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Elliptical Symmetry Tests in R
by Slad̄ana Babić, Christophe Ley and Marko Palangetić

Abstract The assumption of elliptical symmetry has an important role in many theoretical develop-
ments and applications. Hence, it is of primary importance to be able to test whether that assumption
actually holds true or not. Various tests have been proposed in the literature for this problem. To the
best of our knowledge, none of them has been implemented in R. This article describes the R package
ellipticalsymmetry which implements several well-known tests for elliptical symmetry together with
some recent tests. We demonstrate the testing procedures with a real data example.

Introduction

Let X1, . . . , Xn denote a sample of n i.i.d. d-dimensional observations. A d-dimensional random vector
X is said to be elliptically symmetric about some location parameter θθθ ∈ Rd if its density f is of the
form

x 7→ f (x; θθθ, ΣΣΣ, f ) = cd, f |ΣΣΣ|−1/2 f
(
∥ΣΣΣ−1/2(x − θθθ)∥

)
, x ∈ Rd, (1)

where ΣΣΣ ∈ Sd (the class of symmetric positive definite real d × d matrices) is a scatter parameter,
f : R+

0 → R+ is an, a.e., strictly positive function called radial density, and cd, f is a normalizing
constant depending on f and the dimension d. Many well-known and widely used multivariate
distributions are elliptical. The multivariate normal, multivariate Student t, multivariate power-
exponential, symmetric multivariate stable, symmetric multivariate Laplace, multivariate logistic,
multivariate Cauchy, and multivariate symmetric general hyperbolic distribution are all examples
of elliptical distributions. The family of elliptical distributions has several appealing properties. For
instance, it has a simple stochastic representation, clear parameter interpretation, it is closed under
affine transformations, and its marginal and conditional distributions are also elliptically symmetric;
see Paindaveine (2014) for details. Thanks to its mathematical tractability and nice properties, it became
a fundamental assumption in multivariate analysis and many applications. Numerous statistical
procedures, therefore, rest on the assumption of elliptical symmetry: one- and K-sample location and
shape problems (Um and Randles, 1998; Hallin and Paindaveine, 2002, 2006; Hallin et al., 2006), serial
dependence and time series (Hallin and Paindaveine, 2004), one- and K-sample principal component
problems (Hallin et al., 2010, 2014), multivariate tail estimation (Dominicy et al., 2017), to cite but a few.
Elliptical densities are also considered in portfolio theory (Owen and Rabinovitch, 1983), capital asset
pricing models (Hodgson et al., 2002), semiparametric density estimation (Liebscher, 2005), graphical
models (Vogel and Fried, 2011), and many other areas.

Given the omnipresence of the assumption of elliptical symmetry, it is essential to be able to test
whether that assumption actually holds true or not for the data at hand. Numerous tests have been
proposed in the literature, including Beran (1979), Baringhaus (1991), Koltchinskii and Sakhanenko
(2000), Manzotti et al. (2002), Schott (2002), Huffer and Park (2007), Cassart (2007), and Babić et al.
(2021). Tests for elliptical symmetry based on Monte Carlo simulations can be found in Diks and
Tong (1999) and Zhu and Neuhaus (2000); Li et al. (1997) recur to graphical methods, and Zhu and
Neuhaus (2004) build conditional tests. We refer the reader to Serfling (2006) and Sakhanenko (2008)
for extensive reviews and performance comparisons. To the best of our knowledge, none of these
tests is available in the open software R. The focus of this paper is to close this gap by implementing
several well-known tests for elliptical symmetry together with some recent tests. The test of Beran
(1979) is neither distribution-free nor affine-invariant. Moreover, there are no practical guidelines to
the choice of the basis functions involved in the test statistic. Therefore, we opt not to include it in the
package. Baringhaus (1991) proposes a Cramér-von Mises type test for spherical symmetry based on
the independence between norm and direction. Dyckerhoff et al. (2015) have shown by simulations
that this test can be used as a test for elliptical symmetry in dimension 2. This test assumes the location
parameter to be known and its asymptotic distribution is not simple to use (plus no proven validity
in dimensions higher than 2). Hence, we decided not to include it in the package. Thus, the tests
suggested by Koltchinskii and Sakhanenko (2000), Manzotti et al. (2002), Schott (2002), Huffer and
Park (2007), Cassart (2007), and Babić et al. (2021) are implemented in the package ellipticalsymmetry.

This paper describes the tests for elliptical symmetry that have been implemented in the ellipti-
calsymmetry package, together with a detailed description of the functions that are available in the
package. The use of the implemented functions is illustrated using financial data.
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Testing for elliptical symmetry

In this section, we focus on the tests for elliptical symmetry that have been implemented in our new
ellipticalsymmetry package. Besides formal definitions of test statistics and limiting distributions, we
also explain the details of computation.

