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Current methodologies in body mass estimation are lacking in accuracy when compared 

to the methods of sex, age, and ancestry estimation familiar to forensic anthropologists. 

For this reason, the practical application of body mass estimation remains underutilized, 

hindering the study of a potentially advantageous aspect of the biological profile. 

This study highlights body mass estimation in a forensic context while taking the 

osteological paradox into account through the utilization of a unique population: the US 

military personnel killed on the USS Oklahoma during the Pearl Harbor attack on 

December 7, 1942. Because these individuals were similar in age (adults, age 18-43 

years) and their deaths were catastrophic rather than attritional, it provides an opportunity 

to control for many variables that other populations cannot. Ruff’s (1991) methodology 

for estimating body mass was applied, utilizing measurements taken from anteroposterior 

radiographs of the proximal femur and the development of body mass estimation 

equations via simple and linear regression modeling. These data were cross-referenced to 

body mass data collected by the US military during the individual’s enlistment. The mean 

squared error of estimate yielded by Ruff’s (1991) equations on the sample population 



 
 

 
 

was 104.12 and 62.00 for regression involving femoral head breadth and shaft breath, 

respectively. This differs from the mean squared error, 81.85 and 59.99, yielded by the 

equations created for USS Oklahoma data. While these results are expected in sample-

specific linear regression, the controlled attributes of the sample and the equations 

produced offer another opportunity through which we can further our understanding of 

body mass estimation. 
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Chapter 1: Introduction 

 

From initial missing person reports to the autopsy of unidentified remains, body 

mass can be an important individuating piece of evidence gathered during forensic 

investigations (O’Hara, 1973; Eliopulos, 2003). Thus, the estimation of body mass from 

human remains can be used as a valuable line of evidence for investigators in the 

identification of unknown remains.  However, thus far in forensic anthropology, body 

mass estimation has been largely understudied as part of the biological profile. One of the 

greatest difficulties addressed by previous researchers (Ruff, 1991; Moore, 2008) is the 

lack of controlled samples of individuals from a population with similar, known body 

mass that would allow testing of various hypotheses regarding body mass estimation. 

This thesis intends to address the importance of selective sampling and advance body 

mass estimation from human skeletal remains by: (1) creating unique regression 

equations for body mass estimation; and, (2) assessing the accuracy of Ruff’s (1991) 

research model using a controlled sample of adult males with similar body mass. 

The USS Oklahoma (BB-37) was a Nevada-class battleship commissioned in 

1916 that served in both the United States Battle Fleet and Scouting fleet. During the 

Japanese attack on Pearl Harbor on December 7, 1941, the USS Oklahoma was struck by 

enemy torpedo fire, resulting in the 429 catastrophic deaths of 415 US Navy personnel 

and 14 US Marines. Through multiple salvage attempts, the remains of these personnel 

were recovered and interred as “unknowns” until the American Graves Restoration 

Service (AGRS) was enacted in July 1942. Since this time, it has been the mission of US 

military and civilian personnel alike to identify the remaining unknown individuals from 
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the USS Oklahoma through the application of forensic anthropological and odontological 

methods and genetic testing being completed in laboratories across the United States 

(Brown, 2019). 

Through the utilization of computed tomography (CT), a specialized method of 

medical imaging that takes a series of thinly sliced X-Rays in order to produce three 

dimensional digital models, it is now possible to take images of skeletal elements and 

measure directly from those images with a high degree of accuracy using specialized 

computer software environments and digital tools. To address the non-specific sampling 

issue as it pertains to body mass estimation, the proposed thesis research will estimate 

body mass from skeletal remains and compare these to antemortem information of 

identified individuals from the USS Oklahoma at the U.S. Department of Defense’s 

Defense POW/MIA Accounting Agency (DPAA) Laboratory at Offutt Air Force Base,  

Nebraska.  Specifically, this study will use CT images of skeletal elements, Individual 

Deceased Personnel Files (IDPFs), Official Military Personnel Files (OMPFs), and/or 

Forensic Anthropology Reports (FARs) to validate Ruff’s (1991) research on body mass 

estimation. All body mass data will be collected as near the terminal events to account for 

change in body composition from time of enlistment to the time of death. Due to the daily 

physical fitness regimen that US military personnel are subjected to, changes in body 

mass are expected to occur secondary to the addition of muscle mass and the loss of fat 

mass. Thus, it is likely that data will be most accurate when obtained from regular 

medical examination during the individual’s time served rather than data collected at the 

time of induction. 
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The USS Oklahoma population is ideal for this study because of the demographic 

similarity of the individuals in this group. Most of the individuals who died on the USS 

Oklahoma were White males between the ages of 18 to 43 years. As applied in Ruff 

(1991), a series of four standardized measurements from previously collected CT 

(previously anteroposterior radiographs) images of skeletal remains recovered from the 

USS Oklahoma will be collected from the proximal femur (superoinferior head and neck 

breadth – HeadBD and NeckBD; and, mediolateral subperiosteal and cortical breadths).  

These measurements will then be analyzed via traditional least Squares regression. Once 

the sample has been regressed and a model has been generated, the results from the USS 

Oklahoma will be compared to the results presented in Ruff (1991) with the aim of cross-

referencing the produced body mass estimates with the enlistment body mass for the 

individual as noted in antemortem documents. The model generated from traditional 

linear regression will then be evaluated for accuracy through statistical analysis. 

Particularly, the calculation of mean squared error (MSE) will be used as the primary 

value for assessing accuracy. The use of body mass estimation as a potential line of 

evidence for identification will also be assessed.  Ultimately, this study will broaden the 

field’s basis of reference knowledge for body mass estimation and potentially provide a 

means for the DPAA to include body mass estimation in analyses of unknown human 

remains as another component of the biological profile. 

The aim of this particular study is to utilize the methodology outlined in Ruff 

(1991) and apply it to the USS Oklahoma population for means of comparison, but also 

to use this population to try and gain a better understanding of the variables in the 

measurements collected (e.g. Shaft Diameter and Head Breadth) and their interactions 
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with one another. This will be accomplished firstly through the creation of a simple linear 

regression model for head breadth and shaft diameter (described below) in order to 

generate estimation equations that will be assessed for accuracy and subsequently 

compared to body mass estimations from equations presented in Ruff (1991). Secondly, 

multivariate statistical analysis will be applied to assess whether or not there is a 

significant relationship between any combination of the variables collected. Along with 

multivariate analysis, this study will more closely investigate two variables, time since 

measurement and side, to assess whether these variables have a significant impact on the 

model. Finally, a validation study will be completed for both the simple and statically 

significate multivariate models through the creating of a training and test set from 80% 

and 20% of the data, respectively. This will be able to assess overfitting in the model and 

whether or not the model is suitable for application to additional datasets. 
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Chapter 2: Skeletal Basics, Current Practices in Body Mass Estimation, & 

Literature Review 

 

This chapter introduces the basic principles of the human skeleton, analyzes the 

primary methods of body mass estimation that are being employed in the field of 

biological anthropology, and discusses the pertinent academic discourse relative to the 

topic. In practice, the most used methodologies to estimate antemortem body mass can be 

delineated into two distinct groups, morphometric and biomechanical. Morphometric 

body mass estimation views the body as a cylinder and estimations are yielded by 

calculating the volume of the cylinder based on stature and some measure of body 

breadth. Biomechanical body mass estimation, on the other hand uses the principle of 

skeletal remodeling and engineering beam theory in order to select different 

biomechanically related measurements of weight-bearing aspects of the skeleton and 

apply those measurements to a linear regression model. While each methodology has 

advantages, at the time of this research, neither have yielded results accurate enough to 

warrant their application in forensic casework. 

 

Basics of the Human Skeletal Biology 

 

The human skeleton is a complex and hyper-intricate system that enables the daily 

functions and processes of life. First, the human skeletal system provides structural 

support and protection for the heart, lungs, and other vital organs. The skeleton also 

protects other internal organs such as the brain and reproductive organs. The many sulci, 

tuberosities, and crests located on each bone act as a scaffold for the musculature, 
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allowing for mobility and ambulation. Most notably for humans, our unique skeleton and 

musculature provides for one of our most unique characteristics as a hominin, bipedalism. 

Skeletal tissue is comprised of an admixture of collagen, hydroxyapatite, and water with 

additional small amounts of magnesium, sodium, and bicarbonate. The mineral deposits 

between these organic compounds account for 99% of the human body’s calcium storage 

and 85% of its phosphorus storage. The calcium stored in this tissue is pertinent because 

if these stores are not tightly regulated and maintained, the muscles and nerves of the 

body are unable to function. The skeleton further monitors the body’s well-being, as 

metabolic acidosis triggers a reaction by skeletal tissue to release calcium, maintaining 

the body’s pH level (White et al., 2012: 27).  

 

Bone Synthesis and Remodeling 

 On a microscopic level, each bone is comprised of a complex system of cells that 

interact to facilitate bone growth, resorption, healing, and maintenance. The three 

primary cells involved in this process are known as osteoblasts, osteoclasts, and 

osteocytes. Osteoblasts are specialized mesenchymal-derived cells primarily located in 

the periosteum and endosteum. The central role of osteoblasts is the deposition of a 

material called osteoid. The osteoid that is laid down by osteoblasts forms the matrix that 

will eventually mineralize and produce new skeletal material. Osteoblasts that are buried 

in the newly deposited matrix take on a new role in the skeletal tissue, are referred to as 

osteocytes. These cells are situated in spaces that are known as lacunae and are 

responsible for bone maintenance and repair. Basic microanatomy of compact bone 
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suggests that inside the osteon, the larger cylindrical structure positioned parallel the axis 

of compact bone, osteocytes positioned inside of lacunae interact with each other through 

a series of canaliculi that are situated around a more massive Haversian canal that 

transects the bone and provides a channel through which blood vessels and nerves travel. 

