IWLS) algorithm or
Fisher scoring algorithm. The glm function implemented in R is a very flexible implementation of
the general GLM framework (Chambers and Hastie, 1992). The package GLMMRR provides an
expanded version of this function (RRglm), which includes modified link functions to fit GLMs on
RR data. Given ML estimates, (maximum) likelihood theory can be used to obtain likelihood ratio
tests, Wald and score tests.

The likelihood equations for the fixed effect parameters of the GLMM for RR data have the same
structure as those for the GLMM (Fox et al., 2018, Appendix B). For the fixed effects, the GLM
methodology can be used, since the fixed effects are not included in the random effect distribution.
Depending on the dimension of the random effect parameter, numerical approximations are required
to approximate the integrals to estimate the variance components and random effects. The numerical
methods available in GLMMRR build on those available in the package lme4. Different numerical
methods have been proposed; Laplace approximation and adaptive Gaussian quadrature are both
implemented. Laplace approximation is usually fast and the default. The approximation improves
when the cluster sizes increase. In Gaussian quadrature, a number of quadrature points need to be
chosen, and the approximation is improved by increasing the number of quadrature points. Adaptive
Gaussian quadrature usually fails when the dimension of the random effects is larger than two. It is
also possible to compute restricted ML estimates (REML), which is also implemented. The control
argument can be used in the function call to RRglmer to set the control parameters, which includes
the optimizer to be used.
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Randomized item-response theory modeling

An important class of item response theory (IRT) models belong to the GLMM class (Rijmen et al.,
2003). These IRT models have a linear component for the transformed expected values of a binary
response variable, which contains a random component(s) representing the latent variable(s). In the
most common form, the linear term has a random component representing a random person effect
and fixed components representing item effects. In Section 2.2.1, it is shown that the GLMM is
extended to RR data using modified link functions. Therefore, IRT models belonging to the GLMM
class can also be generalized to randomized item-response theory (RIRT) models.

The randomized item-response observations are clustered by persons and items, with cik and
dik representing the RR parameters. The latent variable for person i is denoted by ϑi and the effect
of item k by βk. Then, the RIRT model – the Rasch model for RR data – can be represented as

πik = cik + dikg−1 (ϑi + βk) (15)
ϑi ∼ N(0, σ2),

where g−1 is usually the logistic or cumulative normal distribution function. The item effects have a
positive sign and should be interpreted as a easiness parameters.

The RIRT model can be fitted in R using the function RRglmer from our package GLMMRR.
This is similar to fitting an IRT model using the function glmer from lme4 (De Boeck et al., 2011),
except that a modified link function is required for the RIRT. The data needs to be in a long format.
Then, each data case has a response (response), a person identifier (person), an item identifier
(item), the type of RR design (RRmodel), and RR design parameters (RRp1,RRp2). The RR model
and parameters are allowed to vary across data cases.

To fit the RIRT model in Equation (15), a linear component is defined from the factor variables:
-1+item+(1|person). The -1 restricts the general mean to zero, the item represents the item
parameters, and the (1|person) represents the latent variable (random effect). This linear component
is set equal to the outcome response in the model formula. To fit a logistic RIRT, the call to
RRglmer includes a modified logistic link function (RRlink.logit):

RRglmer(response ~ -1 + item + (1|person), link = "RRlink.logit",
RRmodel = RRmodel, p1=RRp1, p2=RRp2, data=data)

where the RRmodel, p1, and p2 arguments define the RR design for every single response. The probit
RIRT model can be fitted using the link function RRlink.probit. The RIRT models can be extended
by including (1) item-covariate models (e.g., linear-logistic test model), (2) person-covariate models
(e.g., multilevel IRT), and (3) person-by-item covariate models. Covariates with fixed or random
effects can be included in the linear term.

Model fit and diagnostics

The likelihood ratio (LR) test can be used to compare nested models. The nested model is a
restriction of a more general model by restricting one or more parameters most often to zero. The
log-likelihood ratio (multiplied by minus two) is asymptotically chi-square distributed with the
degrees of freedom equal to the difference in the number of free parameters. The LR test can be
performed with the anova function to compare two nested GLM(M)s for RR data. Note that the
LR test cannot be applied to test a hypothesis on the boundary of the parameter space. Since then
the LR statistic is no longer chi-square distributed. ML estimation is preferred when comparing
models that only differ in their fixed part.

To compare (non)-nested models, the usual information criteria can be used. The AIC and the
BIC are both computed for GLM and GLMM, with the function RRglm and RRglmer, respectively,
and reported in their output. The anova function also reports the AIC and BIC.

To evaluate the significance of fixed effects, a z-statistic is reported, which is the ratio of the
parameter estimate and the estimated standard error. The z-statistic is asymptotically equivalent to
the LR test. P-values are reported in the output of RRglm and RRglmer with the assumption that
the z-statistic is asymptotically normally distributed.

Residuals

The error term in GLM(M)s represents a Bernoulli random error term, and the errors are assumed to
be independently distributed. There are different types of residuals and different types of residual sum
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of squares to examine the fit of the model. The estimated residuals in the GLM and GLMM are based
on the fitted RR probabilities, π̂ik. The fitted prevalence can be computed as ˆ̃πik = (π̂ik − cik)/dik,
according to Equation (1).

GLM The residuals are computed for each observation yik, but for notational convenience, the
index k is dropped, and the index i refers to a single observation yi. The Pearson and deviance
residual is often computed, and both are used in a goodness-of-fit statistic. The Pearson residual is
defined as the standardized difference of the response and its expected value,

rp(yi, π̂i) =
yi − π̂i√
π̂i(1 − π̂i)

.

The covariate patterns can be used to group the residuals in a natural way. Each unique covariate
pattern defines a cluster j, where the number of response observations in cluster j is given by nj ,
the observed proportion y, and a unique estimated probability denoted as π̂j . Then, the Pearson
residual for cluster j is defined as

rp(yj , π̂j) =
yj − π̂j√

π̂j(1 − π̂j)/nj

.

The clustering of observations can also be based on the predicted outcome (Hosmer and Lemeshow,
1980). The observations are sorted according to their fitted probabilities, and this sorted vector is
divided into J clusters of equal size. The corresponding clustered Pearson residuals are referred to
as H-L residuals. The Pearson residuals and clustered Pearson and H-L residuals can be extracted
from a fitted object of class RRglm with the following commands, respectively:

residuals(object, type="pearson")
residuals(object, type="pearson.grouped")
residuals(object, type="hosmer-lemeshow", ngroups=10)

For the H-L residuals, the ngroups argument defines the desired number of clusters, and the default
is 10. The sum of squared grouped residuals defines a goodness-of-fit statistic, which is given by

X2 =

J∑
j=1

r2(yj , π̂j) =

J∑
j=1

nj

(
yj − π̂j

)2

π̂j(1 − π̂j)
.

