
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Robert Powers Publications Published Research - Department of Chemistry

2015

Deterministic Multidimensional Nonuniform Gap
Sampling
Bradley Worley
University of Nebraska-Lincoln, bradley.worley@huskers.unl.edu

Robert Powers
University of Nebraska - Lincoln, rpowers3@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/chemistrypowers

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Robert Powers Publications by an authorized administrator of DigitalCommons@University
of Nebraska - Lincoln.

Worley, Bradley and Powers, Robert, "Deterministic Multidimensional Nonuniform Gap Sampling" (2015). Robert Powers
Publications. 66.
http://digitalcommons.unl.edu/chemistrypowers/66

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fchemistrypowers%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/chemistrypowers?utm_source=digitalcommons.unl.edu%2Fchemistrypowers%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/chemistryresearch?utm_source=digitalcommons.unl.edu%2Fchemistrypowers%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/chemistrypowers?utm_source=digitalcommons.unl.edu%2Fchemistrypowers%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/chemistrypowers/66?utm_source=digitalcommons.unl.edu%2Fchemistrypowers%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages


Deterministic Multidimensional Nonuniform Gap Sampling

Bradley Worley and Robert Powers*

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304

Abstract

Born from empirical observations in nonuniformly sampled multidimensional NMR data relating 

to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in 

biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly 

drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs 

constrained random deviates to minimize the gaps between sampled grid points. We describe a 

deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, 

which performs comparably to its random counterpart with the additional benefit of completely 

deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform 

sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that 

combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a 

relationship between stochastic gap equations and the expectation value of their sampling 

probability densities.

Graphical Abstract
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1. Introduction

The use of nonuniform sampling (NUS) in multidimensional NMR is rapidly becoming 

standard practice in most biomolecular solution-state experiments, thanks in large part to 
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recent developments in fast reconstruction algorithms, novel sampling schemes, and the 

continually declining cost of computing power [1]. The potential benefits of collecting a 

subset of the full Nyquist grid – including increased sensitivity and signal-to-noise, 

improved resolution, and reduced experiment time – have received significant attention [2-6] 

in recent years as a consequence.

One intriguing result of recent investigations into the parameters of NUS experiments is the 

use of random deviates for generating sampling schedules [7]. In fully random sampling 

schemes, a subset of Nyquist grid points are drawn from a probability density function that 

varies over the grid, producing a sampling schedule with a desired distribution of points. 

Common fully random sampling schemes utilize uniform, exponential, Gaussian and 

envelope-matched probability densities [3, 8]. While randomization is a simple means of 

reducing the artifacts due to aliasing of nonuniformly spaced samples, it turns the already 

complex task of schedule generation into that of selecting a schedule from an ensemble of 

possibilities, each of which performs differently in practice [9, 10]. Several ad hoc metrics 

have been proposed to assess relative performance of sampling schedules, but no universally 

accepted metric exists to guide the selection of a stochastic schedule from its ensemble [10, 

11]. Without a priori knowledge of the frequency and decay rate distributions of the signals 

to be measured, it is difficult to reliably quantify sampling schedule performance [1, 8]. As a 

result, numerous recent attempts have been made to reduce or remove pseudorandom seed-

dependent variability from nonuniform sampling algorithms [9, 10, 12, 13]. Such efforts are 

an important step towards increasing the practical utility of nonuniform sampling in 

everyday spectroscopic experiments.

A prominent method designed to reduce seed-dependent variability in pseudorandomly 

constructed schedules is Poisson-gap sampling. Through an empirical analysis of Forward 

Maximum Entropy (FM) reconstructions of randomly sampled data, Hyberts et al. proposed 

the use of constrained Poisson random deviates to define the gaps between sampled points in 

a Nyquist grid [9]. The FM reconstruction residuals of these so-named Poisson-gap 

schedules exhibited a markedly lower dependence on seed value than unconstrained random 

sampling methods. While Poisson-gap sampling yields high-quality reconstructions of NUS 

spectral data, its average behavior is not well-understood, its implementation for 

multidimensional Nyquist grids is unclear [14-16], and its relationship – if any – to fully 

random sampling is unknown. To meet this need, we describe in detail the deterministic 

generation of sinusoidally weighted multidimensional gap schedules that model the average 

behavior of stochastic Poisson-gap (PG) sampling. We also derive an expectation sampling 

probability distribution that describes the average weighting obtained using Poisson-gap 

sampling schedules.

