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The representation of load components deemed to be an essential factor for power system studies 

as the load characteristics influence the system performance. Thus, choosing an appropriate load 

model for load behavior studies is very significant for system analysis purposes. Load models can 

be categorized into three types: static, dynamic, and composite models. Static ZIP load model is a 

well-known model in the power industry, it represents the relationship between the active and 

reactive power as a function of the applied voltage. In this paper, a detailed review of the existing 

static ZIP model coefficients for load components achieved by the work researches over time is 

provided. Then, the documented ZIP coefficients were grouped into end-use types to plot and 

visualize the load components in terms of the voltage-power relationship, and the ZIP coefficients 

for each end-use type are determined for three cases: minimum, maximum, and typical case. In 

addition, to update the load model for modern lighting and have a better load representation, ZIP 

load model is developed for LED lights, and the model coefficients is experimentally determined 

for each light fixture. Next, conservation voltage reduction (CVR) impact on LED lights is 

investigated, and power reduction estimation based on ZIP coefficients is validated against the 

actual measurement data of load variations under CVR technique. 

 

 

 



  1 

 

ACKNOWLEDGMENTS 

 

I would like to thank my advisor, Dr. Moe Alahmad for guiding and supporting me over 

the last two years. I would like to thank him for encouraging my research. His advice on research 

has been invaluable. You have set an example of excellence as a researcher, mentor, instructor, 

and role model. You have been a tremendous mentor for me.  

I would also like to express my thanks of gratitude to the members of my examination 

committee, Dr. Fadi Alsaleem and Dr. Iason Konstantzos for their inspiring feedback and 

comments throughout my MS studies.  

A special thanks to my family. Words cannot express how grateful I am to my father, 

mother, brothers, and sister for all of the sacrifices that you’ve made on my behalf. Your prayer 

for me was what sustained me thus far. An extreme thanks to my soul mate, Tulip. Thank you for 

always being there for me and loving me the way I am. 

I would like to express my special appreciation to all colleagues in Architectural 

Engineering, especially Ahmad and Ali for their help and support. And finally, great appreciation 

to all the faculty and staff in the Architectural Engineering department at the University of 

Nebraska-Lincoln. 

 

 

 

 

 

 



  2 

 

TABLE OF CONTENTS 

1. Introduction 

1.1.General 

1.2.Motivation 

1.3.Thesis Objectives 

1.4.Thesis Organization 

2. Load Model 

2.1.General Background 

2.2.Load Model Types 

2.2.1. Static Load Model 

2.2.1.1.Constant Impedance Load Model 

2.2.1.2.Constant Current Load Model 

2.2.1.3.Constant Power Load Model 

2.2.1.4.Polynomial Load Model 

2.2.1.5.Exponential Load Model 

2.2.2. Dynamic Load Model 

2.2.3. Composite Load Model 

2.3.Load Model Identification 

2.3.1. Component-based 

2.3.1.1.General Background 

2.3.1.2.Advantages 

2.3.1.3.Disadvantages 

2.3.2. Measurement-based 

2.3.2.1.General Background 

2.3.2.2.Advantages 

2.3.2.3.Disadvantages 

3. ZIP Load Model Applications 

3.1.Load Behavior Analysis 

3.1.1. General Background 

3.1.2. Related Work 

3.2.Power System stability 

3.2.1. General Background 

3.2.2. Related Work 

3.3.Conservation Voltage Reduction (CVR) 

3.3.1. General Background 

3.3.2. National Standards of CVR Ranges 

3.3.3. Economic Advantages 

3.3.4. Implementation Methods 

3.3.5. CVR Factor 



  3 

 

3.3.6. Load Modeling for CVR Studies 

3.3.7. Related Works 

4. Existing ZIP Coefficients: Review & Analysis 

4.1.Framework Description 

4.2.Inventory: Detailed Review & Discussion 

4.2.1. 120V/60 Hz – US Based 

4.2.1.1.Constant-Based ZIP coefficients 

4.2.1.2.Phase Angle-Based ZIP coefficients 

4.2.2. 220V/50 Hz – International Based 

4.3.Mapping and Visualization 

4.4.ZIP Coefficients Identification for End-Use Types 

4.4.1. Min & Max Cases for ZIP Coefficients Boundaries 

4.4.2. Typical ZIP Coefficients for One Residential House 

4.4.3. Summary Table of ZIP Coefficients for End-Use Types 

5. ZIP Model Development for LED Lights 

5.1.Light-Emitting Diodes Light (LEDs) 

