
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Robert Powers Publications Published Research - Department of Chemistry

2015

Statistical Removal of Background Signals from
High-throughput 1H NMR Line-broadening
Ligand-affinity Screens
Bradley Worley
University of Nebraska-Lincoln, bradley.worley@huskers.unl.edu

Nicholas J. Sisco
University of Nebraska-Lincoln

Robert Powers
University of Nebraska - Lincoln, rpowers3@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/chemistrypowers

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Robert Powers Publications by an authorized administrator of DigitalCommons@University
of Nebraska - Lincoln.

Worley, Bradley; Sisco, Nicholas J.; and Powers, Robert, "Statistical Removal of Background Signals from High-throughput 1H NMR
Line-broadening Ligand-affinity Screens" (2015). Robert Powers Publications. 65.
http://digitalcommons.unl.edu/chemistrypowers/65

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fchemistrypowers%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/chemistrypowers?utm_source=digitalcommons.unl.edu%2Fchemistrypowers%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/chemistryresearch?utm_source=digitalcommons.unl.edu%2Fchemistrypowers%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/chemistrypowers?utm_source=digitalcommons.unl.edu%2Fchemistrypowers%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/chemistrypowers/65?utm_source=digitalcommons.unl.edu%2Fchemistrypowers%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages


Statistical Removal of Background Signals from High-
throughput 1H NMR Line-broadening Ligand-affinity Screens

Bradley Worley, Nicholas J. Sisco, and Robert Powers*

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304

Abstract

NMR ligand-affinity screens are vital to drug discovery, are routinely used to screen fragment-

based libraries, and used to verify chemical leads from high-throughput assays and virtual screens. 

NMR ligand-affinity screens are also a highly informative first step towards identifying functional 

epitopes of unknown proteins, as well as elucidating the biochemical functions of protein-ligand 

interaction at their binding interfaces. While simple one-dimensional (1D) 1H NMR experiments 

are capable of indicating binding through a change in ligand line shape, they are plagued by broad, 

ill-defined background signals from protein 1H resonances. We present an uncomplicated method 

for subtraction of protein background in high-throughput ligand-based affinity screens, and show 

that its performance is maximized when phase-scatter correction (PSC) is applied prior to 

subtraction.
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INTRODUCTION

SAR by NMR (Shuker et al. 1996) spurred a revolution for the role of NMR in drug 

discovery. Like X-ray crystallography, NMR had been primarily used as a means to 

determine protein and protein-ligand structures as part of a structure-based drug discovery 

effort (Ferentz and Wagner 2000). NMR is now an important alternative to traditional high-

throughput assays (HTS) for identifying drug-like chemical leads (Pellecchia et al. 2002; 

Powers 2009). By combining NMR ligand-affinity screens with fragment-based libraries, a 

dramatic increase in chemical diversity is achieved (from 106 to 1063), while also 

minimizing resources, increasing hit-rates and improving the drug-like qualities of the 

resulting chemical leads (Baker 2013; Hajduk and Greer 2007). Consequently, NMR 

fragment-based screens have significantly benefited the pharmaceutical industry by leading 

to a number of clinical-stage compounds (Baker 2013).
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NMR ligand-affinity screening is also a powerful platform for protein functional annotation 

during the search for novel drug targets (Mercier et al. 2009; Powers et al. 2008). A 

significant percentage of the human proteome and the proteomes of other infectious 

organisms is comprised of functionally uncharacterized proteins (Muller et al. 2002). 

Undoubtedly hidden among this multitude of unannotated proteins are novel drug targets 

that may lead to new treatments or new means of overcoming mechanisms of drug 

resistance. Besides verifying that a functionally unannotated protein is druggable, NMR 

ligand affinity screening also identifies the functional epitope and the classes of ligands that 

bind the uncharacterized protein. This information may then be leveraged to infer a function 

through structural similarities with functionally annotated proteins (Powers et al. 2006; 

Powers et al. 2011).

NMR spectroscopy reports a multitude of time-averaged physical observables that carry 

information relating to the nature of interactions between small molecule ligands and protein 

targets (Lepre et al. 2004). A number of one-dimensional (1D) 1H NMR pulse sequences 

have been developed to probe these distinct features of binding, including differences in free 

and bound ligand diffusion and relaxation properties (Hajduk et al. 1997), and saturation 

transfers from water (Dalvit et al. 2000) and protein (Mayer and Meyer 2001) resonances. 