Among the myriad of different sampling schemes proposed for NUS data collection [17], 

burst-mode sampling similarly concerns itself with gaps between sampled grid points. 

Unlike Poisson-gap sampling, which aims to minimize the length of gaps, burst-mode 

sampling aims to minimize the number of gaps while keeping the effective dwell time low 

[18]. We leverage the complementarity of burst-mode and Poisson-gap sampling in our 

deterministic gap sampling algorithm to describe a novel sampling scheme that 

simultaneously seeks to bias sample collection to early times, minimize the number of long 
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gaps between densely sampled regions, and minimize the largest gap length in the schedule. 

Our new method, called sine-burst (SB) sampling, exhibits the high performance of Poisson-

gap sampling while retaining the bijective mapping between inputs and outputs offered by 

deterministic methods.

2. Theory

2.1. Poisson-gap sequences

Gap schedules on a one-dimensional Nyquist grid are effectively finite integer sequences, 

computed from the following recurrence relation:

(1)

where xi is the grid index of the i-th term in the sequence and g(xi) is the “gap equation” that 

defines the distance between terms. The first term in the sequence, x1, is set to 1, and 

subsequent terms are computed until their value exceeds N, the size of the grid. The gap 

equation g(x) may be any non-negative function, and may be loosely interpreted as inversely 

related to the local sampling density at the grid index xi. Thus, when the gap equation equals 

zero for all grid indices, gap sampling will yield a uniformly sampled grid.

Poisson-gap sequences treat the gap equation as a Poisson random deviate having a rate 

parameter that varies as either a quarter- or half-sinusoid over the grid indices:

(2)

where Λ is a scaling factor that determines the global sampling density and θi is the 

fractional grid index that varies from 0 to 1 over the grid extents:

(3)

In all following descriptions of Poisson-gap methods, we shall restrict our attention to rate 

parameters which vary as quarter-sinusoids, where the fractional grid index is multiplied by 

a factor of one-half π. This choice of sinusoidal weight produces schedules which are 

heavily biased to earlier grid points. Using a factor of π produces half-sinusoidal rate 

parameters and schedules that are more densely sampled at both early and late grid points.

Because the expected value of a Poisson distribution is equal to its rate parameter, we may 

trivially construct a deterministic sinusoidally weighted gap sampler (sine-gap; SG) by 

setting the gap equation equal to the scaled quarter-sinusoid from equation (2), as follows:
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(4)

By construction, gap sampling schedules computed according to gSG will describe the 

average behavior of gPG. This is easily verified in one dimension by generating a sufficiently 

large set of stochastic Poisson-gap schedules and comparing the mean value of each 

sequence term to that of a sine-gap schedule (cf. Supplementary Methods and Figure S-1). 

Sine-gap schedules lie centrally within the Poisson-gap ensemble, while other schedules 

unrelated to Poisson-gap deviate substantially from the confidence region of the ensemble.

2.2. Multidimensional gap sampling

Gap schedules on a Nyquist grid having at least two dimensions are generated by placing 

multiple one-dimensional sub-schedules onto the grid, each with a different direction and 

offset from the grid origin. In practice, this process is accomplished recursively, with planes 

built up from vectors, cubes built up from planes, and so forth. Initially, recursion begins on 

the entire grid. At each level of recursion, sub-grids are constructed by ‘masking off’ each 

available grid direction in turn and constructing the remaining unmasked directions. For 

example, a three-dimensional xyz cube will be constructed from repeated sequences of yz, 

xz, and xy planes, and each xy plane will be constructed from repeated sequences of y and x 
vectors. Once a round of sub-grid construction has been performed along each direction, the 

sub-grid offset is incremented and the process is repeated until no more sub-grids remain at 

the current level of recursion. For a more precise definition of the recursive algorithm, see 

Code Listing S-1 in the Supplementary Information.