5.1.1. General Background 

5.1.2. LEDs Development 

5.1.3. Advantages 

5.1.4. Disadvantages 

5.2.ZIP Load Model for LED Lights  

5.2.1. LED Load Model 

5.2.2. Experimental Setup 

5.2.3. Testing Procedure 

5.2.4. Data Handling 

5.2.5. Determination of ZIP Coefficients 

5.2.6. Results and Discussions 

5.2.6.1.ZIP Model Coefficients for LED Lights 

5.2.6.2.ZIP Model vs. Measurement Data Comparison 

5.2.6.3.CVR Impact on LED lights 

5.2.6.4.Power Consumption Estimation Based on ZIP Coefficients 

5.2.6.5.LED Boundaries Based on ZIP Model 

6. Conclusions and Future Work 

6.1.Thesis Summary 

6.2.Conclusions 

6.3.Future Work 

7. References 

 



  4 

 

LIST OF FIGURES 

 

Figure 2.1 Component-based load model approach 

Figure 2.2 Measurement-based load model approach 

Figure 4.1 framework for ZIP model coefficients: review & visualization 

Figure 4.2 V-P for Interior/Exterior Lighting End-Use Components 

Figure 4.3 V-Q for Interior/Exterior Lighting End-Use Components 

Figure 4.4 V-P for Interior/Exterior Equipment End-Use Components 

Figure 4.5 V-Q for Interior/Exterior Equipment End-Use Components 

Figure 4.6 V-P for Refrigerators End-Use Components 

Figure 4.7 V-Q for Refrigerators End-Use Components 

Figure 4.8 V-P for Fans End-Use Components 

Figure 4.9 V-Q for Fans End-Use Components 

Figure 4.10 V-P for Heating End-Use Components 

Figure 4.11 V-Q for Heating End-Use Components 

Figure 4.12 V-P for Cooling End-Use Components 

Figure 4.13 V-Q for Cooling End-Use Components 

Figure 4.14 V-P for Pumps End-Use Components 

Figure 4.15 V-Q for Pumps End-Use Components 

Figure 4.16 Min/Max ZIP Coefficients for interior/exterior Lighting End-use  

Figure 4.17 Methodology of identifying the ZIP Coefficients for End-Use Category 

Figure 4.18 Clarification of  

Figure 5.1 Experiment setup 

Figure 5.2: P & Q comparison - Bulb Daylight Non-dimmable 5.5W 

Figure 5.3: P & Q comparison - Bulb Soft White Dimmable 9W 

Figure 5.4: P & Q comparison - Bulb Daylight Non-dimmable 9W 

Figure 5.5: P & Q comparison - Bulb Soft White Non-dimmable 9W 

Figure 5.6: P & Q comparison - Bulb Soft White Non-dimmable 9W 

Figure 5.7: P & Q comparison - Bulb Daylight Dimmable 9.5W 



  5 

 

Figure 5.8: P & Q comparison - Bulb Daylight Dimmable 10W 

Figure 5.9: P & Q comparison - Bulb Daylight Non-dimmable 12.5W 

Figure 5.10: P & Q comparison - Bulb Soft White Dimmable 13W 

Figure 5.11: P & Q comparison - Bulb Daylight Non-dimmable 13W 

Figure 5.12: P & Q comparison - Sylvania Bulb Daylight Non-dimmable 14W 

Figure 5.13: P & Q comparison - Great Value Bulb Daylight Non-dimmable 14W 

Figure 5.14: P & Q comparison - Feit Electric Bulb Daylight Non-dimmable 15W 

Figure 5.15: P & Q comparison - Bulb Daylight Dimmable 15.5W 

Figure 5.16: P & Q comparison - Feit Electric Bulb Daylight Dimmable 17.5W 

Figure 5.17: P & Q comparison - Sylvania Bulb Soft White Non-dimmable 22W 

Figure 5.18: P & Q comparison - Feit Electric Bulb Daylight Dimmable 28W 

Figure 5.19: P & Q comparison - Candle Daylight Non-dimmable 5W 

Figure 5.20: P & Q comparison - Candle Daylight Non-dimmable 6W 

Figure 5.21: P & Q comparison - Tube Daylight Non-dimmable 8W 

Figure 5.22: P & Q comparison - Tube Daylight Non-dimmable 16W 

Figure 5.23: Validation methodology of power consumption estimation based on ZIP model 

Figure 5.24: Comparison between predicted & actual power consumption for LED lights 

Figure 5.25: LED ZIP coefficients boundaries 

 

 
 

 

 

 