Osteoclasts, on the other hand, are derived from hematopoietic progenitors in the bone 

marrow and primarily break down bone tissue through a process called osteocytic 

osteolysis. Both osteoblasts and osteoclasts act in union with each other to regulate the 

rate at which new skeletal tissue is deposited and resorbed while osteoclasts work to 

maintain it and subsequently respond to stress or fracture. This cooperation, in turn, 

regulates the rates at which the bone is able to regenerate and respond to various forms of 

strain (White et al., 2012: 37). As such, the largest voluntary load applied to bone on a 

day to day basis comes from the muscles that are directly attached to them. Schiessl et al. 

(1998: 1) describes that the areas where bone is strengthened, reinforced, modeled, or 

remodeled is determined by strain thresholds which can have a direct impact in that 

elements’ morphology. Thus, an expansion to Wolff’s Law was proposed for osseous 

material in 2001, which was deemed the Utah Paradigm. This constitutes a continually 

evolving paradigm of skeletal physiology that combines tissue-level and anatomical 

features with older ideas which emphasized cell-level features and roles (Frost, 2001).  

There are two vital propositions made by this paradigm: 1) that healthy, postnatal 

load-bearing bones are designed to have only enough strength to keep chronically 

subnormal, normal, or supranormal voluntary loads (not injuries) from causing 

spontaneous fractures. The second preposition 2) is threefold, firstly, that in order to 

achieve mechanical competence, bone’s tissue-level mechanisms need nonmechanical 
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factors and effector cells (osteoblasts and osteoclasts); second, in a negative feedback 

arrangement, bone loads and strains guide those biologic mechanisms in time and 

anatomic space; third, that most nonmechanical factors can help or modulate that 

guidance but cannot replace it (Frost, 2001: 399). According to this paradigm, 

remodeling is determined by Basic Multicellular Units (BMU’s) that are working in 

response to either mechanical (biomechanical strains and stresses) or nonmechanical 

(hormones, dietary calcium, gene expression, age, ancestry, sex) factors (Frost, 2001: 

401). 

 

Basics of Skeletal Biomechanics 

One of the reasons that skeletal tissue is so unique from epithelial, muscular, and 

nervous tissue is because of its ratio of organic to inorganic components (Currey, 2002: 

4-5). Since more than 65% of bone is inorganic and comprised of hydroxyapatite with 

other trace minerals, bones are rigid and able to act as the scaffold on which the rest of 

the bodily systems operate. Despite this rigidity, the cells through which the organic 

components of bone further interact for the tissue to repair the stress and strain of an 

individual experiences in their daily life. In principle, when large or recurrent amounts of 

stress are applied to a bone, microfractures form that corresponds to the pressure applied. 

The bone then undergoes a complicated method of healing in which a unique pre-bone 

material known as osteoid is systematically deposited and resorbed, reinforcing the area 

where stress was applied. This remodeling changes the cross-sectional geometry of the 

bone when viewed from the transverse plane. In most cases, the bone will strengthen at 

areas of principal strain (Corwin, 2001; Frost, 2001). For instance, axial compression 
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applied to long bones results in a generally thicker cross-section. While certain types of 

stress and strain have been shown to have an impact on the cross-sectional geometry of a 

bone, this is not the only influencing factor. Another would be the genetic makeup of the 

individual being analyzed. This is evident in the variation that can be seen in the 

morphologies of same-sided elements from individuals of the same sex, age, geographic 

location, and population (Corwin, 2001).  

 

Types of Biomechanical Force 

Before the different ways in which forensic anthropologists attempt to estimate 

antemortem body mass from skeletal elements are examined, it is first essential to 

understand the various forces that a human long bone endures during an individual’s life. 

Most of the stress applied to bone can be categorized into five types of loading: 

compression, tension, shear, torsion, and bending (Currey, 2002). Compression occurs 

when force is applied to both ends of an element and creates pressure on both ends 

simultaneously. Aside from gravity, in the human skeleton, compressive force is a result 

of weight support and external carrying or loading. The next simple type of force loading 

applied to a bone is tension. Tension occurs when two forces pull or stretch a skeletal 

element in opposite directions. Due to the basic principles of gravity, the human skeleton 

is much less resistant to tensile forces than it is to the final type of simple loading, shear. 

Shear force refers to when two forces are acting in parallel, but two directions are applied 

to the bone, and the two aspects are displaced relative to the other.  A simple example of 

shear force is when an individual is skiing down a hill and the foot affixed to the ski stops 
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abruptly. Although the ski and the foot cease to be in motion, the rest of the body is 

propelled forward at an equal speed to which it was traveling prior. 
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Figure 1: Types of simple loading on a human long bone. The square inside the femur and 

blue illustration represent the element prior to loading, the rectangle or diamond shape and red 

illustration represent the element after loading. The black arrows represent the directionality of 

the forces applied. 

 

 

Unlike the simple types of loading above, torsion and bending are more complex 

as the type force being applied to the bone results in a combination of different types of 

loading. Bending, as it sounds, is force applied to an area that has no support from the 

framework (Figure 2). Imagine the action of bending a stick in half. The forces being 

applied to the stick results in an admixture of tensile strain on the convex side and 

compressive stress on the concave. Most often, bending forces to bone results in failing 

on the side of the tensile strain as bones (especially long bones) are less resistant to 

tensile forces than they are to compressive forces. Torsion, on the other hand, or 

rotational force refers to twisting along the bone’s longitudinal axis (e.g. grasping a ruler 

on both ends and twisting in opposite directions) (Figure 2). Torsional strength applied to 

bone can result in stress applied to both perpendicular and parallel to the axis of the bone. 

Torsional loading can additionally occur in intensive and compressive strengths at the 

angle of the structure (Choi and Goldstein, 1992) (Figure 2). 
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Figure 2: Types of Complex Loading on a Human Long Bone. The square represents the 

element prior to loading and the rectangle or parallelogram represents the element after loading. 

The black arrows represent the directionality of the forces applied. 

 



13 
 

 
 

Confounding Variables in Bone Strength 

One compounding variable in total bone strength is the shape of the bone and the 

ratio of cortical to trabecular bone that the element is comprised of. This influences the 

types of forces to which the element is most resistant. For instance, long bones such as 

the femur are most resistant to axial compression than the bones of the cranium that are 

more resistant to the application of outward force secondary to their unified globe shape 

(White et al., 2012: 241). One example of this principle would be the articular surface of 

the knee joint in athletes who more regularly place strain on their muscles, and 

subsequently, the bones they are attached to, than their non-athlete peers (Eckstein, 2002: 

46). Thus, to some extent, bone is shaped by activity level, which is uniquely displayed 

within the affected bone’s cross-sectional geometry (Kennedy, 1989; Lai and Lovell, 

1992).  

 While the types of forces applied to bone and the frequency of those forces 

applied to it affect its cross-sectional geometry, the cross-sectional morphology of a bone 

is also influenced by other factors such as sex, age, diet, hormone levels, and 

environment. Additionally, the ways in which bones respond to stress and fracture are 

similar in males and females, the subtle morphological and microscopic differences 

between biological sexes can play a significant role in the bone’s mineral composition 

(bone mineral density) as well as its overall response to stress. One study (Kirchengast et 

al., 2001) found there to be an association between low amounts of fat tissue and 

increased bone mineral density (BMD) in women that could be the result of reduced 

conversion rates from androgens to estrogens in a small amount of adipose tissue. 

Additionally, Lacoste et al. (2018) observed differences between the ratios of fat mass, 
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fat-free mass, and body mass percentage for men and women, respectively. The authors 

(Lacoste et al., 2018: 1) found that “..[t]he observed sexual dimorphism is consistent with 

differing aging processes; cortical bone decreases in females through endosteal resorption 

while it remains almost constant in males who compensate for endosteal resorption by 

periosteal apposition on the diaphyseal surface”. 

Age also influences how the skeleton responds to stress. For most humans, the 

skeleton is not fully mature until approximately age 25 (earlier for females and later for 

males). During this time of development, bones are significantly more plastic and 

responsive to stress. The response of a juvenile skeleton differs from the reactions of the 

adult skeleton because of increased mineralization in the diaphysis and fusion at the 

epiphyses, creating a much more rigid tissue (White and Folkens, 2005: 363). While a 

more mineralized bone may be more resistant to bending forces, this places the tissue at a 

higher risk for fracture as the bone is less plastic. This problem of rigidity and stiffness is 

further affected by the degenerative processes that the skeleton undergoes as it ages, such 

as osteoporosis and osteoarthritis (White et al., 2002: 384).  

 The vitamins and minerals in an individual’s diet can also have profound effects 

on the skeleton. It is a commonly understood that the calcium absorbed from food 

reinforces the bones of the body (Snoddy et al., 2018). A lack of vitamins in an 

individuals’ diet can lead to diseases such as scurvy. Individuals with scurvy have bones 

that lack the proper level of collagen due to lowered levels of Vitamin C and, as a result, 

the capillaries in the bone release excess blood. This signals osteoblasts to deposit osteoid 

overtop the already formed skeletal tissue, thus creating pathological lesions to the 
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affected bone. This bleeding often pools underneath the periosteum and causes severe 

pain for individuals suffering from this deficiency (Snoddy et al., 2018). 