Test by Koltchinskii and Sakhanenko

Koltchinskii and Sakhanenko (2000) develop a class of omnibus bootstrap tests for unspecified lo-
cation that are affine invariant and consistent against any fixed alternative. The estimators of the
unknown parameters are as follows: θ̂θθ = n−1 ∑n

i=1 Xi and Σ̂ΣΣ = n−1 ∑n
i=1(Xi − θ̂θθ)(Xi − θ̂θθ)′. Define

Yi = Σ̂ΣΣ−1/2(Xi − θ̂θθ) and let FB be a class of Borel functions from Rd to R. Their test statistics are
functionals (for example, sup-norms) of the stochastic process

n−1/2
n

∑
i=1

(
f (Yi)− m f (||Yi||)

)
,

where f ∈ FB and m f (ρ) is the average value of f on the sphere with radius ρ > 0. Several examples of
classes FB and test statistics based on the sup-norm of the above process are considered in Koltchinskii

and Sakhanenko (2000). Here, we restrict our attention to FB :=
{

I0<||x||≤tψ
(

x
||x||

)
: ψ ∈ Gl , ||ψ||2 ≤ 1, t > 0

}
,

where IA stands for the indicator function of A, Gl for the linear space of spherical harmonics of
degree less than or equal to l in Rd, and || · ||2 is the L2-norm on the unit sphere Sd−1 in Rd. With these
quantities in hand, the test statistic becomes

Q(n)
KS := n−1/2 max

1≤j≤n

dim(Gl)

∑
s=1

(
j

∑
k=1

ψs

(
Y[k]

||Y[k]||

)
− δs1

)21/2

,

where Y[i] denotes the ith order statistic from the sample Y1, . . . , Yn, ordered according to their L2-
norm, {ψs, s = 1, . . . , dim(Gl)} denotes an orthonormal basis of Gl , ψ1 = 1, and δij = 1 for i = j
and 0 otherwise. The test statistic is relatively simple to construct if we have formulas for spherical
harmonics. In dimension 2, spherical harmonics coincide with sines and cosines on the unit circle.

The detailed construction of the test statistic Q(n)
KS for dimensions 2 and 3 can be found in Sakhanenko

(2008). In order to be able to use Q(n)
KS in higher dimensions, we need corresponding formulas for

spherical harmonics. Using recursive formulas from Müller (1966) and equations given in Manzotti
and Quiroz (2001), we obtained spherical harmonics of degree one to four in arbitrary dimension. The
reader should bare in mind that the larger degree leads to the better power performance of this test. A
drawback of this test is that it requires bootstrap procedures to obtain critical values.

In our R package, this test can be run using a function called KoltchinskiiSakhanenko(). The syntax
for this function is very simple:

KoltchinskiiSakhanenko(X, R=1000, nJobs = -1),

where X is an input to this function consisting of a data set which must be a matrix, and R stands for the
number of bootstrap replicates. The default number of replicates is set to 1000. The nJobs argument
represents the number of CPU cores to use for the calculation. This is a purely technical option which
is used to speed up the computation of bootstrap-based tests. The default value -1 indicates that all
cores except one are used.

The MPQ test

Manzotti et al. (2002) develop a test based on spherical harmonics. The estimators of the unknown
parameters are the sample mean denoted as θ̂θθ, and the unbiased sample covariance matrix given
by Σ̂ΣΣ = 1

n−1 ∑n
i=1(Xi − θ̂θθ)(Xi − θ̂θθ)′. Define, again, Yi = Σ̂ΣΣ−1/2(Xi − θ̂θθ). When the X′

is are elliptically
symmetric, then Yi/||Yi|| should be uniformly distributed on the unit sphere. Manzotti et al. (2002)
chose this property as the basis of their test. The uniformity of the standardized vectors Yi/||Yi||
can be checked in different ways. Manzotti et al. (2002) opt to verify this uniformity using spherical
harmonics. For a fixed ε > 0, let ρn be the ε sample quantile of ||Y1||, . . . , ||Yn||. Then, the test statistic
is

Q(n)
MPQ = n ∑

h∈Sjl

(
1
n

n

∑
i=1

h
(

Yi
||Yi||

)
I(||Yi|| > ρn)

)2
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for l ≥ j ≥ 3, where Sjl =
⋃

j≤i≤l Hi and Hi is the set of spherical harmonics of degree i. In
the implementation of this test we used spherical harmonics of degree 3 and 4. The asymptotic

distribution of the test statistic Q(n)
MPQ is (1 − ε)χ, where χ is a variable with a chi-squared distribution

with νjl degrees of freedom, where νjl denotes the total number of functions in Sjl . Note that Q(n)
MPQ is

only a necessary condition statistic for the null hypothesis of elliptical symmetry, and therefore, this
test does not have asymptotic power against all alternatives. In the ellipticalsymmetry package, this
test is implemented as the MPQ() function with the following syntax

MPQ(X, epsilon = 0.05).