 

 

 

 

 



  6 

 

LIST OF TABLES 

 

Table 4.1: ZIP Coefficients for Heating components – 120V US based voltage 

Table 4.2: ZIP Coefficients for Cooling components – 120V US based voltage 

Table 4.3: ZIP Coefficients for interior/exterior Lighting – 120V US based voltage 

Table 4.4: ZIP Coefficients for home appliances – 120V US based voltage 

Table 4.5: ZIP Coefficients for Video Game Console – 120V US based voltage 

Table 4.6: ZIP Coefficients for TVs – 120V US based voltage 

Table 4.7: ZIP Coefficients for Fans – 120V US based voltage 

Table 4.8: ZIP Coefficients for Pumps – 120V US based voltage 

Table 4.9: ZIP Coefficients for Refrigerators – 120V US based voltage 

Table 4.10: ZIP Coefficients for motors – 120V US based voltage 

Table 4.11: ZIP Coefficients for commercial loads – 120V US based voltage 

Table 4.12: Phase angle-based ZIP Coefficients for interior/exterior lighting 

Table 4.13: Phase angle-based ZIP Coefficients for interior/exterior equipment 

Table 4.14: Phase angle-based ZIP Coefficients for fans 

Table 4.15: ZIP Coefficients for cooling – 220V International based 

Table 4.16: ZIP Coefficients for interior/exterior lighting – 220V International based 

Table 4.17: ZIP Coefficients for interior/equipment – 220V International based 

Table 4.18: ZIP Coefficients for fans – 220V International based 

Table 4.19: ZIP Coefficients for refrigerators – 220V International based 

Table 4.20: ZIP Coefficients for ASD Motor – Discontinuous Mode of Operation 

Table 4.21: ZIP Coefficients for ASD Motor – continuous Mode of Operation 

Table 4.22: ZIP Coefficients for higher power directly connected motors 

Table 4.23: ZIP Coefficients for lower power directly connected motors 

Table 4.24: ZIP Coefficients for SPIM 

Table 4.25: ZIP Coefficients for SASD 

Table 4.26: ZIP Coefficients for EV type battery charger – 220V International based 



  7 

 

Table 4.27: Calculated active and reactive power for the CFL 

Table 4.28: Load components for interior/exterior Lighting End-Use 

Table 4.29: Min & Max Case of ZIP Coefficients Boundaries for End-Use Types 

Table 4.30: Energy Consumption & Percentage of Electricity Use for Residential Loads 

Table 4.31: ZIP Coefficients for Residential Loads 

Table 4.32: Percentage of electricity use for end-use type 

Table 4.33: ZIP Coefficients, Energy Consumption and Percentage of Electricity Use for End-

Use Types 

Table 4.34: Summary of Min, Max, and Typical Cases of ZIP Coefficients for End-Use Types 

Table 5.1: Previous work of ZIP coefficients determination for LED lights 

Table 5.2: List of tested LED light fixtures in the lab 

Table 5.3: Monitored quantities for LED lights tested in the lab 

Table 5.4: ZIP model coefficients for LED lights – non constrained model 

Table 5.5: ZIP model coefficients for LED lights – constrained model 

Table 5.6: R2 & RMSE values for active & reactive power ZIP model 

Table 5.7: ZIP coefficients for bulb type LED lights 

Table 5.8: ZIP coefficients for linear & candle type LED lights 

Table 5.9: ZIP coefficients for constant power – LED lights 

Table 5.10: Calculated 𝐶𝑉𝑅𝑓 and Power reduction 𝑃𝑟 values for LED lights 

Table 5.11: Comparison between predicted & actual power consumption at 100V for LED lights 

Table 5.12: Constant power 𝑃𝑃 LED lights 

 

 

 

 

 

 

 

 



  8 

 

NOMENCLATURE 

TV: 

 

LCD Liquid Crystal Display 

LED Light-Emitting Diodes 

CRT Cathode Ray Tubee 

BL Backlight 

sc  Screen 

ss  Static screen 

v  Volume  

 

Motors: 

 

CT Constant Torque Loads 

LT Linear Torque Loads 

QT Quadratic Torque Loads 

CP Constant Mechanical Power Load 

SMPS Switch Mode Power Supply 

RSIR Resistive Start-Inductive Run 

RSCR Resistive Start-Capacitor Run 

ASD  Adjustable Speed Drive 

PFC Power Factor Correction 

VSD Variable Speed Drive 

SASD Single-phase Adjustable Speed Drive 

SPIM Single-phase Induction Motor 

 

Lighting: 

 

Fluor Fluorescent 

CFL Compact Fluorescent Lamp 

LFL Linear Fluorescent Lamp 

HID High Intensity Discharge 

LED Light Emitting Diode  

 

Dish washer: 

 

HD Heat and Dry 

NW Normal Wash 

PP Pot and Pan 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1 General 

This chapter overviews the motivation of the research conducted in this thesis. The chapter also 

outlines the main objectives of the research and the structure of each chapter.  

