University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Vadim Gladyshev Publications

Biochemistry, Department of

January 2004

Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution

Sergi Castellano Grup de Recerca en Informàtica Biomèdica, Institut Municipal d'Investigació Mèdica, Universitat Pompeu Fabra

Sergey V. Novoselov University of Nebraska-Lincoln

Gregory V. Kryukov University of Nebraska-Lincoln

Alain Lescure UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, 67084 Strasbourg Cedex, France

Enrique Blanco Grup de Recerca en Informàtica Biomèdica, Institut Municipal d'Investigació Mèdica, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Catalonia, Spain

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/biochemgladyshev

Part of the Biochemistry, Biophysics, and Structural Biology Commons

Castellano, Sergi; Novoselov, Sergey V.; Kryukov, Gregory V.; Lescure, Alain; Blanco, Enrique; Krol, Alain; Gladyshev, Vadim N.; and Guigo, Roderic, "Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution" (2004). *Vadim Gladyshev Publications*. 66.

https://digitalcommons.unl.edu/biochemgladyshev/66

This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Vadim Gladyshev Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

Sergi Castellano, Sergey V. Novoselov, Gregory V. Kryukov, Alain Lescure, Enrique Blanco, Alain Krol, Vadim N. Gladyshev, and Roderic Guigo

Published in *EMBO Reports* 5:5 (May 2004), pp. 538–543. doi: 10.1038/sj.embor.7400126. http://www.nature.com/embor/index.html Copyright © 2004 European Molecular Biology Organization. Used by permission.

Submitted November 14, 2003; revised February 4, 2004; accepted February 17, 2004; published online April 23, 2004.

Scientific Report

The prokaryotic selenoproteome

Gregory V Kryukov and Vadim N Gladyshev*

Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664

*Corresponding author. E-mail: vgladyshev1@unl.edu

Abstract: In the genetic code, the UGA codon has a dual function as it encodes selenocysteine (Sec) and serves as a stop signal. However, only the translation terminator function is used in gene annotation programs, resulting in misannotation of selenoprotein genes. Here, we applied two independent bioinformatics approaches to characterize a selenoprotein set in prokaryotic genomes. One method searched for selenoprotein genes by identifying RNA stem-loop structures, selenocysteine insertion sequence elements; the second approach identified Sec/Cys pairs in homologous sequences. These analyses identified all or almost all selenoproteins in completely sequenced bacterial and archaeal genomes and provided a view on the distribution and composition of prokaryotic selenoproteomes. In addition, lineage-specific and core selenoproteins were detected, which provided insights into the mechanisms of selenoprotein evolution. Characterization of selenoproteomes allows interpretation of other UGA codons in completed genomes of prokaryotes as terminators, addressing the UGA dual-function problem.

Keywords: selenocysteine, selenoprotein, TGA codon, genome, annotation

Introduction

In the genetic code, the codon UGA differs from other codons in that it has a dual function: although it most often terminates protein synthesis, it also encodes the 21st amino acid in protein, selenocysteine (Sec) (reviewed in Low & Berry, 1996; Bock, 2000; Hatfield & Gladyshev, 2002). Available gene annotation programs interpret UGA as a stop codon, resulting in misannotation or completely missing selenoprotein genes. This problem is particularly serious for prokaryotic genomes as they currently account for >90% of completely sequenced genomes. Yet, neither which prokaryotes contain selenoproteins nor the number of selenoprotein genes in any of the prokaryotic genomes is known. Recent identification of the 22nd amino acid, pyrrolysine, which is encoded by UAG codon in several methanogenic organisms (Srinivasan et al, 2002), suggests that misannotation of genes due to dual functions of termination signals is not limited to Sec.

To insert Sec at UGA codons, selenoprotein genes evolved an RNA stem-loop structure, designated Sec insertion sequence (SECIS) element. SECIS elements are present immediately downstream of Sec UGA codons in bacteria (Zinoni *et al*, 1990; Huttenhofer *et al*, 1996; Liu *et al*, 1998) and in 3' untranslated regions (UTRs) in archaea (Wilting *et al*, 1997) and eukaryotes (Berry *et al*, 1991; Walczak *et al*, 1996). The bacterial, archaeal and eukaryotic SECIS elements have no similarities to each other with regard to sequence and structure. The eukaryotic SECIS element consensus has been well characterized, which allowed identification of these structures in sequence databases (Kryukov *et al*, 1999; Lescure *et al*, 1999; Castellano *et al*, 2001; Martin-Romero *et al*, 2001), including mammalian genomes (Kryukov *et al*, 2003). However, conservation of bacterial SECIS elements has been insufficient for their computational description, which precluded identification of bacterial selenoprotein genes by searching for the stem–loop structure.

Conversely, SECIS elements in known selenoprotein genes in archaea exhibited significant conservation (Wilting *et al*, 1997), suggesting that searches for these stem–loop structures might be useful in identifying archaeal selenoprotein genes. Previous homology screens and manual analyses of selected genomic regions identified seven selenoprotein genes in *Methanococcus jannaschii* (Wilting *et al*, 1997) and, subsequently, Secspecific translation elongation factors were identified in *Methanococcus* and *Methanopyrus* species (Rother *et al*, 2000, 2001a, 2001b).

In the present work, we applied independent bioinformatics approaches to identify entire selenoprotein sets in completed bacterial and archaeal genomes.

Results And Discussion

SECISearch-based identification of selenoproteins

Selenoprotein homologues of known archaeal selenoprotein genes (Wilting *et al*, 1997) were compiled and their SECIS elements were extracted and structurally aligned (Fig 1). This procedure revealed conserved SECIS regions and resulted in an archaeal SECIS element consensus (Fig 2, right structure). The consensus was very similar to that previously reported (Wilting *et al*, 1997), although the primary sequence conservation was limited to the unpaired GAA_A region. We identified conserved structural features of these structures, as shown in Fig 2, and developed a computer program, archaeal SECISearch, to recognize an archaeal consensus SECIS

	Helix I	GAA	Helix	11	Helix II	А	Helix I
M. jannaschii coenzyme F420-reducing hydrogenase, α-subunit:	GCCTCGAGGG	gaa	ccc	GAAA	GGG	A	CCCGAGAGGC
<i>M. jannaschii</i> coenzyme F420-reducing hydrogenase, δ-subunit:	GTTCTCTCGG	gaa	CCC	GTCAA	GGG	А	CCGAGAGAAC
M. jannaschii formylmethanofuran dehydrogenase, subunit B:	TGTTGGAGGG	gaa	CCC	GTAA	GGG	А	CCCTCCAACA
M. jannaschii selenophosphate synthetase:	ACGATGTGCC	gaa	CCC	TTTAA	GGG	A	GGCACATCGA
M. jannaschii heterodisulphide reductase, subunit A:	GGCACCACTC	gaa	GGC	AAT	GCC	А	AAGTGGTGCT
<i>M. jannaschii</i> methylviologen-reducing hydrogenase, α-subunit:	GCTCACAACC	gaa	CCC	ATTT	GGG	А	GGTTGTGAGC
M. jannaschii formate dehydrogenase, α-subunit:	GCCACCCTGC	gaa	CCC	AATATAAATAATACAA	A GGG	А	GCAGGTGGCG
M. jannaschii HesB-like:	TGCTAACCGG	gaa	CCC	AATTTT	GGG	А	CCGGTTAGCT
M. kandleri coenzyme F420-reducing hydrogenase, α-subunit:	CCGCCGCGGG	gaa	CCCCG	AAA	CGGGG	А	CCCGCGGCGC
M. kandleri coenzyme F420-reducing hydrogenase, δ-subunit:	CGCCCGGGGG	GAA	CCCC	GCAAGGA	GGGG	А	CCCCCGGGTC
M. kandleri formylmethanofuran dehydrogenase, subunit B:	CCCACGGGGGC	gaa	CCCCG	TCCC	CGGGG	A	GCCCCGTGGG
M. kandleri selenophosphate synthetase:	CCCCGCCGGG	gaa	CCCC	GTAGGTGT	GGGG	А	CCCGGCGGGG
M. kandleri formate dehydrogenase, α-subunit:	AGGTCGGCGG	gaa	CCCC	GAAGGA	GGGG	А	CCGTCGACCC
M. kandleri heterodisulphide reductase, subunit A:	CCCCGCCCCC	gaa	GGGC	GAAA	GCCC	A	GGGGGTGGGG
M. kandleri methylviologen-reducing hydrogenase, α-subunit:	TGGCCCGGGG	GAA	CCC	TAAC	GGG	А	CCCCGGGCCG

Figure 1. Alignment of SECIS elements in archaeal selenoprotein genes. SECIS elements from eight selenoprotein genes in the *M. jannaschii* genome and seven selenoprotein genes in the *M. kandleri* genome were manually aligned on the basis of their primary sequences and secondary structure features. Strictly conserved nucleotides are highlighted.

Figure 2. Archaeal SECIS element structures. Archaeal SECIS element consensus sequence (right structure) and the SECIS element in M. jannaschii HesB-like gene (left structure) are shown. Conserved structural features in the consensus structure are also indicated.

element in sequence databases. This threestep program searched for primary sequence, secondary structure and free energy criteria of the predicted stem–loop structures. Additional 'fine structural criteria' were also applied that required the presence of a conserved GAA_A bulge in the predicted structure and removed candidate sequences with predicted Yshaped structures. A total of 14 completely sequenced archaeal genomes (all that were available at the time of the searches) were analysed with this program (Table 1). Subsequently, sequences flanking the predicted SECIS elements were analysed for the occurrence of open reading frames (ORFs).

Interestingly, only *M. jannaschii* and *Methanopyrus kandleri* had selenoprotein genes (Table 1). Consistent with this finding, known Sec insertion machinery genes, selenophosphate synthetase (SPS) and a Secspecific elongation factor SelB, were detected in *M. jannaschii* and *M. kandleri*, but not in other archaeal genomes. The SECIS-based analysis revealed eight selenoprotein genes in *M. jannaschii* and seven in *M. kandleri* genomes, with only one false positive and no false negatives in 14 analysed genomes. Of these 15 selenoprotein genes, 13 contained SECIS elements in the 3'-UTRs, and one SECIS element in each organism was found in the 5'-UTR, the location not observed in eukaryotic and bacterial selenoprotein genes. Although incorrectly annotated in genome databases, 14 archaeal selenoproteins were homologues of previously identified selenoproteins (Wilting *et al*, 1997). The 15th archaeal selenoprotein was a new selenoprotein with distant homology to HesB protein (Figs 2, 3). This ORF was entirely missing in the *M. jannaschii* genome annotation.