As before, X is a numeric matrix that represents the data while epsilon is an option that allows the
user to indicate the proportion of points Yi close to the origin which will not be used in the calculation.
By doing this, extra assumptions on the radial density in (1) are avoided. The default value of epsilon
is set to 0.05.

Schott’s test

Schott (2002) develops a Wald-type test for elliptical symmetry based on the analysis of covariance
matrices. The test compares the sample fourth moments with the expected theoretical ones under
ellipticity. Given that the test statistic involves consistent estimates of the covariance matrix of the
sample fourth moments, the existence of eight-order moments is required. Furthermore, the test has a
very low power against several alternatives. The final test statistic is of a simple form, even though it
requires lengthy notations.

For an elliptical distribution with mean θθθ and covariance matrix ΣΣΣ, the fourth moment defined as
MMM4 = E{(X − θθθ)(X − θθθ)′ ⊗ (X − θθθ)(X − θθθ)′}, with ⊗ the Kronecker product, has the form

MMM4 = (1 + κ)((Id2 + Kdd)(ΣΣΣ ⊗ΣΣΣ) + vec(ΣΣΣ)vec(ΣΣΣ)′), (2)

where Kdd is a commutation matrix (Magnus, 1988), Id is the d × d identity matrix, and κ is a scalar,
which can be expressed using the characteristic function of the elliptical distribution. Here, the vec
operator stacks all components of a d × d matrix MMM on top of each other to yield the d2 vector vec(MMM).
Let Σ̂ΣΣ denotes the usual unbiased sample covariance matrix and θ̂θθ the sample mean. A simple estimator
of MMM4 is given by M̂MM4 = 1

n ∑n
i=1(Xi − θ̂θθ)(Xi − θ̂θθ)′ ⊗ (Xi − θ̂θθ)(Xi − θ̂θθ)′, and its standardized version is

given by
M̂MM4∗ = (Σ̂ΣΣ−1/2′ ⊗ Σ̂ΣΣ−1/2′ )M̂MM4(Σ̂ΣΣ

−1/2 ⊗ Σ̂ΣΣ−1/2).

Then, an estimator of vec(MMM4) is constructed as GGG = vec(NNN4)vec(NNN4)
′vec(M̂MM4∗)/(3d(d + 2)), and it

is consistent if and only if MMM4 is of the form (2). Here, NNN4 represents the value of MMM4 under the
multivariate standard normal distribution. Note that the asymptotic mean of vvv = n1/2(vec(M̂MM4∗)−GGG)
is 0 if and only if (2) holds, and this expression is used to construct the test statistic. Denote the
estimate of the asymptotic covariance matrix of n1/2vvv as Φ̂ΦΦ. The Wald test statistic is then formalized
as T = vvv′Φ̂ΦΦ−vvv, where Φ̂ΦΦ− is a generalized inverse of Φ̂ΦΦ. For more technical details, we refer the reader
to Section 2 in Schott (2002). In order to define Schott’s test statistic, we further have to define the
following quantities:

(1 + κ̂) =
1

nd(d + 2)

n

∑
i=1

{(Xi − θ̂θθ)′Σ̂ΣΣ−1(Xi − θ̂θθ)}2

(1 + η̂) =
1

nd(d + 2)(d + 4)

n

∑
i=1

{(Xi − θ̂θθ)′Σ̂ΣΣ−1(Xi − θ̂θθ)}3

(1 + ω̂) =
1

nd(d + 2)(d + 4)(d + 6)

n

∑
i=1

{(Xi − θ̂θθ)′Σ̂ΣΣ−1(Xi − θ̂θθ)}4.

Moreover, let β̂1 = (1 + ω̂)−1/24, β̂2 = −3a{24(1 + ω̂)2 + 12(d + 4)a(1 + ω̂)}−1, a = (1 + ω̂) + (1 +
κ̂)3 − 2(1 + κ̂)(1 + η̂). Finally, the test statistic becomes

T = n
[

β̂1tr(M̂MM2
4∗) + β̂2vec(Id)

′M̂MM2
4∗vec(Id)− {3β̂1 + (d + 2)β̂2}d(d + 2)(1 + κ̂)2

]
.