Creation of multidimensional gap schedules requires a slight modification to the fractional 

index, which now assumes the following form:

(5)

where Od and Nd are the origin and grid size along direction d, respectively. Equation (5) is 

referred to as “ADD” mode in the context of Poisson-gap sampling, and effectively results in 

multidimensional schedules that exhibit triangular forms [14]. It is worthy of mention that, 

in the one-dimensional case, equation (5) reduces to equation (3).

Finally, whether the Nyquist grid is one- or many-dimensional, a value of the global scaling 

factor Λ must be determined that yields the desired number of sampled grid points. Our gap 

sampling implementation, like the existing Poisson-gap method, iteratively rebuilds new 

schedules until Λ has been suitably optimized. Our implementation uses a heuristic search 

method that adjusts Λ based on the relative difference between the desired and obtained 

global sampling density at each iteration.
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2.3. Burst augmentation

Recent statistical descriptions of the discrete Fourier transform have shown that the 

bandwidth of a nonuniformly sampled signal is related to the greatest common factor of the 

gaps between sampled points [19]. One proposed method of increasing bandwidth and 

reducing artifacts in NUS data is to sample in multiple short bursts having zero gap length 

[18]. Using gap sampling, this may be accomplished by modulating the gap equation 

between zero and its maximum value several times over the Nyquist grid, like so:

(6)

The sine-burst gap equation gSB combines the sinusoidal forward-biasing and minimized 

gap lengths of Poisson-gap sampling with the minimized effective dwell time of burst-mode 

sampling, and does not require the use of random deviates to achieve reasonable artifact 

suppression.

2.4. Expectation sampling distributions

One disadvantage of stochastic gap equations is that they provide no direct measure of how 

likely each Nyquist grid point is to be sampled. While one may speculate on the 

approximate weighting obtained by a given gap equation, quantitation of the expectation of 

the sampling distribution requires the construction and averaging of a large number of 

sampling schedules (cf. Figures S-2, S-3 and S-4). Fortunately, the expectation sampling 

distribution of a given gap equation may be analytically obtained by computing the 

probability of sampling each point on the grid using a recursive formula. We define an 

expectation sampling distribution p(i) that varies over a one-dimensional Nyquist grid of N 
points as follows:

(7)

where p(i|i – k) is the probability of grid point i being emitted from grid point i – k, which 

requires a gap of size k – 1:

(8)

In other words, the probability of sampling any given grid point is the weighted sum of the 

probabilities of arriving at that point from all prior points. By substituting equation (2) for 

the gap equation into equations (7-8), we arrive at the sampling distribution of a one-

dimensional Poisson-gap sequence:

(9)
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As in the case of gap sampling, the sampling distribution produced by equation (9) is 

parameterized only by the scaling factor Λ, where larger values produce more forward-

biased schedules. We refer to this equation as the “expectation” Poisson-gap sampling 

distribution because it describes the expected value of the probability of sampling any 

Nyquist grid point, and is not itself useful for generating schedules that obey gPG. A more 

detailed derivation of equation (9) is provided in the Supplementary Information.