As part of an NMR high-throughput screen, these 1D 1H NMR pulse sequences present a 

number of unique challenges that include high false positive rates, low throughput, and high 

demand for protein samples (Harner et al. 2013; Lepre 2011). However, at suitably chosen 

concentrations of ligand and protein, a standard, unedited 1D 1H NMR experiment may be 

used to detect binding interactions through enhanced relaxation rates of ligand spins 

(Mercier et al. 2006; Mercier et al. 2009; Powers et al. 2008).

While it is possible to detect ligand binding using standard 1D 1H NMR, the resulting 

spectra are a combination of free and bound ligand and protein signals, a fact which makes 

them difficult to interpret. Broad, rolling baselines arising from slowly tumbling protein 

spins are particularly problematic during interpretation, as they often mask changes in ligand 

signal broadness and intensity. This masking effect due to protein baselines is exacerbated at 

protein-ligand concentration ratios nearing or exceeding unity, forcing the use of excess 

ligand during analysis and increasing the false negative rate during screening. To mitigate 

these issues, we present a statistical method, called Uncomplicated Statistical Spectral 

Remodeling (USSR), which removes protein baselines from high-throughput ligand-based 

screening datasets by leveraging inter-sample reproducibility of protein signals. In addition, 

we show that the use of phase-scatter correction (PSC) (Worley and Powers 2014b) greatly 

improves inter-sample protein baseline reproducibility and reduces the false-positive rate 

incurred by subsequent USSR-based analyses. Our reported combination of PSC and USSR 

enables a rapid analysis of standard 1D 1H NMR screening data, especially in difficult cases 

having a high protein-ligand concentration ratio.

MATERIALS AND METHODS

Sample preparation and NMR acquisition

A set of 117 samples containing free ligand mixtures and a set of 117 samples containing 

Bovine Serum Albumin (BSA) and ligand mixtures were prepared based on previously 
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published procedures (Mercier et al. 2009; Powers et al. 2008). In summary, each mixture 

contained no more than four ligands, each ligand had a concentration of 100 μM, and BSA 

had a concentration of 200 μM. All NMR samples were prepared to 600 μL total volume in a 

buffer containing 10 mM bis-tris-d19, 1 mM NaCl, 1 mM KCl, 1 mM MgCl2, and 10 μM 

TMSP in D2O at pH 7.0 (uncorrected). Samples were loaded into standard 5 mm NMR 

tubes for spectral acquisition.

All NMR experiments were collected on a Bruker Avance DRX 500 MHz spectrometer 

equipped with a 5 mm inverse triple-resonance (1H, 13C, 15N) cryoprobe with a z-axis 

gradient. A Bruker BACS-120 sample changer and ICON-NMR software were used to 

automate NMR data collection. Standard 1D 1H NMR spectra were collected for each 

sample using a SOGGY water suppression pulse sequence (Hwang and Shaka 1995; Nguyen 

et al. 2007). All experiments were performed at 20 °C with 256 scans, 8 dummy scans, a 

carrier frequency offset of 2352.1 Hz, a 5482.5 Hz spectral width, and a 1.0 s inter-scan 

delay. Free induction decays were collected with 4k complex data points resulting in a total 

acquisition time of 8 minutes per experiment.

NMR processing

Acquired NMR spectra were loaded and processed in batch inside the GNU Octave 3.6 

programming environment (Eaton et al. 2008) using functions available in the MVAPACK 

software package (Worley and Powers 2014a). Free induction decays were loaded in from 

Bruker DMX binary format and corrected for group delay errors by a circular shift. All 

decays were then zero filled twice, Fourier transformed and automatically phase corrected 

using a simplex optimization routine. Phase-scatter correction (Worley and Powers 2014b) 

was applied to a copy of the screen spectral data, and spectral remodeling was performed in 

parallel on the uncorrected and corrected datasets for the purposes of comparison.

Phase-scatter correction

The phase-scatter correction (PSC) algorithm is a spectral normalization method that 

includes zero-order and first-order phase correction terms in its objective function (Worley 

and Powers 2014b). As a normalization method, PSC scales each ‘target’ spectrum in a 

dataset to match a reference spectrum, which is usually the mean. Differences in relative 

phase between spectra, which confound the identification of ideal scaling values, are also 

corrected by PSC within a Levenberg-Marquardt nonlinear optimization of the following 

objective:

(1)

where sk and rk are the k-th data points of the K-element target and reference spectra, 

respectively. The PSC algorithm identifies an optimal scale factor (β) and phases (φ0, φ1) for 

each spectrum in the dataset, and returns the corrected data matrix after applying the 

identified scaling and phase correction to each spectrum.
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Statistical spectral remodeling

Our method of spectral remodeling (USSR) capitalizes on the reproducibility of the protein 

baseline and the low likelihood that ligand signals will dominate any given spectral data 

point across multiple samples. For each pair of free mixture (fi) and screen (mixture plus 

protein, pi) 1H NMR spectra, a difference spectrum (di) is computed using a simple point-

wise subtraction. The central tendency (μ) and dispersion (σ) of the difference spectra are 

then robustly estimated using the median and median absolute deviation, respectively. 