Depending on the type of clustering, the statistic is the Pearson goodness-of-fit statistic, X2
p , or the

H-L goodness-of-fit statistic, X2
HL. The Pearson statistic is asymptotically chi-square distributed

for a fixed number of groups with degrees of freedom J − (q + 1), and q the number of independent
covariates. When the predictor variables are continuous, the X2

p test cannot be used. For semi-
continuous observations, it is possible to find a clustering with a sufficient number of observations
in each cluster. The X2

HL statistic is assumed to be chi-square distributed with J − 2 degrees of
freedom (Hosmer and Lemeshow, 1980). The X2

p and X2
HL statistics can be computed from a fitted

object of class RRglm using the function RRglmGOF:

RRglmGOF(object, doPearson = TRUE, doHlemeshow = TRUE,
hlemeshowGroups = 10, rm.na = TRUE)

The default number of clusters for the X2
HL statistic is ten, and data cases with missing observations

are excluded. The deviance residual is defined as

rD(ȳi, π̂i) = sign(ȳi − π̂i)

√
2ni

(
ȳilog

(
ȳi

π̂i

)
+ (1 − ȳi)log

( 1 − ȳi

1 − π̂i

))
, (16)

where sign(ȳi − π̂i) = 1 when ȳi ≥ π̂i and -1 when ȳi < π̂i. The grouped deviance residual is
defined for cluster i with ni > 1 and denoted as rd(yi, π̂i). For clustered observations, the sum of
squared deviance residuals is considered to be a goodness-of-fit statistic, denoted as X2

d , which is
asymptotically chi-square distributed with J − (q + 1) degrees of freedom. The deviance residuals,
the grouped deviance residuals, and the deviance goodness-of-fit statistic can be extracted from a
fitted RRglm object with the commands, respectively:

residuals(out, type = "deviance")
residuals(out, type = "deviance.grouped")
RRglmGOF(object, doDeviance = TRUE, rm.na = TRUE)

In the output of RRglmGOF, the goodness-of-fit test(s) are reported, the p-value(s), the degrees of
freedom, and the number of groups. For the H-L test, the results are also given for each cluster. The
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deviance statistic is equivalent to the LR statistic for testing the fitted model against the saturated
model, which has a deviance of zero. The Pearson goodness-of-fit statistic is a score test statistic,
also testing the fitted model against the saturated model. Thus, the Pearson and the deviance
statistic are the score test and LR test for GLMs, respectively.

GLMM Different residuals can be considered for GLMMs. The response residual conditional on
the random effect is defined as the difference between the observation and the conditional expected
value:

rc(yik, π̂ik) = yik − E(yik | xik, zik, bi) (17)
= yik − π

(
xt

ik β̂ + zt
ikb̂i

)
.

It can be extracted from the residual function by providing the argument type="response". The
unconditional response can be computed by integrating out the random effects to obtain the difference
between the observation and the marginal mean. This residual is computed with the argument
type="unconditional.response".

The conditional and unconditional response residuals can be standardized by dividing them by
their standard deviation, which leads to Pearson residuals:

residuals(object, type = "pearson")
residuals(object, type = "unconditional.pearson")

Finally, as a result of sustained compatibility with lme4, the usage of residuals aimed at "merMod"
objects, such as working residuals and conditional deviance residuals, is not limited. Pearson residuals
can also be scaled by any given user-specified weights.

Software

The package GLMMRR contains two main functions, RRglm and RRglmer, for fitting a GLM and a
GLMM given RR data, respectively. Both functions include the four link functions (logit, probit,
cloglog, cauchit) for the different RR designs. The function RRglm makes a call to the function
glm with the appropriate link function to fit a GLM for (binary) RR data. In the same way, the
function RRglmer makes a call to the function glmer to fit a GLMM for (binary) RR data. The fit of
both models, GLM and GLMM, is arranged by the computational routines of glm and glmer. Their
general control parameters, the model and data-checking options, the type of optimizer, number of
iterations can be specified in the RRglm and RRglmer functions. Thus, the numerical optimization
algorithm and its specification can be defined in a similar way as in the call to functions glm and
glmer.

The function RRglm and RRglmer creates an object of class "RRglm" and "RRglmer", respectively.
The package’s summary, print and plot function, can be used to get estimation results from an
object of each class. Data needs to be defined in long format, where an RR specification is needed
for every single case, including the type of RR model and the design parameters. The package allows
for different RR models and different design parameters across data cases. Together with a binary
RR (outcome) variable and possible predictors, a GLM can be fitted. When also including a (factor)
cluster variable, implying a correlation among clustered observations, a GLMM can be fitted. The
complete functionality of the package can be accessed by making further input specifications.

Input

• RRglm
The general call to the function is: RRglm(formula,link,item,RRmodel,p1,p2,data,na.action
= "na.omit",...)

– formula: a two-sided linear formula object describing the model to be fitted, with the
response on the left of a ∼ operator and the terms, separated by + operators, on the
right.

– link: a GLM RRlink function for binary outcomes. Must be a function name; RRlink.logit,
RRlink.probit, RRlink.cloglog, and RRlink.cauchit.

– item: optional item identifier to obtain prevalence estimates per level of item.
– RRmodel: the RR model per data case. Available options: DQ, Warner, Forced, UQM,

Crosswise, Triangular, and Kuk.
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– p1: the RR parameter p1, defined per data case (0 ≤ p1 ≤ 1).
– p2: the RR parameter p2, defined per data case (0 ≤ p2 ≤ 1).
– data: a data frame containing the variables named in formula as well as the RR model

and parameters. If the required information cannot be found in the data frame, or if
no data frame is given, then the variables are taken from the environment from which
RRglm is called.

– na.action: a function that indicates what should happen when the data contain NAs.
The default action (na.omit, as given by getOption("na.action"))) strips any observations
with any missing values in any variables.

• RRglmer
The general call to the function is RRglmer(formula,item,link,RRmodel,p1,p2,data,control
= glmerControl(),na.action = "na.omit",...)

– formula: a two-sided linear formula object describing both the fixed and random effects
part of the model, with the response on the left of a ∼ operator and the terms, separated
by + operators, on the right. Random-effect terms are distinguished by vertical bars
("|") separating expressions for design matrices from grouping factors.