2.5 Multidimensional expectation sampling distributions

Extension of equation (7) to compute the expectation sampling distributions of stochastic 

gap equations in two or more dimensions follows from the fact that sampling along each 

direction is independent of other dimensions within our gap sampling framework. The 

probability of sampling any multidimensional grid point is therefore the sum of sampling 

that point along each grid direction. Supplementary Figure S-3 illustrates the expectation 

Poisson-gap sampling distribution on two-dimensional Nyquist grids. It is important to note 

that the Poisson-gap sampler originally proposed by Hyberts et al. does not strictly follow 

our gap sampling algorithm, because its sampling of each dimension is dependent upon 

which points in other dimensions have been previously sampled. This divergence between 

multidimensional Poisson-gap and Poisson-gap constructed according to our algorithm is 

observed by comparison of Figures S-3 and S-4, and is only truly apparent at very low 

sampling densities.

3. Materials and Methods

3.1. Generation of deterministic schedules

Deterministic sine-gap and sine-burst schedules were constructed using a small C program 

which implements our recursive gap sampling algorithm described above. Schedules were 

generated at 30%, 10% and 5% sampling densities on one-dimensional grids having 1024 

points and two-dimensional grids having 64×64 and 128×128 points. The first and third 

rows of Figure 1 show the deterministic schedules resulting from gSG and gSB at 30% 

density on 128×128 grids, respectively, and Supplementary Figure S-5 shows the schedules 

at 10% and 5% density.

3.2. Generation of stochastic schedules

Poisson-gap schedules were constructed using Java source code authored and provided by 

Hyberts et al. for generating multidimensional schedules (http://gwagner.med.harvard.edu/

intranet/hmsIST/gensched_old.html). A small command-line wrapper was written to provide 

direct access to the core schedule generation functions without use of the graphical interface. 

Fifty thousand schedules were computed at each of the sampling densities and grid sizes 

listed above. Each schedule was generated with a unique, large, odd-valued seed number to 

ensure the broadest possible sampling of the PG ensemble. The second row of Figure 1 

shows an example two-dimensional Poisson-gap schedule at 30% sampling density. 

Supplementary Figure S-5 additionally shows representative Poisson-gap schedules at 10% 

and 5% density.
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3.3. Spectral data collection

Experiments were conducted on a Bruker Avance III HD 700 MHz spectrometer equipped 

with a 5 mm inverse quadruple-resonance (1H, 13C, 15N, 31P) cryoprobe with cooled 1H 

and 13C channels and a z-axis gradient. A high-resolution 2D 1H-15N HSQC NMR spectrum 

was collected at a temperature of 298.0 K on a sample of uniformly [15N, 13C]-labeled 

ubiquitin in aqueous phosphate buffer at pH 6.5. A 2D gradient-enhanced 1H-15N HSQC 

spectrum with improved sensitivity [20, 21] was collected with 16 scans and 32 dummy 

scans over a uniform grid of 2048 and 1024 hypercomplex points along the 1H and 15N 

dimensions, respectively. Spectral windows were set to 3,293 ± 4,209 Hz along 1H and 

8,514 ± 1,419 Hz along 15N. The spectrum was windowed with a squared-cosine function, 

Fourier-transformed and phase-corrected along 1H to produce a half-transformed spectrum 

for IST reconstruction analysis (vide infra), and subsequently windowed and Fourier-

transformed along 15N to yield the “true” uniformly sampled 2D 1H-15N HSQC spectrum.

In addition, a 3D HNCA NMR spectrum was collected on the same uniformly [15N, 13C]-

labeled ubiquitin sample. The spectrum was collected at 298.0 K with 16 scans and 32 

dummy scans over a uniform grid of 1024×64×64 hypercomplex points along the 1H, 15N 

and 13C dimensions, respectively. Spectral windows were set to 3,293 ± 4,209 Hz along 1H, 

8,514 ± 1,419 Hz along 15N, and 9,508 ± 2,818 Hz along 13C. The spectrum was windowed 

with a squared-cosine function, Fourier-transformed and phase-corrected along 1H to 

produce an F3-transformed spectrum for IST reconstruction analysis, and subsequently 

windowed and Fourier-transformed along 15N and 13C to yield the “true” uniformly sampled 

3D HNCA spectrum.