Figure 1 shows the statistical baseline computed by USSR from an analysis of ligand 

binding to BSA. Once a statistical baseline is established for a given dataset, each spectrum 

pi in the screen is remodeled to maximally remove interference from protein signals. Each 

spectral data point in pi is compared to μ ± σ using a Bonferroni-corrected Student’s t-test 

(Dunn 1961). The resulting p value provides a measure of how distinguishable the 

corresponding data point is from the statistical baseline. Based on a preselected level of 

significance (α), data points having low p values are retained (less the statistical baseline) in 

the remodeled spectrum (ri) and data points having high p values are modeled as Gaussian 

white noise. Figure 2 shows an example remodeled spectrum from the ligand binding 

analysis of BSA.

Statistical hit determination

For each peak in each remodeled spectrum from USSR, a KD was computed based on the 

intensity ratio between free and remodeled ligand signals. First, in the limit of fast exchange 

between free and bound ligand states relative to the NMR timescale, the fraction of bound 

ligand (fB) was computed:

(2)

where IF and IB are the intensities of free and remodeled (bound) ligand signals, and vF and 

vB are the estimated NMR line widths of the free and remodeled ligand signals, respectively 

(Shortridge et al. 2008). This fast-exchange assumption may be safely regarded as valid in 

most high-throughput 1D 1H NMR protein-ligand affinity screening experiments (Lepre et 

al. 2004), where the width and intensity of each ligand signal is a population-weighted sum 

of its values in the free and bound states. Without any assumptions about relative 

concentrations of ligand and protein, the fraction of bound ligand is related to total protein 

concentration [P]T, total ligand concentration [L]T and KD via the following equation 

(Shortridge et al. 2008):

(3)

Footnote, equation 3: The equation reported in the main text of Shortridge et al. 2008 

(equation 3) contains a typographical error. The correct equation (equation A8) may be 

found in the Appendix of the aforementioned work.
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The symbolic solution of the above equation for KD (Wolfram Research 2014) yields the 

following result:

(4)

which was then used to compute per-peak KD values for each remodeled spectrum ri. 

Finally, the per-peak KD values were used to compute sample mean and standard deviation 

KD values for each ligand. Hit detection was accomplished by comparing per-ligand mean 

and standard deviation KD values against a threshold via a Student’s t-test, where a resulting 

p value less than a predefined significant p value was reported as binding.

Analysis of dataset size

A small simulation study was performed to assess the quality of USSR statistical baseline 

estimates over a range of sample sizes (number of spectral pairs). For sizes from 2 to 116, 

the BSA dataset was randomly subsampled, without replacement, to produce a smaller 

dataset. For each resultant dataset, the statistical baseline was estimated, and its Pearson 

correlation to the true statistical baseline was computed and stored. Over all numbers of 

spectral pairs in the simulation, the median baseline correlations were computed, and are 

reported in Supplementary Figure S-1.

RESULTS

From the USSR analysis of ligand binding to BSA, 43 compounds were classified as hits 

from the library of 456 compounds. All classified hits were determined to bind BSA with at 

least 1.0 mM affinity at a statistical confidence level of 99%. A summary of the hits, along 

with their estimated KD and p values, is provided in Supplementary Table S-1. Comparison 

of results from both PSC-corrected and uncorrected USSR datasets reveals that the use of 

PSC normalization prior to USSR modeling greatly reduces the effective positive rate of 

statistical hit determination: 195 hits were identified from the PSC-uncorrected spectra. 

Closer examination of hits identified without PSC correction indicates that USSR failed to 

fully subtract the statistical baseline from the screen spectra (e.g. Figure S-2), resulting in 

residual baseline intensity passing into equation 2 during KD calculation and hit 

determination. In short, the use of PSC normalization prior to USSR enables more effective 

baseline subtraction by decreasing both dilution- and phase-related protein baseline intensity 

variation in collected 1H NMR spectra (Figure 3). Baseline estimates obtained by collecting 

a spectrum of pure protein will suffer from the same phase-induced variation, which would 

also increase the false positive rate during hit determination. Our introduced combination of 

PSC and USSR provides a more reliable means of baseline identification, without the 

collection of a free protein spectrum.