Another type of regulator of bone strength and shape is an individual’s hormone 

levels. First and foremost, parathyroid hormone (PTH) plays a vital role in bone calcium 

maintenance, resorption, and formation. If calcium levels in the body are low, the 

parathyroid gland releases PTH, which indirectly promotes osteoclast activity and raises 

serum calcium levels to maintain homeostasis. Likewise, if calcium levels are high, the 

parathyroid ceases release of PTH and encourages the storage of calcium to reach 

equilibrium. An additional unique and vital hormone that is synthesized by the human 

body from diet/environment and regulates bone health is Vitamin D. Vitamin D is one of 

one vitamin that the human body is only able to produce when exposed to UV light, but it 

remains vital to skeletal wellbeing. Without Vitamin D, the body would not be able to 

metabolize calcium and phosphorus efficiently. As an example, children who worked in 

factories during the Great Depression could not get the necessary amounts of Vitamin D 

to effectively metabolize minerals from their diet and eventually developed rickets, a 

pathology where the mineral matrix of a developing skeleton is compromised due to 

deficient mineral levels. This causes the weight-bearing bones to collapse in on 

themselves, causing the disease’s trademark ‘bow-legged’ morphology (Mays et al., 

2006). 
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Engineering Beam Theory 

Because of their biomechanical properties, each of the long bones in the body can 

be modeled as beams. It is possible to analyze the effects of different biomechanical 

strains to bone using engineering beam theory. As has already been established above, 

each bone is subject to various forces that often act simultaneously and congruent with 

each other. Along the same lines, skeletal remodeling is also anisotropic in nature, 

meaning that it is directionally dependent and three-dimensionally responsive (Ketcham 

and Ryan, 2004). These are two of the primary reasons that the forces being applied to 

bone are so difficult to model mathematically. Polar moment of inertia is a measure that 

assesses the torsional strength of bone, stating that torsional strength is directly related to 

the distance of the strain from the neutral axis, or the axis of the shaft with no 

longitudinal stressors or strains. Most often, this neutral axis refers to a line running 

through the center of a long bone’s medullary cavity. The closer the force is to the neutral 

axis, the less resistant it is to torsional strain. One way to measure bending strain in bone 

is through the area moment of inertia (Moore, 2008: 19). To understand this, Larsen 

(1997) offered the analogy of a ruler. If one attempts to snap a ruler in half along its 

width, it fails quickly; the ruler is much more resistant to bending when trying to bend it 

along its linear axis. 

This same analogy is applicable when attempting to understand the human femur. 

Just as the ruler analogy, human femora are much more resistant to forces acting near the 

neutral axis such as compression, and much less resistant to those forces that act 

transverse to the femoral diaphysis. Because bone is a plastic tissue and can heal and 

remodel, this kind of beam theory is integral when understanding how the element reacts 
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in response to stress and ultimately how it remodels. In reference to the femur, and before 

beam theory can be applied, it is important to understand that the forces acting upon the 

femur are also influenced by the articulating joints, tendons, and bones. This means that 

in practice, many of the problems occurring in orthopedic biomechanics are statistically 

indeterminate. As a simple example, the load transmitted to the femur is controlled by 

both the articulating points of the os coxa as well as the distal elements of the tibia and 

fibula (Salathe et al., 1987: 189). This must be considered when attempting to estimate 

body mass because while beam theory is applicable to forces acting directly upon the 

femur, like sheer force applied transverse to the femoral diaphysis, nearly all 

compressional load will be informed by the elements to the superior and inferior. As far 

as beam theory is considered when it comes to long bones like the femur, most research 

regards them as a curved, three-dimensional beam in which the cross-sectional properties 

vary continuously along its length (Salathe et al., 1987: 190). 

 

Morphometric Body Mass Estimation 

 Currently, there are two primary ways in which anthropologists are attempting to 

estimate antemortem body mass, morphometric and biomechanical methodologies. The 

first of these methods, as its name implies, utilizes a morphometric approach. This 

approach views the body as a cylinder, and quite simply attempts to estimate antemortem 

body mass by first accounting for the non-skeletal tissues of the body, a strategy that can 

be problematic (Shaw, 2010), and then applying a measure for height (stature) and some 

measure of body breadth (Ruff et al., 1994: 72) to calculate the volume of the cylinder. 

Bi-iliac breadth or possibly some interclavicular measurement has been shown as a good 
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measure of body width (Moore, 2008; Ruff et al., 1994). Finally, after both body height 

and breath are accounted for, these measurements are input into an equation to calculate 

the volume of the cylinder. While this method of body mass estimation is highly effective 

when addressing questions such as adaptation to environmental strains (Ruff, 1991; Ruff 

and Walker, 1993) or questions discussing Bergmann and Allen’s rules (Allen, 1877; 

Bergmann, 1847), it becomes problematic when attempting to estimate body mass of 

individuals from specific populations. Ruff (2000) showed that when applying bi-iliac 

breadth to this methodology, it tended to underestimate males by 3% and overestimate 

females by 3%. Because morphometric body mass estimation assumes that the body is 

cylindrically proportional, this method is highly inaccurate when attempting to estimate 

individuals who are extremely under/overweight (Moore, 2008: 2). 

 

Biomechanical Body Mass Estimation 

 Aside from the morphometric approach to body mass estimation, an alternative 

method is considerably less theoretical. This method utilizes actual populations by 

collecting measurements of a biomechanically-related element, plotting those 

measurements against an individual’s known antemortem body mass, and then creating a 

‘line of best fit’ for the data. After this line is created, it becomes possible to estimate the 

body mass of an individual based on the body mass and measurements of the population 

initially studied through the utilization of simple linear regression (Moore, 2008; Ruff et 

al., 1991). While this method of body mass estimation is certainly more population-

specific and perhaps better suited for forensic application, it is not without shortcomings. 

As mentioned earlier, the different forces applied to bone very literally shape its cross-
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sectional geometry (Moore, 2008). This factor, compounded by the fact that because 

every individual experiences a varied diet, level of physical activity, and level of 

hormones, leaves many “unchecked” variables that could quite possibly skew results. 

Results which are further skewed by individuals who are genetically different which 

could lead to a series of differences to be discussed below. It is for this reason that the 

present study aims to investigate this issue through its application of a uniquely 

‘controlled’ sample, the USS Oklahoma population. 

 Because the bones of the lower extremities are the primary weight-bearing 

elements for bipedal humans, it reasonable to assume the lower limbs should be used to 

examine body mass. Much of the variation in methods for body mass estimation comes 

when referring to which features, and measurements of the lower limb bones are utilized 

for further study (Auerbach and Ruff, 2004; Ruff, 1991; De Groote and Humphrey, 

2011). Many researchers have selected the femora (particularly the proximal end) to 

measure as the most significant component to correlate an individual’s body mass with 

skeletal morphology (McHenry, 1992; Moore, 2008; Ruff, 1991).   

 

The Osteological Paradox 

One of the problems that this research hopes to combat is known as the 

“osteological paradox,” which states if we can physically view a human skeleton, there is 

an underlying reason or pathology behind why. In other words, there are reasons why this 

skeleton became part of the collection we are examining.  Wood et al. (1992) posits that 

before we begin to consider a specific skeletal sample, we must account for, “…three 

important conceptual issues - demographic nonstationarity, selective mortality, and 
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hidden heterogeneity in risks..” that can “…render inferences based on various 

demographic and epidemiological measures meaningless”. Firstly, by demographic 

nonstationarity, the authors refer to the fact that a population is continually changing as 

new individuals leave and other individuals are born or immigrate into the population. 

Selective mortality refers to the fact that the individuals that make up any skeletal series 

are dead, and thus the sample does not depict all the individuals who were at risk of death 

at a certain age but died later due to variation in frailty. Quite possibly, a 60-year-old in 

any given skeletal collection could have been deathly sick at the age of 20 years but 

survived to live another 40 years due to the individuals robusticity (Wood et al., 1992: 

344-345). Finally, the last and most pertinent aspect of the osteological paradox to this 

study is that of hidden heterogeneity in risks. This maintains that every skeletal sample is 

made up of an unknown admixture of individuals who were variably susceptible to 

pathology and consequential death. Excluding obvious trauma, it is difficult to 

definitively state a cause and manner of death for every individual in a skeletal collection.  

There are a variety of reasons that the osteological paradox is pertinent to body 

mass estimation, but the most glaring is the fact that body mass is closely linked with 

mortality. Much like age, the body mass of an individual can be a direct factor in overall 

health. In modern populations, this is evident by cardiac diseases such as hypertension, 

diabetes mellitus, coronary pulmonary artery disease, and congestive heart failure. The 

difference between the relationship between age and mortality in comparison to body 

mass and mortality, though, is while age is a constant progression that happens at the 

same rate for each individual, body mass can fluctuate throughout an individual’s life. 

Often this means that one person will have phases of being relatively different weights 
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throughout their lifetime. As stated above, because body mass is one of the most 

inconsistent aspects of the biological profile, to produce more accurate estimations in 

body mass, we must attempt to utilize reference samples that can control for variables 

such as age, fitness level, and pathology. 

This study attempts to account for the osteological paradox in two primary ways. 

First, this study uses a homogenous population of similarly aged white males who are 

healthy and of relatively similar weights. Secondly, this sample is drawn from a 

population of individuals who perished in a catastrophic event. In short, the individuals 

who died on the USS Oklahoma did not die as a consequence of their health, but in a 

traumatic event. 

 

Body Mass Estimation in Paleoanthropology 

 One subfield of biological anthropology that utilizes body mass estimation is in 

Paleoanthropology to estimate the body mass of Homo sapiens’ hominin ancestors. 

McHenry (1992) developed one of the most widely known methods of hominin body 

mass estimation. This study was conducted on a collection of 66 relatively modern 

human skeletons that varied in origin and size to simulate the variation seen in the fossil 

record. This methodology involved measuring 13 different postcranial elements. 

Subsequently, the author created 78 regression equations to be used to estimate all 

species in the hominin line. One proposed issue with this method of estimation is that 

there is no absolute antemortem body mass data, so in fact, this method of estimation is 

based on estimation.  
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 Unlike McHenry (1992), Ruff (2000) used body mass information from Olympic 

athletes and compared their body size to that of hominids. While this sample did not 

include any modern humans, Ruff (ibid.) applied these data to a morphometric body mass 

estimation method and regressed body mass against the variables of bi-iliac breadth and 

stature. The reason that this body mass estimation method is useful for Ruff (ibid.) is that 

it “…applied to skeletal samples where stature can be estimated, and bi-iliac breadth is 

known or can be estimated” (Ruff ibid.: 508). As stated above, this body mass estimation 

method proved to underestimate body mass in females and overestimate in males, but 

Ruff (ibid.) also maintains that these equations utilizing bi-iliac breadth and stature could 

apply to modern populations in settings where stature is well accounted for. 