– item : optional item identifier to obtain prevalence estimates per level of item.
– link: a GLM RRlink function for binary outcomes. Must be a function name; RRlink.logit,

RRlink.probit, RRlink.cloglog, and RRlink.cauchit.
– RRmodel: the RR model per data case. Available options: DQ, Warner, Forced, UQM,

Crosswise, Triangular, and Kuk.
– p1: the RR parameter p1, defined per data case (0 ≤ p1 ≤ 1).
– p2: the RR parameter p2, defined per data case (0 ≤ p2 ≤ 1).
– data: a data frame containing the variables named in formula as well as the RR model

and parameters. If the required information cannot be found in the data frame, or if
no data frame is given, then the variables are taken from the environment from which
RRglmer is called.

– na.action: a function that indicates what should happen when the data contain NAs.
The default action (na.omit, as given by getOption("na.action"))) strips any observations
with any missing values in any variables.

– control: a list (of correct class, resulting from lmerControl() or glmerControl(), re-
spectively) containing control parameters, including the nonlinear optimizer to be used
and parameters to be passed through to the nonlinear optimizer; see the lmerControl
documentation for details.

Output

• RRglm An object of class RRglm, which extends the class glm with RR data. The object of
class RRglm contains the regular GLM output and the following components:

– Item: the item levels for each data case – prevalence rates are computed per level of
item.

– RRc: the RR-parameter c for each data case (Equation (1)).
– RRd: the RR-parameter d for each data case (Equation (1)).
– RRmodel: the RR model for each data case.
– RRp1: the RR design parameter p1.
– RRp2: the RR design parameter p2.

• RRglmer An object of class "RRglmerMod", which extends the class "glmerMod" with RR data.
Many methods are available for the general class "merMod" to which "glmerMod" and also
the class "RRglmerMod" belongs. The methods for the "merMod"-class can be found in the
documentation of lme4 and they are applicable to an object from class "RRglmerMod".
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Applications

An RR validation study

Höglinger and Jann (2018) conducted an online experiment to validate different RRTs on the platform
Amazon Mechanical Turk (https://boris.unibe.ch/81516). Participants were asked to play one
of the two dice games, after which they were asked if they played honestly using randomly one of
four RRTs. In the roll-a-six game, the participant rolled a digital die by clicking a button and was
asked if the first roll resulted in a six. In the prediction game, the participant was asked to think of a
number, roll the digital die, and was asked if the outcome corresponded to the memorized prediction.
The participants were asked if they won in the dice game, and since both games relied on self-reports
about the dice-roll outcomes, cheating was easily possible. However, for the roll-a-six game, the
virtual dice outcomes were registered, and it was evaluated if participants illegitimately claimed a
$2 bonus payment. This enabled classifying the participants as cheater or honest (non-cheater)
players. In the prediction game, individual cheating was not detectable. However, it was expected
that around one-sixth of all predictions were correct since the dice outcomes were random. A
systematic deviation from this percentage was attributed to cheating.

To disguise the true purpose of the study, the survey was posted as a survey on “Mood and
Personality” and included a range of questions, for instance, questions on the big five personality
trades. Participants were randomly appointed to one of four questioning methods (DQ, CW, FR,
UQ) and were asked four sensitive questions. Besides the question about honest playing in the
dice game, questions were asked about shoplifting, tax evasion, and voting. Although the answers
to these last three questions could not be validated, the prevalence estimates of those who were
identified as cheaters and non-cheaters in the dice games can be compared across RRTs.

Höglinger and Jann (2018) compared prevalence estimates of cheating in both games to those
computed from the answers to the question of whether they played honestly using the four RR
techniques. They concluded that two RR techniques (FR, UQ) performed similarly to DQ and did
not reduce the level of misreporting. The level of underreporting was reduced by CW. However,
CW also increased the level of overreporting, and the corresponding prevalence estimates were
substantially higher than the true prevalence estimates of cheating.

The GLMMRR is used to do a joint regression analysis of the RR data of the four questioning
techniques. In a joint analysis, the levels of under- and overreporting across RRTs can be directly
compared through an interaction analysis of identified cheaters and the RRTs. The joint analysis
is needed to quantify the different levels of underreporting across RRTs, and to identify who was
misreporting. It is also examined if any background variables explain differences in misreporting
across RRTs and sensitive questions.

The experiment had a two-by-three-by-five factorial design. Factor one represented the type
of dice game (prediction game, roll-a-six game). Factor two was the type of RRT to ask the
sensitive questions (DQ, CW, FR, UQ). The third factor was included to examine whether the
implementations of the random devices produced the expected outcome distributions. This third
factor is integrated into the current study by defining RRTs with different RR design parameters.
Höglinger and Jann (2018) discuss the RRTs (factor 2), the random devices (factor 3), and the
corresponding RR design parameters. Their supplement Documentation and codebook of the survey
was used to prepare the raw data for this study for analysis in R, which includes the specification of
the design parameters for the RRTs. Our supplementary R script ‘ASQ-MTurk data.R’ comprises the
code for preparing the data MTURK. The package GLMMRR contains the prepared data object
MTURK, which is constructed from the raw data using the code of the supplementary R script.

The true prevalence estimates of cheating are estimated for the roll-a-six game (dicegame=2) for
the different RRTs. The estimates are based on the discrepancy between the actual dice outcome
and the participant’s response to whether the first roll was a six, which was asked through direct
questioning. The true prevalence estimates are reported for each of the groups assigned to one of
the RRTs.

R> package(GLMMRR)
R> data("MTURK", package="GLMMRR")
R> by(MTURK$cheaterdc[MTURK$dicegame==2],
+ MTURK$RRmodel[MTURK$dicegame==2],mean,na.rm=TRUE)

MTURK$RRmodel[MTURK$dicegame == 2]: DQ
[1] 0.04450262
------------------------------------------------------------------------------
MTURK$RRmodel[MTURK$dicegame == 2]: Crosswise
[1] 0.06032787
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------------------------------------------------------------------------------
MTURK$RRmodel[MTURK$dicegame == 2]: UQM
[1] 0.05004812
------------------------------------------------------------------------------
MTURK$RRmodel[MTURK$dicegame == 2]: Forced
[1] 0.05188067

Around 5% of the participants cheated in the roll-a-six game, and the estimates are comparable
across RRT groups. It is examined if the prevalence estimates can also be recovered from the
participant’s responses to the question if they honestly reported whether a six was rolled (item
honest dice game reporting, where the response is coded as honest=0 and dishonest=1). This
question was asked to all participants, but different RRTs were used to obtain the response. The
object is to validate the RRTs by comparing the prevalence estimate of cheating with the true
prevalence estimate. The prevalence estimates are computed using the RRglm function where the
item is the sensitive question if they are reported honestly. The design parameters are stored in
the data variables RRp1 and RRp2, which are also reported in the output. It can be seen that, for
instance, the CW design has two sets of parameters, where some participants were questioned with
the CW method and design parameters .16 and 0, and others with .20 and 0.