SECIS-independent identification of selenoproteins

We also applied a SECIS-independent method for identification of selenoprotein genes that searched for Sec/Cys pairs in homologous sequences. It took advantage of the fact that all known prokaryotic selenoproteins except one (selenoprotein A) had homologues in NCBI non-redundant and/or microbial databases that inserted Cys in the place of Sec. This method was applied to both bacterial and archaeal genomes that could contain selenoprotein genes as follows (Fig 4). A database of all available prokaryotic genomes that coded for selenoprotein genes was developed, which was composed of 12 completely and 33 incompletely sequenced bacterial genomes and two completely sequenced archaeal genomes (M. jannaschii and M. kandleri) that possessed components of the Sec insertion machinery (archaeal and bacterial searches were combined in this experiment because sets of known selenoproteins in these organisms showed significant overlap). We also constructed a prokaryotic protein database, which included 227,930 protein sequences from all available annotated prokaryotic genomes. This protein database was searched against the selenoprotein genome database with tblastn to identify local alignments, in which TGA in a genomic sequence corresponded to cysteine in a protein query and the corresponding Sec/Cys flanking sequences showed significant homology. The identified TGA-containing sequences were subjected to computational filters (tests for the presence of upstream in-frame stop signals preceding translation initiation signals and superior blastx and rpsblast hits in different frames than the TGA codon; see Methods for details) and clustered, pseudogenes were removed, and the resulting candidate selenoprotein genes were screened for homologues against NCBI microbial and NR databases. To decrease the possibility that some of the hits were due to se-

Table 1	 Selenoprotein 	genes and SECIS	elements iden	tified by SE	CISearch in	completely	sequenced a	archaeal	genomes
---------	-----------------------------------	-----------------	---------------	--------------	-------------	------------	-------------	----------	---------

	Arch	aeal SECISearch			
	Primary sequence/ secondary structure	Free energy	Fine structure	Selenoprotein genes	False positives
Aeropyrum pernix	0	0	0	0	0
Archaeoglobus fulgidus	1	0	0	0	0
Halobacterium sp. NRC-1	7	3	1	0	1
Methanobacterium thermoautotrophicum	0	0	0	0	0
Methanococcus jannaschii	8	8	8	8	0
Methanopyrus kandleri	9	7	7	7	0
Pyrobaculum aerophilum	2	0	0	0	0
Pyrococcus abyssi	2	0	0	0	0
Pyrococcus furiosus	1	0	0	0	0
Pyrococcus horikoshii	0	0	0	0	0
Sulfolobus solfataricus	0	0	0	0	0
Sulfolobus tokodaii	2	0	0	0	0
Thermoplasma acidophilum	1	0	0	0	0
Thermoplasma volcanium	0	0	0	0	0
See text for details of the searches.					

Methanococcus jannaschii	MKKVVISDE <mark>A</mark> KKFILDK	LKKANQDKVVIYFEGFALGE KFGIAI-AHPNENEKKIYDDEKVYIDPIADQWLDEVNISLRRSIFGKYLKIEGSSEC
Clostridium perfringens	MSVVKMSNEATEFKSFLQE	NGVEKFD-IRINLAGVCICEPVFNIVLDE-QSDNDEVVKIEDITFFVDKELVKDFEGFTLLSSDENGGRGLSLKPVKES-EGGCSSCSSCH~~~~
Desulfitobacterium hafniense 1	MQISEKAAEKLKEIIAT	QDNPDHTLLRVAFRGFCIGEPQLSLTLDELTHEDDISIESQGITVVYDANLEQYVSDSVIDYSDSSLNRGFSIKSEGLSSC
Desulfovibrio vulgaris 1	~~MFELTDNARKELEAYFAD	KQKTPIRVYLAPGGISEPRLALALDE-PNESENVFKEGDFTFCVNSDLLSQIESVRIDLTYMGFQVEPGKPL-AGG-GGSCGGCGSSSSCCS
Geobacter sulfurreducens	MTITDAAKAVLAPIVGE	HPGKILRVVF6GFCIGEPRLGLVLDE-PADNEARMVLNGIEVAVTSNFRSLLDDQILDYITNEQG6GLVFRRESGDVCC
Methanosarcina barkeri	~~MIEVTDRAAABLKTLIEQ	EEKPE-LALRIFVAGVACS IQYGLAFDDETKEDEVTMESNGIKLVMAKDIERSFSEGSIDFVEDENGKGFLIRNPNAGOGGG-TCGGCH
Clostridium difficile	-MKITLPETAIDTLKSILKD	NQDKPNN-IRVYFAGVG CEPSFGLALDE-KKEDELTYEVGELQFVMSSDEYSQYGDIIIEDTGFGFRVIPEN-MKDQG-GGGCSGCSGCH~~~~
Desulfitobacterium hafniense 2	~~MVKISELAAQKVKEVQKT	QNKEK-CYLRLYLAGFG CFSFGMTLEDAKTELEVLDEEHGVSVITASSLSEYLEDAFTDFVENEFGSGFEIRLAKDFGGQGCGSSCGGCGGSC
Desulfovibrio vulgaris 2	MINVSETALKELEAYFTD	HEREPIRVYLAPGGESEPRLALALDK-PGDDELTADVAGFTFCINKALFEKVGKVSIDMGCMGFSIATEIPLPAPA-GGGCSGCSSSSCCG

Figure 3. Amino-acid sequence alignment of archaeal and bacterial HesB-like selenoproteins and their Cys-containing homologues. U is Sec.

quence errors that replaced TGC or TGT codons with TGA, an ORF containing an in-frame TGA was considered a selenoprotein gene if at least two different sequences in two distant genomes were found that conserved this TGA and in addition at least two corresponding Cys-containing homologues were detected. Protein families in which all homologues conserve Sec would be missed by this approach, but such families appear to be extremely rare (currently, only one family (the selenoprotein A family) conserves Sec in 100% of sequences).

Analysis of the archaeal subset of identified sequences revealed the same set of seven and eight archaeal selenoprotein genes in the *M. kandleri* and *M. jannaschii* genomes (Table 2), with no other archaeal selenoprotein candidates or false-positive sequences. Thus, both SECIS-based and Sec/Cys homology approaches, being independent methods, were efficient in identifying selenoprotein genes in archaeal genomes. Analysis of the bacterial hits revealed ten previously known and five new selenoprotein families (Fig 4, Table 2 and supplementary Figs S1-S5 online). In addition, candidate selenoproteins, each of which was found only in one bacterial genome, were identified (Fig 4, Table 2 and supplementary Figs S6-S13 online). Potential bacterial SE-CIS structures were identified downstream of TGA in known, new and candidate selenoprotein genes (supplementary Fig S14 online). Only one previously known selenoprotein, selenoprotein A of the glycine reductase complex, was not detected, because no Cys-containing homologues were found for this protein. Thus, our ability to complete the analyses of genomic sequences with an excellent true-positive rate suggested that we identified all or almost all selenoprotein genes in completely sequenced prokaryotic genomes.

Prokaryotic selenoproteomes

Our data allowed a view on entire selenoproteomes in completed bacterial and archaeal genomes. Although selenoproteins were present in all three major domains of life, only ~20% of completed bacterial and ~14% of completed archaeal genomes had them. In addition, the number of selenoproteins in a genome varied from one to more than ten, with Carboxydothermus hydrogenoformans, Eubacterium acidaminophilum, Geobacter metallireducens, Geobacter sulfurreducens and M. jannaschii having the largest numbers of selenoproteins among partially and completely sequenced genomes. Analysis of the composition of selenoproteomes revealed that most selenoproteins were redox proteins, which used Sec either to coordinate a redox-active metal (molybdenum, nickel or tungsten) or in Sec: thiol redox catalysis. Interestingly, in contrast to mammals, where new selenoproteins identified through SECIS elements represent a significant fraction of selenoproteomes (Kryukov et al, 2003), the data suggested that in many prokaryotes, entire selenoprotein sets

Figure 4. Identification of prokaryotic selenoproteins by searching for Sec/Cys pairs in homologous sequences (SECIS-independent method). For details of the searches, see Methods.

were already known before our study. For example, seven out of eight selenoproteins in *M. jannaschii* (Wilting *et al*, 1997) and two out of two selenoproteins in *Haemophilus influenzae* (Wilting *et al*, 1998) were previously identified.

The presence of selenoproteins that were found in a small number of genomes (mostly homologues of thiol-dependent oxidoreductases) (Table 2) contrasted with the broad occurrence of their Cys homologues. This observation suggested that these selenoproteins evolved recently, probably from Cys-containing proteins. Conversely, formate dehydrogenases, which were present in most genomes with functional Sec insertion systems (supplementary Fig S1 online), appeared to be of ancient origin. In addition, bacterial formate dehydrogenase genes often clustered with Sec insertion machinery genes (data not shown), suggesting correlated expression. Thus, both a lineage-specific expansion (recent origin) and the presence of core selenoproteins (ancient origin) contribute to the composition of selenoproteomes. Our data suggest that as new genomic sequences become available, additional examples of lineage-specific selenoproteins are likely to emerge.

In conclusion, we identified genes encoding selenocysteine-containing proteins in completely sequenced genomes of archaea and bacteria. This essentially solved the UGA dualfunction gene prediction problem in prokaryotes, as other inframe UGA codons may now be assigned a terminator function. Further systematic characterization of selenoprotein functions should reveal a full set of biological processes that are dependent on the trace element selenium.

Methods

Databases and resources. Completely and incompletely sequenced genomes of archaea and bacteria were obtained from the NCBI data repository (ftp://ftp.ncbi.nlm.nih.gov/genomes) (Wheeler *et al*, 2003) and TIGR, and blast programs were obtained from NCBI (http://www.ncbi.nlm.nih.gov/BLAST) (Altschul *et al*, 1990). The searches were performed on a Prairiefire 256-processor Beowulf cluster supercomputer at the Research Computing Facility of the University of Nebraska-Lincoln.

SECIS-based identification of selenoprotein genes in archaeal genomes. Archaeal SECISearch contains three modules. The first module is based on the PatScan program (http://www-unix.mcs.anl.gov/compbio/PatScan/HTML/ patscan.html) (Dsouza et al, 1997) and searches for RNA structures that match the archaeal SECIS element primary sequence and the secondary structure consensus. The second module, based on the RNAfold program from Vienna RNA package (http://www.tbi.univie.ac.at/~ivo/RNA) (Hofacker et al, 1994), predicts secondary structure and calculates free energy for the entire putative SECIS element. The predicted bulge-forming GAA_A nucleotides are constrained to be unpaired. Predicted RNA structures, the calculated free energies of which are above the -16 kcal/mol threshold determined from the analysis of known archaeal SECIS elements, are excluded from further analysis. The third module of archaeal SECISearch filters out structures that are either Yshaped or do not have a pronounced GAA_A bulge (nucleotide pairs exactly 'above' and at most one nucleotide 'below' the GAA A bulge are required to be present in the SECIS element stem).