1.2 Motivation 

Several works of ZIP model development were adopted by many researchers to develop ZIP model 

for lighting loads, and most of the previous works were primarily concentrated on modeling the 

common lighting types in 2013 and 2014, such as incandescent, compact fluorescent lamp, and 

halogen, which are not used nowadays anymore.  

However, with the rapid development of technologies, LED has been the most common lighting 

fixture that used in the market, hence LED ZIP model development has not been deeply 

investigated by researchers for differences, such as power consumption and lighting types. Thus, 

our goal is to update the load model for the LED lights in order to have a better representation. 

This can be accomplished by developing the ZIP load model under the conservation voltage 

reduction (CVR) technique, investigating how CVR impacts the behavior of LED lights and 

validating the power reduction estimation based on ZIP model against the actual measurement 

obtained from the experiment. 
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1.3 Thesis Objectives 

The main objective of this research is to review and document the existing work of developing the 

component-based ZIP model. The ZIP coefficients for collected load components are documented 

and grouped into end-use types to be visualized, then the ZIP coefficients identification for each 

end-use type is achieved for three potential cases.  

One of the main thesis objectives also is to develop the ZIP load model for LED lights to update 

the load model for the considerable changes in load characteristics with the development of modern 

lighting. Experimental determination of ZIP load model for LED lights is adopted in order to 

represent the power demand of LED lights under the conservation voltage reduction (CVR) 

technique. Also, the power reduction of LED lights achieved by CVR technique is estimated based 

on ZIP load model coefficients, and then validated against the actual measurement for LED lights. 

1.4 Thesis Organization 

This research will start by providing a general background of the load model, the load model types, 

and the two approaches of load model identification. Next, the applications of the static ZIP model 

are presented, including the load behavior analysis, power system stability, and conservation 

voltage reduction. Then, a literature review of the existing ZIP model coefficients is offered, 

mapping and visualization of the collected load components are drawn for each end-use type, and 

three cases of ZIP coefficients for end-use types are identified. Later, the ZIP model for LED lights 

is developed, and the ZIP coefficients for each LED light is determined under the conservation 

voltage reduction technique. Then, power reduction for LED lights is estimated based on the ZIP 

model coefficients for each LED light and compared with the actual recordings obtained from the 

experiments. Finally, the conclusion and future work are provided in the last chapter. A brief 

outline of the thesis is as follows: 
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1. Chapter 1 is an introduction 

2. Chapter 2 overviews the fundamental knowledge in load model, providing the three types 

of load model and their applications. Next, a general overview of load model identification 

approaches is explained in this chapter.  

3. Chapter 3 discusses the ZIP load model applications for load behavior analysis, power 

system stability, and conservation voltage reduction, and provides a literature review of the 

previous works on ZIP model implementations. 

4. Chapter 4 documents all the existing ZIP model coefficients adopted by previous studies, 

and plots visualizations for load components. Next, this chapter displays the analysis 

adopted to determine the ZIP coefficients for end-use types. 

5. Chapter 5 develops the ZIP model for LED lights, and determines the ZIP coefficients for 

each light fixture. Next, the impact of conservation voltage reduction on the LED lights is 

predicted and analyzed based on ZIP model coefficients. 

6. Chapter 6 discusses the conclusion and future work, and summarizes the achievements in 

this research. 
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CHAPTER 2 

 

LOAD MODEL 

 

2.1. General Background 

Load could be defined as a single device that is connected to the system, or a group of load types 

that are connected to the supply system [1]. A load has multiple meanings, which rely on the focus 

of the study or the level of analysis that is implemented, but it could be defined as an active power 

and reactive power consumed by the devices and appliances connected to the system. Load can be 

called the power consumption of single electrical components or the total power consumed in the 

system. The load can be shown as a power consumed by part of the system that has not been 

represented in detail. Load may be presented in a mathematical relationship as shown in equations 

(1), or it can be expressed as a function of theta θ, where θ is the angular displacement between 

the applied voltage and current of the load, which is employed to calculate the power factor [2]. 

