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volesti: Volume Approximation and
Sampling for Convex Polytopes in R
by Apostolos Chalkis and Vissarion Fisikopoulos

Abstract Sampling from high-dimensional distributions and volume approximation of convex bodies
are fundamental operations that appear in optimization, finance, engineering, artificial intelligence,
and machine learning. In this paper, we present volesti, an R package that provides efficient, scalable
algorithms for volume estimation, uniform, and Gaussian sampling from convex polytopes. volesti
scales to hundreds of dimensions, handles efficiently three different types of polyhedra and pro-
vides non existing sampling routines to R. We demonstrate the power of volesti by solving several
challenging problems using the R language.

Introduction

High-dimensional sampling from multivariate distributions with Markov Chain Monte Carlo (MCMC)
algorithms is a fundamental problem with many applications in science and engineering (Iyengar,
1988; Somerville, 1998; Genz and Bretz, 2009; Schellenberger and Palsson, 2009; Venzke et al., 2021).
In particular, multivariate integration over a convex set and volume approximation of such sets
—a special case of integration— have accumulated a broad amount of effort over the last decades.
Nevertheless, those problems are computationally hard for general dimensions (Dyer and Frieze, 1988).
MCMC algorithms have made remarkable progress efficiently solving the problems of sampling and
volume estimation of convex bodies while enjoying great theoretical guarantees (Chen et al., 2018; Lee
and Vempala, 2018; Mangoubi and Vishnoi, 2019). However, theoretical algorithms cannot be applied
efficiently to real-life computations. For example, the asymptotic analysis by Lovász and Vempala
(2006) hides some large constants in the complexity, and in Lee and Vempala (2018), the step of the
random walk used for sampling is too small to be an efficient choice in practice. Therefore, practical
algorithms have been designed by relaxing the theoretical guarantees and applying new algorithmic
and statistical techniques to perform efficiently while at the same time meeting the requirements for
high accuracy results (Emiris and Fisikopoulos, 2014; Cousins and Vempala, 2016; Chalkis et al., 2019).

In this paper, we present volesti (Fisikopoulos et al., 2020), an R package containing a variety
of high-dimensional MCMC methods for sampling from multivariate distributions restricted to a
convex polytope and randomized algorithms for volume estimation of convex polytopes. In partic-
ular, it includes efficient implementations of three practical volume algorithms—Sequence of Balls
(SoB) (Emiris and Fisikopoulos, 2014), Cooling Gaussians (CG) (Cousins and Vempala, 2016), and
Cooling convex Bodies (CB) (Chalkis et al., 2019). In addition to volume estimation, volesti provides
efficient implementations for Random-Directions and Coordinate-Directions Hit and Run (RDHR and
CDHR) (Smith, 1984), Ball Walk (BaW) (Hastings, 1970), Billiard Walk (BiW) (Polyak and Gryazina,
2014). The first three can be used to sample from multivariate uniform or spherical Gaussian distribu-
tions (centered at any point), while BiW can be employed, by definition, only for uniform sampling.
On the whole, volesti is the first R package that:

(a) performs high-dimensional volume estimation,

(b) efficiently handles three different types of polyhedra in high dimensions, namely H-polytopes,
V-polytopes, and Z-polytopes,

(c) provides—previously absent from R—MCMC sampling algorithms for uniform and truncated
Gaussian distributions, namely BaW, CDHR, and BiW,

(d) solves some challenging problems in finance, engineering, and applied mathematics.

On top of volesti presentation, we illustrate the usage of volesti in the study of convergence
of various random walks (e.g., Figure 3) and accuracy of volume estimation methods. Regarding
applications, in the last section, we illustrate how one can (a) exploit volesti to detect shock events
in stock markets following the results by Calès et al. (2018), (b) evaluate zonotope approximation in
engineering (Kopetzki et al., 2017), and (c) approximate the number of linear extensions of a partially
ordered set, which is useful in various applications in artificial intelligence and machine learning.

To improve the presentation of the current paper, detailed comparisons and benchmarking of R
packages–including volesti–for solving the problems of MCMC sampling, volume computation, and
numerical integration are presented in a separate blog post (Chalkis and Fisikopoulos, 2021).
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Figure 1: Examples of three different polytope representations. From left to right: an H-polytope, a
V-polytope, and a Z-polytope (a sum of four segments).

Related R software and applications

Considering MCMC methods to sample from multivariate distributions are divided into two main
categories: truncated to a convex body and untruncated distributions. For the first category—which
clearly is the main focus of this paper—an important case is the truncated Gaussian distribution which
arises in several applications in statistics. Bolin and Lindgren (2015) sample from truncated Gaussian
distributions in a novel importance sampling method to study Markov processes that exceed a certain
level. Wadsworth and Tawn (2014) use sampling from a specific truncated Gaussian distribution
to develop a novel method for likelihood inference, while Huser and Davison (2013) sample from
the same distribution for likelihood estimation for max-stable processes. In curve prediction, they
exploit Gaussian sampling to compute simultaneous confidence bands to forecast a full curve from
explanatory variables (Azaïs et al., 2010). Grün and Hornik (2012) study the posterior distribution
for Bayesian inference on mixed regression models to represent human immunodeficiency virus
ribonucleic acid levels, a Gaussian restricted to a convex polytope. In Albert and Chib (1993), the
probit regression model for binary outcomes have an underlying normal regression structure on latent
continuous data; sampling from the posterior distribution of the parameters involves sampling from a
truncated Gaussian distribution.