3.4. Computation of performance metrics

All computational analyses were performed using in-house developed C programs. An 

implementation of the hypercomplex algebra described by Schuyler et al. [22] was used to 

perform all spectral data processing. Iterative soft thresholding (IST) reconstructions of 

subsampled spectra were performed using the algorithm described by Stern et al. [23, 24]. 

Impulse sets were generated for each constructed schedule by setting sampled grid points to 

one and skipped grid points to zero. At each sampling density and grid size for which 

schedules were created, point-spread functions were calculated by hypercomplex discrete 

Fourier transformation of each schedule's impulse set. Point-spread functions for schedules 

built on two-dimensional grids are shown for each sampling density in Figure 1. For one-

dimensional schedules, reconstruction residuals were computed from a subset of 192 F1 

traces of the half-transformed HSQC spectrum. The traces were nonuniformly subsampled 

using sine-gap, sine-burst and Poisson-gap (N = 10,000) schedules and reconstructed with 

400 iterations of IST at a threshold level of 98%. After reconstruction, the residual was 

calculated using the l2-norm of the differences between the true and reconstructed signals. A 

convergence analysis was also performed (Supplementary Figure S-6) to ensure convergence 

of IST to a stationary point, as measured by a lack of decrease in the l2 error. Figure 2A 

shows the distributions of IST reconstruction residuals from the HSQC traces, and example 

reconstructions from each sampling schedule at 5% density are illustrated in Figure 3. See 

Figure S-7 for a version of Figure 3 with contours reduced ten-fold to expose low-intensity 

noise and reconstruction artifacts. Reconstructions of 10 F2-F1 planes of the F3-transformed 
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HNCA were also performed after nonuniformly subsampling using sine-gap schedules, sine-

burst schedules, and a subset (N = 10,000) of the generated Poisson-gap schedules. Figure 

2B shows IST reconstruction residuals computed from the HNCA planes, and example 

reconstructions from each sampling schedule at 5% density are illustrated in Figure 4.

3.5. Generation of peak-picking statistics

A summary of the relative HSQC peak-peaking performance for the IST reconstructions 

from each sampling schedule and at each sampling density is listed in Table 1. For each 

2D 1H-15N HSQC spectrum of ubiquitin reconstructed via Iterative Soft Thresholding (IST) 

at each sampling density and each sampling method, a set of quality statistics was computed. 

Peak lists were generated using the peakHN.tcl utility provided by NMRPipe [25], with a 

minimum intensity threshold of 3.0×107. Then, a greedy algorithm was used to generate 

maximum-cardinality bipartite matching between the peak list of each reconstructed 

spectrum and the peak list of the true spectrum. Chemical shift windows of 0.015 ppm and 

0.08 ppm were used along the 1H and 15N dimensions, respectively, during matching. The 

number of peaks matched, lost and gained in the reconstructed spectra, relative to the true 

spectrum, were all counted. Lost peaks were any picked peaks in the true spectrum that had 

no match in the reconstruction. Gained peaks were any picked peaks in the reconstruction 

with no partner in the true spectrum. The intensities of all matched peaks in each 

reconstruction were then compared against their true intensities through the computation of 

a Pearson correlation coefficient, rint, which effectively summarizes the linearity of the 

reconstruction algorithm as a function of sampling schedule. Finally, root-mean-square 

chemical shift deviations of all matched peaks along the 1H dimension (dH) and the 15N 

dimension (dN) were also computed. Identical procedures and parameters, with the 

exception of an intensity threshold of 6.0×108, were used to peak-pick 1H-15N projections of 

the uniform and reconstructed HNCA spectra (cf. Table 2).