Our cursory analysis of the robustness of the USSR statistical baseline during random 

subsampling of the BSA dataset indicated that the PSC/USSR methodology can reliably 

operate at very low dataset sizes (i.e. 10–20 spectral pairs). Pearson correlations between 

true and subsampled baselines did not appreciably decrease even after harsh subsampling 

(Supplementary Figure S-1), and correlations computed from PSC-normalized data 
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maintained significantly higher values than those from non-normalized data. While it would 

be possible to obtain a statistical baseline from fewer than ten spectral pairs, this is not 

recommended, as it will decrease the effectiveness of the Bonferroni-corrected t-test that 

USSR performs during remodeling. Therefore, as a general rule of thumb, PSC/USSR 

analyses may be performed on high-throughput screening datasets having as few as ten 

spectral pairs, and higher sample sizes only serve to further increase the reliability of 

remodeled results.

DISCUSSION AND CONCLUSIONS

While the saturation transfer difference (STD) NMR experiment (Mayer and Meyer 2001) is 

a popular choice for ligand-based NMR affinity screens, a 1D 1H NMR line-broadening 

experiment is often a more efficient alternative. A standard 1D 1H NMR spectrum requires 

only a few seconds to acquire, making it an ideal choice for high-throughput screening. STD 

experiments require significantly longer acquisition times (upwards of hours) in order to 

acquire difference spectra with sufficient signal-to-noise to reduce false negatives. A 

particular strength of STD is the minimal amount of protein required per experiment, 

making it practical to screen a reasonably large chemical library (upwards of thousands of 

compounds) with only a few milligrams of protein. Through a judicious choice of protein 

and ligand concentrations coupled with the use of cryoprobes and high magnetic fields, it is 

also possible to minimize protein requirements in 1D 1H line-broadening screens. While 

STD experiments still tend to require less protein than line-broadening experiments, the 

higher false positive rate of STD screening easily negates any advantages of minimal protein 

usage. This high false positive rate arises due to the tendency of STD experiments to 

emphasize weak binding affinities commonly encountered during aggregation and 

nonspecific binding (Harner et al. 2013; Lepre 2011).

NMR line-broadening experiments take advantage of the molecular-weight dependence of 

T2 relaxation and the resultant measurable difference in line-widths between proteins and 

the compounds in a screening library (Hajduk et al. 1997). Upon binding a protein target, 

the 1H NMR resonances of a compound will broaden significantly or even disappear. In 

principal, this spectral broadening is easily observable and binding is readily identified. In 

practice, the background signals from the protein can confound the data analysis. This 

background interference increases with the size and concentration of the protein and leads to 

an increase in false negative rates. Apparent line-width differences between free and bound 

ligands also increase with protein size and concentration, making the optimal experimental 

conditions for NMR line-broadening screens exactly the same conditions which confound 

manual interpretation. Clearly, the ability to accurately remove the protein background from 

an NMR line-broadening experiment will improve both the utility and realability of the 

technique, especially at relatively high protein-ligand concentration ratios where binding is 

more apparent.

By removing interfering protein baseline signals, our Uncomplicated Statistical Spectral 

Remodeling (USSR) method for analyzing 1D 1H NMR line-broadening spectra for high-

throughput screening provides a straightforward means to visually or computationally 

analyze screening results. In fact, the outcome of applying our USSR method to an 
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extremely challenging and atypical test case is rather dramatic: our NMR line-broadening 

screen using BSA and a chemical library of 456 compounds identified 43 binders, despite 

the BSA background signals completely obscuring the ligand spectra. An example screening 

result of tolazamide, dimethyl 4-methoxyisophthalate, 1,7-dimethylxanthine and oxolinic 

acid against BSA is illustrated in Figure 2. Removal of the interfering protein statistical 

baseline from the screen spectrum (Figure 2B) yielded a high-quality pseudo-spectrum of 

the ligand mixture in the presence of BSA. Overlaying the remodeled NMR spectrum with 

the free ligand mixture spectrum indicated that the two spectra were essentially identical for 

the non-binding ligands (Figure 2A). Only dimethyl 4-methoxyisophthalate, which binds 

BSA, exhibited any difference after remodeling. The USSR method of baseline estimation 

and subtraction is expected to perform equally well under any conditions where a common, 

highly reproducible spectral feature exists within a dataset. Our application of PSC/USSR to 

high-throughput protein-ligand affinity screening is but one example of its potential uses.