Another important special case is the truncated uniform distribution. In systems biology the
flux space of a metabolic network is represented by a convex polytope (Haraldsdòttir et al., 2017);
uniform sampling from the interior of that polytope could lead to important biological insights. In
computational finance, the set of all possible portfolios in a stock market is in general a convex
polytope. Volume computation and uniform sampling from that set is useful for crises detection (Calès
et al., 2018) and efficient portfolio allocation and analysis (Pouchkarev et al., 2004; Hallerbach et al.,
2002).

Considering R packages for the truncated case, there is tmg (Pakman, 2015) implementing exact
Hamiltonian Monte Carlo (HMC) with boundary reflections as well as multinomineq (Heck, 2019),
lineqGPR (Lopez, 2019), restrictedMVN (Taylor and Benjamini, 2016), tmvmixnorm (Ma et al., 2020)
implementing variations of the Gibbs sampler. To our knowledge, the only two R packages for uniform
sampling is hitandrun (van Valkenhoef and Tervonen, 2019) and limSolve (den Meersche K. et al.,
2009), which exposes the R function xsample() (den Meersche et al., 2009). For the untruncated case,
packages HybridMC (Morey, 2009), rhmc (Sartório, 2018), mcmc (Geyer and Johnson, 2020), and
MHadaptive (Chivers, 2012) provide implementations for HMC and Metropolis Hastings algorithms,
respectively. For volume computation, the only existing package, geometry (Roussel et al., 2019),
computes the volume of the convex hull of a set of points and is based on the C++ library, qhull (Barber
et al., 1996).

Algorithms and polytopes

Convex polytopes

Convex polytopes are a special case of convex bodies with special interest in many scientific fields and
applications. For example, in optimization, the feasible region of a linear program is a polytope, and
in finance, the set of portfolios is usually expressed by a polytope (i.e., the simplex). More formally, an
H-polytope is defined as

P := {x | Ax ≤ b} ⊆ Rd,

where A ∈ Rm×d and b ∈ Rm, and we say that P is given in H-representation. Each row aT
i ∈ Rd of

matrix A corresponds to a normal vector that defines a halfspace aT
i x ≤ bi, i = [m]. The intersection

of those halfspaces defines the polytope P, and the hyperplanes aT
i x = bi, i = [m] are called facets of

P. A V-polytope is given by a matrix V ∈ Rd×n, which contains n points column-wise, and we say
that P is given in V-representation. The points of P that cannot be written as convex combinations of
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Figure 2: Examples of random walks. From left to right: RDHR, CDHR, BaW, BiW; p is the point at
current step and q the new point computed; ℓ is the line computed by RDHR and CDHR; B is the ball
computed by BaW. Dotted lines depict previous steps.

other points of P are called vertices. The polytope P is defined as the convex hull of those vertices, i.e.,
the smallest convex set that contains them. Equivalently, a V-polytope can be seen as the linear map of
the canonical simplex ∆n−1 := {x ∈ Rn | xi ≥ 0, ∑n

i=1 xi = 1} according to matrix V, i.e.,

P := {x ∈ Rd | ∃y ∈ ∆n−1 : x = Vy}

A Z-polytope (or zonotope) is given by a matrix G ∈ Rd×k, which contains k segments column-wise,
which are called generators. In this case, P is defined as the Minkowski sum of those segments and we
say that it is given in Z-representation. We call order of a Z-polytope the ratio between the number of
segments over the dimension. Equivalently, P can be expressed as the linear map of the hypercube
[−1, 1]k with matrix G, i.e.

P := {x ∈ Rd | ∃y ∈ [−1, 1]k : x = Gy}.

Thus, a Z-polytope is a centrally symmetric convex body, as a linear map of an other centrally
symmetric convex body. Examples of an H-polytope, a V-polytope and a Z-polytope in two dimensions
are illustrated in Figure 1. For an excellent introduction to polytope theory, we recommend the book
of Ziegler (1995).

MCMC sampling and geometric random walks

We more formally define here the four geometric random walks implemented in volesti, namely, Hit
and Run (two variations, RDHR, and CDHR), Ball walk (Baw), and Billiard walk (BiW). They are
illustrated in Figure 2 for two dimensions.

In general, if f : Rn → R+ is a non-negative integrable function, then it defines a measure π f on
any measurable subset A of Rd,

π f (A) =

∫
A f (x)dx∫

Rd f (x)dx

Let ℓ be a line in Rd and let πℓ, f be the restriction of π to ℓ,

πℓ, f (P) =

∫
p+tu∈P f (p + tu)dt∫

ℓ f (x)dx
,

where p is a point on ℓ and u a unit vector parallel to ℓ.

Algorithm 1 describes the general Hit and Run procedure. When the line ℓ in line (1.) of the
pseudocode is chosen uniformly at random from all possible lines passing through p, then the walk is
called Random-Directions Hit and Run (Smith, 1984). To pick a random direction through point p ∈ Rd,

we could sample d numbers g1, . . . , gd from N (0, 1), and then the vector u = (g1, . . . , gd)/
√

∑ g2
i is

uniformly distributed on the surface of the d-dimensional unit ball. A special case is called Coordinate-
Directions Hit and Run (Smith, 1984), where we pick ℓ uniformly at random from the set of d lines
that passing through p and are parallel to the coordinate axes.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859
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Algorithm 1: Hit_and_run(P, p, f )

Input :Polytope P ⊂ Rd, point p ∈ P, f : Rd → R+

Output :A point q ∈ P

1. Pick a line ℓ through p.

2. return a random point on the chord ℓ ∩ P chosen from the distribution πℓ, f .