S = P + JQ                     (1) 

P = S cos  (θ)                 (2) 

Q = S sin (θ)                  (3) 

Where  

 𝑆: apparent power (VA) 

 𝑃: active power (W) 

 𝑄: reactive power (VAr) 

 𝜃: angular displacement 
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Load model is significant for power system stability as it matches between the electrical generation 

unit supplies and the demands of electrical loads that are connected to the system [3]. It also has a 

key role in different implementations such as the study of stability in voltage and frequency and 

power quality analysis in load classes (residential, commercial, and industrial) [4]. 

Load modeling has the same significance as the rest of the power system models. A lot of work 

has been done over the last decades according to load modeling [5]. In the 1990s, reference [6] 

introduced initial directions regarding the load representation. In addition, the Load model has 

been an area of focus since the 1997s with the investigation of the impact of load coefficients and 

load composite on the distribution transformers in the power system [4]. 

Load model is defined as a mathematical relationship that represents the change in active power 

demand or reactive power demand as a function of the variation of power system voltage and 

frequency [7]. It is used to predict the load behavior under the normal operation & sudden changes 

in voltages and frequency in the shape of analytical representation that express the power-voltage 

dependency [2], as shown in equations (4-5), where 𝑉 is the rated voltages, 𝑓 is the rated frequency, 

𝑃 and 𝑄 are active power and reactive power respectively. 

P = f (𝑉, 𝑓)                    (4) 

Q = f (𝑉, 𝑓)                    (5) 

 

It is very essential to understand the load characteristics in order to build a reliable system based 

on categorizing loads, then grouping them depending on the similarity of these characteristics. 

This is because that the load model process could be complicated due to the substantial amount of 

load components, the variety of loads behavior of each appliance and equipment, the difficulties 

of getting an accurate load composition estimation, and each one of the devices and appliances has 
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its own characteristics such as response to the variation of voltage and frequency, capacity, and 

duty cycle [3]. Load models can have different categories such as polynomial and exponential 

models, hence when choosing the load model for the application process, the model has to be 

simple and capable enough to represent several load response cases [2]. 

2.2 Load Model Types 

2.2.1. Static Load Model 

Load model is classified into two types: static model and dynamic model [3]. static load models 

are time-independent models that represent the load behavior in the steady-state with reference to 

the characteristics of the power system [4]. Static load models may be introduced by a 

mathematical relationship that is predicated based on the voltage dependency of the load in 

equations (4) and (5) [5]. 

Static load models can be expressed by the active power and reactive power of load components 

as a function of supply voltage and the frequency at a given instant time, which means that the 

relationship between power and voltage is the same at any moment [1]. It can express the electrical 

characteristics of the loads that can be modeled as a function of specific coefficients in the system 

bearing in mind that static load modeling uses solely in instantaneous state conditions to identify 

the characteristic of load [8]. Static models also represent the static load components in a steady-

state, which varies instantaneously with voltage variation at the load bus, such as resistive loads. 

Furthermore, the simulation of the static load model can be used for both static and dynamic loads, 

e.g., the static model can roughly represent some of the dynamic load components characteristics 

such as induction motors [7]. 
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Static load model is a well-known model in the power industry and helpful in transient stability 

studies as it primarily relies on the load's power behavior within and after the disturbance. Thus, 

the proper load model can be very sufficient for transient stability analysis taking into account the 

dynamic load models in the voltage stability study as the static load model may not be able to 

sufficiently present the load behavior under a voltage collapse. Thus, the dynamic load model has 

a better representation of the voltage stability analysis than the static load model [5]. The survey 

that was done in [9] found that the static load model was used in 70% of the power system in order 

to model loads in their dynamic stability analysis utilities. it was also demonstrated that the 

constant power was used in 82% of the utilities for in the load flow studies [2]. Static models have 

several characteristics such as the response steady-state could be reached very fast, and the rapid 

load response to the voltage and frequency variations [3]. The static model applications can be 

effective for the steady-state power flow studies, where it can represent the loads that are connected 

to the power system [8]. Static models are defined as one of three general load models [1]: 

2.2.1.1 Constant impedance load model 

The constant impedance load model represents the active power and reactive power as a function 

of the square of voltage magnitude. This model can also be called the admittance load model. 

2.2.1.2 Constant current load model 

The constant current load model represents the active and reactive power which are varying 

linearly with voltage magnitude. 

2.2.1.3 Constant power load model 
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In the constant power load model, the load will draw constant active and reactive power, regardless 

of the change in the supply voltage magnitude. This model can be called a constant PQ load model 

(or constant MVA load model). 