R> MTURK_cheating1 <- MTURK[which(MTURK$dicegame==2 &
+ MTURK$Question=="cheating dice game"),]
R> rolla6 <- RRglm(RR_response ~ 1, item = Question,
+ link = "RRlink.logit", RRmodel = RRmodel,
+ p1=RRp1,p2=RRp2,data = MTURK_cheating1)
R> summary(rolla6)

### GLMMRR - Binary Randomized Response Data ###
Generalized linear fixed-effects model

Family: binomial
Link function: RRlogit

---------------------------------------------------------
Item: cheating dice game
Model(s): DQ (1.00 | 0.00)

Crosswise (0.16 | 0.00) (0.20 | 0.00)
UQM (0.78 | 0.49) (0.78 | 0.52)
Forced (0.75 | 0.67)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.143393 0.0204156 1142
DQ 0.039370 0.0099632 381

Forced -0.019361 0.0172690 769
UQM 0.053496 0.0165870 778

For the question honest dice game reporting, the estimated population proportion of dishonest
reporters (ML estimate with standard errors) is reported for each RR design. Each RRT estimate is
the (weighted) average across different design parameters. It follows that the prevalence estimate of
the CW method overestimates the true value of 6% of detected cheaters who were CW questioned.
Furthermore, the DQ and UQ perform approximately the same. The estimate is even negative
for the FR technique. This can occur when some participants did not follow the RR instructions
and/or when the random device distribution deviates from the expected distribution. This could
also be an underlying problem of the CW method. A total of 33.6% admitted that they do not know
exactly the birthday of their parents. This could bias their response to the unrelated question, which
stated if their father/mother’s birthday was in January or February (with an expected probability of
15.9%), or between the 1st and the 6th of the month (with an expected probability of 19.7%). The
overestimation of the CW method could be caused by honest reporters who incorrectly answered No
to the unrelated question about the birthday of one of their parents.

Misreporting is investigated further by computing the reduction in misreporting for each RRT
for detected cheaters (dishonest reporters) and non-cheaters (honest reporters). Therefore, a dummy
coded variable is defined for the cheaters (cheaterdc=1) and for each of the RRTs (DQ, CW, UQ,
FR). Logistic regression analysis is performed using the RRglm function for the RR data of item
honest dice game reporting (variable RR_response) in the roll-a-six game conditional on the RRT
and cheater identifiers.
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R> rolla6A <- RRglm(RR_response ~ 1 + cheaterdc + CW + UQ + FR +
+ cheaterdc*CW+cheaterdc*UQ, item = Question,
+ link = "RRlink.logit", RRmodel = RRmodel, p1=RRp1, p2=RRp2,
+ data = MTURK_cheating1, na.action = "na.omit")
R> summary(rolla6A)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.8807 0.6043 -8.077 6.63e-16 ***
cheaterdc 5.8302 0.8087 7.209 5.63e-13 ***
CW 2.8283 0.6375 4.437 9.14e-06 ***
UQ 1.3453 0.8399 1.602 0.1092
FR -1.3582 0.6941 -1.957 0.0504 .
cheaterdc:CW -3.6246 0.9143 -3.964 7.36e-05 ***
cheaterdc:UQ -2.0967 1.0798 -1.942 0.0522 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3988.2 on 3069 degrees of freedom
Residual deviance: 2631.5 on 3063 degrees of freedom

(5 observations deleted due to missingness)
AIC: 2645.5

Number of Fisher Scoring iterations: 7

The reference level is the DQ technique (factor RRmodel) for those who were identified as honest
reporters (factor cheaterdc) responding to being dishonest in the roll-a-six game. For DQ, the
odds for dishonest reporting for non-cheaters is around zero (exp(−4.88) = 0.008), and for cheaters
around 2.58. Of the DQ participants, identified as cheaters, the probability of admitting to being
dishonest about whether a six was rolled is around 72%. Participants might have guessed that this
type of misreporting could be easily detected, which led to a non-substantial level of misreporting
under DQ. The odds for dishonest reporting for non-cheaters in the UQ and FR condition are
also close to zero. The UQ and FR effects are also not significantly different from zero. For the
non-cheaters, the response technique, DQ, UQ, or FR, did not influence their response. However, in
the CW condition, the odds of dishonest reporting for non-cheaters is significant and around .13,
with a probability of 11.3% of dishonest reporting while being identified to be honest reporters. This
led to the overestimation of the true prevalence rate by CW.

The opposite occurred for the cheaters in the CW and UQ condition. It was expected that the
cheaters would be honest about their dishonesty in the roll-a-six game without the risk of disclosure
in the CW and UQ condition. Instead, for both techniques, the admitted level of misreporting by
cheaters decreased. For cheaters in the CW and UQ condition, the probability of being dishonest is
around 53.8% and 54.9%, respectively, which is much less than the 72% under DQ. Höglinger and
Jann (2018) argued that some cheaters might have misused the RRT to answer untruthfully without
risk of detection who would have felt compelled to answer truthfully in DQ. It turned out that it
was not possible to estimate an interaction effect for cheaters in the FR condition.

The three other sensitive questions (voting, shoplifting, tax evasion) do not have the problem
that participants might be suspicious of being disclosed for their dishonesty as in the roll-a-six game.
However, it is expected that the prevalence rates will be lower for the DQ group. Their responses are
not masked, and those participants are tended to underreport the questioned behavior in comparison
to those not under risk of disclosure through the RR questioning techniques. Differences in prevalence
rates across sensitive items (factor Question) and question techniques (factor RRmodel) are explored
through a logistic regression using the RRglm function. (factor Question)