The Ball walk (Algorithm 2) needs, additionally to Hit and Run, a radius δ as input. In particular,
Ball walk is a special case of Metropolis Hastings (Hastings, 1970) when the target distribution is
truncated. For both Hit and Run and Ball walk π f , is the stationary distribution of the random walk.

If f (x) = e−||x−x0||2/2σ2
, then the target distribution is the multidimensional spherical Gaussian with

variance σ2 and its mode at x0. When f is the indicator function of P, then the target distribution is the
uniform distribution.

Algorithm 2: Ball_walk(P, p, δ, f )

Input :Polytope P ⊂ Rd, point p ∈ P, radius δ, f Rd → R+

Output :A point q ∈ P

1. Pick a uniform random point x from the ball of radius δ centered at p

2. return x with probability min
{

1, f (x)
f (p)

}
; return p with the remaining probability.

Billiard walk is a random walk for sampling from the uniform distribution (Polyak and Gryazina,
2014). It tries to emulate the movement of a gas particle during the physical phenomena of filling
uniformly a vessel. Algorithm 3 implements Billiard walk, where ⟨·, ·⟩ is the inner product between
two vectors, || · || is the ℓ2 norm, and | · | is the length of a segment.

Algorithm 3: Billiard_walk(P, p, τ, R)

Input :Polytope P ⊂ Rd, current point of the random walk p ∈ P, length of trajectory
parameter τ ∈ R+, upper bound on the number of reflections R ∈N

Output :A point q ∈ P

1. Set the length of the trajectory L← −τ ln η, η ∼ U (0, 1);
Set the number of reflections n← 0 and p0 ← p;
Pick a uniformly distributed direction on the unit sphere, v;

2. Update n← n + 1; If n > R return p0;

3. Set ℓ← {p + tv, 0 ≤ t ≤ L};
4. If ∂P ∩ ℓ = ∅ return p + Lv;

5. Update p← ∂P ∩ ℓ; Let s be the inner normal vector of the tangent plane on p, s.t. ||s|| = 1;
Update L← L− |P ∩ ℓ|, v← v− 2⟨v, s⟩s; goto 2;

Every random walk starts from a point in the convex body and perform a number of steps called
walk length. The larger the walk length is, the less correlated the final with the starting point will be.
The number of steps to get an uncorrelated point, that is, a point approximately drawn from π f is
called mixing time. The number of operations performed to generate a point is called cost per step.
Hence, the total cost to generate a random point is the mixing time multiplied by the cost per step.

random walk mixing time cost/step cost/step
H-polytope V- & Z-polytope

RDHR (Lovász and Vempala, 2006) O∗(d3) O(md) 2 LPs
CDHR (Laddha and Vempala, 2020) O∗(d10) O(m) 2 LPs
BaW (Lee and Vempala, 2017) O∗(d2.5) O(md) 1 LP
BiW (Polyak and Gryazina, 2014) ? O((d + R)m) R LPs

Table 1: Overview of the random walks implemented in volesti. LP for linear program; R for the
number of reflections per point in BiW; D for the diameter of the polytope.

Table 1 displays known complexities for mixing time and cost per step. For the mixing time of
RDHR, we assume that P is well rounded, i.e., Bd ⊆ P ⊆ C

√
dBd, where Bd is the unit ball and C

a constant. In general, if rBd ⊆ P ⊆ RBd then RDHR mixing time is O∗(d2(R/r)2). For the mixing
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time of Ball walk in Table 1, we assume that P is in isotropic position and the radius of the ball is
δ = Θ(1/

√
d) (Lee and Vempala, 2017). There are no theoretical bounds on mixing time for CDHR

and BiW. Polyak and Gryazina (2014) experimentally shows that BiW converges faster than RDHR
when τ ≈ diam(P), i.e., the diameter of P. CDHR is the main paradigm for sampling in practice from
H-polytopes, e.g., in volume computation (Emiris and Fisikopoulos, 2014) and biology (Haraldsdòttir
et al., 2017). The main reason behind this is the small cost per step and the same convergence in
practice as RDHR (Emiris and Fisikopoulos, 2014). For V- and Z-polytopes, the cost per step of BiW is
comparable with that of CDHR. Moreover, it converges fast to the uniform distribution (Chalkis et al.,
2019). The fact that all above walks are implemented in volesti enable us to empirically evaluate their
mixing time using R (e.g., Figure 3).

Volume estimation

As mentioned before, volume computation is a hard problem, so given a polytope P, we have to
employ randomized algorithms to approximate vol(P) within some target relative error ϵ and high
probability. The keys to the success of those algorithms are the Multiphase Monte Carlo (MMC)
technique and sampling from multivariate distributions with geometric random walks.

In particular, we define a sequence of functions { f0, . . . , fq}, fi : Rd → R. Then, vol(P) is given
by the following telescopic product:

vol(P) =
∫

P
dx =

∫
P

fq(x)dx

∫
P fq−1(x)dx∫

P fq(x)dx
· · ·

∫
P dx∫

P f0(x)dx
(1)

Then, we need to:

• Fix the sequence such that q is as small as possible.

• Select fi such that each integral ratio can be efficiently estimated.

• Estimate
∫

P fq(x)dx.