It has an asymptotic chi-squared distribution with degrees of freedom νd = d2 +
d(d − 1)(d2 + 7d − 6)

24
−

1.

The Schott test can be performed in our package by using the function Schott() with the very simple
syntax Schott(X), where X is a numeric matrix of data values.
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Test by Huffer and Park

Huffer and Park (2007) propose a Pearson chi-square type test with multi-dimensional cells. Under
the null hypothesis of ellipticity, the cells have asymptotically equal expected cell countsm, and after
determining the observed cell counts, the test statistic is easily computed. Let θ̂θθ be the sample mean
and Σ̂ΣΣ = n−1 ∑n

i=1(Xi − θ̂θθ)(Xi − θ̂θθ)′ the sample covariance matrix. Define Yi = R(Xi − θ̂θθ), where the
matrix R = R(Σ̂ΣΣ) is a function of Σ̂ΣΣ such that RΣ̂ΣΣR = Id. Typically R = Σ̂ΣΣ−1/2 as for the previous tests.
However, Huffer and Park suggest to use the Gram-Schmidt transformation because that will lead to
standardized data whose joint distribution does not depend on θθθ or ΣΣΣ. In order to compute the test
statistic, the space Rd should be divided into c spherical shells centered at the origin such that each
shell contains an equal number of the scaled residuals Yi. The next step is to divide Rd into g sectors
such that for any pair of sectors, there is an orthogonal transformation mapping one onto the other.
Therefore, the c shells and g sectors divide Rd into gc cells, which, under elliptical symmetry, should
contain n/(gc) of the vectors Yi. The test statistic then has the simple form

HPn = ∑
π
(Uπ − np)2/(np),

where Uπ are cell counts for π = (i, j) with 1 ≤ i ≤ g and 1 ≤ j ≤ c and p = 1/(gc).
In the R package, we are considering three particular ways to partition the space: using (i) the 2d

orthants, (ii) permutation matrices, and (iii) a cyclic group consisting of rotations by angles which are
multiples of 2π/g. The first two options can be used for any dimension, while the angles are supported
only for dimension 2. Huffer and Park’s test can be run using a function called HufferPark(). The
syntax, including all options, for the function HufferPark() is, for instance,

HufferPark(X, c, R = NA, sector = "orthants", g = NA, nJobs = -1).

We will now provide a detailed description of its arguments. X is an input to this function consisting
of a data set. sector is an option that allows the user to specify the type of sectors used to divide the
space. Currently supported options are "orthants", "permutations", and "bivariateangles". The
last one being available only in dimension 2. The g argument indicates the number of sectors. The
user has to choose g only if sector = "bivariateangles" and it denotes the number of regions used
to divide the plane. In this case, regions consist of points whose angle in polar coordinates is between
2(m − 1)π/g and 2mπ/g for m ∈ {1 . . . g}. If sector is set to "orthants", then g is fixed and equal to
2d, while for sector = "permutations", g is d!. No matter what type of sectors is chosen, the user has
to specify the number of spherical shells that are used to divide the space, which is c. The value of c
should be such that the average cell counts n/(gc) are not too small. Several settings with different
sample size and different values of g and c can be found in the simulation studies presented in Sections
4 and 5 of Huffer and Park (2007). As before, nJobs represents the number of CPU cores to use for the
calculation. The default value -1 indicates that all cores except one are used.

The asymptotic distribution is available only under sector = "orthants" when the underlying
distribution is close to normal. It is a linear combination of chi-squared random variables, and it
depends on eigenvalues of congruent sectors used to divide the space Rd. Otherwise, bootstrap
procedures are required, and the user can freely choose the number of bootstrap replicates, denoted as
R. Note that by default, sector is set to "orthants" and R = NA.

Pseudo-Gaussian test

Cassart (2007) and Cassart et al. (2008) construct Pseudo-Gaussian tests for specified and unspecified
location that are most efficient against a multivariate form of Fechner-type asymmetry (defined
in Cassart (2007), Chapter 3). These tests are based on Le Cam’s asymptotic theory of statistical
experiments. We start by describing the specified-location Pseudo-Gaussian test. The unknown
parameter ΣΣΣ is estimated by using Tyler (1987)’s estimator of scatter which we simply denote by Σ̂ΣΣ.

Let mk(θθθ, ΣΣΣ) := n−1 ∑n
i=1(∥ΣΣΣ−1/2(Xi − θθθ)∥)k, Ui(θθθ, ΣΣΣ) := ΣΣΣ−1/2(Xi−θθθ)

∥ΣΣΣ−1/2(Xi−θθθ)∥ and

SU
i (θθθ, ΣΣΣ) := ((Ui1(θθθ, ΣΣΣ))2sign(Ui1(θθθ, ΣΣΣ)), . . . , (Uid(θθθ, ΣΣΣ))2sign(Uid(θθθ, ΣΣΣ)))′.