However, reliable identification of the protein baseline from screening data requires highly 

reproducible sample preparation, data collection and processing. The last of these 

requirements is met by the use of phase-scatter correction (PSC) (Worley and Powers 

2014b) prior to remodeling, which brings protein baselines from all spectra into closer 

agreement with each other and minimizes the number of false hits identified during analysis. 

It is important to note that PSC is only an effective pre-treatment for USSR when protein 

baseline signals are of comparable intensity to ligand signals. PSC normalization is designed 

to maximize statistical agreements between spectra by phasing and normalization correction, 

and its use of the L2 norm as a criterion for ‘agreement’ implies that higher-intensity features 

will be preferentially corrected. Thus, PSC achieves the best results prior to USSR when 

protein signals are a major spectral component, as is the case when protein-ligand 

concentration ratios are near or greater than unity. In effect, the combined use of PSC and 

USSR expands the range of protein-ligand concentration ratios which may be probed by 1H 

line-broadening experiments for the purposes of high-throughput screening.

Finally, it cannot be under-emphasized that the single-point KD computations employed by 

USSR during statistical hit determination are only order-of-magnitude estimates of the true 

dissociation rates, and can carry significant systematic and random errors. In particular, the 

fraction of bound ligand – and by extension, the dissociation constant – depends exquisitely 

on the estimated free and bound ligand linewidths, vF and vB. Thus, any imprecision in the 

linewidth estimates will propagate into a systematic bias in the final dissociation constants. 

If required, verification of initial hits may be achieved to higher accuracy via multiple-point 

estimation of the KD through nonlinear least squares (Shortridge et al. 2008).

An implementation of the USSR algorithm is available in open-source GNU Octave code as 

a part of the MVAPACK toolbox, downloadable at http://bionmr.unl.edu/mvapack.php.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Worley et al. Page 7

J Biomol NMR. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bionmr.unl.edu/mvapack.php


Acknowledgments

This work was supported, in part, by funds from the National Institutes of Health (grant number R21AI081154). 
The research was performed in facilities renovated with support from the National Institutes of Health (grant 
number RR015468-01).

References

Baker M. Fragment-based lead discovery grows up. Nat Rev Drug Discovery. 2013; 12:5–7.10.1038/
nrd3926 [PubMed: 23274457] 

Dalvit C, Pevarello P, Tato M, Veronesi M, Vulpetti A, Sundstrom M. Identification of compounds 
with binding affinity to proteins via magnetization transfer from bulk water. J Biomol Nmr. 2000; 
18:65–68.10.1023/A:1008354229396 [PubMed: 11061229] 

Dunn OJ. Multiple Comparisons among Means. J Am Stat Assoc. 1961; 56:52.10.2307/2282330

Eaton, JW.; Bateman, D.; Hauberg, S. GNU Octave Manual Version 3. Network Theory Limited; 
2008. 

Ferentz AE, Wagner G. NMR spectroscopy: a multifaceted approach to macromolecular structure. Q 
Rev Biophys. 2000; 33:29–65.10.1017/s0033583500003589 [PubMed: 11075388] 

Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. 
Nat Rev Drug Discovery. 2007; 6:211–219.10.1038/nrd2220 [PubMed: 17290284] 

Hajduk PJ, Olejniczak ET, Fesik SW. One-dimensional relaxation- and diffusion-edited NMR methods 
for screening compounds that bind to macromolecules. J Am Chem Soc. 1997; 119:12257–
12261.10.1021/Ja9715962

Harner MJ, Frank AO, Fesik SW. Fragment-based drug discovery using NMR spectroscopy. J Biomol 
NMR. 2013; 56:65–75.10.1007/s10858-013-9740-z [PubMed: 23686385] 

Hwang TL, Shaka AJ. Water Suppression That Works - Excitation Sculpting Using Arbitrary Wave-
Forms and Pulsed-Field Gradients. J Magn Reson Ser A. 1995; 112:275–279.10.1006/jmra.
1995.1047

Lepre CA. Practical aspects of NMR-based fragment screening. Methods Enzymol. 2011; 493:219–
239.10.1016/b978-0-12-381274-2.00009-1 [PubMed: 21371593] 

Lepre CA, Moore JM, Peng JW. Theory and applications of NMR-based screening in pharmaceutical 
research. Chem Rev. 2004; 104:3641–3675.10.1021/Cr030409h [PubMed: 15303832] 