For a long time researchers, e.g., Lovász et al. (1997), set fi to be indicator functions of concentric
balls intersecting P. It follows that

∫
P fi(x)dx = vol(Bi ∩ P), and the sequence of convex bodies

P = P1 ⊇ · · · ⊇ Pq, Pi = Bi ∩ P forms a telescopic product of ratios of volumes, while for vol(Pq)
there is a closed formula. Assuming rBd ⊂ P ⊂ RBd, then q = O(d lg R/r). The trick now is that
we do not have to compute the exact value of each ratio ri = vol(Pi)/vol(Pi+1), but we can use
sampling-rejection to estimate it within some target relative error ϵi. If ri is bounded, then O(1/ϵ2

i )
uniformly distributed points in Pi+1 suffices. Another crucial aspect is the sandwiching ratio R/r of P
which has to be as small as possible. This was tackled by a rounding algorithm, that is bringing P to
nearly isotropic position (Lovász et al., 1997).

The SoB algorithm follows this paradigm and deterministically defines the sequence of Pi such that
0.5 ≤ vol(Pi)/vol(Pi+1) ≤ 1. In the CG algorithm, each fi is a spherical multidimensional Gaussian
distribution, and the algorithm uses an annealing schedule (Lovász and Vempala, 2006) to fix the
sequence of those Gaussians. The SoB algorithm uses a similar annealing schedule but to fix a sequence
of convex bodies Pi. As far as performance is concerned, the CB algorithm is the most efficient choice
for H-polytopes in less than 200 dimensions and for V- and Z-polytopes in any dimension. For the rest
of the cases, the user should choose CG algorithm.

Package

The package volesti combines the efficiency of C++ and the popularity and usability of R. The package
uses the eigen library (Guennebaud et al., 2010) for linear algebra, lpsolve library (Berkelaar et al., 2004)
for solving linear programs, and boost random library (Maurer and Watanabe, 2017) (part of Boost C++
libraries) for random numbers and distributions. All the code development is performed on github
platform. The package is available in Comprehensive R Archive Network (CRAN) and is regularly
updated with new features and bug fixes. We employ continuous integration to test the package
on various systems and deploy environments. There is detailed documentation of all the exposed
R classes and functions publicly available. We maintain a contribution tutorial to help users and
researchers who want to contribute to the development or propose a bug-fix. The package is shipped
under the LGPL-3 license to be open to all the scientific communities. We use Rcpp (Eddelbuettel et al.,
2020b) to interface C++ with R. In particular, we create one Rcpp function for each procedure (such as
sampling, volume estimation etc.) and we export it as an R function.
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In the following sections, we demonstrate the use of volesti. The R scripts in the following sections
use only standard R functions, volesti. In a single script in Section 2.4, we use Rfast to compute the
assets’ compound return in a stock market.

Polytope classes and generators

The package volesti comes with three classes to handle different representations of polytopes. Table 2
demonstrates the exposed R classes. The names of the classes are the names of polytope representations
as defined in the previous section. Each polytope class has a few variable members that describe a
specific polytope, demonstrated in Table 2. The matrices and the vectors in Table 2 correspond to those
in the polytope definitions. The integer variable type implies the representation: 1 is for H-polytopes,
2 for V-polytopes, 3 for Z-polytopes. The numerical variable volume corresponds to the volume of
the polytopes if it is known. volesti provides standard and random polytope generators. The first
produce well-known polytopes such as cubes, cross polytopes, and simplices and assign the value
of the exact volume to volume variable. The second are random generators using various probability
distributions and methods to produce a variety of different random polytopes; notably the generated
polytopes have unknown volume.

Class Constructor Variable members

"Hpolytope" Hpolytope(A,b) A ∈ Rm×d, b ∈ Rm, integer type, numerical volume
"Vpolytope" Vpolytope(V) V ∈ Rn×d, integer type, numerical volume
"Zonotope" Zonotope(G) G ∈ Rk×d, integer type, numerical volume

Table 2: Overview of the polytopes’ classes in volesti.

Uniform sampling from polytopes

A core feature of volesti is approximate sampling from convex bodies with uniform or spherical
Gaussian target distribution using the four geometric random walks defined above.

The following R script samples 1000 points from the 100-dimensional hypercube [−1, 1]100 defined
as P and stores them in a list.

R> d = 100
R> P = gen_cube(d, 'H')

R> samples = sample_points(P, random_walk = list(
"walk" = "RDHR", "burn-in"=1000, "walk_length" = 5),
n = 1000)

We use the Random Directions Hit-and-Run (RDHR) walk. Other choices are: Coordinate Direc-
tions Hit-and-Run (CDHR), Ball Walk (BaW), and Billiard Walk (BiW). Setting the parameter burn-in
to 1000 means that volesti burns the first 1000 points RDHR generates; setting walk_length to 5 means
that we keep in the list, one every five generated points. The default choice for the target distribution
is the uniform distribution.

To evaluate the efficiency of volesti sampling routines, one could measure the run-time and
estimate the effective sample size (Geyer, 2011) per second. To estimate the effective sample size in
R, a standard choice is the package coda (Plummer et al., 2020). In Chalkis and Fisikopoulos (2021),
benchmarks show that volesti can be up to ∼ 2 500 times faster than hitandrun for uniform sampling
from a polytope.

Moreover, using volesti and R, we can empirically study the mixing time of the geometric random
walks implemented in volesti. To this end, we uniformly sample from a random rotation of the
200-dimensional hypercube [−1, 1]200. First, we generate the hypercube and use rotate_polytope()
that returns the rotated polytope and the matrix of the linear transformation.

R> d = 200
R> num_of_points = 1000
R> P = gen_cube(d, 'H')
R> retList = rotate_polytope(P, rotation = list("seed" = 5))
R> T = retList$T
R> P = retList$P

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859
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Figure 3: Uniform sampling from a random rotation of the hypercube [−1, 1]200. We map the sample
back to [−1, 1]200, and then we project them on R3 by keeping the first three coordinates. Each row
corresponds to a different walk: BaW, CDHR, RDHR, BiW. Each column to a different walk length: {1,
50, 100, 150, 200}. That is, the sub-figure in the third row and the forth column corresponds to RDHR
with 150 walk length.