Identification of selenoprotein genes by searching for Sec/Cys pars in homologous sequences (SECIS-independent method) in prokaryotic genomes. Identification of Sec/ Cys pairs in homologous sequences: The protein database was constructed by automated extraction of bacterial and archaeal protein sequences from the NCBI genome data repository. This database had 227,930 unique ORFs, which at the time of analysis represented nearly all predicted protein sequences in completely sequenced prokaryotic genomes. To identify prokaryotic genomes that encode Sec-containing proteins, the NCBI microbial genome database was searched for homologues of known protein components of Sec insertion machinery (Sec synthase, SPS and Sec-specific elongation factor). We identified 12 completely and 33 partly sequenced bacterial and two completely sequenced archaeal genomes, in which at least one Sec insertion machinery gene was detected. These 47 genomes were extracted and combined to generate a selenoprotein genome database.

The protein database was searched against a selenoprotein genome database (47 genomes, ~200 Mb) with the NCBI-tblastn program. In this search, the threshold for extending hits was set to 11 and the expectation value was cut off to 10. The resulting data set was analysed for the presence of local alignments, in which cysteine in a protein query from

Tał	ole	2.	Prol	karyotic	seleno	proteins
-----	-----	----	------	----------	--------	----------

			Example	
Protein name	Bacterial genomes	Archaeal genomes	Genome	Sec location (protein length)
Known selenoproteins				
Formate dehydrogenase α-chain	37	3	Methanococcus jannaschii	144 (686)
Formylmethanofuran dehydrogenase, subunit B	0	2	Methanococcus jannaschii	121 (435)
Coenzyme F420-reducing hydrogenase, α-subunit	0	3	Methanococcus jannaschii	389 (413)
Methylviologen-reducing hydrogenase, α -subunit	3	2	Methanococcus jannaschii	441 (464)
Coenzyme F420-reducing hydrogenase, $\delta\text{-subunit}^a$	2	3	Methanococcus jannaschii	13,64 (134)
Heterodisulphide reductase, subunit A	1	2	Methanococcus jannaschii	207 (668)
Selenophosphate synthetase	17	2	Methanococcus jannaschii	19 (349)
Peroxiredoxin (Prx)	2	0	Eubacterium acidaminophilum	47 (203)
Glycine reductase complex, selenoprotein A ^b	9	0	Clostridium difficile	45 (157)
Glycine reductase complex, selenoprotein B	8	0	Clostridium difficile	350 (436)
Proline reductase	3	0	Clostridium difficile	151 (241)
New selenoproteins				
HesB-like protein	5	1	Methanococcus jannaschii	35 (95)
Thioredoxin (Trx)	4	0	Treponema denticola	32 (107)
Prx-like thiol:disulphide oxidoreductase	3	0	Geobacter sulfurreducens	66 (209)
SelW-like protein	3	0	Campylobacter jejuni	12 (81)
Glutathione peroxidase	1	0	Treponema denticola	35 (155)
Candidate selenoproteins				
Glutaredoxin (Grx)	1	0	Geobacter sulfurreducens	49 (122)
Protein similar to the N-terminal domain of Prx reductase AhpF	1	0	Carboxydothermus hydrogenoformans	147 (218)
Thiol:disulphide interchange protein	1	0	Geobacter metallireducens	33 (190)
DsbG-like protein	1	0	Chloroflexus aurantiacus	104 (253)
Fe-S oxidoreductase	1	0	Desulfovibrio vulgaris	244 (432)
DsrE-like protein	1	0	Desulfovibrio vulgaris	70 (107)
NADH oxidase	1	0	Geobacter metallireducens	45 (451)
Distant homologue of peroxidase/peroxynitrite reductase system component AhpD	1	0	Geobacter sulfurreducens	50 (98)

A total of 11 previously known prokaryotic selenoproteins are shown, along with five new selenoproteins (supported by occurrences in multiple genomes and the presence of potential SECIS elements) and eight candidate selenoproteins (supported by occurrences in single genomes and the presence of potential SECIS elements). The number of bacterial and archaeal genomes in which indicated selenoproteins were found is shown, followed by names of representative genomes (full list is in supplementary Fig S1 online) and Sec locations and lengths of representative selenoproteins.

^aContains two Sec residues.

^bProtein was not detected in genomic searches.

a protein database corresponded to TGA in a translated nucleotide sequence from the selenoprotein genome database. If at least one such alignment with an expectation value below 10^{-3} or at least two alignments with expectation values below 1 were identified for a particular TGA codon, the corresponding TGA-containing sequence was chosen for further analysis. We identified 9,315 such local alignments.

Analysis of TGA-flanking sequences: In each of the TGAcontaining sequences from 9,315 alignments, a region upstream of the TGA was analysed for the presence of in-frame start and stop codons. If a stop codon (TGA, TAA or TAG) occurred closer to the TGA codon than an appropriate start codon (ATG or GTG), such sequences were discarded. For each remaining sequence, a 1 kb TGA-flanking region (500 nt– TGA–500 nt) was searched against the protein database with NCBI-blastx program. If the best hit that covered the TGA codon with at least a seven-nucleotide overlap was in a different frame from the TGA, the corresponding sequence was filtered out. The 1 kb TGA-flanking regions (500 nt–TGA– 500 nt) were then translated in all three possible ORFs and searched using rpsblast against an NCBI collection of known conserved domains (ftp://ftp.ncbi.nih.gov/pub/mmd_b/cdd). If the best hit that covered the TGA codon with at least six amino-acid residue overlap was not in the same frame as the TGA codon, the sequence was removed from further analysis. In addition, if additional stop codons were found within the predicted conserved domain that covered TGA in the correct frame, such a sequence was considered a pseudogene and was also discarded. A total of 6,682 local alignments remained after application of these filters.

Clustering: The set of 2,071 unique proteins that corresponded to the remaining 6,682 TGA-containing sequences was extracted. These protein sequences were compared pairwise by the NCBI-bl2seq program. If two proteins produced a local alignment that had an expectation value below 10^{-5} and was at least 20 amino-acid residues long, they were assigned to the same cluster. Clusters containing proteins that were initially aligned with the same TGA-containing region were joined into larger clusters. This analysis resulted in 244 clusters.

Analyses of cysteine conservation and adjacent genes: Cysteines that corresponded to the TGA codons in the local alignments were analysed for conservation in other homologous proteins. If a cysteine was not conserved, the hit was discarded. In addition, ORFs that contained TGA-flanking regions were analysed for domain conservation in homologues. The 1 kb TGA-flanking regions were searched with the NCBI-blastx program against the NCBI microbial and NR protein databases. If a TGA codon was located on the edge of the homology region (on either side of the sequence), the candidate hit was removed from further analyses. The remaining sequences were manually analysed for the occurrence of homologous selenoproteins and corresponding Cyscontaining proteins in the NCBI microbial and NR databases and for the presence of potential SECIS elements immediately downstream of the TGA codon using mfold.

Supplementary information is attached. It is also available at *EMBO reports* online (http://www.nature.com/embor/journal/v5/n5/7400126s1.pdf).

Acknowledgments

We thank the Research Computing Facility of the University of Nebraska-Lincoln for the use of Prairiefire 256-processor Beowulf cluster supercomputer. This work was supported by NIH grant GM61603 (to V.N.G.).

References

- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410 .
- Berry MJ, Banu L, Chen YY, Mandel SJ, Kieffer JD, Harney JW, Larsen PR (1991) Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region. Nature 353: 273–276.
- Böck A (2000) Biosynthesis of selenoproteins—an overview. Biofactors 11: 77–78.
- Castellano S, Morozova N, Morey M, Berry MJ, Serras F, Corominas M, Guigo R (2001) *In silico* identification of novel selenoproteins in the *Drosophila melanogaster* genome. EMBO Rep 2: 697–702.

- Dsouza M, Larsen N, Overbeek R (1997) Searching for patterns in genomic data. Trends Genet 13: 497–498 .
- Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22: 3565–3576.
- Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125: 167–188.
- Huttenhofer A, Westhof E, Böck A (1996) Solution structure of mRNA hairpins promoting selenocysteine incorporation in *Escherichia coli* and their basespecific interaction with special elongation factor SELB. RNA 2: 354–366.
- Kryukov GV, Kryukov VM, Gladyshev VN (1999) New mammalian selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements. J Biol Chem 274: 33888–33897.
- Kryukov GV, Castellano S, Novoselov SV, Lobanov A, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300: 1439–1443.
- Lescure A, Gautheret D, Carbon P, Krol A (1999) Novel selenoproteins identified *in silico* and *in vivo* by using a conserved RNA structural motif. J Biol Chem 274: 38147–38154.
- Liu Z, Reches M, Groisman I, Engelberg-Kulka H (1998) The nature of the minimal 'selenocysteine insertion sequence' (SE-CIS) in *Escherichia coli*. Nucleic Acids Res 26: 896–902.
- Low SC, Berry MJ (1996) Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci 21: 203–208.
- Martin-Romero FJ, Kryukov GV, Lobanov AV, Carlson BA, Lee BJ, Gladyshev VN, Hatfield DL (2001) Selenium metabolism in *Drosophila*: selenoproteins, selenoprotein mRNA expression, fertility, and mortality. J Biol Chem 276: 29798–29804
- Rother M, Wilting R, Commans S, Bock A (2000) Identification and characterisation of the selenocysteinespecific translation factor SelB from the archaeon *Methanococcus jannaschii*. J Mol Biol 299: 351–358.
- Rother M, Resch A, Wilting R, Bock A (2001a) Selenoprotein synthesis in archaea. Biofactors 14: 75–83 .
- Rother M, Resch A, Gardner WL, Whitman WB, Bock A (2001b) Heterologous expression of archaeal selenoprotein genes directed by the SECIS element located in the 3' non-translated region. Mol Microbiol 40: 900–908.
- Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296: 1459–1462.
- Walczak R, Westhof E, Carbon P, Krol A (1996) A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA 2: 367–379.
- Wheeler DL et al (2003) Database resources of the National Center for Biotechnology. Nucleic Acids Res 31: 28–33.
- Wilting R, Schorling S, Persson BC, Böck A (1997) Selenoprotein synthesis in archaea: identification of an mRNA element of *Methanococcus jannaschii* probably directing selenocysteine insertion. J Mol Biol 266: 637–641.
- Wilting R, Vamvakidou K, Bock A (1998) Functional expression in *Escherichia coli* of the *Haemophilus influenzae* gene coding for selenocysteine-containing selenophosphate synthetase. Arch Microbiol 169: 71–75.
- Zinoni F, Heider J, Bock A (1990) Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine. Proc Natl Acad Sci USA 87: 4660–4664.

Supplementary Figures

(Kryukov and Gladyshev, The Prokaryotic Selenoproteome)

Figure 1. Prokaryotic selenoproteins. Archaeal and bacterial genomes that encode selenoproteins are indicated. New selenoprotein were represented by at least two archaeal, bacterial or eukaryotic genomes and possessed predicted SECIS elements. Candidate selenoprotein genes were represented only in single genomes, but also had predicted SECIS elements. In addition, Sec corresponded to catalytic Cys in these proteins.