Mayer M, Meyer B. Group epitope mapping by saturation transfer difference NMR to identify 
segments of a ligand in direct contact with a protein receptor. J Am Chem Soc. 2001; 123:6108–
6117.10.1021/Ja0100120 [PubMed: 11414845] 

Mercier KA, Baran M, Ramanathan V, Revesz P, Xiao R, Montelione GT, Powers R. FAST-NMR: 
Functional annotation screening technology using NMR spectroscopy. J Am Chem Soc. 2006; 
128:15292–15299.10.1021/Ja0651759 [PubMed: 17117882] 

Mercier KA, Shortridge MD, Powers R. A Multi-Step NMR Screen for the Identification and 
Evaluation of Chemical Leads for Drug Discovery. Comb Chem High T Scr. 2009; 12:285–295.

Muller A, MacCallum RM, Sternberg MJE. Structural characterization of the human proteome. 
Genome Res. 2002; 12:1625–1641.10.1101/gr.221202 [PubMed: 12421749] 

Nguyen BD, Meng X, Donovan KJ, Shaka AJ. SOGGY: Solvent-optimized double gradient 
spectroscopy for water suppression. A comparison with some existing techniques. J Magn Reson. 
2007; 184:263–274.10.1016/j.jmr.2006.10.014 [PubMed: 17126049] 

Pellecchia M, Sem DS, Wuthrich K. NMR in drug discovery. Nat Rev Drug Discovery. 2002; 1:211–
219.10.1038/nrd748 [PubMed: 12120505] 

Powers R. Advances in nuclear magnetic resonance for drug discovery. Expert Opin Drug Discovery. 
2009; 4:1077–1098.

Powers R, Copeland JC, Germer K, Mercier KA, Ramanathan V, Revesz P. Comparison of Protein 
Active Site Structures for Functional Annotation of Proteins and Drug Design Proteins: Struct 
Funct. Bioinformatics. 2006; 65:124–135.

Worley et al. Page 8

J Biomol NMR. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Powers R, Copeland JC, Stark JL, Caprez A, Guru A, Swanson D. Searching the protein structure 
database for ligand-binding site similarities using CPASS v.2. BMC Res Notes. 2011; 
410.1186/1756-0500-4-17

Powers R, Mercier KA, Copeland JC. The application of FAST-NMR for the identification of novel 
drug discovery targets. Drug Discov Today. 2008; 13:172–179.10.1016/j.drudis.2007.11.001 
[PubMed: 18275915] 

Shortridge MD, Hage DS, Harbison GS, Powers R. Estimating Protein-Ligand Binding Affinity Using 
High-Throughput Screening by NMR. J Comb Chem. 2008; 10:948–958.10.1021/Cc800122m 
[PubMed: 18831571] 

Shuker SB, Hajduk PJ, Meadows RP, Fesik SW. Discovering high-affinity ligands for proteins: SAR 
by NMR. Science (Washington, D C). 1996; 274:1531–1534.

Wolfram Research I. Mathematica, 10.0 edn. Wolfram Research, Inc; Champaign, IL: 2014. 

Worley B, Powers R. MVAPACK: A Complete Data Handling Package for NMR Metabolomics. Acs 
Chem Biol. 2014a; 9:1138–1144.10.1021/Cb4008937 [PubMed: 24576144] 

Worley B, Powers R. Simultaneous phase and scatter correction for NMR datasets. Chemom Intell Lab 
Syst. 2014b; 131:1–6.10.1016/j.chemolab.2013.11.005

Worley et al. Page 9

J Biomol NMR. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Statistical baseline (mean plus or minus four standard deviations) computed from the NMR 

ligand-based screen against BSA. The mean baseline is traced in deep red, while the 

baseline is filled in light red underneath.
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Figure 2. 
An example spectral remodeling result of tolazamide, dimethyl 4-methoxyisophthalate, 1,7-

dimethylxanthine and oxolinic acid in the presence of BSA, showing (A) the free ligand 

spectrum (black) and the remodeled spectrum (red) resulting from removing the statistical 

baseline (red) from the screen spectrum (black) in (B). The remodeled pseudo-spectrum 

readily indicates that several peaks from dimethyl 4-methoxyisophthalate have broadened 

into the baseline due to interaction with BSA.
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Figure 3. 
Relative standard deviations (RSDs) of the statistical baselines computed before (red) and 

after (black) phase-scatter correction, which substantially decreases inter-sample variability 

of the protein baseline signals.
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