 

Skeletal Body Mass Estimation 

 While nearly all of the methods of body mass estimation that utilize medical 

imaging technology are biomechanical in nature, many of the methods applied to 

physical bone are morphometric. Baker and Newman (1957) were at the forefront of 

researchers attempting to quantify the relationship between skeletal mass and the 

antemortem body mass of an individual. This research comes from bioanthropology and 

forensic anthropology, where researchers began to apply their knowledge to the 

identification of human individuals. The authors suggested that the methods being 

implemented “…do not provide the desired certainty for the identification of an 

individual” (Baker and Newman, 1957: 601), but they also suggested body mass 

estimation could be a crucial piece of evidence when attempting to identify unknown 

individuals. Through the systematic body mass measurements of 125 skeletons of White 
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and Black males, the authors stated that the mineral aspect of bone accounts for 5-7% of 

the total fat-free body mass. Baker and Newman’s (1957) study laid the groundwork for 

the academic discourse that begot this subfield of study. 

 Because the talus is one of the primary weight-bearing bones in the human body, 

Huxley (1992) examined its morphological features to assess the correlation of these 

measurements to body mass. Her sample was comprised of 88 individuals with body 

mass data from three skeletal collections. After the author collected 21 measurements 

from 49 right tali, she concluded that there were no correlations between any of the 

variables she assessed and antemortem body mass (Huxley, 1992: 36). This statement 

was fueled by the fact that when analyzed, the correlation between talar morphology and 

body mass was a low adjusted R-squared value of 0.21.  

 Wheatley (1999) and May (1999) both examined the relationship between bone 

mineral density and antemortem body mass. Wheatly noted correlations between body 

mass and bone mineral density by assessing a sample of 42 living individuals using an X-

ray bone densitometer. This tool takes a radiographic measurement of the mineral density 

of a skeletal element and, in the medical field, it is most often used to detect osteopenia 

or osteoporosis. Wheatley (ibid.) collected measurements of the femoral bone mineral 

density, the minimum diameter of the femoral neck, and shaft breadth inferior of the 

lesser trochanter and found a correlation between the femoral variables collected and 

antemortem body mass. May (1999) demonstrated a similar correlation through a sample 

of 73 skeletons from the Smithsonian’s Terry collection. In this study, measurements of 

bone density were regressed against the individual’s known antemortem body mass to 

show that this feature can be used to predict body mass with at least as much accuracy as 
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other body mass estimation methods at the time. May (1999) also determined that the 

most representative element for density measurements is the fifth lumbar vertebra.  

 Sichta (2000) examined 189 skeletons from the Smithsonian’s Terry Collection to 

understand the differences, per Wolff’s law of bone remodeling, between the skeletal 

elements of the upper and lower extremities. To do this, the author collected three 

measurements from the humerus and femur (proximal, midshaft, and distal). The goal of 

this study was to examine the indices and differences of analogous measurements from 

the humerus and femur (Sichta 2000: 29) based on the hypothesis that the humerus is 

modeled in relation to the femur. By identifying the differences in the humeral and 

femoral measurements, the author highlights that a higher amount of differentiation in the 

measures of the upper and lower extremities could suggest a person of increased or 

diminished mass, respectively. Sichta (2000: 67) showed a correlation between 

antemortem body mass and the measurements of the humerus and femur. However, he 

was unable to produce regression equations for body mass estimation with an estimated 

interval that was too large to be of use to forensics.  

Because the cranium is frequently the only element found in situ in forensic 

anthropological and paleoanthropological context due to the numerous taphonomical 

processes, Stubblefield (2002) broke away from a hypothesis grounded in weight-bearing 

elements. She attempted to examine the correlation between the features of the cranium 

and antemortem body mass. Her sample consisted of 147 total adults with known 

bodyweight (mass) information from both the Smithsonian’s Terry Collection as well as 

modern Florida autopsies. From this sample, she collected 16 ectocranial measurements 

along with seven measurements of cranial vault thickness. By comparing the cranial 
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measurements to the known body mass data, Stubblefield (2002: xi) concluded that they 

were “…largely unsuitable for bodyweight prediction”.  

 Moore and Schaefer (2011) assessed the bone mineral density of the proximal 

femur and utilized three-dimensional bone surface models from computed tomography 

(CT) imaging to estimate antemortem body mass from the human skeleton. Through the 

collection of many of the same variables as Moore’s (2008) study, the authors produced a 

regression tree that was able to account for missing variables along with continuous 

variables that do not enter the model linearly while simultaneously creating meaningful 

divisions within the data and accommodating categorical and continuous parameters. By 

using this regression tree, the estimations yielded confidence intervals as low as ±17.1kg 

(Moore and Schaefer, 2011: 1119). 

 Like Stubblefield (2002), De Groote and Humphrey (2011) sought for a 

correlation between the first metatarsal, an element often found in situ, and antemortem 

body mass. The sample was comprised of 87 skeletons varying in size and ancestry but 

without any absolute antemortem body mass data. These individuals were representative 

of a wide range of both size as well as geographic location (35 individuals from the 

United Kingdom, 9 unspecified African individuals, 21 Andamanese, 7 Australasians, 

and 5 Native Americans from Santa Cruz - USA). Subsequently, four measurements were 

collected that were regressed against body mass. This method was able to prove a 

significant correlation between the first metatarsal and the femur, most notably the 

relationship between dorsoplantar diameter and femoral head diameter (r = 0.911) (De 

Groote and Humphrey, 2011:627). Regression equations from this study yielded Percent 

Standard Error of The Estimates (%SEE) of less than 4-7.19%. This means that the model 
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was able to estimate body mass with an error of 4-7.19% of body mass as presented in 

kilograms. 

 

Radiographic Body Mass Estimation 

To develop methods of body mass estimation based on living populations, 

researchers have utilized measurements from living individuals. First, and most 

applicable to the research for this study, is Ruff et al.’s (1991) method of biomechanical 

body mass estimation that used anteroposterior radiographs to measure the femoral 

dimensions of 80 individuals. This population varied in age from 24-80 and was 

comprised of approximately 2/3 individuals of European ancestry and 1/3 individuals of 

African ancestry. These measurements subsequently were plotted, and regression 

equations were created for means of body mass estimation. In conclusion, this study was 

able to predict body mass within a 10%-16% average percent error for the reported body 

masses of individuals in the sample. In order to account for this percent error, Ruff et al. 

(1991: 406) state that body mass estimation in humans remains difficult task “…because 

of problems obtaining sufficiently accurate body masses individually associated with 

skeletal remains in a large, random, and representative sample”. The problem being 

highlighted by Ruff in this statement is one that has already been stated above. The 

problem of finding a sample of random individuals that are nonpathological with accurate 

measurements of body mass near the time of death is a constant limiting factor in body 

mass estimation from skeletal material. This is compounded by morphological and 

genetic differences between individuals that could possibly skew results and complicate 

estimation. 
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 Similarly, Sciulli and Pfau (1994) use the femoral dimensions from radiographs of 

183 children in central Ohio. Femoral diameter, defined as a measure of the diameter of 

the femoral shaft, was regressed to each individual’s mass. The authors were able to 

accurately account for 90-96.8% (R-squared value) of the variation in body mass using 

age with 93-97.4% of the variation based on femoral diameter (with rather large 95% 

prediction limits). Together, when both variables (age and femoral diameter) were 

applied, they accounted for 97.7% of the total variation; but as with femoral diameter, the 

95% confidence interval was still significant (Scuilli and Pfau, 1994: 1286). The authors 

posit that while the model was able to account for a large percentage of the total variation 

in the sample, 95% confidence interval was too wide to prove useful in estimating body 

mass. 

 Much like his 1991 study, Ruff (2007) used femoral distal metaphyseal and head 

breadths of radiographs of juveniles from a subset of the Denver Growth Study sample to 

produce body mass prediction equations for 20 individuals ages 1-17 years. For the older 

adolescents, body mass was also estimated from bi-iliac breadths and maximum length of 

the femur, tibia, humerus, and radius. Concerning his previous work in this methodology, 

Ruff found that when this method was applied to juveniles, it yielded prediction errors 

that were equal to or lesser than those created for adult body mass estimation. He found 

that body mass estimation was most accurate for individuals aged 2-7 years with a 

percent standard error estimate of about 5-6%. Additionally, this study found that at the 

ages where femoral head breadth was able to be assessed, it produced smaller associated 

errors than the distal metaphyseal breadth on average (Ruff, 2007:704). 
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To account for obese or underweight outliers present in many of the samples 

analyzed above, Moore (2008) collected measurements taken from CT imaging of 150 

individuals from the William M. Bass Donated Skeletal Collection from the Department 

of Anthropology at the University of Tennessee-Knoxville. Using CT imagery, Moore 

(ibid.) was able to examine the cross-sectional geometry of the element in question, as 

well as the total cross-sectional area, second moment of inertia, second moment of area, 

polar moment of area, and centroid (center of cortical area). Analysis of these data 

revealed the strongest correlation in body mass for females was the proximal cortical area 

(R-squared = 0.62) and minimum moment of inertia at the proximal shaft (R-squared= 

0.59). For males, the strongest correlation was from the principal moment of inertia at 

midshaft (R-squared = 0.59). Regarding the accuracy of the regression equations 

produced from these measurements, Moore (ibid: 63) stated that “…the multiple 

regression equations combining only the selected cross-sectional variables are not 

extremely strong for males or females”. This study showed that body mass estimations 

are more accurate when multiple traits are combined, accounting for 60% of the variation 

in the sample (ibid: 62).  

 The research conducted by Elliot et al. (2015) is especially useful when 

considering the current practices of body mass estimation from postcranial variables as it 

applies the “most used” body mass estimation equations to a population of 253 

individuals of known body mass. The sample consisted of CT imagery of 125 females 

and 128 males between the ages of 18 and 90 years obtained from the Institute of 

Forensic Medicine at the University of Zurich. While the different methods of body mass 

estimation often employ a variety of different measurements, this study focuses on the 
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measurements of the biomechanical method of femoral head breadth as in Ruff et al. 