Figure 2. Thioredoxin alignment. GenBank accession numbers for *Treponema pallidum*, *Chlamydomonas reinhardtii, Oryza sativa, Desulfitobacterium hafniense* and *Clostridium perfringens* thioredoxins are NP_219354.1, CAA44209.1, Q9ZP20, ZP_00097586.1 and NP_563454.1, respectively. In addition, the Trx-domain (152 N-terminal residues) of a *Carboxydothermus hydrogenoformans* homolog is shown. Bacterial genomes, in which new bacterial selenoproteins were found, are shown in bold. U is Sec. Conserved Cys/Sec residues are highlighted in red. Amino acid sequence alignments were generated with ClustalW program and shaded by BoxShade program v3.21.

Figure 3. Alignment of Prx-like thiol:disulfide oxidoreductases. GenBank accession numbers for *Synechocystis* sp. PCC 6803, *Nostoc* sp PCC 7120, *Thermosynechococcus elongates, Streptomyces coelicolor, Azotobacter vinelandii* and *Chloroflexus aurantiacus* peroxiredoxin-like thiol:disulfide oxidoreductases are NP_441148.1, NP_488682.1, NP_682079.1, NP_624490.1, ZP_00092626.1 and ZP_00020860.1, respectively.

Figure 4. Alignment of SelW-like proteins. GenBank accession numbers for *Sinorhizobium meliloti, Agrobacterium tumefaciens, Vibrio cholerae, Chlamydomonas reinhardtii, Homo sapiens* and *Ciona intestinalis* SelW/SelW-like proteins are NP_384371.1, NP_353260.1, NP_230628.1, AAN32901.1, NP_003000.1 and AK116508, respectively.

Figure 5. Alignment of glutathione peroxidases. GenBank accession numbers for *Saccharomyces cerevisiae, Clostridium perfringens, Arabidopsis thaliana, Chlamydomonas reinhardtii, Homo sapiens, Schistosoma mansoni* and *Drosophila melanogaster* glutathione peroxidases are S48499, NP_561827.1, NP_564813.1, AAL14348.1, NP_002076.1, AAC14468.2 and AAF47761.1, respectively.

Figure 6. Alignment of glutaredoxins. GenBank accession numbers for *Escherichia coli*, *Nostoc* sp PCC 7120, *Brucella suis, Magnetospirillum magnetotacticum* and *Arabidopsis thaliana* glutaredoxins are NP_290193.1, NP_488913.1, NP_698856.1, ZP_00055463.1 and AAM61279.1, respectively.

Figure 7. Alignment of a protein homologous to the N-terminal domain of peroxiredoxin reductases. GenBank accession numbers for *Thermoplasma acidophilum*, *Ferroplasma acidarmanus*, *Thermotoga maritime*, *Aquifex aeolicus* and *Chloroflexus aurantiacus* proteins homologous to N-terminal domain of peroxiredoxin reductases are NP_393603.1, ZP_00000333.1, NP_228677.1, NP_213313.1 and ZP_00018901.1, respectively.

Figure 8. Alignment of thiol:disulfide interchange proteins. GenBank accession numbers for *Aquifex aeolicus*, *Microbulbifer degradans* and *Magnetococcus* sp. MC-1 thiol:disulfide interchange proteins are NP_214242.1, ZP_00065619.1 and ZP_00042769.1, respectively.

Figure 9. Alignment of DsbG-like proteins. GenBank accession numbers for *Chloroflexus aurantiacus, Thermobifida fusca, Streptomyces coelicolor, Archaeoglobus fulgidus* and *Sinorhizobium meliloti* DsbG-like proteins are ZP_00019418.1, ZP_00057296.1, NP_630109.1, NP_070183.1 and NP_385036.1, respectively.

Figure 10. Alignment of Fe-S oxidoreductases. GenBank accession numbers for *Archaeoglobus fulgidus, Desulfovibrio desulfuricans, Aquifex aeolicus, Magnetococcus sp MC 1* and *Pyrobaculum aerophilum* Fe-S oxidoreductases are NP_069383.1, ZP_00128545.1, NP_213656.1, ZP_00042574.1 and NP_559230.1, respectively.

Figure 11. Alignment of DsrE-like proteins. GenBank accession numbers for *Methanococcus jannaschii, Methanopyrus kandleri, Magnetococcus* sp MC 1 and *Methanosarcina mazei* DsrE-like proteins are ZP_00019418.1, ZP_00057296.1, NP_630109.1, NP_070183.1 and NP_385036.1, respectively.

Figure 12. Alignment of NADH oxidases. GenBank accession numbers for *Deinococcus radiodurans, Bacillus halodurans, Archaeoglobus fulgidus, Methanococcus jannaschii, Oceanobacillus iheyensis* and *Giardia intestinalis* NADH oxidases are NP_294716.1, NP_244643.1, NP_069231.1, NP_247633.1, NP_691780.1 and AAL59603.1, respectively.

Figure 13. Alignment of a distant homolog of peroxidase/peroxynitrite reductase system componet AhpD. GenBank accession numbers for *Neisseria meningitides, Haemophilus influenzae, Pseudomonas aeruginosa, Methanothermobacter thermautotrophicus* and *Methanosarcina mazei* distant homologs of peroxidase/peroxynitrite reductase system componet AhpD are NP_274596.1, NP_439212.1, NP_249256.1, NP_276072.1 and NP_632869.1, respectively.

Figure 14. Predicted SECIS elements in bacterial selenoprotein genes. Stem-loop structures were predicted with mfold (Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res.* **31**, 3406-3415). Numbers correspond to distances from selenocysteine UGA codons.

Supplementary Figure 1

	Bacterial genomes	Archaeal genomes
Formate dehydrogenase,	Actinobacillus actinomycetemcomitans	Methanococcus jannaschii
alpha chain	Aquifex aeolicus	Methanococcus voltae
	Actinobacillus pleuropneumoniae	Methanopyrus kandleri
	Burkholderia mallei	
	Burkholderia fungorum	
	Campylobacter jejuni	
	Carboxydothermus hydrogenoformans	
	Clostridium difficile	
	Desulfitobacterium hafniense	
	Desulfovibrio desulfuricans	
	Desulfovibrio gigas	
	Desulfovibrio vulgaris	
	Escherichia coli	
	Enterobacter aerogenes	
	Eubacterium acidaminophilum	
	Gemmata obscuriglobus	
	Geobacter metallireducens	
	Geobacter sulfurreducens	
	Haemophilus influenzae	
	Klebsiella pneumoniae	
	Moorella thermoacetica	
	Mycobacterium avium	
	Mycobacterium smegmatis	
	Pasteuretta muttoctaa Psaudomonas gamiginosa	
	Pseudomonas fluorascans	
	Pseudomonas nutida	
	Salmonella dublin	
	Salmonella enteritidis	
	Salmonella enterica	
	Salmonella paratyphi A	
	Salmonella typhimurium	
	Shewanella oneidensis	
	Shewanella putrefasciens	
	Shigella flexneri	
	Yersinia enterocolitica	
	Yersinia pestis	
Formylmethanofuran	-	Methanococcus jannaschii
dehydrogenase, subunit B		Methanopyrus kandleri
Coenzyme F420-reducing	-	Methanococcus jannaschii
hydrogenase, alpha subunit		Methanococcus voltae
		Methanopyrus kandleri
Methylviologen-reducing	Desulfovibrio baculatus	Methanococcus jannaschii
hydrogenase, alpha subunit	Desulfovibrio desulfuricans	Methanopyrus kandleri
	Desulfovibrio vulgaris	
Coenzyme F420-reducing	Carboxydothermus hydrogenoformans	Methanococcus jannaschii
hydrogenase, delta subunit	Geobacter metallireducens	Methanopyrus kandleri
Hadama di malCida da da		Methanococcus maripaludis
Heterodisulfide reductase,	Cardoxydothermus hydrogenoformans	Methanococcus jannaschii
Subunit A		Methanopyrus kandleri
Selenophosphate synthetase	Actinobacillus pleuropneumoniae	Methanococcus Jannaschii

	Aquifer geolicus	Methanomyrus kandleri
	Campulohaeton jojuni	Methanopyrus kunateri
	Carboxyaoinermus nyarogenojormans	
	Chloroflexus aurantiacus	
	Clostridium botulinum	
	Clostridium difficile	
	Clostridium perfringens	
	Desulfovibrio desulfuricans	
	Desulfovibrio vulgaris	
	Eubacterium acidaminophilum	
	Geobacter metallireducens	
	Geobacter sulfurreducens	
	Haemonhilus ducrevi	
	Haemophilus influenzae	
	Themophilus influenzae	
Peroxiredoxin (Prx)	Eubacterium acidaminophilum	-
	Geobacter metallireducens	
Glycine reductase complex,	Carboxydothermus hydrogenoformans	-
selenoprotein A	Clostridium botulinum A	
	Clostridium difficile	
	Clostridium litorale	
	Clostridium sticklandii	
	Clostridium purinolyticum	
	Eubacterium acidaminophilum	
	Thermoanaerobacter tengcongensis	
	Treponema denticola	
Glycine reductase complex	Carboxydothermus hydrogenoformans	_
selenoprotein B	Clostridium hotulinum A	
scienceprotein B	Clostridium difficile	
	Clostridium litorala	
	Clostridium titorate Clostridium sticklandii	
	Eubactorium acidamin onhilum	
	Inermoanaerobacter tengcongensis	
	Ireponema denticola	
Proline reductase	Clostridium botulinum A	-
	Clostridium difficile	
	Clostridium sticklandii	
	New selenoproteins	
HesB-like protein	Clostridium botulinum	Methanococcus jannaschii
1	Clostridium perfringens	
	Desulfitobacterium hafniense	
	Desulfovibrio vulgaris	
	Geobacter sulfurreducens	
Thioredoxin (Try)	Carborydothermus hydrogenoformans	
	Geobacter metallireducers	
	Geobacter sulfurreducens	
	Tranonama danticola	
Den liles this ledient fide	Chloreflower automatic auto	
rix-like unoraisuinde	Chiorojiexus auranitacus	-
oxidoreductase	Geobacter metallireducens	
	Geobacter sulfurreducens	
SelW-like protein	Campylobacter jejuni	-
	Gemmata obscuriglobus	
	Geobacter sulfurreducens	
Glutathione peroxidase	Treponema denticola	-

Candidate selenoproteins					
Glutaredoxin (Grx)	Geobacter sulfurreducens	-			
Protein similar to the N- terminal domain of Prx reductase AhpF	Carboxydothermus hydrogenoformans	-			
Thiol:disulfide interchange protein	Geobacter metallireducens	-			
DsbG like protein	Chloroflexus aurantiacus	-			
Fe-S oxidoreductase	Desulfovibrio vulgaris	-			
DsrE-like protein	Desulfovibrio vulgaris	-			
NADH oxidase	Geobacter metallireducens	-			
Distant homolog of peroxidase/peroxynitrite reductase system component AhpD	Geobacter sulfurreducens	-			