2.2.1.4 Polynomial Load Model (ZIP Model) 

The polynomial load model can be generally called ZIP model, which expresses the relationship 

between the active and reactive power with voltage [10]. ZIP model represents the relationship 

between the applied voltage and the characteristic of the load power in a polynomial equation as 

the sum of Constant Impedance (Zp), Constant Current (Ip), and Constant Power (Pp) to identify 

the real power (active power); in a similar way, the reactive power is defined by the following 

equation (7) using the coefficients: Constant Impedance (Zq), Constant Current (Iq), and Constant 

Power (Pq). algebraically, the ZIP model is represented by the equations (6-7) shown below [1]:  

P = Po [Zp (
V

V0
)
2

+ Ip (
V

Vo
) + Pp]                       (6) 

Q = Qo [Zq (
V

V0
)

2

+ Iq (
V

Vo
) + Pq]                       (7) 

 

Where Zp, Ip, Pp are ZIP load model coefficients for active power, Zq, Iq, Pq are ZIP load model 

coefficients for reactive power, P is actual active power demand of the load, Q is actual reactive 

power demand of the load, V is actual voltage at the load bus, V0 is nominal voltage, Po is nominal 

active power of the load, and Q0 is nominal reactive power of the load.  

ZIP model is generally employed in both steady-state and dynamic studies [11], and it is one of 

the static load models generally recognized among power industries [5]. This model is the most 

widely used form in power system stability studies [7]. ZIP model may deliver a better fit to non-

linear loads than the exponential load model as the polynomial model has a general quadratic form 
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[1]. In this study, the frequency was not discussed like the voltage since the voltage changes in 

per-unit are significantly higher than the per-unit frequency changes [5]. 

Phase angle-based ZIP Model 

Besides the three constants of the ZIP model (constant impedance, constant current, and constant 

power), another form of ZIP model is “Phase angle based-ZIP Model". This form can be described 

by the active and reactive power with the phase angle of load components, which can be measured 

at each voltage level. Thus, the active and reactive power of ZIP loads can be calculated by the 

given equations (8-9). The constants are limited with the constraint in (10). 

Pi =
Va

2

Vo
2  . So . Z% . cos(Zθ) + 

Va

 Vo
 . So . I% . cos(Iθ) + So . P% . cos(Pθ)                    (8) 

Qi =
Va

2

Vo
2  . So . Z% . Sin(Zθ) + 

Va

 Vo
 . So . I% . Sin(Iθ) + So . P% . Sin (Pθ)                    (9) 

Z% + I% + P% = 1                                                                                                   (10) 

Where Pi is active power consumption of the ith load, Qi is reactive power consumption of the ith 

load, Va is actual terminal voltage, Vo is nominal terminal voltage, So is apparent power 

consumption at nominal voltage, Z% is fraction of load that is constant impedance, I% fraction of 

load that is constant current, P% is fraction of load that is constant power, Zθ phase angle of the 

constant impedance component, Iθ is phase angle of the constant current component, Pθ is phase 

angle of the constant power component. 

The six constants in the following equations are representing the ZIP loads behavior as a function 

of the applied voltage. Once the six values of constants are experimentally determined, they can 

be inserted to (8) and (9) to calculate P and Q for each load component.  
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Phase angle based-ZIP model can be employed for CVR analysis, as it is crucial to evaluate the 

load response to the CVR technique. Furthermore, the six constants can precisely represent the 

load components behavior, primarily for some complicated loads, e.g., LCD or CFL where the 

ratios of Z, I, and P are not as obvious. Unlike the heating loads that are undoubtedly know to be 

100% of constant impedance Z [12]. 

2.2.1.5 Exponential Load Model 

The exponential load model is one of the most common models used in the static load model, and 

considered to be a good fit for some of the dynamic load components characteristics such as 

induction motors [7]. Exponential model represents the relationship between the power and voltage 

at the load bus by exponential equations. These equations have less coefficients that are basically 

presented in the ZIP model [11]. Exponential load model has two coefficients (exponents), which 

is called np and nq, to express the algebraic relationship between active & reactive power with 

applied voltage V, (equation 11-12) [8]. 

P = P0  (
V

V0
)
np

                    (11) 

Q = Q0  (
V

V0
)
nq

                   (12) 

Where P, Q are actual active and reactive power of the load, V is applied voltage and the load bus 

where the load is connected, V0 is nominal voltage, P0, Q0 are nominal active and reactive power 

of the load, and np, nq are exponential model coefficients. 