The test statistic then has the simple form

Q(n)
pG,θθθ =

d(d + 2)
3nm4(θθθ, Σ̂ΣΣ)

n

∑
i,j=1

(∥Σ̂ΣΣ−1/2(Xi − θθθ)∥)2(∥Σ̂ΣΣ−1/2(Xj − θθθ)∥)2S′U
i (θθθ, Σ̂ΣΣ)SU

j (θθθ, Σ̂ΣΣ),

and follows asymptotically a chi-squared distribution χ2
d with d degrees of freedom. Finite moments

of order four are required.
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In most cases, the assumption of a specified center is, however, unrealistic. Cassart (2007), therefore,
proposes also a test for the scenario when the location is not specified. The estimator of the unknown
θθθ is the sample mean denoted by θ̂θθ. Let Yi = Σ̂ΣΣ−1/2(Xi − θ̂θθ). The test statistic takes on the guise

Q(n)
pG := (∆∆∆G(θ̂θθ, Σ̂ΣΣ))′(ΓΓΓG(θ̂θθ, Σ̂ΣΣ))−1∆∆∆G(θ̂θθ, Σ̂ΣΣ),

where

∆∆∆G(θ̂θθ, Σ̂ΣΣ) = n−1/2
n

∑
i=1

∥Yi∥
(

cd(d + 1)m1(θ̂θθ, Σ̂ΣΣ)Ui(θ̂θθ, Σ̂ΣΣ)− ∥Yi∥SU
i (θ̂θθ, Σ̂ΣΣ)

)
and

ΓΓΓG(θ̂θθ, Σ̂ΣΣ) :=(
3

d(d + 2)
m4(θ̂θθ, Σ̂ΣΣ)− 2c2

d(d + 1)m1(θ̂θθ, Σ̂ΣΣ)m3(θ̂θθ, Σ̂ΣΣ) + c2
d
(d + 1)2

d
(m1(θ̂θθ, Σ̂ΣΣ))2m2(θ̂θθ, Σ̂ΣΣ)

)
Id,

with cd = 4Γ(d/2)/((d2 − 1)
√

πΓ( d−1
2 )), Γ(·) being the Gamma function. The test rejects the null

hypothesis of elliptical symmetry at asymptotic level α whenever the test statistic Q(n)
pG exceeds χ2

d;1−α,

the upper α-quantile of a χ2
d distribution. We refer to Chapter 3 of Cassart (2007) for formal details.

This test can be run in our package by calling the function pseudoGaussian() with the simple
syntax

pseudoGaussian(X, location = NA).

Besides X, which is a numeric matrix of data values, now we have an extra argument location, which
allows the user to specify the known location. The default is set to NA which means that the unspecified
location test will be performed unless the user specifies location.

SkewOptimal test

Recently, Babić et al. (2021) proposed a new test for elliptical symmetry both for specified and
unspecified location. These tests are based on Le Cam’s asymptotic theory of statistical experiments
and are optimal against generalized skew-elliptical alternatives (defined in Section 2 of said paper),
but they remain quite powerful under a much broader class of non-elliptical distributions.

The test statistic for the specified location scenario has a very simple form and an asymptotic

chi-square distribution. The test rejects the null hypothesis whenever Q(n)
θθθ = n(X̄ − θθθ)′Σ̂ΣΣ−1(X̄ − θθθ)

exceeds the α-upper quantile χ2
d;1−α. Here, Σ̂ΣΣ is Tyler (1987)’s estimator of scatter, and X̄XX is the sample

mean.

When the location is not specified, Babić et al. (2021) propose tests that have a simple asymptotic
chi-squared distribution under the null hypothesis of ellipticity, are affine-invariant, computationally
fast, have a simple and intuitive form, only require finite moments of order 2, and offer much flexibility
in the choice of the radial density f at which optimality (in the maximin sense) is achieved. Note
that the Gaussian f is excluded, though, due to a singular information matrix; see Babić et al. (2021).
We implemented in our package the test statistic based on the radial density f of the multivariate
t distribution, multivariate power-exponential, and multivariate logistic, though in principle, any
non-Gaussian choice for f is possible. The test requires lengthy notations, but its implementation is
straightforward. For the sake of generality, we will derive the test statistic for a general (but fixed)
f , and later on, provide the expressions of f for the three special cases implemented in our package.
Let φ f (x) = − f ′(x)

f (x) and Yi = Σ̂ΣΣ−1/2(Xi − θ̂θθ) where θ̂θθ is the sample mean. In order to construct the test
statistic, we first have to define the quantities