Supplementary Figure 2 - Thioredoxin

Geobacter metallireducens Geobacter sulfurreducens Treponema denticola Treponema pallidum Chlamydomonas reinhardtii Ch2 Oryza sativa TrxM Desulfitobacterium hafniense Carboxydothermus hydrogenoformans Clostridium perfringens

Geobacter metallireducens Geobacter sulfurreducens Treponema denticola Treponema pallidum Chlamydomonas reinhardtii Ch2 Oryza sativa TrxM Desulfitobacterium hafniense Carboxydothermus hydrogenoformans Clostridium perfringens

Geobacter metallireducens Geobacter sulfurreducens Treponema denticola

Treponema pallidum Chlamydomonas reinhardtii Ch2 Oryza sativa TrxM Desulfitobacterium hafniense **Carboxydothermus hydrogenoformans** Clostridium perfringens

Geobacter metallireducens	145
Geobacter sulfurreducens	145
Treponema denticola	103
Treponema pallidum	101
Chlamydomonas reinhardtii Ch2	101
<i>Oryza sativa</i> TrxM	166
Desulfitobacterium hafniense	105
Carboxydothermus hydrogenoformans	146
Clostridium perfringens	138

1	PMAASGESFLVTCSACGTANRVPAEKEGVAGRCGNCRGTL
1	WAESGQSFLVACPACGTSNRVPASREGVAGRCGSCRGVL
1	
1	
1	
1	MALETCFRAWATLHAPQPPSSGGSRDRLLLSGAGSSQSKPR
1	
1	MEKKSTIALIVVFVIALLAFGVYYATN
1	MEVKNKRKLIILGLILFALIGIYIGKN

96	5 VVA <mark>QVN</mark> TQGNPQV <mark>A</mark> SRFGIRGIPALVLLQRGK	(ILGSLN <mark>G</mark> AQS <mark>K</mark> ESVLSW
96	5 AVVQVNTQENPQLA <mark>ARFGIRGIP</mark> ALVLLRRGQ	QVLATWS <mark>G</mark> ALPREAVLSR
54	VIAQSNVDNARELAVKFKFM <mark>SIPTLIVLK</mark> DGK	(EVDRHT <mark>GYMDK</mark> KSLVNF
52	2 VIGKL <mark>NVD</mark> DDQD <mark>LA</mark> VE <mark>F</mark> NVA <mark>SIPTLIVFK</mark> DGK	KEVDRSIGFVDKSKILTL
52	2 KCVKLNTDESPNVASEYGIRSIPTIMVFKGGK	KCETIIGAVPKATIVQT
117	⁷ KCCKVNTDDSPNIATNYGIRSIPTVLMFKNGE	EKKESVIGAVP <mark>K</mark> TTLATI
56	5 IIGKLNVDEEPAIAGQYQVM <mark>SIPTL</mark> AVEKNGQ	2VVDKSVGFRG <mark>K</mark> ADLVKM
86	5 IVAEVSRQDSQQ <mark>LA</mark> AK <mark>FGI</mark> QYVPTFIVVDQNGNIVPWTDAQ <mark>G</mark> N	JQMPMFVGGLT <mark>K</mark> EELKAQ
88	B YYARLEEEKNID <mark>LA</mark> YKYDANVVPTTVFLDKEGN	JKFYVHQ <mark>G</mark> LMR <mark>K</mark> NNIETI

145	VRSTLR-
145	VRDALR-
103	VS <mark>K</mark> HI
101	IQ <mark>K</mark> NA
101	VE <mark>K</mark> YLN-
166	IDKYVSS
105	IE <mark>K</mark> HA
146	MD <mark>K</mark> VALK
138	LNSLGVK

Supplementary Figure 3 - Prx-like thiol:disulfide oxidoreductase

Geobacter sulfurreducens Synechocystis sp. PCC 6803 Nostoc sp. PCC 7120 Thermosynechococcus elongatus Streptomyces coelicolor Azotobacter vinelandii Chloroflexus aurantiacus (Sec) Chloroflexus aurantiacus (Cys)

Geobacter sulfurreducens

Synechocystis sp. PCC 6803 Nostoc sp. PCC 7120 Thermosynechococcus elongatus Streptomyces coelicolor Azotobacter vinelandii Chloroflexus aurantiacus (Sec) Chloroflexus aurantiacus (Cys)

Geobacter sulfurreducens

Synechocystis sp. PCC 6803 Nostoc sp. PCC 7120 Thermosynechococcus elongatus Streptomyces coelicolor Azotobacter vinelandii Chloroflexus aurantiacus (Sec) 1 Chloroflexus aurantiacus (Cys) 14

Geobacter sulfurreducens

Synechocystis sp. PCC 6803 Nostoc sp PCC 7120 Thermosynechococcus elongatus Streptomyces coelicolor Azotobacter vinelandii Chloroflexus aurantiacus (Sec) Chloroflexus aurantiacus (Cys)

L	IVLSGIVG
L	BRAAIFSDFIQGLSEEFRNR
L	MNADRHRYKISVNSGVHLWFYHCIYYQLVDNFERFML <mark>T</mark> STD <mark>FS</mark> GLLNE <mark>RFFRNFLPIPAS</mark>
L	FL <mark>T</mark> STNFSGLFNERFWQNAWPLPPQ
L	PALESAMTTTPIADQAAVLAEGMADQEPSEALEAFGAEQAELDAAGVPS
L	WSESLNRLLAELHAERERTWDPAALRVNVEQRRRLVEEARAE
L	FIPMTAKWRQEFICKPRGPANVPAVGSEAPD
L	MMNAQSHNWLS

77	AVLPRLREL <mark>G</mark> GEL LAIS PQTPDKSQATLLKNFLQ <mark>Y</mark> EVLSDVGNL <mark>VAR</mark> SFGLVYPLG	5
95	KVVNKIRAL <mark>GGTILAIS</mark> PQTLVASQKTIDRHDLTYDLLSDSGFQTAQDYGLVFTVP	D
120	ENYEQFTN <mark>RGIEVLLV</mark> TSTDEKQ <mark>S</mark> QIVVKDLG <mark>LKM</mark> PLLSDPSCRAFRTYQVGQALG	_
91	ENHETFQGKGVAVLVVTSTDAQQ <mark>S</mark> EKVKADMALKMPLLYDPSCQVFRKYRTGQALG	_
99	ELAPRLAE <mark>RG</mark> VSMIAVSPQRPDGSLTMAQTNDLSYDVLSDPGNHIGRALGIVTRPT	D
98	NLQPILHAWGVPLVAVSPQIPERLGEIKSRHGLTLEVASDRDNALGRRFGILYEFD	E
93	EHYDLFVQ <mark>R</mark> NAHLLVVSSTDLEMTSYVAEVLRAPYPILSDPEWGVFYRYGMGSAMG	-
87	QLYQAERR <mark>RG</mark> LTVLAVNSTVQDNPADVSNMQRDFGLSFPIVLDYDGS <mark>V</mark> GNRYGVR	-

134	EMRRIYLGF <mark>G</mark> VNLADYNGDESWELPLPGTFVIDGTMTIRYSFVDADYTRRLEPATILD
152	AVKQIYLQS <mark>C</mark> CVIPEHNGTEEWLLPVPATFVIDRRCHIALAYANVDFRVRYEPEDAIA
176	APLPAQFVLDKDGRLRYKHLFSFFDHNASVEKLLG
147	APLPAQFLIDQEGKLHYKHLFSFLEPNAPLERLFQ
156	RVQHAQASL <mark>G</mark> LDLTEVNADGTPDILMPTVAIVDAEGVLRWIDVHPNYVTRSEPARILE
155	PSRRASLAK <mark>G</mark> PGIGALTGTGTWELP <mark>QPA</mark> AI <mark>VI</mark> GRDRRVHFAEVSPDWLV <mark>RTE</mark> ALPILE
149	VPLPGVFVIDADGIIRWSWAAPLSVVFTPPRPAELAA
142	MLPTTFIIDRKGVVRRVLFGGPLSEANLRNVIP

192	VLERIREERGRDDNQAS
210	ILSLFVGN
211	KFD
182	EID <mark>AL</mark> AQGATVTTAA
214	ALARAVR
213	AVRALLEAPRALRATP-
186	VLDALASEG
175	PLIAETE

Supplementary Figure 4 - SelW-like

Sinorhizobium meliloti	1 MSE-KPRVTILYCTQ <mark>C</mark> NMLLRAGWMAQELLSTEADTLGEVALIPGTGCNFEIRVDGAL
Agrobacterium tumefaciens	1 MTETKPRIAIRYCTQ <mark>C</mark> NWLLRAGWMAQEILQTEASDIGEVSLIPSTGGLFEITVDGTI
Vibrio cholerae	1 MNKAQIEIYYCRQ <mark>C</mark> NMMLRSAWLSQELLHTESEEIEYVALHPDTGGRFEIFCNGVQ
Campylobacter jejuni	1 MMKVKIAYCNL <mark>U</mark> NYRPQAARVAEELQSDEKDVEVEFEIGGRGDFIVEVDCKV
Chlamydomonas reinhardtii	1 -MAP-VQVHVLYCGGUGYGSRYRSLENALRMKEPNADIKFSFEATPQATGFFEVEVNGEL
Homo sapiens	1 -MALAVRVVYCGAUGYKSKYLQLKKKLEDEEP-GRLDICGEGTPQATGFFEVMVAGKL
Ciona intestinalis	1 -MPNKVKIHVVYCGG <mark>U</mark> GYRPRYERLKDDLSKDYDQNEVEFSSEGTBEVTGYLEVLVNGTL
Gemmata obscuriglobus	1MNIELKYCSL <mark>U</mark> GYEPKAVSLAATLLTSLKQKVKGLTLVBAGGGCFEVTVNGEL
Geobacter sulfurreducens	1MNVRILFCPT <mark>U</mark> SQYPIAAG <mark>LA</mark> RLIEQTEENVSVELDKQAPRSEFAVYLD <mark>G</mark> EI
Cinorbigobium moliloti	
Sinoinizobium merrioti	
Agrobacterium tumeraciens	59 TWERREDGE PEPKE - KORTRUL DPEKULGHVDRTRHEGLDT
vibrio choierae	5/ IWERKOEGGEPEAKV- KOKVRDLDPEKDLGHVDRPSSTQS
Campylobacter jejuni	53 II-SKTOLINCESERFPIQNEINQLEKNRV
Chlamydomonas reinhardtii	59 MHSKKNG <mark>g</mark> ghvdnqe-kvertfaktgealak
Homo sapiens	57 IH <mark>skk</mark> kgdgyvdtes-kflklvaa <mark>l</mark> kaalaqg
Ciona intestinalis	60 VH <mark>SKK</mark> NGD <mark>G</mark> YIDSEA-KLKKICNAIDKCLQ
Gemmata obscuriglobus	54 IYSKLOTGTFPDEQS-VLESVRERUKR
Geobacter sulfurreducens	53 IFSRLERGRMPEPLD-IIPAIRARRHGTSG