The exponential models employ the exponents np and nq to express the load behavior as the 

following [8]: 

 When np = nq = 2, the load behaves as a constant impedance load. 

 When np = nq = 1, the load behaves as a constant current load. 
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 When np = nq = 0, the load behaves as a constant power load. 

Similar to the ZIP model, the exponential model eliminates the frequency changes in the system 

since the frequency variations are normally much smaller than the voltage changes. Nevertheless, 

frequency variations could be not excluded from the load model studies by multiplying the model 

with a frequency term as shown in the equation (13) below [8], where f is frequency value at the 

load bus, f0 is nominal frequency, and kf is frequency-dependent coefficient in the load model. 

1 + kf (f − f0)                    (13) 

 

2.2.2 Dynamic Load Model 

Dynamic load models account for the dynamics of load components and it is considered to be 

time-dependent models [5]. In contrast, static load models are time-independent models that 

represent the load behavior in the steady-state with reference to the characteristics of the power 

system [4]. Dynamic load models represent the power demand of the load (both active and reactive 

power) as a function of voltage and time [11]. This type of model also expresses the variations of 

load characteristics as a function of supply conditions state (either past or existing state) such as 

the response to time-related transient variations in the supply conditions [8]. 

Dynamic load models have a better representation of the voltage stability analysis than the static 

load model, hence dynamic models shall be taken into consideration when studying the voltage 

stability as the static load model may not be able to sufficiently present the load behavior under a 

voltage collapse [5]. 

The induction motor model is one of the most frequent dynamic load models, and it is considered 

to be the major part of the dynamic load parts [10]. as mentioned in [13], induction motors consume 

around 60% of the total power demand [7]. However, it was indicated by [14] that there has not 
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been adequate research done on the dynamic motor models because of the different results between 

the simulation and the field measurements. 

2.2.3 Composite Load Model 

The primary difference between both static & dynamic models is based on the voltage impact on 

the load. The Static load model is executed when the changes in load behavior only based on the 

instantaneous voltage input, not on the other input variables (e.g., electric lamp). However, the 

dynamic load model can be implemented when the load behavior is impacted by all of the voltage 

inputs over time (e.g., induction motor). Thus, the composite load model is broadly implemented 

as the practical loads consist of multiple components. The composite load model is considered to 

be a physical load model that combines between the static load model, which is presented by the 

ZIP model (constant impedance, constant current, and constant power), and the dynamic load 

model, generally an induction motor model, connected in parallel.  

The composite load model (a combination of the ZIP model and induction motor) is the 

predominant model all over the United States, whereas the static load model (ZIP model) is mostly 

used by the rest of the world. This is stated in [15] according to the global survey done in 2013 

about which of load modeling types is the most frequently used by the utilities for the power system 

stability. 

2.3 Load Model Identification 

The determination process of the static load model coefficients (polynomial or exponential) is 

particularly significant prior to employ these models in the power system analysis, where these 

coefficients must be precise enough to express the load characteristics [1]. There are two 

approaches in the coefficients identification of load modeling: component-based approach, which 
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is dependent on the components information that are connected to the power system, and 

measurement-based approach, which counts on the field-measurements of the load power (active 

and reactive), the voltage and frequency at the load bus. The load model coefficients are then found 

by applying the range of voltage values predicated on the codes and standards [4]. 

2.3.1 Component-based Approach 

2.3.1.1 General Background 

The component-based approach is a ‘‘bottom-up’’ approach, which implies that it starts from the 

bottom where the load components are connected to the system, and aggregates all the models of 

the load components to develop one aggregated load model. Contrary to the measurement-based 

approach which starts from the information collected by the field-measurements. Consequently, 

the data about the load compositions, for instance, the portion of load power consumption of each 

of the individual components, shall be taken into account to apply this approach [11]. This load 

model approach requires information that is obtained from the electricity consumption of the 

customers, which are divided into residential, commercial, and industrial [2]. 

Therefore, the static and dynamic models are a good expression of the individual load components. 

This representation can be adopted through the load coefficients obtained by the experimental 

determination. i.e., resistive heaters can be modeled as constant impedance loads [11]. Therefore, 

the following data shall be collected to identify the load composition of the aggregated load model 

[8]: 

 models of individual components 

 component composition, such as the power consumption for each load components. 
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Figure 2.1 Component-based load model approach 

 

2.3.1.2 Advantages 

The main advantage of the component-based approach is that the field measurement is not required 

for applying this approach, which makes the approach fairly cost-effective and easy to apply. Also, 

the approach could be implemented in different conditions of operation (steady-state or dynamic). 