Then, we use sample_points() to sample from the rotated cube with various walk lengths to test
the practical mixing of the random walk.

R> for (i in c(1, seq(from = 50, to = 200, by = 50))){
points1 = t(T) %*% sample_points(P, n = num_of_points, random_walk = list(

"walk" = "BaW", "walk_length" = i, "seed" = 5))
points2 = t(T) %*% sample_points(P, n = num_of_points, random_walk = list(

"walk" = "CDHR", "walk_length" = i, "seed" = 5))
points3 = t(T) %*% sample_points(P, n = num_of_points, random_walk = list(

"walk" = "RDHR", "walk_length" = i, "seed" = 5))
points4 = t(T) %*% sample_points(P, n = num_of_points, random_walk = list(

"walk" = "BiW", "walk_length" = i, "seed" = 5))
}

Finally, we map the points back to [−1, 1]200 using the inverse transformation, and then we
project all the sample points on R3, or equivalently on the 3D cube [−1, 1]3, by keeping the first three
coordinates. We plot the results in Figure 3.

Note that, in general, perfect uniform sampling in the rotated polytope would result to perfect
uniformly distributed points in the 3D cube [−1, 1]3. Hence, Figure 3 shows an advantage of BiW in
mixing time for this scenario compared to the other walks—it mixes relatively well even with one
step (i.e. walk length). Notice also that the mixing of both CDHR and RDHR seem similar while it is
slightly better than the mixing of BaW.

Gaussian sampling from polytopes

In many Bayesian models, the posterior distribution is a multivariate Gaussian distribution restricted
to a specific domain. We illustrate the usage of volesti for the case of the truncation being the canonical
simplex ∆n = {x ∈ Rn | xi ≥ 0, ∑i xi = 1}, which is of special interest. This situation typically occurs
whenever the unknown parameters can be interpreted as fractions or probabilities. Thus, it appears in
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many important applications (Altmann et al., 2014). In particular, we consider the following density,

f (x|µ, Σ) ∝
{

exp[− 1
2 (x− µ)TΣ(x− µ)], if x ∈ ∆n,

0, otherwise.
(2)

Clearly, the support of the density in Equation (2) is defined by a convex subset of a linear subspace
of Rn. Thus, to sample from f (x|µ, Σ), we apply a proper linear transformation, induced by a matrix
N ∈ Rn×(n−1) that maps the support to a full-dimensional polytope in Rn−1, while the covariance
matrix changes accordingly to Σ′ = NTΣN. Then, we apply a Cholesky decomposition to Σ′ = LLT

and employ the linear transformation induced by L to transform the distribution into a spherical
Gaussian distribution.

In the following R script we first generate a random 100-dimensional positive definite matrix Σ.
Then, we sample from the multivariate Gaussian distribution with the covariance matrix being Σ and
the mode being the center of the canonical simplex ∆n. To achieve this goal, we first apply all the
necessary linear transformations to both the probability density function and the ∆n to obtain the
standard Gaussian distribution, N (0, In), restricted to a general full-dimensional simplex.

R> d = 100
R> S = matrix( rnorm(d*d,mean=0,sd=1), d, d) #random covariance matrix
R> S = S %*% t(S)
R> shift = rep(1/d, d)
R> A = -diag(d)
R> b = rep(0,d)
R> b = b - A %*% shift
R> Aeq = t(as.matrix(rep(1,d), 10,1))
R> N = pracma::nullspace(Aeq)
R> A = A %*% N #transform the truncation into a full dimensional polytope
R> S = t(N) %*% S %*% N
R> A = A %*% t(chol(S)) #Cholesky decomposition to transform to the standard Gaussian
R> P = Hpolytope(A=A, b=as.numeric(b)) #new truncation

Next, we use the sample_points() function to sample from the standard Gaussian distribution
restricted to the computed simplex, and we apply the inverse transformations to obtain a sample in
the initial space.

R> samples = sample_points(P, n = 100000, random_walk =
list("walk"="CDHR", "burn-in"=1000,
"starting_point" = rep(0, d-1),
distribution = list("density" = "gaussian",
"mode" = rep(0, d-1))))

R> samples_initial_space = N %*% samples +
kronecker(matrix(1, 1, 100000), matrix(shift, ncol = 1))

In the previous script, we set the starting point of the walk to the mode of the Gaussian, i.e.,
the origin. Note that the default choice in volesti for the target distribution in the case of Gaussian
sampling is the standard Gaussian; that is, the target distribution in the above script.

Considering comparisons, volesti is at least one order of magnitude faster than restrictedMVN
and tmg for computing a sample of similar quality. For more details on comparison with other
packages, we refer to (Chalkis and Fisikopoulos, 2021).

Volume estimation

Let us now give an example of how we approximate the volume of a polytope in volesti. Since this
is a randomized algorithm, it makes sense to compute some statistics for the output values using R
when approximating the volume of the 10-dimensional cube [−1, 1]10 generated as an H-polytope.

R> P = gen_cube(10, 'H')
R> volumes = list()
R> for (i in seq_len(20)) {

volumes[[i]] = volume(P, settings = list("error" = 0.2))
}

By changing the error to 0.02, we can obtain more accurate results. The results are illustrated in
Figure 4. Note that the exact volume is 1024.
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Figure 4: The boxplot of the estimated volumes of the hypercude [−1, 1]10 by volesti. Left, the input
error parameter is ϵ = 0.2, and right is ϵ = 0.02.