(1991; 1997; 2012), McHenry (1992), and Grine et al. (1995). This study found that, in 

reference to biomechanical methods for their sample, the mean percent prediction error  

(%PE) for Ruff’s (1991) male-specific equations was 16.1% and estimated 71.1% of the 

male individuals ±20% of their body mass. Ruff’s female equations yielded a %PE of 

19% but estimated 48% of the sample ±20% of their body mass. The McHenry (1992) 

equations for single and combined sex produced equations for an estimated mass with a 

%PE below 19%, and above 50% of the individuals were estimated ±20% of their known 

mass. For morphometric body mass estimation methods, all equations applied resulted in 

estimates that fell within the criteria of the study which were deemed more reliable 

overall than their biomechanical counterparts as represented by a statistically significant 

p-value of p<0.05 (Elliot et al., 2015: 697).  
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Chapter 3: Materials and Methods 

 

The USS Oklahoma Sample 

 The sample that was utilized for this study is the skeletal remains from US 

military personnel who died catastrophic deaths on the USS Oklahoma (BB-37) during 

the Japanese attack on Pearl Harbor on December 7, 1941. Catastrophic death referring to 

a death secondary to traumatic circumstances rather than an attritional death which would 

be secondary to some sort of pathology. In total, 429 individuals perished on the ship. 

415 of these individuals were US Navy personnel and 14 US Marines (Brown, 2019). 

The day after the attack, recovery attempts began that continued for the following eight 

days until they were halted on December 16, 1941. Salvage attempts were resumed in 

July 1942 and continued until May 1944. Thirty-five individuals were identified in the 

years after the attack, but the remaining unidentified individuals were reinterred in 

various cemeteries as “unknowns”. The remains of these unknowns remained interred for 

two years before the American Graves Restoration Service (AGRS) exhumed all 

unknown remains in 1947. The remains were brought to the Central Identification 

Laboratory at Schofield Barracks for attempted identification. During this time, due to the 

possibility of the remains being interred as a group assemblage, the unassociated remains 

were sorted by element to inter the remains in as few caskets as possible. After this 

possibility was denied, Dr. Mildred Trotter directed the segregation of remains into 

individuals based on articulation, size, color, morphology, and texture. While Dr. Trotter 

recommended the identification of 27 individuals from the assemblage, they were not 

approved for identification due to the possibility of additional skeletal portions being 



31 
 

 
 

present in the commingled assemblage. The remains were subsequently interred in the 

National Memorial Cemetery of the Pacific (NMCP) (Brown, 2019).  

 After being prompted by the research of a Pearl Harbor survivor, Mr. Ray Emory, 

one casket was disinterred from NMCP in 2003 by the Joint POW/MIA Accounting 

Command (JPAC) – a precursory institution of the current DPAA - for identification 

based on unique cranial/mandibular features identified by Trotter. Between the time of 

the first casket’s disinterment from the NMCP and April 14, 2015, another single casket 

was disinterred, and extensive DNA testing was performed on the 200 associated 

elements. On April 14, 2015, the Deputy Secretary of Defense approved the exhumation 

of the remaining USS Oklahoma unknowns for large-scale identification between two 

DPAA laboratories in Hawaii and Nebraska along with the Armed Forces DNA 

Identification Laboratory (AFDIL) on Dover Air Force Base, Delaware (Brown, 2019: 

102-105). As of September 30, 2019, the DPAA has positively identified 227 of the 388 

remaining unknowns (Brown, 2019). 

The measurements required to conduct this research were collected from a series 

of CT scans taken at the DPAA (Table 1, Figure 1). While the original sample consisted 

of 80 right and left femora from various individuals, three were excluded due to 

pathology that inhibited measurement and five additional femora were excluded because 

no antemortem body mass could be located for those individuals. Additionally, the 

sample was comprised of both paired elements (where both right and left femora have 

been matched via DNA, pair matching, and articulation analysis, to an individual) and 

single elements (where only one femur – right or left – has been associated an 

individual). So as to avoid multicollinearity, although a positively identified individual 
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may have bilateral femora, only one femur was included for each. Finally, one individual 

was excluded as the time since body mass measurement was an exponential outlier in the 

sample (<6000 days). The remaining sample consisted of 53 femora (n=53; left=40, 

right=13) from 53 separate positively identified individuals from the total USS Oklahoma 

population. Scans were collected during the years of 2016-2017 on GM LightSpeed 

Series Computed Tomography Scanner by several different CT-trained analysts from the 

DPAA.  
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Methods 

 

Step 

Number 

Measurement Description 

1 Diaphyseal proxy line Proxy line drawn along the 

superoinferior axis of the bone 

bisecting the medullary cavity at 

midshaft, following the complete 

length of the bone, and recording 

the angle of the line produced (0-

90°). 
2 Neck Proxy line Proxy line drawn along the axis of 

the femoral neck from the most 

superomedial point on the femoral 

head, along the midline of the 

femoral neck, and extending 

underneath the greater trochanter. 
3 Femoral Head Breadth (HeadBD) Maximum breadth of the femoral 

head at the angle perpendicular to the 

neck proxy line. 

4 Femoral Neck Breadth (NeckBD) Maximum breadth of the femoral 

neck at the angle perpendicular to the 

neck proxy line. 

5 Two thirds distance of HeadBD inferior the lesser 

trochanter 

A line drawn at a distance two thirds 

HeadBD inferior the most medial 

point of the lesser trochanter and 

parallel to the diaphyseal proxy line. 

6 Shaft diameter at two thirds HeadBD inferior the 

lesser trochanter (ShaftD) 

Diameter of the femoral shaft at two 

thirds HeadBD and perpendicular to 

the diaphyseal proxy line. 

7 Medial subperiosteal cortical breadth Breadth of the medial periosteal 

cortical bone at two thirds HeadBD 

and perpendicular the diaphyseal 

proxy line. 

8 Lateral subperiosteal cortical breadth Breadth of the lateral periosteal 

cortical bone at two thirds HeadBD 

and perpendicular the diaphyseal 

proxy line. 

 

Table 1: A detailed compilation of the eight steps in the data collection methodology 
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Figure 3: A graphic depicting the eight primary measurements in the data collection 

methodology. 

 

In order to consistently collect the measurements mentioned in Ruff (1991) 

(femoral head breadth (HeadBD), neck breadth (NeckBD), shaft diameter (ShaftD), 
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subperiosteal medial, and lateral cortical breadths), a detailed methodology was 

constructed utilizing the angles of two proxy lines drawn in the imagery along two axes 

of each femur in the sample. Per Ruff (1983), cortical area (CA) was calculated as it is 

proportional to the axial rigidity or strength of a long bone. While this is true, it is 

important to mention that the calculation for CA operates under the assumption that the 

element is symmetrical and circular in cross section, which of course is not the case.  

CA = π/4 · D² - d² : D-subperiosteal diameter, d-medullary diameter 

Measurements were collected from the anteroposterior scout image included with each 

CT scan using the software ImageWorks for Linux during the months of February and 

March 2019. In order to measure the accuracy of the body mass estimation method 

proposed by Ruff (1991) on this particular sample, reference masses (originally recorded 

in Lbs) were collected for each individual in the sample by accessing their Official 

Military Personnel File (OMPF) on record at the DPAA and documenting the body mass 

measurement taken closest to the date of death.  

 To collect the lines and measurements, the “measure” tool in ImageWorks was 

utilized. First, two proxy lines were drawn in order to measure the angle of the axis of the 

femoral diaphysis and femoral neck. Line 1 was drawn along the superoinferior axis of 

the bone bisecting the medullary cavity at midshaft, following the complete length of the 

bone, and recording the angle of the line produced (0-90°). Line 2 was drawn along the 

axis of the femoral neck from the most superomedial point on the femoral head, along the 

midline of the femoral neck, and extending underneath the greater trochanter. Like 

Measurement 1, the angle of this axis was recorded. Next, using the angle taken at 

Measurement 2, Measurement 3 was a collected via a perpendicular line (90° 
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measurement = degree of the perpendicular line) and the femoral head breath 

measurement was collected at the maximum diameter of the head at this angle. The 

femoral head measurement, just as femoral neck breadth and cortical breadths, was 

collected in millimeters. Referencing the angle used to take the Measurement 3, 

Measurement 4 was the femoral neck measurement collected at the minimum neck 

breadth along this same perpendicular angle. 
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Figure 4: AP Radiograph of the proximal femur detailing measurements 1, 2, and 3. Line 1 

is the superoinferior axis of the bone bisecting the medullary cavity at midshaft. Line 2 is the axis 

of the femoral neck from the most superomedial point on the femoral head. Line 3 is the 

measurement for femoral head breadth (HeadBD) 
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Figure 5: AP Radiograph of the proximal femur detailing measurement 4. This is the 

measurement of breadth taken at the femoral neck (NeckBD) 

 The next measurements were taken referencing the angle of the proxy line drawn 

in measurement 1. From the midpoint of the medial aspect of the lesser trochanter, a line 

was drawn towards the inferior at two thirds the length of the femoral head Measurement 

3 at the same angle of Measurement 1 (designated Measurement 5). After this, a line 

perpendicular to Measurement 1 was drawn and mediolateral shaft breath was collected 
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(designated Measurement 6). After collecting this, Measurements 7 and 8 were the 

medial and lateral subperiosteal cortical breaths that were collected along the same line 

and at the same perpendicular angle to 1 at 2/3 femoral head Measurement 3. 

 

 

Figure 6: AP radiograph of the proximal femur detailing measurements 5 and 6. 
Measurement 5 was the measurement of ⅔ HeadBD and measurement 6 was Shaft BD. 
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Figure 7: AP radiograph of the proximal femur detailing measurement 7. Number 6 in this 

figure measures medical cortical breadth 
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Figure 8: AP radiograph of the proximal femur detailing measurement 8. Number 6 in this 

figure represents lateral cortical breath  
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Chapter 4: Analysis 

 The data obtained from the USS Oklahoma is unique because the individuals were 

largely homogeneous (i.e., mostly comprised of young white males). This provides an 

opportunity to glean valuable insights into the relationship between antemortem weight 

and femur measurements, thus improving the ability to predict antemortem weight from 

postmortem data with more accuracy. The objective of this analysis is to determine the 

best method for predicting antemortem weight utilizing linear regression techniques and 

compare the results with previously established methods and models from Ruff (1991).  