R> MTURK_cheating2 <- MTURK[which(MTURK$dicegame==2 &
+ MTURK$Question!="cheating dice game"),]
R> rolla6B <- RRglm(RR_response ~ 1 + RRmodel + Question +
+ cheaterdc*RRmodel, item = Question, link = "RRlink.logit",
+ RRmodel = RRmodel,p1=RRp1,p2=RRp2,data = MTURK_cheating2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.87793 0.08118 -10.815 < 2e-16 ***
RRmodelCrosswise 0.26976 0.09415 2.865 0.00417 **
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RRmodelUQM 0.39283 0.09279 4.233 2.3e-05 ***
RRmodelForced 0.11554 0.09783 1.181 0.23762
Questionshoplifting 0.61299 0.07040 8.708 < 2e-16 ***
Questiontax evasion -1.01421 0.09100 -11.145 < 2e-16 ***
cheaterdc 0.23951 0.31801 0.753 0.45135
RRmodelCrosswise:cheaterdc -0.04895 0.40461 -0.121 0.90371
RRmodelUQM:cheaterdc -0.30170 0.42096 -0.717 0.47355
RRmodelForced:cheaterdc 0.32900 0.42022 0.783 0.43367
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 12705 on 9207 degrees of freedom
Residual deviance: 11797 on 9198 degrees of freedom

(21 observations deleted due to missingness)
AIC: 11817

Number of Fisher Scoring iterations: 4

The intercept corresponds to non-cheaters in the DQ condition responding to the item non-voting.
For DQ, the odds for non-voting of the non-cheaters is around .41 (exp(−0.88) = 0.41), and for
cheaters, around 0.53. However, the cheaters did not respond significantly differently from the
non-cheaters as they did in reporting about being dishonest in the dice game. The prevalence rates
of those questioned with privacy protection (CW, UQ, FR) are higher – the CW and UQ rates are
significantly higher – than those questioned directly. The corresponding odds ratios are .54, 62,
and .47 for CW, UQ, and FR, respectively. The prevalence rates for shoplifting are significantly
higher and for tax evasion significantly lower than for non-voting. It is apparent that cheaters
do not report significantly differently under a privacy-protected response technique in comparison
to the non-cheaters since the interaction effects are approximately zero and non-significant. This
occurred when cheaters were asked about their dishonesty in the roll-a-six game. This was probably
provoked by the knowledge that their dishonesty could be detected under DQ. For the questions
about non-voting, shoplifting, and tax evasion, it was known that this was not possible, so cheaters
were not/less inclined to misreport in the non-DQ condition.

The weighted prevalence rate (averaged over results from the same questioning technique with
different design parameters) for each item and questioning technique are reported in the output. It
follows that the prevalence rates are lower for DQ than for the other RRTs, but the differences are
small. Note that the reported significance in rates between CW and DQ and between UQ and DQ
were averaged across the three items.

### GLMMRR - Binary Randomized Response Data ###
Generalized linear fixed-effects model

Family: binomial
Link function: RRlogit

---------------------------------------------------------
Item: non voting
Model(s): DQ (1.00 | 0.00)

Crosswise (0.16 | 0.00) (0.20 | 0.00)
UQM (0.78 | 0.49) (0.78 | 0.52)
Forced (0.75 | 0.67)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.38215 0.022718 1142
DQ 0.30607 0.023673 379

Forced 0.33333 0.023720 768
UQM 0.33889 0.022338 776

---------------------------------------------------------
Item: shoplifting
Model(s): DQ (1.00 | 0.00)

Crosswise (0.16 | 0.00) (0.20 | 0.00)
UQM (0.78 | 0.49) (0.78 | 0.52)
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Forced (0.75 | 0.67)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.46339 0.022914 1145
DQ 0.44357 0.025452 381

Forced 0.47479 0.024016 769
UQM 0.56174 0.022936 778

---------------------------------------------------------
Item: tax evasion
Model(s): DQ (1.00 | 0.00)

Crosswise (0.16 | 0.00) (0.20 | 0.00)
UQM (0.78 | 0.49) (0.78 | 0.52)
Forced (0.75 | 0.67)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.18850 0.021098 1143
DQ 0.11549 0.016374 381

Forced 0.13057 0.021182 771
UQM 0.19407 0.020301 775

The inclusion of the interaction effect between cheating status and RRT can be tested through a
model comparison. The model is fitted without the interaction term (object rolla6C), and the anova
function is used to produce a deviance table for the fitted objects. It follows that the interaction
term does not lead to a significant model improvement.

R> anova(rolla6C, rolla6B,test="Chisq")
Analysis of Deviance Table

Model 1: RR_response ~ 1 + RRmodel + Question
Model 2: RR_response ~ 1 + RRmodel + Question + cheaterdc * RRmodel

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 9202 11802
2 9198 11797 4 5.3509 0.2532

Residual analysis

The fit of the GLM with factor variables RRT and Question (object rolla6C) is evaluated with
a residual analysis. The function RRglmGOF is used to compute overall goodness-of-fit tests. The
Pearson and deviance chi-square statistics are computed given a grouping of the observations based
on the predictor variables. The H-L statistic is computed for ten groups of (approximately) equal
size. There is evidence for a lack-of-fit when the statistic values are large.

R> RRglmGOF(RRglmOutput = rolla6C, doPearson = TRUE, doDeviance = TRUE,
+ doHlemeshow = TRUE)

GLMMRR - Binary Randomized Response Data

Goodness-of-Fit Testing
Response variable: RR_response
Predictor(s): RRmodel Question
Entries dataset: 9208
---------------------------------------------------------
Summary:

Statistic P.value df Groups
Pearson 12.95 0.0438 6 12
Deviance 13.01 0.0429 6 12
Hosmer-Lemeshow 8.82 0.3578 8 10

---------------------------------------------------------

It follows that the Pearson and deviance goodness-of-fit statistics show a lack of fit, whereas the H-L
statistic does not show a lack of fit. To further investigate the fit, the H-L statistic is computed for
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the same model but with different link functions. A different link function can improve the fit of
the model and reduce the effects of a misspecified linear predictor. The estimated statistic values
are given for the probit link function (see supplementary R-code for the complete analysis), which
shows only a slight improvement in fit. The decrease in AIC is small and around .62.