To understand the need for randomized computation in high dimensions implemented in volesti,
we can consider the state-of-the-art volume computation in R today, namely, geometry. It implements
a deterministic algorithm in which run-time grows exponentially with the dimension. Because of the
later property, geometry generally, fails to terminate for polytope in dimension d ≥ 20. See (Chalkis
and Fisikopoulos, 2021) for comparison details with geometry.

The following script illustrates the usage and efficiency of volesti to compute the volume of high-
dimensional polytopes. In particular, a V-polytope, namely the cross-polytope, and an H-polytope,
namely the hypercube.

R> d = 80
R> P = gen_cross(80, 'V') #generate a cross polytope in V-representation

R> time = system.time({
volume_estimation = volume(P, settings = list(

"algorithm" = "CB", "random_walk" = "BiW",
"seed" = 127)) })

R> exact_volume = 2^d/prod(1:d)
R> cat(time[1], abs(volume_estimation - exact_volume) / exact_volume)

82.874 0.074434

R> P = gen_cube(d, 'H') #generate a hypercube polytope in H-representation

R> time = system.time({
volume_estimation = volume(P, settings = list(

"algorithm" = "CB", "random_walk" = "CDHR",
"seed" = 23)) })

R> exact_volume = 2^d
R> cat(time[1], abs(volume_estimation - exact_volume) / exact_volume)

0.657 0.067633

For V- and Z- polytopes the most efficient choice of random walk is BiW, while for H-polytopes is
CDHR. This explains why we use different random walks in the previous script. However, notice that
the run-time for the H-polytope is two order of magnitude smaller. This happens because the cost per
step of a random walk in a V-polytope increases comparing to H-polytopes.

Last but not least, volesti provides random polytope generators. The following command estimates
the volume of a randomly generated V-polytope that is the convex hull of 40 uniformly generated
random points from the 20-dimensional cube.

R> P = gen_rand_vpoly(20, 40, generator = list("body" = "cube", "seed" = 1729))
R> volume_estimation = volume(P)

The next call estimates the volume of an H-polytope randomly generated as an intersection of 180
linear halfspaces computed by random tangent hyperplanes on an 60-dimensional hypersphere.
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Figure 5: Left, a copula that corresponds to normal period (07/03/2007− 31/05/2007), I = 0.2316412.
Right, a copula that corresponds to a crisis period (18/12/2008− 13/03/2009), I = 5.610785; x axis is
for return and y axis is for volatility.

R> P = gen_rand_hpoly(60, 180, generator = list('constants' = 'sphere'))
R> volume_estimation = volume(P)

Since the exact volume of those polytopes is unknown, the accuracy of the computed estimation is
unknown and statistical methods such as the effective sample size (Geyer, 2011) could be used.

Applications

We demonstrate volesti’s potential to solve challenging problems. More specifically, we provide
detailed use-cases for applications in finance (crises detection and portfolio scoring), decision and
control, multivariate integration, and artificial intelligence.

Financial crises detection and portfolio scoring

In this subsection, we present how one could employ volesti to detect financial crises or shock events
in stock markets by following the method of Calès et al. (2018). For all the examples in the sequel, we
use a set of 52 popular exchange-traded funds (ETFs) and the US central bank (FED) rate of return
publicly available from https://stanford.edu/class/ee103/portfolio.html. The following script
is used to load the data.

R> MatReturns = read.table("https://stanford.edu/class/ee103/data/returns.txt",
sep = ",")

R> MatReturns = MatReturns[-c(1, 2), ]
R> dates = as.character(MatReturns$V1)
R> MatReturns = as.matrix(MatReturns[ ,-c(1, 54)])
R> MatReturns = matrix(as.numeric(MatReturns), nrow = dim(MatReturns )[1], ncol =

dim(MatReturns )[2], byrow = FALSE)
R> nassets = dim(MatReturns)[2]

The method uses the copula representation to capture the dependence between portfolios’ returns
and volatility. A copula is an approximation of the bivariate joint distribution while both marginals
follow the uniform distribution. In normal times, portfolios are characterized by slightly positive
returns and moderate volatility, in up-market times (typically bubbles) by high returns and low
volatility, and during financial crises by strongly negative returns and high volatility. Thus, when
a copula implies a positive dependence (see Figure 5 left), then it probably comes from a normal
period. On the other side, when the dependence between portfolios’ return and volatility is negative
(see Figure 5 right), the copula probably comes from a crisis period. The first case occurs when the
indicator that computes the ratio between the red mass over the blue mass is smaller than 1, and the
second case when that indicator is larger than 1. The function copula() can be used to compute such
copulas. When two vectors of returns are given as input by the user, then the computed copula is
related to the problem of the momentum effect in stock markets.

The following script produces Figure 5 by setting the starting and the stopping date for the left
and the right plot, respectively. To compute the copula, we use the compound asset return, which is
the rate of return for capital over a cumulative series of time (Calès et al., 2018).
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Figure 6: The values of the indicators from 2007-01-04 until 2010-01-04. We mark the crisis periods
with red, the warning periods with orange, and the normal periods with blue that volesti identifies.