In order to gain a better initial understanding of the USS Oklahoma sample, 

descriptive statistics are obtained for the demographics of body mass, age, stature, and 

time since body mass measurement was collected from the individuals of whom the 

various femora belong (Table 2). The next step was to perform descriptive statistics on 

the applicable radiographic measurements taken from the CT data to understand the 

intrapopulation variation in the measurements. After these descriptive statistics were 

investigated, the observations with missing data due to taphonomical changes, trauma, 

and pathology were removed from the sample because the sample already includes 

sufficient data without missing values. Seven observations were removed, which resulted 

in a sample size of 53 femora. This type of analysis assumes that there is no variation in 

either the measurements being taken or biological variation in the sample. Linear 

regression modeling assumes the data follow the normal distribution [Kutner et al., 2013: 

6]. Therefore, the distributions of each of the variables were checked, and all appear to be 

relatively normal (Figure 9).  
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Figure 9: Distributions of the variables used for linear regression 

 

Descriptive Statistics 

All statistical analyses for this project were completed using R Version 3.5.2. In 

order to better understand the sample, descriptive statistics were conducted initially for 

the variables of body mass (kilograms – originally recorded in pounds), age (years), 

stature (inches), and time since the measurement was taken (days). The descriptive 

statistics for the sample (Table 2) included the mean, range (maximum/minimum), and 

standard deviation for all numerical variables in the sample (Teetor 2011: 276). 
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Following this, similar descriptive statistics were run for the measurements taken from 

the sample (Table 3). As mentioned above, the measurements were femoral Head Breadth 

(HeadBD), Neck BD (NeckBD), diaphyseal diameter at 2/3 the distance of HeadBD from 

the midpoint of the lesser trochanter (ShaftD), and CA. After assumptions were assessed, 

Pearson's correlation coefficients were then conducted to examine the linear relationship 

between the measurements taken and antemortem body mass in this sample. In order to 

compare the estimations yielded from the USS Oklahoma population to the estimations of 

Ruff (1991), the body mass measurements from the USS Oklahoma are presented in 

kilograms (kgs) instead of their original presentation of pounds. 

 

 Body Mass (kgs) Age (years) Stature (in) Time Since 

Measurement 

(Days) 

Minimum 50.35 18 64 63 

Maximum 90.72 43 74.5 3811 

Mean 66.15 25 67.86 1067 

 

Table 2: Descriptive Statistics for USS Oklahoma Sample 
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 HeadBD (mm) NeckBD (mm) ShaftD (mm)  CA (mm) 

Minimum 38 26 22 .00098 

Maximum 52 38 34 .0022 

Mean 45.19 31.56 27.56 .0016 

Std Deviation 2.84 2.70 2.15 .00026 

Correlation 

Coefficient 

0.428 0.272 0.639 -0.511 

 

Table 3: Descriptive Statistics for Measurements Taken. Correlation Coefficient assessed in 

relation to antemortem body mass. 

 

Comparison to Ruff’s (1991) Body Mass Estimation Equations 

In his 1991 study Ruff assessed the accuracy of his estimation equations through 

his calculation of both SEE and %SEE. These calculations were completed on the USS 

Oklahoma sample along with an additional calculation of MSE. As a manner of 

comparison, the antemortem body mass estimation equations offered in Ruff (1991) for 

White males were applied to this sample and the MSE was assessed and compared to the 

MSEs produced in this study. The MSEs produced from Ruff’s (1991) equations were 

104.12 and 62.50 for HeadBD and ShaftD, respectively. This differs from the MSE 

generated from the USS Oklahoma sample which were 81.85 and 59.99 for the same 

variables. Along with MSE, %PE and SEE was collected as means of comparison. Just as 

in Ruff (1991: 401), estimations taken from the femoral shaft tend to be more accurate on 

average than those taken from the femoral head. This conclusion is further outlined when 

looking at the SEE’s of Ruff’s (1991:406) equations for white males, 16.9 and 16.5 for 
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HeadBD and ShaftD compared to the USS Oklahoma sample that yielded SEE of 10.44 

and 8.82 for the same demographic. To better visualize the differences in the models 

produced in Ruff (1991) and the USS Oklahoma data, the slopes for each equation were 

plotted against the collected measurements for HeadBD and ShaftD (Figures 8 and 9). 

While Ruff (1991) included body mass estimation equations based on an idealized 

measurement of cortical area that assumes circularity of the transverse cross-section of 

the diaphysis at two thirds HeadBD, this was not included in the present study as the 

models were too dissimilar for comparison (i.e. lines of best fit were too dissimilar). This 

could be due to error in the calculation of cortical area based on the equation offered in 

Ruff (1991: 400) or possibly due to the demographic differences between Ruff’s (1991) 

sample and the USS Oklahoma sample. While this is expected as the equations from the 

present study were fit to this specific set of data, the accuracy of the measurements and 

the clear differences in the lines of Ruff’s sample are certainly notable. Additionally, just 

as in Ruff (1991: 401), estimations taken from the femoral shaft tended to be more 

accurate on average than those taken from the femoral head in the USS Oklahoma 

sample. 

 

Analysis of Bilateral Sides 

While only one femur was included per individual in the study, because the 

collected sample of femora were comprised of bilateral elements, further investigation 

analyses were completed to visualize whether side was significantly related to the 

collected measurements. To begin, interaction plots are used to assess whether the effects 

of variables, in this case side, change with respect to body mass. These interaction plots 
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were examined to assess the data when grouped into sides against the collected variables 

of HeadBD, ShaftD, NeckBD, and CA (Figure 15). Overall, the plots show that there 

were no strong interactions between these variables and side. After these plots were 

examined, a model was fit to examine the multivariate relationship between side as a 

variable, the collected measurements (HeadBD, ShaftD, NeckBD, CA), and the 

antemortem body masses of the USS Oklahoma sample individuals. Using this model, 

VIF’s were again calculated to test for multicollinearity. These results support that 

multicollinearity is not present in the model. The results are presented in Table 7 which 

report that sidedness is not significant when generating the models based on the 

measurements collected.  

 

Simple Linear Regression and Body Mass Estimation 

Because the variables that exhibited the highest level of correlation to antemortem 

body mass in Ruff’s (1991) study were HeadBD and ShaftD, this analysis began with 

simple ordinary least squares linear regression models with each of these variables. 

However, before fitting regression models, it was important to review the assumptions 

behind linear regression modeling. According to Kutner et al. (2013), ordinary least 

squares regression assumes the variables are independent, normally distributed, and that 

the resulting model has constant residuals, normal error terms that sum to zero, and that 

multicollinearity does not exist (multiple linear regression). Inferences can be made only 

after these assumptions are met and verified. The normality of the variables was already 

checked as part of the initial data investigation; the histograms are found in Figure 9.  
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First, the resulting regression model with HeadBD as the independent variable 

and body mass as the dependent variable resulted in the regression equation: 

Model 1: 𝑌𝑌 =  6.63 +  1.31𝑌1 + 𝑌𝑌 - where 𝑌1is HeadBD and 𝑌𝑌is antemortem 

body mass 

 

Before drawing inferences from this model, it is essential to check that the model was an 

appropriate fit to the data and make sure that any assumptions were satisfied. Figure 10 

displays the model diagnostic plots for Equation 1. The residuals vs. fitted plot indicates 

that the residuals are relatively constant with respect to the fitted values. The Normal Q-

Q plot (normal probability plot) shows that the residuals are relatively normally 

distributed and are relatively close to their respective theoretical quantiles. Additionally, 

the Scale-Location and Residuals vs. Leverage plots show there are no concerningly high 

leverage points or outliers. All of these plots confirmed that the model was a good fit for 

the data. The model was then interpreted; on average, with 1 millimeter (mm) increase in 

HeadBD, the antemortem body mass increases 1.31 kilograms. The intercept did not have 

any interpretable meaning here, because HeadBD would never equal zero. Figure 11 

shows the USS Oklahoma data with the fitted regression model and the estimation 

equation yielded for Ruff’s (1991) model of White males. Interestingly, Ruff’s model is 

not included in the 95 percent confidence bands for the HeadBD Model, thus suggesting 

the two models are different from each other.  
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Figure 10: Model Diagnostic plots analyzing HeadBD Model 
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Figure 11: A plot visualizing the difference between the slope produced by Ruff’s (1991) 

HeadBD data (red) and the USS Oklahoma HeadBD data (blue). A 95 percent confidence 

intervals was included for the USS Oklahoma model (dotted blue). 

 

Next, the resulting regression model with ShaftD as the independent variable and 

body mass as the dependent variable resulted in the regression equation: 

Model 2: 𝑌𝑖 =  −5.86 +  2.61𝑋1 + 𝜖𝑖- where 𝑋1is ShaftD and 𝑌𝑖is antemortem body 

mass 

 

--- USS OK 

- - - 95%  

--- Ruff (1991) 
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The model diagnostic plots are shown in Figure 12. The Residuals vs. Fitted plot shows 

the residuals have relatively constant variance, the Normal Q-Q plot indicates the 

residuals are normally distributed, and the Scale-Location and Residuals vs. Leverage 

plots indicate no alarming high leverage points or outliers. Thus, the assumptions are met 

and the model parameters can be interpreted; on average, for one millimeter increase in 

ShaftD, the antemortem body mass increases 2.61 kilograms. Again, the intercept term 

does not have an applicable interpretation. Figure 13 shows Model 2 plotted with the 

USS Oklahoma data as well as Ruff’s corresponding model. Interestingly, the majority of 

Ruff’s model does fall within the 95% confidence bands of Model 2, which suggests the 

two models using ShaftD are fairly similar.  