Supplementary Figure 5 - Glutathione peroxidase

Saccharomyces cerevisiae HYR1 Clostridium perfringens **Treponema denticola** Arabidopsis thaliana Chlamydomonas reinhardtii Homo sapiens Gpx4 Schistosoma mansoni Drosophila melanogaster

Saccharomyces cerevisiae HYR1 Clostridium perfringens **Treponema denticola** Arabidopsis thaliana Chlamydomonas reinhardtii Homo sapiens Gpx4 Schistosoma mansoni Drosophila melanogaster

Saccharomyces cerevisiae HYR18Clostridium perfringens8Treponema denticola8Arabidopsis thaliana8Chlamydomonas reinhardtii12Homo sapiens Gpx411Schistosoma mansoni8Drosophila melanogaster9

Saccharomyces cerevisiae HYR1Clostridium perfringensTreponema denticolaArabidopsis thalianaChlamydomonas reinhardtiiHomo sapiens Gpx4Schistosoma mansoniDrosophila melanogaster

1	MSEF Y KLAPV D KK <mark>G</mark> QPFPFDQ
1	ME <mark>IYDISVKDI</mark> NGENVSLER
1	MGIYNYTVKDSLGNDFSFND
1	MATKEPESVYELSIEDAKGNNLALSQ
1	MLLTRKNVAVRPARAARRDVRAMSLLGNLFGGGSKPTSSTSNFHQLSALDIDKKNVDFKS
1	MSLGRLCRLLKPALLCGALAAPGLAGTMCASRDDWRCAR <mark>SMHE</mark> FSAKDIDGHMVNLDK
1	SIYEFTVKDINGVDVSLEK
1	BSAN-GDYKNAA <mark>SIYE</mark> FTVKDTHGNDVSLEK

22	LKGKVVLIVNVASK <mark>C</mark> GFT-PQYKELEALYKRYKDEGFTIIGFPCNQFGHQEPGSDEE	IAQ
21	YRGKVLLIVNTASK <mark>C</mark> GFT-KQFDGLEELY <mark>EKYKDE</mark> GFEVLGFPCNQFKEQDPGSN <mark>S</mark> E	IMN
21	YK <mark>DYVILIVNTACE<mark>U</mark>GLT-PHFQGLEALYKEYRDKKFLVAAFPCNQFG<mark>G</mark>QDPGTNEE.</mark>	IRN
27	YK <mark>DKVLLIVNVASK<mark>C</mark>GMT<mark>NS</mark>NYTELNELYNRYKDKGLEILAFPCNQFG<mark>D</mark>EEPGTNDQ</mark>	TD
61	LNNRVVLVVNVASK <mark>U</mark> GLTAANYKEFATLLGKYPATDLTIVAFPCNQFG <mark>G</mark> QEPGTNAE.	IKA
59	YRGFVCIVTNVASQ <mark>UC</mark> KTEVNYTQLVDLHARYAECGLRILAFPCNQFG <mark>KQEPGSNEE</mark> :	IKE
29	YRGHVCLIVNVACK <mark>UC</mark> ATDKNYRQLQEMHTRLVGKGLRILAFPCNQFG <mark>GQEPWAEA</mark> E.	IKK
31	YKGKVVLVVNIASK <mark>C</mark> CITKNNY <mark>EKLTDIKEKYGERGIVIINFPCNQFG</mark> S <mark>O</mark> MPEADGE	AMV

81	FCQLNYGVTFPIMK <mark>KIDVNG</mark> GNEDPVYKFLKSQKS <mark>G</mark> M-LGLRG <mark>IKWNF</mark> E <mark>KFLVDK</mark> KGK
80	FCKLNF <mark>G</mark> VTFPMFE <mark>KIDVNGEN</mark> ESL <mark>LY</mark> SYLK <mark>EQKS</mark> GM-FGSK- <mark>IKWNFTKFLVD</mark> RE <mark>G</mark> N
80	FAQSKY <mark>G</mark> VSFPIMA <mark>KIEVNGEN</mark> TEPIFS <mark>FLK</mark> KASN <mark>G</mark> ED <mark>IKWNFA</mark> KFLVDKTGE
87	FVCTR-FK-SEFPIFNKIEVNGENASPLYKFLKKGKWGI-FG-DD <mark>IQWNF</mark> AKFLVDK <mark>N</mark> GQ
121	FASARGFS <mark>G</mark> AGALLMD <mark>KVDVNG</mark> ANASPVYNFLKVAAGDT-SDLGWNFG <mark>KFLV</mark> RPD <mark>G</mark> T
119	FAAGYNVKF-DMES <mark>KICVNGDDA</mark> HPLWKWMKIQPK <mark>G</mark> KGILGNAIKWNFTKFLIDKNGC
89	FVTEK-YGVQF-DMES <mark>KI</mark> KVNGSDADDLYKFLKSRQHGTLTNN <mark>IKWNFSKFLVD</mark> RQGQ
91	CHLRD-SKADIGEVFAKVDVNGDNAAPLYKYLKAKQTGTLGSGIKWNFTKFLVNKEGV

138	VYERYSSLTKPSSLSETIEELLKEVE
136	VIKRFSPQTTPKSIEKDIEELLA
133	RVTAYAPTVAPEDLKKDIEKLLN
143	AVQRYYPTTSPLTLEHDIKNLLNIS-
177	VFGRYAPTTGPLSLEKYIVELINSR-
176	VVKRYGPMEEPLVIEKDLPHYF
145	PVKRYSPTTAPYDIEGDIMELLEKK-
148	PINRYAPTTDPMDIAKDIEKLL

Supplementary Figure 6 - Glutaredoxin

Escherichia coli Grx3 Nostoc sp PCC 7120 Brucella suis Magnetospirillum magnetotacticum Arabidopsis thaliana Geobacter sulfurreducens

7 Escherichia coli Grx3 Nostoc sp PCC 7120 9 Brucella suis 7 Magnetospirillum magnetotacticum 7 Arabidopsis thaliana 11 Geobacter sulfurreducens 11

1	MANVEIYTKETCPYCH	RAKA
1	MSNLFNQLFGRSPAKIK <mark>A</mark> NVEIYTWQTCPYCI	RAKI
1	MVD <mark>VIIYT</mark> RPG <mark>C</mark> PYCA	RAKA
1	MAEIEIYTTDVCPYCV	KAKK
1	MTMFRSISMVMLLVALVTFISMVSSAASSPEADFVKKTISSHK <mark>IVI</mark> FSKSY <mark>C</mark> PYCN	KAKS
1	-MMVRSLTAMLVLAATVALTPALLHSAPDKPGRTAESRNPSVVIFVGEGUPYCD	EVEF

6	GGLDPLLK
3	GQLDPLLVQPA
6	GKLDSLLKTGKLI
7	GKLDPMLAGAR
9	G ELAK LL GVSGNKEAEL
3	-ALADIRSSRP

Supplementary Figure 7 - Protein homologous to N-terminal domain of Prx reductases

Thermoplasma acidophilum

Supplementary Figure 8 - Thiol:disulfide interchange protein

Geobacter metallireducens

Aquifex aeolicus Microbulbifer degradans Magnetococcus sp. MC-1

${\it Geobacter\ metallireducens}$

Aquifex aeolicus Microbulbifer degradans Magnetococcus sp. MC-1

Geobacter metallireducens

Aquifex aeolicus Microbulbifer degradans Magnetococcus sp. MC-1

Geobacter metallireducens

Aquifex aeolicus Microbulbifer degradans Magnetococcus sp. MC-1

Geobacter metallireducens

Aquifex aeolicus Microbulbifer degradans Magnetococcus sp. MC-1

1 1 1	MHHSAFALQLLHSRLISQQSENPMSQPAANTFFVKAAKSVGIFVVLLVGAYIINVEIQSY
1	MGGVGAWTLKKLISLILFALSMUMV
1 17 61	MAQIEWITSLAEGLSMAGRENRIVLLDFFNPGUIGCKQMDAVAYPDAAVMTFIN TFSOEWFADFDKGVNTAKKEKKLVLIYFYSDHCPYCHQVEEFVFGDEDVEKFIN LGRNAAVAUGLPTHTFFOALSIAKOOSKPVIANESAAWCPACRRIDKDVLAKEFVKORTE
26	PS <mark>SQ</mark> ASFIGESLDMDLPGEMANAGKEGKGLVVMFHYSGCPFCDKMRQRVFPDPAVVAYYS

22	DNLVPVRIPADDPVLGPQFRVRWTPTIIVLDAQGDEHIRTLGFIPP
71	KNFIVISVNINSNLSEKFDVFGTPTFVIYDPLRG
121	QHYIFTRIDYDTEEGQTFMARYQAKGTPTLLILDAQGE
86	QHFVLLETNIRGDLEMVAPNGEGMSEKQWAHKMRIRATPVFLFFDAEGK