R> row1 = which(dates %in% "2008-12-18")
R> row2 = which(dates %in% "2009-03-13")
R> compound_asset_return = Rfast::colprods(1 + MatReturns[row1:row2, ]) - 1
R> mass = copula(r1 = compound_asset_return, sigma = cov(MatReturns[row1:row2, ]),

m = 100, n = 1e+06, seed = 5)

Moreover, the function compute_indicators() computes the copulas of all the sets of win_len
consecutive days and returns the corresponding indicators and the states of the market during the
given time period. The next script takes as input the daily returns of all the 52 assets from 01/04/2007
until 04/01/2010. When the indicator is ≥ 1 for more than 30 days, we issue a warning, and when it is
for more than 60 days, we mark this period as a crisis (see Figure 6).

R> row1 = which(dates %in% "2007-01-04")
R> row2 = which(dates %in% "2010-01-04")
R> market_analysis = compute_indicators(returns = MatReturns[row1:row2, ],

parameters = list("win_len" = 60, "m" = 100,
"n" = 1e+06, "nwarning" = 30, "ncrisis" = 60,
"seed" = 5))

R> I = market_analysis$indicators
R> market_states = market_analysis$market_states

We compare the results with the database for financial crises in European countries proposed
in Duca et al. (2017). The only listed crisis for this period is the sub-prime crisis (from December 2007
to June 2009). Notice that Figure 6 successfully points out 4 crisis events in that period (2 crisis and 2
warning periods) and detects sub-prime crisis as a W-shape crisis.

As a second financial application, we will use volesti to evaluate the performance of a given
portfolio. In particular, volesti computes the proportion of all possible allocations that the given
portfolio outperforms. This score independently introduced in Pouchkarev (2005); Guegan et al. (2011);
Banerjee and Hung (2011), and is an alternative to more classical choices for the evaluation of the
performance of a portfolio as the Sharpe-like ratios proposed in the 1960’s by Jensen (1967); Sharpe
(1966); Treynor (2015). However, the efficient computation of that score was uncertain until Calès et al.
(2018) notice that Varsi’s algorithm (Varsi, 1973) can be used to perform robust computations in high
dimensions. Varsi’s algorithm is implemented in volesti by the function frustum_of_simplex() and
computes volumes in thousands of dimensions in just a few milliseconds on modest hardware. As an
example, the following R script let us know that on 03/13/2009, any portfolio with a return of 0.002
outperforms almost 48% of all possible portfolios.

R> R = MatReturns[which(dates %in% "2009-03-13"), ]
R> R0 = 0.002
R> tim = system.time({ exact_score = frustum_of_simplex(R, R0) })
R> cat(exact_score, tim[3])
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Figure 7: Blue color represents a 2D Z-polytope. Grey color represents the over-approximation of P
computed with PCA method.

0.4773961 0.001

Zonotope volumes in decision and control

Volume approximation for Z-polytopes (or zonotopes) could be very useful in several applications
in decision and control (Kopetzki et al., 2017), in autonomous driving (Althoff and Dolan, 2014), or
human-robot collaboration (Pereira and Althoff, 2015). The complexity of algorithms that manipulate
Z-polytopes strongly depends on their order. Thus, to achieve efficient computations, the common
approach in practice is to over-approximate the Z-polytope at hand P, as tight as possible, with a
second Z-polytope Pred of a smaller order. Then, the ratio of fitness ρ = (vol(Pred)/vol(P))1/d is a good
measure for the quality of the approximation. However, this ratio cannot be computed for dimensions
typically larger than 10 (see (Kopetzki et al., 2017)). volesti is the first software to the best of our
knowledge that efficiently approximates the ratio of fitness of a high dimensional Z-polytope–typically
up to 100 and order 200–or a Z-polytope of very high order in lower dimensions–e.g., order 1500 in 10
dimensions.

As an illustration, the following R script generates a random 2D zonotope, computes the over-
approximation with the PCA method, and estimates the ratio of fitness. The sample_points function
is then used to plot the two polygons (Figure 7).

R> Z = gen_rand_zonotope(2, 8, generator = list("distribution" = "uniform",
"seed" = 1729))

R> points1 = sample_points(Z, random_walk = list("walk" = "BRDHR"), n = 10000)
R> retList = zonotope_approximation(Z = Z, fit_ratio = TRUE,

generator = list("seed" = 5))
R> P = retList$P
R> cat(retList$fit_ratio)

1.116799539

R> points2 = sample_points(P, random_walk = list("walk" = "BRDHR", "seed" = 5),
n = 10000)

High-dimensional integration

Computing the integral of a function over a convex set (i.e., convex polytope) is a hard fundamental
problem with numerous applications. volesti can be used to approximate the value of such an integral
by a simple MCMC integration method, which employs the vol(P) and a uniform sample in P. In
particular, let

I =
∫

P
f (x)dx. (3)
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dimension Exact value Estimated value Rel. error Exact Time (sec) Est. Time (sec)
5 0.02738404 0.02446581 0.1065667 0.023 3.983
10 3.224286e-06 3.204522e-06 0.00612976 3.562 11.95
15 4.504834e-11 4.867341e-11 0.08047068 471.479 33.256
20 - 1.140189e-16 - - 64.058

Table 3: We compute the integral of the function in Equation (5) over a random generated V-polytope.
Exact value: the exact value of the integral using SimplicialCubature and geometry; Estimated value:
the estimation of the integral with volesti; Rel. error: the relative error of volesti; Exact Time: the sum
of run-times of geometry and SimplicialCubature; Est. Time: the run-time of volesti; "-" indicates that
the program halts.

Then, sample N uniformly distributed points x1, . . . , xN from P and,

I ≈ vol(P)
1
N

N

∑
i=1

f (xi). (4)

The following R script generates a V-polytope for d = 5, 10, 15, 20, and estimates the integral of

f (x) =
n

∑
i=1

xi + 2x2
1 + x2 + x3, (5)

over the generated V-polytope P.