∆∆∆ f (θ̂θθ, Σ̂ΣΣ) = 2n−1/2Π̇(0)
n

∑
i=1

[
∥Yi∥ −

d
K̂d, f (θ̂θθ, Σ̂ΣΣ)

φ f (∥Yi∥)
]

Yi
∥Yi∥

and

Γ̂ΓΓ f (θ̂θθ, Σ̂ΣΣ) :=
4(Π̇(0))2

nd

n

∑
i=1

[
∥Yi∥ −

d
K̂d, f (θ̂θθ, Σ̂ΣΣ)

φ f (∥Yi∥)
]2

Id,

where K̂d, f (θ̂θθ, Σ̂ΣΣ) := 1
n ∑n

i=1

[
φ′

f (∥Yi∥) +
d − 1
∥Yi∥

φ f (∥Yi∥)
]

and Π is the cdf of the standard nor-

mal distribution (we use Π̇(·) for the derivative). Finally, the test statistic is of the form Q(n)
f :=

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859
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(∆∆∆ f (θ̂θθ, Σ̂ΣΣ))′(Γ̂ΓΓ f (θ̂θθ, Σ̂ΣΣ))−1∆∆∆ f (θ̂θθ, Σ̂ΣΣ), and it has a chi-square distribution with d degrees of freedom. The
test is valid under the entire semiparametric hypothesis of elliptical symmetry with unspecified center
and uniformly optimal against any type of generalized skew- f alternative.

From this general expression, one can readily derive the test statistics for specific choices of
f . In our case, the radial density of the multivariate Student t distribution corresponds to f (x) =

(1 + 1
ν x2)−(ν+d)2

, where ν ∈ (0, ∞) represents the degrees of freedom, while that of the multivariate

logistic distribution is given by f (x) =
exp (−x2)

[1 + exp (−x2)]2
and of the multivariate power-exponential

by f (x) = exp
(
−1

2
x2β

)
, where β ∈ (0, ∞) is a parameter related to kurtosis.

These tests can be run in R using a function called SkewOptimal() with the syntax

SkewOptimal(X, location = NA, f = "t", param = NA).

Depending on the type of the test, some of the input arguments are not required. X and location
are the only input arguments for the specified location test and have the same role as for the Pseudo-
Gaussian test. As before, the default value for location is set to NA, which implies that the unspecified
location test will be performed unless the user specifies the location. For the unspecified location
test, besides the data matrix X, the input arguments are f and param. The f argument is a string that
specifies the type of the radial density based on which the test is built. Currently supported options are
"t", "logistic", and "powerExp". Note that the default is set to "t". The role of the param argument
is as follows. If f = "t", then param denotes the degrees of freedom of the multivariate t distribution.
Given that the default radial density is "t", it follows that the default value of param represents the
degrees of freedom of the multivariate t distribution, and it is set to 4. Note also that the degrees of
freedom have to be greater than 2. If f = "powerExp", then param denotes the kurtosis parameter β, in
which case the value of param has to be different from 1 because β = 1 corresponds to the multivariate
normal distribution. The default value is set to 0.5.

Time complexity

We conclude the description of tests for elliptical symmetry by comparing their time complexity in
terms of the big O notation (Cormen et al., 2009). More concretely, we are comparing the number of
simple operations that are required to evaluate the test statistics and the p-values. Table 1 summarizes
the time complexity of the implemented tests.

The test of Koltchinskii and Sakhanenko is computationally more demanding than the bootstrap
version of the test of Huffer and Park. Among unspecified location tests that do not require bootstrap
procedures, the most computationally expensive test is the MPQ test under the realistic assumption
that n > d. Regarding the specified location tests, we can conclude that the Pseudo-Gaussian test is
more computationally demanding than the SkewOptimal test. Note that both the test of Koltchinskii
and Sakhanenko and the MPQ test are based on spherical harmonics up to degree 4. In case we
would use spherical harmonics of higher degrees, the tests would of course become even more
computationally demanding.

We have seen that several tests require bootstrap procedures and therefore are, by default, compu-
tationally demanding. Such tests require the calculation of the statistic on the resampled data R times
in order to get the p-value, where R is the number of bootstrap replicates. Consequently, the time
required to obtain the p-value in such cases is R times the time to calculate the test statistic. For the
tests that do not involve bootstrap procedures, the p-value is calculated using the inverse of the cdf of
the asymptotic distribution under the null hypothesis, which is considered as one simple operation.
The exception here is the test of Huffer and Park, whose asymptotic distribution is more complicated
and includes O(c) operations where c is an integer and represents an input parameter for this test.