R> rolla6E <- RRglm(RR_response ~ 1 + RRmodel + Question,
+ item = Question, link = "RRlink.probit",RRmodel = RRmodel,
+ p1=RRp1,p2=RRp2,data = MTURK_cheating2)
R> RRglmGOF(RRglmOutput = rolla6E, doPearson = TRUE, doDeviance = TRUE,
+ doHlemeshow = TRUE) ## improved fit over logit link

---------------------------------------------------------
Summary:

Statistic P.value df Groups
Pearson 12.35 0.0545 6 12
Deviance 12.40 0.0537 6 12
Hosmer-Lemeshow 8.69 0.3689 8 10

---------------------------------------------------------

Finally, the fitted probabilities are plotted against the estimated Pearson residuals for each
RRT (R-code below) – it is also possible to plot the object of class "RRglm", plot(rolla6C,which
= 3,type = "pearson"). In Figure 1, the Pearson residuals (filled circles) under the CW method
are large for the zero response observations. Typical for CW, high fitted probabilities (prevalence
rates) correspond to zero and to one response. There are three items, which leads to three different
fitted probabilities for DQ. CW was used with two different sets of design parameters, which led to
more than three fitted probabilities. The differences between prevalence rates and Pearson residuals
for different design parameters are much larger for CW than for UQ and FR. For UQ and FR,
the estimated Pearson residuals and fitted probabilities hardly differ across design parameters. It
follows that the CW method is particularly sensitive to deviations from the design parameters. For
an observed prevalence rate above .50, increasing the design parameter for CW will decrease the
prevalence estimate. A possibility is that the design parameter for CW was incorrect and too low,
which led to the overestimation of the prevalence rate for CW in the roll-a-six game. The residuals
are also relatively large for low fitted probabilities, which is typical for DQ when the true prevalence
rate is small. For reasons of brevity, we have omitted a further improvement of the model and to
explain individual differences in prevalence by including individual predictor variables (e.g., gender,
education, Big Five personality traits).

R> set <- names(rolla6C$linear.predictors)
R> dataset <- MTURK_cheating2[set,]
R> plot(rolla6C$fitted.values,residuals(rolla6C, type = "pearson"),
+ cex=.8,bty="l",xlim=c(.1,.8),ylim=c(-3,3),xlab="Fitted",
+ ylab="Residual (Pearson)")
R> points(rolla6C$fitted.values[which(dataset$DQ==1)],
+ residuals(rolla6C, type = "pearson")[which(dataset$DQ==1)],
+ xlim=c(0,1),ylim=c(-1,1),pch=15,col="black")
R> points(rolla6C$fitted.values[which(dataset$CW==1)],
+ residuals(rolla6C, type = "pearson")[which(dataset$CW==1)],
+ pch=16,col="green")
R> points(rolla6C$fitted.values[which(dataset$UQ==1)],
+ residuals(rolla6C, type = "pearson")[which(dataset$UQ==1)],
+ pch=17,col="red")
R> points(rolla6C$fitted.values[which(dataset$FR==1)],
+ residuals(rolla6C, type = "pearson")[which(dataset$FR==1)],
+ pch=18,col="blue")
R> legend(.6,3,c("DQ","CW","FR","UQ"),col=c("black","green",
+ "blue","red"),pch = c(15,16,18,17), bg = "gray95",cex=.7)

Extended item response modeling: Prevalence of student misconduct

Höglinger et al. (2014) performed an online survey to estimate the prevalence of various forms of
student misconduct (e.g., plagiarizing, cheating in exams). RRT was used since students might be
reluctant to reveal this kind of information. Four different types of RRTs were used (DQ, FR, CW,
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Figure 1: The roll-a-six game: for each RRT fitted success probabilities against Pearson residuals.

UQ). The RRTs were tailored to be implemented online which led to two implementations of FR
(pick-a-numer, random wheel) and of CW (unrelated question, random wheel). In total, there were
six different RRTs to which participants were randomly assigned: DQ, two implementations of FR,
UQ, and two implementations of CW. For all RRT implementations, the level of protection was also
varied, which led to different design probabilities. In total, six different sets of parameters for UQ,
two for FR, and eight for CW. The package GLMMRR was used to do a joint regression analysis of
the randomized item-response data, (1) to measure differences between RRTs, and (2) to examine
differences in prevalence rates across conditions and students.

No. Item
1 copied from other students during an exam (copied)
2 used illicit crib notes in an exam (crib notes)
3 used prescription drugs to enhance your performance (drugs)
4 handed in someone else’s work without citing (plagiarism)
5 had someone else write a large part of a submitted paper (someone else’s work)

Table 1: Five items for measuring prevalence of student misconduct.

Five sensitive items about student misconduct were surveyed using the six different RRTs with
different design parameters. In Table 1, the five items are given about respondents’ own misconduct
during exams and submitting a paper. The items were assumed to measure student misconduct. An
RIRT model is used to measure each student’s level of misconduct given RR data while taking into
account that students were assigned to different RRT conditions. A multiple-group (normal ogive)
RIRT model is fitted, where the groups represent the RRT conditions. The function RRglmer of
GLMMRR is used with factor variable Question and factor variable expcond representing the items
and experimental conditions (RRTs), respectively, for the randomized responses (RR_response). The
input item equals factor variable Question to obtain the (weighted) prevalence estimates for each
item.

The latent variable is represented by the student identifier id, where each student responded
to the five items. This latent variable represents a student’s propensity to misconduct on an exam
measured by the five items in Table 1. This (continuous) personality trait is measured with the
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RIRT model with data collected under different RRT designs.

R> out.re <- RRglmer(RR_response ~ 1 + Question + expcond + (1|id),
+ item=Question, link = "RRlink.probit", RRmodel = RRmodel,
+ p1=p1,p2=p2,data = ETHBE, control=glmerControl(
+ optimizer="bobyqa", optCtrl = list(maxfun = 200000)))
R> summary(out.re)

AIC BIC logLik deviance df.resid
21015.5 21103.2 -10496.7 20993.5 21394

Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 0.4342 0.659

Number of obs: 21405, groups: id, 4281

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.20625 0.05633 -21.416 < 2e-16 ***
Questioncrib notes -0.34520 0.04582 -7.534 4.93e-14 ***
Questiondrugs -0.92016 0.05612 -16.395 < 2e-16 ***
Questionhanded in plagiarism -0.83103 0.05369 -15.478 < 2e-16 ***
Questionhanded in someone else's work -1.06092 0.05982 -17.736 < 2e-16 ***
expcondFR pick-a-number 0.94880 0.06524 14.543 < 2e-16 ***
expcondCM pick-a-number 0.53036 0.08064 6.577 4.80e-11 ***
expcondFR random wheel 0.99941 0.06520 15.329 < 2e-16 ***
expcondUQ Benford 0.39748 0.07245 5.487 4.10e-08 ***
expcondCM unrelated question 0.67867 0.08017 8.465 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The levels of factor variable Question represent the item difficulties, where the intercept represents
the first item (copied work). The levels of factor variable expcond represent the mean level of each
RRT condition, and the intercept is the level of the DQ group. The latent variable variance in
student misconduct is around 0.43, which shows that conditional on the item and experimental
condition differences, around 30% (= .43/(1 + .43)) of the variance can be attributed to individual
differences. The latent variable estimates represent the levels of student misconduct.