3.6. Analysis of sampling distributions

Expectation sampling distributions were also generated from the set of Poisson-gap 

schedules by averaging their resulting impulse sets. Supplementary Figure S-2 shows the 

expectation sampling distributions for one-dimensional schedules having different sampling 

densities, and Supplementary Figures S-3 and S-4 show the distributions for two-

dimensional schedules having the same densities. The heavy bias towards early time points 

in Poisson-gap sampling is reaffirmed in all figures. Sampling distributions were also 

computed via equation (9) for comparison to the distributions obtained by averaging 

multiple impulse sets (Figures S-2 and S-3). To verify that fully random sampling from 

equation (9) and gap sampling from gPG are not equivalent, 10,000,000 sampling schedules 

were generated by rejection sampling 51 grid points from equation (9) at Λ = 62.9 and N = 

1024, and histograms of the gap lengths at each grid point were computed (Supplementary 

Figure S-8). If the two methods were indeed equivalent, one would expect the histograms in 

Figure S-8A to resemble Poisson distributions (S-8B).
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4. Results

While at first glance, the deterministic schedules constructed using gSG in Figures 1 and S-5 

may appear unrelated to the Poisson-gap schedules, they are in fact realizations of Poisson-

gap sampling in which all random draws from the underlying Poisson distribution have 

resulted in the expected value. This fact is corroborated by the corresponding point-spread 

functions, which closely resemble those of the stochastic example at 30% and 10% sampling 

density. Reconstruction residuals from IST (Figure 2) also reveal a high similarity between 

the deterministic sine-gap and stochastic Poisson-gap schedules at 30% and 10% sampling 

density. However, the sine-gap PSF becomes less comparable to that of Poisson-gap at low 

sampling densities, where the benefits of incoherent sampling are more apparent. It is worth 

noting that the striking appearance of sampling artifacts in the sine-gap PSF is a 

consequence of the log-scaled color gradient used in Figure 1, which was necessary in order 

to visually expose very low-intensity artifacts.

The addition of burst augmentation in the form of gSB does not substantially alter IST 

reconstruction residuals relative to gSG and gPG. However, artifacts arising from regularity in 

gSG-based schedules at low sampling densities are diminished by burst augmentation, 

resulting in point-spread functions that more closely resemble those from stochastic Poisson-

gap sampling. This reduction of artifacts by burst augmentation comes at a small cost, as 

low-frequency spurs are introduced into the sine-burst point spread function (Supplementary 

Figure S-9) by modulating the gap equation. However, these spurs are low in magnitude and 

only readily apparent at very low (5%) sampling density. These spurs could potentially be 

reduced by burst-modulating each dimension in the schedule by a different factor.

IST residuals of sine-burst schedules (Figure 2, dashed lines) are slightly greater than those 

of one-dimensional sine-gap schedules and dense two-dimensional sine-gap schedules, but 

they improve relative to sine-gap as sampling density is decreased. Therefore, while sine-gap 

sampling is a valuable tool for understanding the nature of Poisson-gap sampling, it is 

clearly bested in performance by multidimensional sine-burst sampling as global sampling 

density is decreased. Burst augmentation re-introduces sampling incoherence into highly 

coherent sine-gap schedules to produce sine-burst schedules that more closely resemble 

Poisson-gap sampling schedules (Supplementary Figure S-5). This added incoherence is 

clearly evident in the 1H-13C projections of reconstructed HNCA spectra (Figure 4), where 

the more incoherent sine-burst schedule yields a more faithful spectral reconstructions than 

sine-gap schedule can.

5. Discussion and Conclusions

We have shown that Poisson-gap sampling is a single instance in a class of gap sampling 

methods that may or may not be defined stochastically. Using a well-defined gap sampling 

algorithm, we have described two new deterministic sampling methods: sine-gap and sine-

burst sampling, which do not rely on random deviates and have comparable performance to 

stochastic Poisson-gap sampling according to IST reconstruction residuals. From a practical 

perspective, Poisson-gap, sine-gap and sine-burst sampling methods produced nearly 

equivalent HSQC spectra (Figures 3 and S-7) that yielded essentially identical information 
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(chemical shifts, peak intensities) as highlighted in Table 1. Poisson-gap and sine-burst 

sampling also produced nearly equivalent HNCA spectra (Figure 4) after IST reconstruction, 