 

Figure 12: Model Diagnostic plots describing ShaftD Model. 
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Figure 13: A plot visualizing the difference between the slope produced by Ruff’s (1991) 

ShaftD data (red) and the USS Oklahoma ShaftD data. A 95 percent confidence intervals 

included for the USS Oklahoma model (dotted blue) 

 

To assess the accuracy of the estimations yielded from the above equations, the 

correlations between HeadBD and antemortem body mass as well as ShaftD and 

antemortem body mass were examined (Table 4). For each measurement, R Values, 

Standard Error of Estimate (SEE), Absolute Percent Prediction Error |(%PE = 

--- USS OK 

- - - 95%  

--- Ruff (1991) 
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[(Observed-Predicted)/Predicted] · 100)| per Ruff (1991), Mean Squared Error (MSE), 

and Correlation Coefficient (p values) were calculated. Subsequently, comparisons were 

drawn to assess the variance that the simple linear models were able to account for. The 

coefficient of determination for HeadBD and ShaftD independently, when modeled 

against antemortem body mass, yielded values of R-squared= 0.14 and R-squared= 0.37, 

respectively. This result indicated that HeadBD was able to account for 14% of the 

variation in the sample while ShaftD accounted for 37%. In terms of correlation, the 

models yielded statistically significant (<.05) correlation values which are presented 

below. These correlation coeffects show that there is some relationship between the 

variable being assessed in the model and antemortem body mass. SEE was utilized to 

understand the fit of the model, as a larger SEE could mean that the data are not well 

explained with the simple linear relationship (Thomas, 1976: 362). After the results of 

this calculation confirmed the aptness of the models, %PE was calculated for 

comparability to the results offered in Ruff (1991). Mean squared error for the sample 

was calculated in order to assess the average squared difference between estimated body 

mass and actual body mass.  

 

Validation of Simple Regression Models 

 In order to assess the applicability and usefulness of this model on outside 

datasets, the data was split in order to apply a Training and Test methodology. Per this 

method, a random sample of 80% of the ShaftD (the model that was able to account for 

the largest amount of variance – R-squared: .37) data were used as the training set from 

which a new linear model was created. Then, the remaining 20% of the data were applied 
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to the model in order to test for overfitting of the data and to validate the original model. 

When completed, the method yielded MSE’s of 46.003 and 32.9 for the training and test 

sets, respectively. In practice, these results validate the use of the ShaftD equation on 

outside data because the MSE for the test set is lower than that of the training set. This 

displays that the model generalizes to new data and is able to make new predictions 

without overfitting to the training set. 

 In order to understand the number of individuals that the model was able to 

correctly estimate within the 95% confidence interval, the upper and lower limits were 

calculated for the measurements present in the USS Oklahoma sample. Once this was 

completed, the antemortem body mass of each individual was compared to the upper and 

lower limits of the model for the respective measurements of HeadBD and ShaftD. In 

practice, the model for HeadBD was able to correctly estimate 32.0% (17/53) of the 

individuals in the sample within 95%. Similarly, the model for ShaftD was able to 

correctly estimate 34.0% (18/53) of the sample within a 95% confidence interval. 

 

 R-squared Adjusted R² SEE %PE MSE p 

HeadBD .16 0.14 ±8.87 ±10.44 81.85 0.003 

ShaftD 0.38 0.37 ±7.60 ±8.82 59.99 <0.001 

 

Table 4: Results of Body Mass Estimation Equations 
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Multiple Linear Regression Analysis  

After the variables collected had been assessed individually against the 

antemortem body mass data using simple linear regression, a multiple linear regression 

model was fitted with the variables of HeadBD, ShaftD, NeckBD, and CA in order to 

determine if the model could be improved (Teetor, 2011: 270). After the model was fit, 

residuals were assessed (Figure 14) and an ANOVA table was generated. The Residuals 

vs. Fitted plot shows the residuals again have relatively constant variance, the Normal Q-

Q plot indicates the residuals are normally distributed, and the Scale-Location and 

Residuals vs. Leverage plots indicate the possibility of a relatively high, but still usable 

(within 0.5 limits) leverage point. Thus, the assumptions are still met and the model 

parameters can again be interpreted. Following the ANOVA, the model was assessed for 

multicollinearity through the calculation of the variance inflation factor (VIF) as it 

provides a quantification of the severity of multicollinearity in the regression analysis 

(Kutner et al., 2013: 408). The results produced from the ANOVA test and VIF 

calculation are presented in table 5 (Teetor 2011: 302).  



56 
 

 
 

 

Figure 14: Model Diagnostic plots describing Multivariate Linear Regression Model 

  
Degrees of 

Freedom 

Sum of 

Squares 

Mean Sum of 

Squares 

F-

statistic 

P-

value 

VIF 

HeadBD 1 784.05 784.05 12.36 <0.001 1.76 

ShaftD 1 1095.68 1095.68 17.28 <0.001 3.43 

NeckBD 1 13.86 13.86 0.22 0.642 1.56 

CA 1 3.59 3.59 0.06 0.813 2.80 

Residuals 47 2979.58 63.40    

 

Table 5: Results of one-way ANOVA test with VIF for the multiple regression model. 

After these variables were analyzed and VIF values were all under the threshold 

of 10 (hereby indicating no presence of multicollinearity (Kutner et al., 2013: 409), an 

interaction model was created to assess the possibility of non-causal relationships 

between the variables collected. In short, this was completed to understand if any single 

variable is driving the results of the other. The summary statistics produced by this model 

are presented in Table 6 These results inform that when all variables are included in the 
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model and their interactions, no significant relationships exist to antemortem body mass. 

Additionally, these non-significant P values posit that when all these relationships are 

regressed together, the variables and interactions are not significantly related to the USS 

Oklahoma body mass data. 

Residuals: 

    Min      1Q  Median      3Q     Max  

-13.149  -4.412  -1.078   3.321  19.888  

Coefficients: 

                Estimate Std. Error t value Pr(>|t|) 

(Intercept)    3.615e+02  5.859e+02   0.617    0.541 

headBD        -9.168e+00  2.064e+01  -0.444    0.659 

shaftD        -6.457e+00  1.679e+01  -0.384    0.703 

neckBD         2.683e-01  1.839e+01   0.015    0.988 

CA            -3.932e+04  1.118e+05  -0.352    0.727 

headBD:shaftD  3.237e-01  5.219e-01   0.620    0.539 

headBD:neckBD -3.225e-02  2.075e-01  -0.155    0.877 

headBD:CA      7.439e+02  4.072e+03   0.183    0.856 

shaftD:neckBD -7.196e-02  4.966e-01  -0.145    0.885 

shaftD:CA     -2.661e+03  2.191e+03  -1.215    0.231 

neckBD:CA      2.344e+03  3.938e+03   0.595    0.555 

 

Residual standard error: 8.093 on 41 degrees of freedom 

Multiple R-squared:  0.4494, Adjusted R-squared:  0.3151  
F-statistic: 3.346 on 10 and 41 DF,  p-value: 0.002927 

 

Table 6: Summary Statistics for Interaction Model. 

 

 

Analysis of the Effects of Time 

The next variable that was analyzed in this analysis was that of time since each 

individual’s body mass data were collected. The time variable is defined as the number of 

days between death and the last body mass measurement taken while the individual was 
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living. Because a larger amount of time since measurement could mean a less precise 

measurement due to body mass changes secondary to factors such as fitness regiments. 

The correlation coefficient between body mass and time is 0.17, which confirms that 

there could be a relationship between these two variables that may have an effect on the 

model. Because of this, a simple linear regression model was fit with time as the only 

independent variable. This model resulted in an R-squared value of only 0.009. This 

value confirms that time were no strong intravariable relationships when assessed 

individually.  However, this variable may be useful in the final multivariate model, and 

thus was included below. 

 

Application and Final Multivariate Model 

As the initial multiple linear regression model did not have any significant 

variables, the final model included all the previously used variables, which included time 

and side (as a categorical variable). Then, the insignificant variables based on their p-

values were removed until only statistically significant variables remained (alpha value 

0.05). These variables were, NeckBD, CA, HeadBD. In order to test the statistical 

significance of side in the model, a generalized F test (Kutner et al., 2013: 72) was 

conducted with a full model that included HeadBD, ShaftD, side, and time, and the 

reduced model included HeadBD, ShaftD, and time. This test resulted in a p-value of 

0.30, which is above any reasonable cutoff alpha value. Thus, the conclusion of this test 

is that side is not a significant predictor of body mass in this data and can be excluded 

from the model. This is pertinent to the study because not only does it allow for the use of 



59 
 

 
 

right and left femora for this sample, it supports the application of this method to bilateral 

femora on outside samples of WWII era American White Males. 

 

 

 

Figure 15: Interaction plots between side and the variable measurements collected. 

 

Here, the final model consists of the two most significant variables, Time and 

ShaftD, which resulted in an R-squared value of 0.44 and an adjusted R-squared value of 

0.42. VIF’s produced from this model were 1.00, and this is because there were only two 

independent variables used in the model. Interpreting the coefficients, when 𝑋2 – Time is 

held constant, and 𝑋1 – ShaftD is increased by 1, antemortem body mass will increase by 

2.71kg; similarly, when ShaftD is held constant and Time is increased by 1, body mass 

will increase by 0.002.  
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Final Model: 𝑌𝑖 =  −14.5 +  2.71𝑋1 + 0.002𝑋2 + 𝜖𝑖 - where 𝑋1is ShaftD, X2 is time 

and 𝑌𝑖 is antemortem body mass 

Residuals: 
    Min      1Q  Median      3Q     Max  
-18.971  -4.360  -0.545   4.633  19.365  
 
Coefficients: 
                   Estimate Std. Error t value Pr(>|t|)     
(Intercept)      -12.483204  12.867782  -0.970   0.3369     
shaftD             2.776522   0.462273   6.006 2.45e-07 *** 
as.factor(side)  -1.879812   2.452395  -0.767   0.4471     
time               0.002432   0.001082   2.248   0.0292 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 7.5 on 48 degrees of freedom 
Multiple R-squared:  0.4463, Adjusted R-squared:  0.4117  
F-statistic:  12.9 on 3 and 48 DF,  p-value: 2.648e-06 

 

Table 7: Summary of Final Multivariate Model 

 

 

Validation Set with Final Multivariate Model 

 Finally, the final model was used with a validation procedure to test whether the 

model generalizes to new data and makes reasonable predictions. To do this, as above, 

the data was split into two groups, a training set and a testing set (80/20% randomized 

split). Then the final model consisting of ShaftD and time was fit using only the training 

data, before making predictions with the test data. The MSE was calculated for the model 

fit with the training set and the new predictions for the test set. The resulting MSE’s were 

51.69 and 43.10, respectively. As in the simple model, since the training  MSE was larger 

than the test, model is not overfitting to the data it was trained with and generalizes well 

to make new predictions.  
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Chapter 5: Discussion and Conclusion 

 

 The results produced from this analysis shows that while it may be possible to 

predict body mass from the human skeleton, and that biomechanical body mass 

estimation is closely tied to the sample from which the model is created, there is still 

recalibration that must be done before these methods of body mass estimation are put to 

practice. This is evident by R squared values of less than .5 in all the models generated 

from this sample. Simply put, even though the USS Oklahoma sample was able to control 

for many of the factors that other samples could not, there is still a large amount of 

variance left unaccounted for. As discussed above, this variance could be due to many of 

the substantiating factors such as genetics that complicate the estimation of this aspect of 

the biological profile. To some extent, the accuracy of the estimations is influenced by 

individual characteristics of the sample such as diet, environment, pathology, hormone 

levels, etc.  