It is expected that students underreport their behavior. With an RRT individual responses are
masked, and students are expected to answer more truthfully. Although students were randomly
assigned to RRT conditions, the prevalence rates appear to be different across RRTs. The package
multcomp is used to test individual null hypotheses representing differences between RRTs. Linear
combinations of the experimental condition parameters are defined and tested simultaneously.
Four hypotheses are evaluated to test the difference in prevalence rates (1) between the two FR
implementations (pick a number, random wheel), (2) between the two CW implementations (pick-
a-number, unrelated question), (3) between FR and CW, (4) between FR and UQ. A matrix K
is defined which represents the contrasts of interest and the function glht is used to perform the
general linear hypothesis testing.

R> K <- matrix(c(c(0, 0, 0, 0, 0, 1, 0, -1, 0 , 0),
+ c(0, 0, 0, 0, 0, 0, 1, 0, 0 ,-1),
+ c(0, 0, 0, 0, 0, 1, -1, 1, 0 ,-1),
+ c(0, 0, 0, 0, 0, 0, 0, 1, -1 ,0)), nrow=4,ncol=10,byrow=T)
R> t <- glht(out.re, linfct = K)
R> summary(t)

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)

1 == 0 -0.05061 0.06176 -0.819 0.870
2 == 0 -0.14831 0.09125 -1.625 0.343
3 == 0 0.73917 0.11108 6.654 <0.001 ***
4 == 0 0.60193 0.06963 8.645 <0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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(Adjusted p values reported -- single-step method)

It follows that the different implementations of FR do not lead to different prevalence rates.
Both FR implementations provide a similar level of privacy protection. Furthermore, both CW
implementations have similar prevalence rates. For FR and CW, differences between random devices
do not lead to different prevalence estimates. The difference is significant between FR and CW,
where FR produces higher rates than CW. FR also produced higher rates than UQ. It is remarkable
that in this study, students reported much higher rates with FR than CW, whereas in the RR
validation study, it was the other way around. It is not clear why with FR, higher rates were
obtained in the student misconduct study than with CW in comparison to the roll-a-six validation
study. However, in the roll-a-six game, the prevalence rates with DQ also differed not much with
those from FR.

The prevalence rates for the five items are estimated for each RRT, averaging across results
from different design parameters. In the output, an overview is given of the RRTs which were used
to administer each item. For each RRT, the design parameters are given which were used. For
instance, for item copied: DQ has one set of design parameters, UQ six sets of design parameters,
FR two sets of design parameters, and CW eight sets of design parameters. Note that different
design parameters were used for different implementations of a random online device (Höglinger
et al., 2014).

### GLMMRR - Binary Randomized Response Data ###
Generalized linear mixed-effects model

Family: binomial
Link function: RRprobit

---------------------------------------------------------
Item: copied
Model(s): DQ (1.00 | 0.00)

UQM (0.70 | 0.49) (0.70 | 0.50) (0.70 | 0.52)
(0.78 | 0.49) (0.78 | 0.50) (0.78 | 0.52)

Forced (0.67 | 0.17) (0.75 | 0.17)
Crosswise (0.17 | 0.00) (0.20 | 0.00) (0.23 | 0.00)

(0.25 | 0.00) (0.26 | 0.00) (0.30 | 0.00) (0.75 | 0.00) (0.83 | 0.00)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.28679 0.047932 1427
DQ 0.21806 0.015389 720

Forced 0.41265 0.017797 1417
UQM 0.17351 0.022187 717

---------------------------------------------------------
Item: crib notes
Model(s): DQ (1.00 | 0.00)

UQM (0.70 | 0.49) (0.70 | 0.50) (0.70 | 0.52)
(0.78 | 0.49) (0.78 | 0.50) (0.78 | 0.52)

Forced (0.67 | 0.17) (0.75 | 0.17)
Crosswise (0.17 | 0.00) (0.20 | 0.00) (0.23 | 0.00)

(0.25 | 0.00) (0.26 | 0.00) (0.30 | 0.00) (0.75 | 0.00) (0.83 | 0.00)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.17570 0.044884 1427
DQ 0.10278 0.011317 720

Forced 0.32396 0.016822 1417
UQM 0.14438 0.021528 717

---------------------------------------------------------
Item: drugs
Model(s): DQ (1.00 | 0.00)

UQM (0.70 | 0.49) (0.70 | 0.50) (0.70 | 0.52)
(0.78 | 0.49) (0.78 | 0.50) (0.78 | 0.52)

Forced (0.67 | 0.17) (0.75 | 0.17)
Crosswise (0.17 | 0.00) (0.20 | 0.00) (0.23 | 0.00)
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(0.25 | 0.00) (0.26 | 0.00) (0.30 | 0.00) (0.75 | 0.00) (0.83 | 0.00)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.095850 0.0475537 1427
DQ 0.029167 0.0062712 720

Forced 0.162119 0.0138931 1417
UQM 0.045145 0.0187692 717

---------------------------------------------------------
Item: handed in plagiarism
Model(s): DQ (1.00 | 0.00)

UQM (0.70 | 0.49) (0.70 | 0.50) (0.70 | 0.52)
(0.78 | 0.49) (0.78 | 0.50) (0.78 | 0.52)

Forced (0.67 | 0.17) (0.75 | 0.17)
Crosswise (0.17 | 0.00) (0.20 | 0.00) (0.23 | 0.00)

(0.25 | 0.00) (0.26 | 0.00) (0.30 | 0.00) (0.75 | 0.00) (0.83 | 0.00)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.081899 0.0444126 1427
DQ 0.029167 0.0062712 720

Forced 0.192582 0.0145974 1417
UQM 0.070978 0.0195603 717

---------------------------------------------------------
Item: handed in someone else's work
Model(s): DQ (1.00 | 0.00)

UQM (0.70 | 0.49) (0.70 | 0.50) (0.70 | 0.52)
(0.78 | 0.49) (0.78 | 0.50) (0.78 | 0.52)

Forced (0.67 | 0.17) (0.75 | 0.17)
Crosswise (0.17 | 0.00) (0.20 | 0.00) (0.23 | 0.00)

(0.25 | 0.00) (0.26 | 0.00) (0.30 | 0.00) (0.75 | 0.00) (0.83 | 0.00)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.033014 0.0468658 1427
DQ 0.015278 0.0045711 720

Forced 0.146240 0.0134956 1417
UQM 0.019240 0.0178254 717

The prevalence estimates are almost always the lowest for DQ. Most likely, students underreported
their behavior when directly asked. In Figure 2, the weighted prevalence estimates are plotted for
each item and RRT. This is the first of four plots when plotting an object of class RRglmerMod of
the package GLMMRR. It can be seen that copying work is the most popular way, and then using a
crib note. Although the CW condition has the highest number of students, the confidence interval
of the CW estimates is much wider than for the other conditions. The CW method is less efficient
in estimating student prevalence than the other RRTs.