even at low sampling density. Table 2 also summarizes the peak-picking statistics collected 

on 1H-15N projections of the reconstructed HNCA spectra. For the practicing spectroscopist, 

this equates to the ability to nonuniformly sample at the performance level of Poisson-gap, 

without specifying a pseudorandom seed. We find gap sampling to be a flexible and 

attractive alternative to traditional probabilistic sampling methods that use probability 

densities to define the local sampling density over a Nyquist grid. In effect, gap sampling 

approaches the problem of local sampling density from the opposite direction of 

probabilistic sampling by defining the distances between samples on the grid. We have also 

derived the mathematical connection between stochastic gap equations and their expectation 

sampling distributions as a means of directly visualizing the grid-point weighting produced 

by a given gap equation. While these expectation sampling distributions are useful in 

describing the average sampling behavior of a stochastic gap equation, they do not provide a 

means of converting a gap-based sampling method into a fully random sampling method. In 

other words, we have shown that any method of constrained random sampling using a gap 

equation is inequivalent to fully random sampling from its corresponding expectation 

sampling distribution.

Finally, burst augmentation provides a concrete example of how deterministic gap sampling 

may be tuned to behave in a similar fashion to pseudorandom numbers. At first glance, the 

third rows of Figures 1 and S-5 would appear to have been generated stochastically, but they 

are a consequence of the squared-sine modulation term in gSB. It has historically been true 

that stochastically generated sampling schedules produced fewer prominent artifacts than 

deterministic methods such as radial or spiral sampling, due to high regularity (i.e. 
coherence) of the latter schemes. However, burst augmentation demonstrates that 

pseudorandom variates are not strictly required for producing incoherent sampling methods. 

Furthermore, while most pseudorandom number generators are indeed deterministic for a 

given seed value, this determinism is inherently different from the determinism offered by 

sine-gap and sine-burst sampling. By design, any parameters (e.g., reconstruction residuals) 

measured from pseudorandomly generated sampling schedules will not be smoothly varying 

– and therefore optimizable – functions of their random seed value. As a consequence, no 

absolute guarantee of spectral quality is provided to the spectroscopist employing 

pseudorandom sampling schedules, even if the relative difference in quality between the 

best- and worst-performing Poisson-gap seed values is small at sampling densities above 

30% (Figure 2). This problem with seeds has already been recognized: Poisson-gap and 

jittered sampling methods are, in fact, two separate attempts at minimizing – but not 

removing – the effect of seed values on schedule performance [9, 10, 13]. Deterministic gap 

sampling completely frees the user from specifying an arbitrary seed value, and provides a 

highly general framework that enables further investigation into which features of NUS 

schedules yield higher-quality reconstruction results.

Our C implementations of Poisson-gap, sine-gap and sine-burst sampling are free and open 

source software, and are available for download at http://bionmr.unl.edu/dgs.php. The 

programs are highly portable and C99-compliant, so they may be compiled on any modern 

operating system. An online schedule generation tool is also provided at the same address 
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for rapid generation of one-, two- and three-dimensional NUS schedules suitable for direct 

use on Bruker or Agilent spectrometers. As defined and implemented, our recursive schedule 

generation algorithm is not limited to any number of grid dimensions. However, we have 

limited the online tool to three-dimensional grids to minimize server load.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Complete generalization of the gap-sampling framework introduced by 

Hyberts et al.