Considering the efficiency of volesti, Table 3 reports the exact value of I computed by Simplicial-
Cubature (Nolan et al., 2016). It computes multivariate integrals over simplices. Hence, to compute an
integral of a function over a convex polytope P in R, one should compute the Delaunay triangulation
with package geometry and then use the package SimplicialCubature to sum the values of all the
integrals over the simplices computed by the triangulation. The pattern is similar to volume computa-
tion. For d = 5, 10 the exact computation is faster than the approximate. For d = 15, volesti is 13 times
faster. For d = 20, the exact approach halts, while volesti returns an estimation in less than a minute.

R> num_of_points = 5000
R> f = function(x) { sum(x^2) + (2 * x[1]^2 + x[2] + x[3]) }
R> for (d in seq(from = 5, to = 20, by = 5)) {

P = gen_rand_vpoly(d, 2 * d, generator = list("seed" = 127))

points = sample_points(P, random_walk = list("walk" = "BiW",
"walk_length" = 1, "seed" = 5), n = num_of_points)

sum_f = 0
for (i in seq_len(num_of_points)){

sum_f = sum_f + f(points[, i])
}
V = volume(P, settings = list("error" = 0.05, "seed" = 5))
I2 = (sum_f * V) / num_of_points

}

Combinatorics and artificial intelligence

We focus now on a different problem, namely, counting the linear extensions of a given partially
ordered set (poset), which arises in various applications in artificial intelligence and machine learning,
such as partial order plans (Muise et al., 2016) and learning graphical models (Niinimäki et al., 2016).

Let G = (V, E) be an acyclic digraph with V = [n] := {1, 2, . . . , n}. One might want to consider G
as a representation of the poset V : i > j if and only if there is a directed path from node i to node j. A
permutation π of [n] is called a linear extension of G (or the associated poset V) if π−1(i) > π−1(j) for
every edge i→ j ∈ E.

Let PLE(G) be the polytope in Rn defined by

PLE(G) = {x ∈ Rn | 1 ≥ xi ≥ 0 for all i = 1, 2, . . . , n},

and xi ≥ xj for all directed edges i→ j ∈ E. It is well known (Stanley, 1986) that the number of linear
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Figure 8: An acyclic directed graph with 5 nodes, 4 edges, and 9 linear extensions.

extensions of G equals the normalized volume of PLE(G), i.e.,

#LEG = vol(PLE(G)) n!

It is also well known that counting linear extensions is #P-complete (Brightwell and Winkler, 1991).
Thus, as the number of graph nodes (i.e., the dimension of PLE(G)) grows, the problem becomes
intractable for exact methods. Interestingly, volesti provides an efficient approximation method that
could be added to the ones surveyed by Talvitie et al. (2018).

As a simple example, consider the graph in Figure 8 that has 9 linear extensions1. This number
can be estimated in milliseconds using volesti as in the following script, where the estimated number
of linear extensions is 9.014706.

R> A = matrix(c(
-1,0,1,0,0,0,
-1,1,0,0,0,-1,
0,1,0,0,0,0,-1,
1,1,0,0,0,0,0,
1,0,0,0,0,0,1,
0,0,0,0,0,1,0,
0,0,0,0,1,-1,
0,0,0,0,0,-1,
0,0,0,0,0,-1,
0,0,0,0,0,-1,
0,0,0,0,0,-1),
ncol = 5, nrow = 14, byrow = TRUE)

R> b = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 , 1, 1, 1)
R> P_LE = Hpolytope(A = A, b = b)
R> time = system.time({ LE = volume(P_LE, settings = list("error" = 0.01,

"seed" = 1927)) * factorial(5) })

Concluding remarks and future work

volesti is an R package that provides MCMC sampling routines for multivariate distributions restricted
to convex polytopes and volume estimation. It supports three different polytope representations, and
thus, it is useful for several applications. We illustrate the usage of volesti with simple, reproducible
examples and show how volesti can be used to address challenging problems in modern applications.

Regarding future work, the expansion of volesti to support general log-concave sampling methods
would be of special interest for several applications. Efficient log-concave sampling could also lead to
additional sophisticated methods to estimate a multivariate integral over a convex polytope (Lovasz
and Vempala, 2006).

Computational details

The results in this paper were obtained using R 3.4.4, R 3.6.3, and volesti 1.1.2-2. The versions of
the imported by volesti packages are stats 3.4.4 (R Core Team, 2020b) and methods 3.4.4 (R Core
Team, 2020a); of the linked by volesti packages, Rcpp 1.0.3, BH 1.69.0.1 (Eddelbuettel et al., 2020a),
RcppEigen 0.3.3.7.0 (Bates and Eddelbuettel, 2013). The suggested package is testthat 2.0.1 (Wickham,
2011). For comparison to volesti and for plots, this paper uses geometry 0.4.5, hitandrun 0.5.5,

1Example taken from https://people.inf.ethz.ch/fukudak/lect/pclect/notes2016/expoly_order.pdf
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SimplicialCubature 1.2, Rfast 2.0.3 (Papadakis et al., 2021), ggplot2 3.1.0 (Wickham, 2016), plotly
4.8.0 (Sievert, 2020), rgl 0.100.50 (Adler et al., 2021), coda 0.19.4. All packages used are available from
CRAN.

All computations were performed on a PC with Intel® Pentium(R) CPU G4400 @ 3.30GHz × 2
CPU and 16GB RAM.
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