Model fit

The relevance of the random person component is examined by comparing the multiple-group IRT
model with a (multiple-group) GLM, which has the same fixed effect part.

R> out.fe <- RRglm(RR_response ~ 1 + Question + expcond, item=Question,
+ link = "RRlink.probit",RRmodel = RRmodel,p1=p1,p2=p2,data = ETHBE)
R> anova(out.re,out.fe)
Data: df
Models:
out.fe: RR_response ~ 1 + Question + expcond
out.re: RR_response ~ 1 + Question + expcond + (1 | id)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
out.fe 10 21147 21227 -10564 21127
out.re 11 21016 21103 -10497 20994 133.82 1 < 2.2e-16 ***
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Figure 2: Prevalence estimates of types of student misconduct for different RRTs.

It follows that the RIRT model fits the data better than the GLM, with a lower AIC and BIC and a
significant decrease in deviance. For the RIRT model, conditional Pearson residuals are computed
given the random effect. The Pearson residuals are plotted against the fitted probabilities. To
obtain the fitted probabilities, the fitted values on the linear predictor scale are computed using
the predict function. Then, according to Equation 1, the fitted probabilities are computed using
parameters c and d, which can be computed from function getRRparameters given the RRT and
RR design parameters.

R> eta <- predict(out.re, type = "link")
R> dum <- getRRparameters(ETHBE$RRmodel, ETHBE$p1, ETHBE$p2)
R> pp <- dum$c + dum$d*pnorm(eta)
R> resid <- residuals(out.re, type = c("pearson"))
R> plot(pp[ETHBE$expcond=="direct questioning"],
+ resid[ETHBE$expcond=="direct questioning"],bty="l",
+ xlim=c(0,1),ylim=c(-2,6),cex=.8,xlab="Fitted probability",ylab="Pearson residual")
R> points(pp[ETHBE$expcond=="CM pick-a-number"],
+ resid[ETHBE$expcond=="CM pick-a-number"],cex=.8,pch=19,col="grey80")
R> points(pp[ETHBE$expcond=="FR pick-a-number"],
+ resid[ETHBE$expcond=="FR pick-a-number"],cex=.8,pch=15,col="red")
R> points(pp[ETHBE$expcond=="FR random wheel"],
+ resid[ETHBE$expcond=="FR random wheel"],cex=.8,pch=16,col="blue")
R> points(pp[ETHBE$expcond=="CM unrelated question"],

resid[ETHBE$expcond=="CM unrelated question"],cex=.8,pch=17,col="green")
R> points(pp[ETHBE$expcond=="UQ Benford"],
+ resid[ETHBE$expcond=="UQ Benford"],cex=.8,pch=18,col="purple")
R> abline(h=1,lty=2,col="grey")
R> abline(h=-1,lty=2,col="grey")
R> legend(.6,6,c("DQ","FR pick-a-number","FR random wheel",
+ "CM unrelated", "UQ","CM pick-a-number"),
+ col=c("black","red","blue","green","purple","grey80"),
+ pch = c(1,15,16,17,18,19),cex=.7,bty="n")

In Figure 3, the Pearson residuals are plotted for each RRT. It can be seen that for DQ, the
residuals are large (small) for positive (zero) responses since the prevalence rates are low. The
residuals for FR and UQ are relatively small, partly because the corresponding fitted probabilities
are in the middle of the scale. For the CW methods, it can be seen that the residuals are large
(small) for zero (positive) responses since they correspond to high prevalence rates. Further analysis
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to improve the model by incorporating predictor variables is omitted for reasons of brevity.
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Figure 3: Fitted probabilities of types of student misconduct for different RRTs versus the Pearson
residuals.

Discussion

The GLMMRR provides tools for fitting GLM(M)s on RR data, where the RR design and the design
parameters are allowed to vary across observations. The multiple-group RR designs are particularly
interesting to validate RR methods, to examine the sensitivity of the attributes, and to examine
the influence of different levels of privacy protection. The multiple group modeling approach also
supports simultaneously testing RR design effects across items and participants. The tools provide
support to substantive applications using RR techniques, which can include different RR designs and
advanced GLM and GLMM methods to analyze RR data. It is our objective to stimulate applied
and methodological RR research by offering the open-source software GLMMRR. The tools extend
the popular modeling tools of lme4, and class functions are simply extended to deal with RR data
while maintaining the general features included in the GLM and GLMM software (e.g., lme4; Bates
et al., 2015).

When some respondents do not follow the RR design instructions, the GLM(M) does not fit the
data (e.g., Böckenholt and van der Heijden, 2007; Fox et al., 2013; De Jong et al., 2010). In that
case, a composite link function can be used to include a linear predictor for those not following the
instructions and one for those following the instructions. Currently, the ML estimations methods
for GLMMRR cannot handle composite link functions. More research is needed to develop and
implement estimation methods that can handle in a flexible way GLMMs with composite link
functions (Thompson and Baker, 1981).

The modified link functions can be used for other types of GLMMs. In longitudinal research, in
practice, time is often observed in discrete units. The discrete-time hazard defines the probability
of the occurrence of an event at time t. The GLM(M) can be used to describe the link between
the hazard rate and a linear predictor. The GLM(M) with the complementary log-log link function
applies when the data is generated by a continuous-time proportional hazards model (Allison, 1982).
Thus, for instance, when using an RR design to collect information about sensitive events (e.g.,
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events related to war, trauma, sexual assault), the GLMM with a modified link function is an
appropriate model to analyze the RR data. For count RR data, the complementary log-log link
function can be used to model the probability of an RR of a non-zero observation (Fox et al., 2018).
Ordinal data can be modeled with a (cumulative) link function for the proportional odds, which
is defined by cumulative probabilities. For each response category, a GLMM defines a cumulative
probability that response falls below or in this category. The modified link functions can be used to
model cumulative probabilities with GLMMs for ordinal RR data.

The GLMMs can be computationally intensive and usually require relatively large sample sizes.
RR designs also require larger samples sizes to achieve the same level of accuracy as DQ. Furthermore,
the prevalence of sensitive behaviors is often relatively low, and to obtain reliable estimates, more
data is required. The GLMMRR package supports large sample sizes, which can be around 106

observations.
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