101	ADLIPSLLLGMGKARFNQPDRQAACQCFRRIISDYPKNSLAPEAIYLNGVARYIETHDV
105	KVLAKFFGSLDA
159	QLKRLNLTFAP
135	ERLKLTGYQAP

161	NLIGIHDRLAAEYPDSPWLTRADPYKLLKR
118	TFLSMLTRVCNKSSVRRC
171	QFLTQL
147	VFIQAGRYVQEKGWEKGSFVRWLRQSGS

Supplementary Figure 9 - DsbG-like

Chloroflexus aurantiacus Chloroflexus aurantiacus Thermobifida fusca Streptomyces coelicolor Archaeoglobus fulgidus Sinorhizobium meliloti	(Sec) (Cys)	1 1 1 1 1	MARPLILWVVIMLVACTASAPVADMPSPTAVVPTTTPSTSPTS
Chloroflexus aurantiacus Chloroflexus aurantiacus Thermobifida fusca Streptomyces coelicolor Archaeoglobus fulgidus Sinorhizobium meliloti	(Sec) (Cys)	44 44 57 46 61 58	TTARTVARPTAALPTVTAVPATAVPVVTYRG
Chloroflexus aurantiacus Chloroflexus aurantiacus Thermobifida fusca Streptomyces coelicolor Archaeoglobus fulgidus Sinorhizobium meliloti	(Sec) (Cys)	75 80 88 78 121 93	-ALVGRDANGAYTLGDPAAPLTLTDYSDFLUTVCRRHVLTVEPALIEQYVVTGRVLYVFR MAQLGISABFYAILGDPNAPVTIIEFTDFGCTFCRRHHVLTFPALREEFISSGQVFYVVR VPPQVDPELVLGRSDAPVTMVVFSDYQCPYCARFALEQQPVLVERYVETGQVRLVWR LALARRDASDFLAIGRADAPVVLTEYSDFQCPFCGRFARETKPELLRSYVDKGTLRIEWR EVRINVSIDDPFKGAEDAKVVIVEFSNYACGHCADFAIETEPKILEKYGDKVKIVFR AKLLEPGALPEMALGEANAPVTIVEYMSMTCPHCANFHNDTFDAIKAKYIDSGKVRFIVR
Chloroflexus aurantiacus Chloroflexus aurantiacus Thermobifida fusca Streptomyces coelicolor Archaeoglobus fulgidus Sinorhizobium meliloti	(Sec) (Cys)	134 140 145 138 179 153	PVLNHCAASLITTAAAFCAGEQDAFWPMHELLFERQGEVAATRDSDLPALMRSYAADLGL QLPVTSPHGDQAALAALCAGEQGKYWEMHDQLFA-AGDAWYSDATTARRRITALATDLGL DYBYLGBESVRAAVAARAAGRQGRYWDYHEALYE-SSEVWRAAC-ASRESLVEVAATIGL NFPIFCGESEQAALAGWAAGRQNKFWEFHDVAYGKPRERNTCAFDAENLVAMAREAGI DFPGFCGISYFAAEAANCAGEQGKYWEFHDLLFENQREWISNNSKIYDYAEQLGL EFP-FDPRAAAFFULARCAPE-GQYFPMVSMLFKQQEQWAAAQNGRDALLQLSKLAGF
Chloroflexus aurantiacus Chloroflexus aurantiacus Thermobifida fusca Streptomyces coelicolor Archaeoglobus fulgidus Sinorhizobium meliloti	(Sec) (Cys)	194 199 203 196 234 209	A-LEPEDACMNDGAAQRLADTLDAE-QEQRCIRVQPVFEIGDIRLVGLQTLE D-SAVLQRCMEHPATQATLARHVSE-AHAIRVFGTPTFFINNQLFAGAQPIA D-TEQEAVDLADPVLRDAVBEDFAF-ALGLGVPGTPAFLIDGEAFFGAQPVE ADLEREQADMASDEARGAVRADQEE-CYTLGVTSTPAFLVNGRFILGAQPTD N-VDEEKACLESGKYRDEVDKDYKD-CISYGVTGTPTFFIGTPNGTFVNGKKVAGALNFE T-QESEBACLTNQKLLDDVNAVMQRGAKEFGVKSTPTFFVNGEHYSGDMSVD
Chloroflexus aurantiacus Chloroflexus aurantiacus Thermobifida fusca Streptomyces coelicolor Archaeoglobus fulgidus Sinorhizobium meliloti	(Sec) (Cys)	244 249 253 247 292 260	RFASLIBROP RMRDVIBGCGRR RFAERLDEAUGKRG TFEEAVETAATAAKTANTTEGAGR QFAALIEQEUQQAS VMSALIDSKU

Supplementary Figure 10 - Fe-S oxidoreductase

Archaeoglobus fulgidus Desulfovibrio desulfuricans Aquifex aeolicus Magnetococcus sp MC 1 Pyrobaculum aerophilum Desulfovibrio vulgaris 5 Archaeoglobus fulgidus Desulfovibrio desulfuricans 4 Aquifex aeolicus 3 Magnetococcus sp MC 1 5 Pyrobaculum aerophilum 4 Desulfovibrio vulgaris 2 Archaeoglobus fulgidus 11 Desulfovibrio desulfuricans 7 Aquifex aeolicus 8 Magnetococcus sp MC 1 11 9 Pyrobaculum aerophilum Desulfovibrio vulgaris 5 17 Archaeoglobus fulgidus Desulfovibrio desulfuricans 13 Aquifex aeolicus 14 Magnetococcus sp MC 1 17 Pvrobaculum aerophilum 14 Desulfovibrio vulgaris 10 Archaeoglobus fulgidus 228 Desulfovibrio desulfuricans 193 Aquifex aeolicus 193 Magnetococcus sp MC 1 230 Pyrobaculum aerophilum 20 Desulfovibrio vulgaris 16 26 Archaeoglobus fulgidus Desulfovibrio desulfuricans 22 Aquifex aeolicus 22 268 Magnetococcus sp MC 1 Pyrobaculum aerophilum 26 Desulfovibrio vulgaris 20 Archaeoglobus fulgidus 32 Desulfovibrio desulfuricans 288 Aquifex aeolicus 28 Magnetococcus sp MC 1 32 Pyrobaculum aerophilum 32 Desulfovibrio vulgaris 262 Archaeoglobus fulgidus 37 Desulfovibrio desulfuricans 333 Aquifex aeolicus 333 Magnetococcus sp MC 1 38 Pyrobaculum aerophilum 36 Desulfovibrio vulgaris 31 Archaeoglobus fulgidus 42 Desulfovibrio desulfuricans 38' Aquifex aeolicus 38 44 Magnetococcus sp MC 1 Pyrobaculum aerophilum 42 Desulfovibrio vulgaris 36

1 1 1 1 1	MVEEKVVEKGKERAVEVTKWRRVFDDYRAMSDEILRPD MGIADRKIEDEGLKRGIAALTPDRIQSVIQSVIQGE MVKLFHKEKVSQEDIKKFYNFCKSSINSE MADDIHVPEIGDDIVTPAPVVGTMSHIKPIPAQAKHME MKLEFRLGDTSNLKPLKAPEGLVVKLQKKAGIESPAD MSDDTLKPHQEPGRTFKDRVMEVLPDG	EPKKEKFLEAMRKYLI TGAR VAAY PLDFPGERVENWQQAGIEKF KYSYVEK <mark>R</mark> I
5 1 9 8	KQNWPFLLPYKITLEACTKCGTCAEACTMYLGSGRK KVYAETCMRCGMCAFACHYYLSHDGD LEACVRCGLCAEACHFYMGENISGKID GDLLSKYRSLQVFMDICVKCGSCTDKCHYYLGTQD REEYGRNRNIKIAVDTCVHCGACIDACPTYLTTKD GNINLCITCGACSACCPATGLEDMD	KIYSPVYRSDMLRKIYKKHE PSYSPVG PTLTPAYKADLLREIYKENY PNNMPVQRAELMREVYRRYE LRNSPVG
1 5 1 4 3	TLTGKLFGPLIGAKDPTEDDINALAESAY-RCTVCRRCAL KVEQTMWKILRSEGRLTPDDIYLMAQLAYTECNLCRCTH TLWGRIKKLFGFGVKIKPEDLYEQVRLAYYTCTMCDRCTK TPGGKLFPSLVKASDFN-EETLEKWFTYEHQCSQCRRCSV -RAELLRDIIKRRKKVNDDVLELLYTYYMQCLTCRRCGY -PRKFLRMAALGMDEEVTTTPWVMMCTMCMRCMY	ACPFGLDNGLITRETRKIFA YCPVGIDTGYIMSTVRRICH ICPMGIDTPMLVGIVRGAI FCPYGIDTAEVTMAARELMI VCPFGIDQADITRVVRGVLF VCPMQINIPQLVYHARASWF
0 5 1 3 8 6	DIGIVEDEIKONGVENQIKYGNAPKIPYEAFMDILEFIKE RIGVTFLYIQDT-AHSHSGIMNOMWVKEDEWIDSLQXQEE QIGITEEDIVEA-TNRAIEQGSPIGVDTKTFLQRIDFISD SIGVG-HKYSAEIVGKVHDLGNNLGIPKPALKGTLDFIED EAGLVSRYAAMT-IDKHIDTGNNMGITPAATINILTYFAN REKRPRGIVNSCDAALKTESNSAMGASPDDFAYVVEDVLE	DIEDEKGVEVEIPVDKK EARDEIPTVRFPIEKE EWEVEMPVDQP DILETTGHEVRLPIDQKG EIKSEKGVDIEYYVYRH EVRSTQPGQEKLTAPVDKHG
8 1 0 5 6	AKYLIMNNAGDYLAFTETV ADIMYSVIAPEPKFRTQLI AEYLYIPSSIELM	QGIVEIMNYVGEDWTLNSPK YQAGVIFDQAGVNWTLPQ AAAAKILNKSGVKWTLS MGYAKVFHQAGISYTIS KGCLAFLHAIKLPFVIN VPLWKILDMAGADWTYG
7 8 7 8 2 2	TGVNDIVNYGLEYSDEDLV-RVMKAHVETAKKLDVEYLVV TPGWDNSDMAMESGDYEIMGRVKRAHEETAORLKVKRIVM TVAHEATNFGMFVQDKKVIKELLERILKGAKELGIKTIIS SVASEAANFGMFIGNFDOMOKTAKRISDOARELGVKRIVV TRSVEVANFGLWT-HEKIMKLIAOHYIDAAKELGAKMAIF SVGWAAENYCMEAADDEAWETIVRNKVKAVEDLGCKVWLN	GECGHAYDSIAHFAKDLIPE GECGHAFRSIYDVGNRWLGW PECGHAYQAIRFVAPNVFP- GECGHAWRVAYAFWNTLNGE GECGHGWRAFKNVVAPVLEF TE <mark>UGH</mark> ELYAIRSGLQKFNIK
6 8 6 8 1 2	EERPFKVISWMELLDQFIREGKIKLDKEKNPFP KWHPVPVVHSVEFFWELFTQGKIKLAK-QFEFP KEWDFEVLNVVEFIKKMLDEGRIKLNK-KVVDV FDYLDPRYPVPQHICEFTNDLYNRGALTMDRSANDDKI EGIKTYHIHHLVVRAIREGRIKLNPBANGDIL PKFEIESIIRLYARWIREGKLPVSSBWNRFRKVK	VTFHDSCKWGRIG VTIHDPCNIIRGF VTLHDSCQIGRRG ITFHDSCNVARASRMGPNPG YMYQDPCQYSRGG FTVQDPCQLVRKSFGE
2 3 1 6 2	GIYEEPRRILQAACKDEREMYPNREWNYCCGGGGGF GLTEKLREVVSFLCPNVVEMTPNREHNLCCCAGGG GVLREPREILTHISQKFVDSVEFPEKNICCGGGGGG GQFEIPRALIRASANRFVDMDPDTIHEKTFCCGGGGGGL DLIDEPRFIMNHVVKKWVECPQNRCLNWCCGGQAGM PVADDLRFVAKAVCGEENVIEMWPNRSNNYCCGGGGGF	AIMAKDDFLKFRMETYGKM VINCGPPFKNVRVEGN-RAK VVHEADEHRRKAFLTK LTDELMDLRIKGVMPRVTAI LADELKPLRLQYAKLWYECA LQSGYPEARRYYGRLK
8 7 4 2 6	VQQLKQTGAKIIATICSNCKAQFREMINYYNLDMRESG-V AEQLKRTEVGVIIAPCHNCHGCLEDIVHHYELGMSLKF-L MELFDKAGTKNVACYCANCMLALEKSSKELNRDYKFLS-L KKVMEEDNVNFLALICAICKAQFTKVLPYYGIPMDTVGGV INAGAQHVVRPCSMCKCTLNCVIELNKMYCKSLTEGG-V NEQIVATGAPYVIAPCHNCHSOISDLSDHYCAGYRVWH-L	SELVANALVYE GDLIYECMEKPGAE VELVAEALEDEE HQLVSNATQLGAKKGIV MDLVYKALVF WTLTALSLGILCENEREYLG