 While many aspects of this study yielded different results from those offered in 

Ruff (1991), this study highlights many of the problems with using 2D radiographic 

measurements of skeletal material for body mass estimation. It is important to highlight 

that both the present study as well as Ruff (1991) operates under the assumption that the 

femoral cross-sectional geometry is perfectly circular, which is of course not the case. By 

operating under this assumption, the study is not able to account for the differences in 

cross-sectional geometry present in an actual sample secondary to concepts such as the 

Utah Paradigm. It would reason that this accounts for some of the previously 

unaccounted variance. Perhaps it is for this reason why Moore (2008) was able to account 
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for ~60% of variance when considering true cross-sectional geometry of an element by 

applying biomechanically relevant measurements taken from CT imaging. 

 The results of this study demonstrate that even if we can control for many of the 

variables that confound body mass, there are underlying variables that we still do not 

fully understand, which affect our estimates. One of the possible compounding factors, as 

mentioned above, could be the individual genetic makeup of every individual in the 

sample. Just as every individual is different, so is each skeletal element. Grossly, this 

variation could present itself as a difference in bicondylar angle, femoral head diameter, 

diaphyseal length, and subperiosteal cortical breadth. On a microscopic level, variation 

could occur in the bone’s ability to remodel, bone mineral density (BMD), and skeletal 

porosity. Since there are so many different factors that can lead to variability both grossly 

and microscopically, perhaps it would be best for continued research to utilize radiology 

of living individuals, as many of these variables can be measured and could aid in the 

culmination of more appropriate samples.  

 One avenue of continued research could bypass the anteroposterior scouts of these 

CT scans and venture into the true cross-sectional geometry of the elements (Moore 

2013). Due in part to the success yielded from Moore (2008), as well as the fact that 

biomechanical strain is multifaceted and difficult to assess mathematically, much more 

study should be done into these different factors. Particularly, the different reactionary 

moments to applied forces, and how the skeletal tissue responds on a micro- and 

macroscopic level. Should this kind of CT study be completed on living individuals, it 

would be interesting to see the different types of chemical changes the bone undergoes in 

response to stress. This type of study could be further explored through long term 



63 
 

 
 

investigation of individuals who undergo routine manual labor to quantify how much 

skeletal cross-sectional remodeling patterns are based on physical activity as opposed to 

other factors such as genetics. 

 Along with the application of this model to the more holistic field of forensic 

anthropology, another avenue of study would be the differences seen between the femoral 

morphologies of soldiers and civilians. Since it has already been established that muscle 

mass acts on skeletal tissue differently than fat mass, it would be interesting to investigate 

the morphological differences between individuals that gain wait due to the addition of 

muscle compared to fat. Further study such as this could possibly allow methodologies 

such as this to be applied to similar era males of European ancestry in the civilian sector. 

This could also be one way to investigate that applicability of this study to modern 

populations.  

 

Limiting Factors 

One of the most crucial limiting factors to this study, as is common with all 

anthropological research, is that of sample size. The sample that was applied to this This 

is compounded by the fact that not all body mass measurements had been taken recently, 

as is outlined in the ‘time since measurement’ statistic. Although extreme outliers were 

accounted for and most American military personnel were subjected to some level of 

fitness regiment, there is a possibility for body mass fluctuation in the time after the last 

measurement prior to December 7, 1941. Due to the rigorous physical training (PT) 

undergone by military personal after their induction, it is highly likely that new inductees 

gained a substantial amount of muscle mass which would sequentially impact body mass. 
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This possibility could potentially impact the study because the fluctuation could lead to 

inaccuracy in the data from which the estimation equations were derived. In order to 

better understand this, one could isolate the individuals in the sample whose body mass 

measurement occurred within a confined time period, for instance - one year, and see if 

the model generated by these individuals yield more accurate estimates. 

A factor in this study that could not be controlled for the angle that the CT scans 

were taken. If an element is canted anteroposteriorly or mediolaterally while the scan is 

taking place, this could influence the measurements taken from the CT data. Because the 

CT images had already been taken prior to this study, the precision of the measurements 

could have been affected. An additional limiting factor to this study would be the 

possibility of body mass fluctuation after the most recent body mass was recorded. 

Although the most recent body mass measurement was collected at every available 

opportunity, many of the body mass measurements were taken at the time the individual 

was inducted to the military. Another possible limiting factor to data collection deals with 

the collection of the physical CT scans by DPAA analysts. Because no interobserver error 

analysis was completed, there is a possibility that the scans taken could have been 

completed in a way that could affect the measurements collected to produce the research 

above.  

Finally, while measurements were taken in order to complete a traditional 

validation study with 10 elements outside the original data pool, body mass information 

was not retrieved due to an issue of data accessibility and security clearance. This is the 

reason why a Training and Test methodology was completed in lieu of the more 

traditional method. Additionally, no inter or intraobserver reliability study was completed 
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during the initial study. Both inter and intraobserver error need to be assessed prior to 

application to any outside samples. 

 

Conclusion  

Through the implementation of Ruff’s (1991) biomechanical method of body 

mass estimation and its subsequent application to a unique sample of individuals who 

were killed on the USS Oklahoma during the bombing of Pearl Harbor in 1941, this 

research was first able to create simple linear regression models for two of the variables 

that were offered by Ruff. These USS Oklahoma models yielded more accurate SEE’s 

than the comparison study and adjusted R-squared values of .14 and .38 for the variables 

of HeadBD and ShaftD, respectively. After the models were generated and analyzed, a 

Training and Test methodology was applied for the model with the highest R-squared 

(ShaftD) which yielded two separate MSE’s of 46.003 and 32.9, respectively. Since the 

MSE proved to be lower for the test set than the training set, this supports the model’s 

applicability to outside datasets. The results from the simple linear regression models 

were then compared to the linear regression model presented in Ruff (1991). The MSEs 

produced from Ruff’s (1991) equations were 104.12 and 62.50 for HeadBD and ShaftD, 

which differed from the MSE generated from the USS Oklahoma sample which were 

73.50 and 56.01 for the same variables.  

Aside from application and comparison to Ruff (1991), multivariate analysis was 

utilized to understand the relationship between variables and to improve body mass 

estimates. The data were analyzed to investigate intravariable relationships via interaction 

model that showed there was no statically significant correlation between variables. Next, 
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additional testing was completed for the variables of time and side. In order to justify the 

use of bilateral elements from an individual in the sample, interaction plots were used 

along with multiple linear regression and application of a generalized F test to prove side 

is not a significant predictor of body mass in this data and thus that either side could be 

included for an individual. In terms of time since last body mass measurement, a 

correlation coefficient of 0.17 demonstrates that time since measurement could be 

significant in the model, but an adjusted R-squared value of .009 demonstrates that time 

since measurement is not a related variable when used by itself. Finally, Through the 

utilization of a multivariate regression model that utilized the most statistically significant 

variables collected from the sample, the final model yielded adjusted an R-squared value 

of .41, meaning that the final multivariate estimation model was able to account for 41% 

of the variance present in the sample. Lastly, the Training and Test methodology was 

again completed for the multivariate model and resulting MSE’s were 51.69 and 43.10, 

respectively to the training and test sets. Since these MSE’s are relatively close to each 

other, this supports that the model is not overfitting to the data and that it generalizes well 

to make new predictions. 

Because these equations were able to produce more precise estimates than Ruff 

(1991), this evidence supports the original hypothesis of this study: that the precision of 

estimates produced from biomechanical body mass estimation methods will be positively 

impacted through controlling for demographic variables such as age, sex, extreme body 

masses, and pathology; as well as the fact that all of the USS Oklahoma deaths were 

catastrophic rather than attritional. Additionally, the application of multiple linear 
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regression analysis was able to positively impact the amount of variance accounted for of 

the USS Oklahoma sample.  

Overall, while this research was able to produce a more precise measurement, the 

fact that nearly half of the sample’s variance remains unaccounted for acts as proof that 

body mass and cross-sectional geometry are tied to other confounding variables that were 

not analyzed in this research. It also illuminates that there is much more investigation that 

must be done before the estimation of this aspect of the biological profile applied to 

forensic contexts. While this method of body mass estimation has proven more precise in 

predicting a DPAA sample of WWII era white males ages 18-35, the results of this study 

suggest that it is not suitable for DPAA casework at this time. In conclusion, future 

researchers may wish to collaborate with medical professionals and utilize multivariate 

analysis accounting for a femur’s true cross-sectional geometry as a means to better 

understanding how body mass is affecting living individuals. Doing this may hopefully 

further the field of forensic anthropology by creating better means of estimating this 

useful aspect of the biological profile.  
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