• Efficient artifact suppression without random deviates using burst 

augmentation

• Derivation of exact Poisson-gap expectation sampling distributions
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Summary

Deterministic generation of multidimensional sampling schedules for NMR
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Figure 1. 
Comparison of sine-gap, Poisson-gap and sine-burst sampling schedules and their resulting 

point spread functions at varying sampling densities, indicating close agreement between the 

sine-gap and Poisson-gap methods. The increased artifact intensity in the sine-gap schedule 

at 5% sampling density is due to slightly increased regularity of sampled grid points, which 

is reduced by Poisson-gap and sine-burst sampling. Grid sizes and point spread function 

colorings are the log-scaled versions of those found in Figure 1 of [26] in order to emphasize 

low-intensity sampling artifacts.
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Figure 2. 
Iterative Soft Thresholding reconstruction l2 residuals of (A) 192 1H-15N HSQC F1 traces 

and (B) 10 HNCA F2-F1 planes from Poisson-gap schedules having sampling densities of 

30% (blue), 10% (green) and 5% (red). Residuals of sine-gap and sine-burst schedules are 

shown as solid and dashed vertical lines, respectively.
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Figure 3. 
Uniformly sampled (A) and IST reconstructed (B-D) 2D 1H-15N HSQC spectra of ubiquitin, 

indicating nearly equivalent performance of all three gap sampling methods at low (5%) 

sampling density. Spectra shown in (B) through (D) were reconstructed from nonuniformly 

subsampled copies of (A) using (B) Poisson-gap, (C) sine-gap and (D) sine-burst methods, 

respectively. All spectra are plotted with identical contour levels. For a rendering of the same 

spectra at very low contour levels, refer to Supplementary Figure S-7.
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Figure 4. 
Uniformly sampled (A) and IST reconstructed (B-D) 3D HNCA spectra of ubiquitin at low 

(5%) sampling density, projected along the 15N dimension. Spectra shown in (B) through 

(D) were reconstructed from nonuniformly subsampled copies of (A) using (B) Poisson-gap, 

(C) sine-gap and (D) sine-burst methods, respectively. While sine-gap sampling (C) fails to 

adequately reproduce the spectrum due to its high sampling coherence, sine-burst sampling 

yields an essentially identical result to Poisson-gap sampling. All spectra are plotted with 

identical contour levels.
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Table 1

Summary of peak-picking performance figures produced from comparing IST-reconstructed subsampled 

2D 1H-15N HSQC spectra of ubiquitin with their true original uniformly sampled spectrum.

Method Matched Lost Gained rint dH (ppm) dN (ppm)

PG

30% 99 / 99 0 / 99 2 0.9994 0.000724 0.004459

10% 99 / 99 0 / 99 4 0.9983 0.001208 0.008316

5% 98 / 99 1 / 99 8 0.9920 0.001430 0.009398

SG

30% 99 / 99 0 / 99 0 0.9996 0.000580 0.005957

10% 98 / 99 1 / 99 6 0.9983 0.001546 0.007809

5% 98 / 99 1 / 99 7 0.9939 0.001660 0.011393

SB

30% 99 / 99 0 / 99 1 0.9996 0.000534 0.008977

10% 98 / 99 1 / 99 5 0.9981 0.001071 0.010007

5% 98 / 99 1 / 99 7 0.9699 0.001482 0.013357

J Magn Reson. Author manuscript; available in PMC 2016 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Worley and Powers Page 20

Table 2

Summary of peak-picking performance figures produced from comparing IST-reconstructed subsampled 2D 

HNCA 1H-15N spectral projections of ubiquitin with their true original uniformly sampled spectral projection.

Method Matched Lost Gained rint dH (ppm) dN (ppm)

PG

30% 73 / 74 1 / 74 0 0.9978 0.000532 0.007556

10% 70 / 74 4 / 74 0 0.9905 0.001176 0.015378

5% 66 / 74 8 / 74 0 0.9745 0.001488 0.015092

SG

30% 73 / 74 1 / 74 0 0.9955 0.000585 0.010554

10% 66 / 74 8 / 74 1 0.9864 0.001793 0.016878

5% 64 / 74 10 / 74 0 0.9638 0.001903 0.020252

SB

30% 73 / 74 1 / 74 0 0.9977 0.000560 0.010475

10% 69 / 74 5 / 74 0 0.9883 0.001311 0.015739

5% 66 / 74 8 / 74 1 0.9781 0.001852 0.017306
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