Illustrations using financial data

Mean-Variance analysis was introduced by Markowitz (1952) as a model for portfolio selection. In
this model, the portfolio risk expressed through the historical volatility is minimized for a given
expected return, or the expected return is maximized given the risk. The model is widely used for
making portfolio decisions, primarily because it can be easily optimized using quadratic programming
techniques. However, the model has some shortcomings, among which the very important one, that it
does not consider the prior wealth of the investor that makes decisions. This prior wealth is important
since it influences the satisfaction that an investor has from gains. For example, the gain of 50$ will
not bring the same satisfaction to someone whose wealth is 1$ as to someone whose wealth is 1000$.
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statistics p-value

KoltchinskiiSakhanenko O(n log n + nd5) O(Rn log n + Rnd5)
MPQ O(n log n + nd5) O(1)
Schott O(nd2 + d6) O(1)
HufferPark O(nd2 + d3) O(c)
HufferPark (bootstrap) O(nd2 + d3) O(Rnd2 + Rd3)
PseudoGaussian (specified location) O(n2d + nd2 + d3) O(1)
PseudoGaussian O(nd2 + d3) O(1)
SkewOptimal (specified location) O(nd + d3) O(1)
SkewOptimal O(nd2 + d3) O(1)

Table 1: Time complexity of the various tests for elliptical symmetry

This satisfaction further affects the decision-making process in portfolio selection. Because of that
and other financial reasons, a more general concept of expected utility maximization is used (see,
e.g., Schoemaker (2013)). However, the expected utility maximization is not an easy optimization
problem, and some additional assumptions must be made in order to solve it. Hence, despite the
expected utility maximization being more general, the mean-variance approach is still used due to its
computational simplicity. Chamberlain (1983) showed that the two approaches coincide if the returns
are elliptically distributed. In other words, under elliptical symmetry, the mean-variance optimization
solves the expected utility maximization for any increasing concave utility function. Therefore, we
want to test if the assumption of elliptical symmetry holds or not for financial return data. The data set
that we analyze contains daily stock log-returns of 3 major equity market indexes from North America:
S&P 500 (US), TSX (Canada) and IPC (Mexico). The sample consists of 5369 observations from January
2000 through July 2020. To remove temporal dependencies by filtering, following the suggestion of
Lombardi and Veredas (2009), GARCH(1,1) time series models were fitted to each series of log-returns.

We test if the returns are elliptically symmetric in different time periods using a rolling window
analysis. The window has a size of one year, and it is rolled every month, i.e., we start with the
window January 2000 - December 2000, and we test for elliptical symmetry. Then we shift the starting
point by one month, that is, we consider February 2000 - January 2001, and we test again for elliptical
symmetry. We keep doing this until the last possible window. The following tests are used for every
window: the test by Koltchinskii and Sakhanenko with R = 100 bootstrap replicates, the MPQ test,
Schott’s test, the bootstrap test by Huffer and Park based on orthants with c = 3 and with the number
of bootstrap replicates R = 100, the Pseudo-Gaussian test, and the SkewOptimal test with the default
values of the parameters. For every window, we calculate the p-value. The results are presented in
Figure 1, where the horizontal line present on every plot indicates the 0.05 significance level.

Even though all these tests address the null hypothesis of elliptical symmetry, they have different
powers for different alternative distributions, and some tests may fail to detect certain departures
from the null hypothesis. Certain tests are also by nature more conservative than others. We refer the
reader to Babić et al. (2021) for a comparative simulation study that includes the majority of the tests
available in this package. This diversity in behavior presents nice opportunities. For instance, when
all tests agree, we can be pretty sure about the nature of the analyzed data. One could also combine
the six tests into a multiple testing setting by using a Bonferroni correction, though this is not what we
are doing here.

The following general conclusions can be drawn from Figure 1.

• In the past 20 years, the return data do not follow the elliptical distribution at least half of time.
In other words, there are many periods between 2000 and 2020 where the data exhibit some
form of skewness or other type of symmetry, invalidating, thus, the mean-variance analysis.

• The broader periods where the hypothesis of elliptical symmetry cannot be rejected are 2000-
2004, 2005-2006, 2012-2013, 2015-2017 (for Schott’s test only 2015-2016). In these periods, the
tests may have only occasional rejections without a longer time period of rejections.