Supplementary Figure 11 - DsrE-like

Methanococcus jannaschii Methanopyrus kandleri Magnetococcus sp MC 1 Desulfovibrio vulgaris Methanosarcina mazei

110	NVVTF-
117	NVIFF-
114	RVITF-
103	RILNF-
102	RILTFG

-

Supplementary Figure 12 - NADH oxidase

Deinococcus radiodurans Bacillus halodurans **Geobacter metallireducens** Archaeoglobus fulgidus Methanococcus jannaschii Oceanobacillus iheyensis Giardia intestinalis

Deinococcus radiodurans46Bacillus halodurans46Geobacter metallireducens48Archaeoglobus fulgidus46Methanococcus jannaschii61Oceanobacillus iheyensis48Giardia intestinalis36

Deinococcus radiodurans105Bacillus halodurans100Geobacter metallireducens108Archaeoglobus fulgidus101Methanococcus jannaschii120Oceanobacillus iheyensis105Giardia intestinalis95

Deinococcus radiodurans162Bacillus halodurans158Geobacter metallireducens167Archaeoglobus fulgidus158Methanococcus jannaschii179Oceanobacillus iheyensis164Giardia intestinalis155

Deinococcus radiodurans223Bacillus halodurans214Geobacter metallireducens224Archaeoglobus fulgidus214Methanococcus jannaschii235Oceanobacillus iheyensis222Giardia intestinalis214

Deinococcus radiodurans27Bacillus halodurans26Geobacter metallireducens27Archaeoglobus fulgidus26Methanococcus jannaschii29Oceanobacillus iheyensis27Giardia intestinalis27

Deinococcus radiodurans33Bacillus halodurans32Geobacter metallireducens33Archaeoglobus fulgidus32Methanococcus jannaschii34Oceanobacillus iheyensis33Giardia intestinalis33

1MRIVIVGGVAAGMSAASRAKRFDPDAEVVVFERGDFISYGACGIP 1MKYVIIGGDAAGMSAAMEIVRNEEAANITTLEMGSIYSYAQCGIP 1MAKEKIVVIGGDAAGMSAASQAKRRPELEIVVFERSPHTSFSAUGIP 1MRVVVIGGGAAGMSAASRVKALQPEWEVTVFEETNFVSHAPCGIP 1 MVNRKPNNPNKNGEEMRATIIGSGAAGLTTASTIRKYNKDMEIVVITKEKEIAYSPCAIP 1MSKKIIIVGGVGGGATVAAQIRRTNKTAEILVLERNGYVSFANCGMP 1MSKKIIIVGGVGGGATVAAQIRRTNKTAEILVLERNGYVSFANCGMP 1
46 YVLGGAVGEWDDLIART BAQMRGR-GIGVQLGHEVTGVDAEARTVTVLDRAAGRVATE PY 46 YVVGGVI PQTEKLIART IETFRNKYGIDARTNHEVTKIDPDSKHVYGANFEI PY 48 YYVGRVVDKEEKLVIRS PEKFREKYGIDARALHEVVEIDAAQGKVRVRDLQRGGSAWESY 46 YVVEGLSDP-SHLMYYPPEFFREKRGIDLHINAKVVEAGDGFVRVIEDGQEKTYEW 61 YVIEGAIKSFDDIMHTPEDYKRERNIDILTETTVIDVDSKNNKIKCVD-KDGNEFEMNY 48 YYLGGTITDRQKLIYPE-EKFAQKYDLTVQTHANVTKINREQKSVVYEKYKTEHKADY 36 LGVHGTVKDMESLFYSNPDDLAGL-GCVCHMQYNVTDIDFTTKKLTAVSLVTNETVTERY
105 DRLLVATGVSAVRPDWAQTDLAGVHVLREIPDGQATADSLKGAGR-VCIVGGGYIGLE 100 DKLLIATGARPLVPNWPGRTLAGIHTIKTIPDTEVLLADLKGEIKNVVIVGGGYIGLE 108 DQLLIATGAVPLCPDLPGSDAVDICGVNTLESCLEIRRRLD-KGGMKKGVVVGGGYIGLE 101 DKLVIATGALPKTPFEGLELENVFTVRHPVQAAELREAVEKAENVVIVGAGYGVE 120 DYLVLATGAEPFIPFIEGKDLDGVFKVRTIEDGRAILKYIE-ENGCKKVAVVGAGAIGLE 105 DILIISFGASPVIPDIAGLQQSNTFPLRTIEDMDNIEQFIQ-SNNPQSAAIIGGGFIGLE 95 DKTVFATGSWPIIPDIPGIKSDKVLLCKNYMHAKKIVETFSHEENTKHCVVIGAGYIGVE
162 LAENMCRQGLSVVLLERNPDVGGRVLDPEYRPRLLDELGRHGVDVRCGTTVEGLIGKAGR 158 MAENLALTGKNVTIVEANAQLAA-IFDQEMGEIIHQEAERKGVTLRLKEEVKGFEG-TDR 167 MAEALVRHGLEVSLVNRAPQVMG-TLDYDMCAMVSQALRDVGVSLYLEETLTAFETKGGK 158 MAEAAAARGKKVTVVEFLDQELP-NLDRDVADLVKHKLEEK-VNLRLGEKVEAFEG-DGA 179 MAYGLKCRGLDVLVVEMAPQVLPRFLDPDMAEIVQKYLEKEGIKVMLSKPLEKIVG-KEK 164 MAESLCHRGFSCSLVDRSEHVLK-RIDKEMAIHIDEHLQEKGLALYVNDGLKSFSDNG 155 LAEAFGLKNQPCTLLDGSGRIMSRNFDKFFTDICEDEMRAHGVQLQMGERLEAFDE-DDG
222VTGVQTDGGLVRADVVVVAVGVKPNVDLLRAAGARLGKTGAAAVDVRQQTNVD216VQAVVTSSATVPAELVIIAIGVVPNTTFLEGQPFHRHENSALKVNAYMETNLP226VTGVVTDRTLFADIVILGLGVRPNTALASAAGIPLGEKGSIRVNERMQTGVA215VRKVVTDKGEYFADVVIVATGVKANTALAEQIGCKIGETGAIWTDSRMQTSVE238VEAVYVDGKLYDVDMVIMATGVRPNIELAKKAGCKIGKFAIEVNEKMQTSIP221TTLHLSSDKTIQADMTIMATGIKPNTELAIDAGLEIGETGGIKVNQYMQTTDP214KIVVRTSKGVYSCDAAILCIGFRPVTEMILESAERHGVKLDVHHPSKAIIIDECARTSIP
275 GVYAAGENCESLHRVTRRRVHIPLGLTANRMGRIAGINMAGG-DAKFPGVVGTSIFKVFG 269 DTYAAGDCATQYHRIKKLDDYIPLGTHANKQCRLAGLNMVGK-RRAFAGVVGTSIIKFFD 279 GTWAAGDCAESFHLVSRKPVHIALGTVANRHCRVAGINLGCG-YATFPGVVGTAVTKICQ 268 NVFAAGDCAETTHMITKKRVWIPLAPPGNKMGYVAGVNAAGG-NIEFPGVLGTQLTKFFD 290 NIYAVGDCVEVIDFITGEKTLSPFGTAAVRQCKVAGKNIAGV-EAKFYPVLNSAVSKIGD 274 TIFALGDAVEVTDFITREPAHIALAWPAHRQAFIISSFLSGN-PISDDGIIGSSILRVFD 274 GVYAIGDCATIHYTVTDEDRYMPLATNAIRTGLAAAAHILKLKHLRLIGTEGTSGIRIFK
 334 LGVARTGLTQGEAAALGIN-AVSVDVTSTDHAGYYADARPIHVRITGERGTGRLLGGQLV 328 LSLGRTGLSEKETRDARIP-ASSITFDCRDIAGYYPGAEPLKIKLVYHSETNQLLGGQVI 338 VEVARTGLOEELRELGIE-WISAVIKSRTRAGYFPGAGGITVKVLAERGSGRLLGGQIV 327 LEIGATGLTEKAAKAEGFE-VKTAVVKAKTRVHYYPGAKDTFLKVVADASTKRILGAQVL 349 LEIGGTGLTAFSANLKRIP-IVIGRAKALTRARYYPGGKEIEIKMIFNED-GKVVGCQIV 333 LTVAATGONKQTLIDNEIA-FEETIMKGYSHAAYYPGSKELWQIVYDKNTGQLFGGSVI 334 HHMASTGLTEEGALLAGIKNVKSVIINDTDRPGFMPTNANVMVKLVYDGDTHRVLGGOMM

Deinococcus radiodurans
Bacillus halodurans
Geobacter metallireducens
Archaeoglobus fulgidus
Methanococcus jannaschii
Oceanobacillus iheyensis

١G

Supplementary Figure 13 - Distant homolog of peroxidase/peroxynitrite reductase system component AhpD

Known selenoproteins

Formate dehydrogenase	Peroxiredoxin
Escherichia coli	Eubacterium acidaminophilum
G U G C A-U C-G G-C U-A G-C G-G 12 28	G U A U C-G G-C A-U C-G U-A U-A U-A 11 28

Selenophosphate synthetase Geobacter sulfurreducens

G ^G C
C-G
C-G
G-C
G-C
G·U
U·G
10 28

New selenoproteins

HesB-like protein	SelW-like protein	Thioredoxin	Glutathione peroxidase
Desulfovibrio vulgaris	Campylobacter jejuni	Geobacter sulfurreducens	Treponema denticola
g ^G A		GU	G
UU	G	C-G	GŪ
C-G	G G	C-G	A-U
U-A	A-U	A-U	A-U
C-G	A-U	C-G	C-G
G-C	C-G	G-C	C-G
G-C	G-C	C-G	U-A
U∙G	U-A	U∙G	U-A
U-A	Ċ-Ğ	Ъ·Ć	Ć-Ć
19́37	17 31	1ế <u>3</u> 4	19́ 35

Candidate selenoproteins

Fe-S oxidoreductase	DsbG protein	DsrE-like	Distant AhpD homolog
Desulfovibrio vulgaris TT	Chloroflexus aurantiacus	Desulfovibrio vulgaris	Geobacter sulfurreducens
ເັດ		G ^G U	
G-C	G ^U G	C-G	GC
C-G	CU	A-U	G C
C-G	A-U	C-G	C-G
U-A	C-G	C-G	G-C
A-U	U-A	U-A	C-G
G·U	G-C	A-U	U-A
C-G	C-G	C-G	U-A
Ģ-Ç	C-G	G-C	C-G
16 34	12 28	14 32	12 27
			· – – – /