• In the period around the financial crisis in 2008, almost all tests reject the null hypothesis of
ellipticity. This clearly shows that, in the periods of crisis, the assumption of elliptical symmetry
is less likely to hold.
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(a) SkewOptimal (b) Pseudo-Gaussian

(c) KoltchinskiiSakhanenko (d) MPQ

(e) HufferPark (f) Schott
The plots show the p-values of the corresponding tests for all rolling windows that we considered between 2000
and 2020. The years on the x-axis mark the rolling windows for which the starting point is January of that year. The
horizontal line present on every plot indicates the 0.05 significance level.

Figure 1: North America indexes (S&P, TSX and IPC)

With the aim of guiding the reader through the functions that are available in the ellipticalsymmetry
package, we now focus on the window January 2008 - December 2008. We start with the test by
Koltchinskii and Sakhanenko.

> KoltchinskiiSakhanenko(data2008, R = 100)

Test for elliptical symmetry by Koltchinskii and Sakhanenko

data: data2008
statistic = 6.0884, p-value = 0.01
alternative hypothesis: the distribution is not elliptically symmetric

The KoltchinskiiSakhanenko() output is simple and clear. It reports the value of the test statistic and
p-value. For this particular data set, the test statistic is equal to 6.0884 and the p-value is 0.02. Note
that here we specify the number of bootstrap replicates to be R = 100.

The MPQ test and Schott’s test can be performed by running very simple commands:

> MPQ(data2008)

Test for elliptical symmetry by Manzotti et al.
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data: data2008
statistic = 25.738, p-value = 0.04047
alternative hypothesis: the distribution is not elliptically symmetric

> Schott(data2008)

Schott test for elliptical symmetry

data: data2008
statistic = 24.925, p-value = 0.03531
alternative hypothesis: the distribution is not elliptically symmetric

Given the number of the input arguments, the function for the test by Huffer and Park deserves some
further comments. The non-bootstrap version of the test can be performed by running the command:

> HufferPark(data2008, c = 3)

Test for elliptical symmetry by Huffer and Park

data: data2008
statistic = 24.168, p-value = 0.109
alternative hypothesis: the distribution is not elliptically symmetric

By specifying R, the bootstrap will be applied:

> HufferPark(data2008, c= 3, R = 100)

The p-value for the bootstrap version of the test is equal to 0.15. Note that in both cases, we used the
default value for sector, that is "orthants".

Test for elliptical symmetry by Huffer and Park

data: data2008
statistic = 24.168, p-value = 0.15
alternative hypothesis: the distribution is not elliptically symmetric

If we want to change the type of sectors used to divide the space, we can do it by running the command:

HufferPark(data2008, c=3, R = 100, sector = "permutations")

This version yields a p-value equal to 0.19.

Another very easy-to-use test is the Pseudo-Gaussian test:

> PseudoGaussian(data2008)

Pseudo-Gaussian test for elliptical symmetry

data: data2008
statistic = 9.4853, p-value = 0.02349
alternative hypothesis: the distribution is not elliptically symmetric

Eventually, the following simple command will run the SkewOptimal test based on the radial density
of the multivariate t distribution with 4 degrees of freedom (note that the degrees of freedom could be
readily changed by specifying the param argument).

> SkewOptimal(data2008)

SkewOptimal test for elliptical symmetry

data: data2008
statistic = 12.208, p-value = 0.006702
alternative hypothesis: the distribution is not elliptically symmetric
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The test based on the radial density of the multivariate logistic distribution can be performed by
simply adding f = "logistic":

> SkewOptimal(data2008, f = "logistic")

This version of the SkewOptimal test yields a p-value equal to 0.0003484. Finally, if we want to run the
test based on the radial density of the multivariate power-exponential distribution, we have to set f to
"powerExp". The kurtosis parameter equal to 0.5 will be used unless specified otherwise.

> SkewOptimal(data2008, f = "powerExp")

The resulting p-value equals 0.002052. The kurtosis parameter can be changed by assigning a different
value to param. For example,

SkewOptimal(data2008, f = "powerExp", param = 1.2)

We can conclude that the null hypothesis is rejected at the 5% level by all tests except Huffer and Park’s
tests. Luckily the tests available in the package mostly agree. In general, in situations of discordance
between two (or more) tests, a practitioner may compare the essence of the tests as described in this
paper and check if, perhaps, one test is more suitable for the data at hand than the other (e.g., if
assumptions are not met). The freedom of choice among several tests for elliptical symmetry is an
additional feature of our new package.

Conclusion

In this paper, we have described several existing tests for elliptical symmetry and explained in detail
their R implementation in our new package ellipticalsymmetry. The implemented functions are
simple to use, and we illustrate this via a real data analysis. The availability of several tests for
elliptical symmetry is clearly an appealing strength of our new package.

Acknowledgments
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