Finally, the component-based approach can represent the appliances and devices characteristics 

that are connected to the power system [11]. 

2.3.1.3 Disadvantages 

The main disadvantage of this approach is that the component-based approach requires the 

characteristics of loads that need to be modeled. Also, it is hard to get an accurate and extensive 

information related to the load composition. Additionally, this approach does not have the 

adjustability to integrate with the modern loads  [11]. 

2.3.2 Measurement-based Approach 

2.3.2.1 General Background 

A measurement-based approach is a straightforward approach comparing with the component-

based approach as the coefficients are obtained directly from the measured data [2]. In other words, 
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the measurement-based approach is another method of identifying the model coefficients 

mathematically. This approach gets benefits from the data measured by gauges such as smart 

meters, where the gauges measure the active and reactive power changes, as an output, with the 

variations of applied voltage and frequency, as an output, at the load bus [11]. These previous 

changes can be resulted from intentional voltage changes that are done in the laboratory for 

research purposes, or due to the natural disturbances in the power system. Once the recorded data 

are obtained, it is used to calculate the model coefficients [1]. The approach can be outlined in the 

following steps: obtain data from the field-measurements, choose the appropriate load model, 

calculate the load coefficients, and validate the load model [11]. 

According to the transient stability studies, the model coefficients obtained by the measurement-

based approach can be simply updated within the variation of load characteristics as this approach 

has the direct observation of the dynamic load response, which is fundamental to determine the 

load model coefficients in the shape needed for the transient stability. Despite that, there are still 

some obstacles that are considered one of the approach disadvantages regarding transient stability 

studies. One of these disadvantages is that the reactive power of dynamic loads cannot be described 

by the constant impedance of the dynamic load models [16]. 

It might be functional to merge between both identification approaches, component-based and 

measurement-based, by utilizing ‘load signatures’. The great illustration of that is the employment 

of known loads characteristics to identify the load composition from the recorded data [8]. 

 



  24 

 

 
Figure 2.2 Measurement-based load model approach (source [11]) 

 

2.3.2.2 Advantages 

Unlike the component-based approach, measurement-based approach does not require a lot of 

information about the load components, and it can be implemented for several models [11]. Also, 

it provides a precise model as it is based on the actual data, and considered to be an accurate 

approach to model the current load components, as it relies on the load’s physical data [1]. 

2.3.2.3 Disadvantages 

The measured data may not be accurate when enormous disturbances occur. Also, this approach is 

not applicable in all conditions, and it cannot be generalized since it is performed only for a specific 

duration of time and a certain place, which means it might not be applicable for other systems [1]. 

Considerable costs should be considered for this approach for the measurement process. 

Additionally, it is difficult to know the way of load response to the huge variations that might 

occur in the system [1]. One of the approach obstructions is the difficulties of considering the 

seasonal changes in the loads without load composition data [8]. The measurement-based is 

generally not that prevailing approach due to some issues that are relevant to the measurement 

devices, especially with some situations when the huge change of voltages and frequency does not 

exist steadily so as to define the voltage and frequency behavior for the load [7]. 
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CHAPTER 3 

 

ZIP MODEL APPLICATIONS 

3.1 Load Behavior Analysis 

3.1.1 General Background 

Load components can be identified as a group of different equipment, connected to the power 

system, that converts the electric energy withdrawing from the system into another form of energy, 

such as heaters, fridge, washing machines, etc. Several models have been implemented to represent 

the characteristics of load components, and these models have the ability to display the 

characteristics of a group of loads that are connected to certain buss. It can also represent the 

features of load classes (residential, commercial, and industrial) [7]. 

The representation of these load components is considered to be an essential factor for power 

system studies as the load characteristics influence the system performance. Thus, choosing an 

appropriate load model for load behavior studies is very momentous for system analysis purposes. 

Numerous works have been done by utilities for the sake of identifying the load characteristics 

behavior through the variation of power consumed by loads with different voltage and frequency 

levels. Moreover, the advancement of loads over recent years raises the challenges of developing 

a standard structure of the component-based model, like the main system components; generators, 

transformers, and transmission lines. Therefore, this evolution of load components and emerging 

some new technologies into the market make the update of the component-based models is very 

imperative in order to have a dependable model that affords an accurate representation of load 

characteristics [17]. 
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Component-based models can be defined as the models that depend on the characteristics and 

detailed properties of load components. This type of model is recognized to be one of the primary 

power system modeling approaches. Component-based models are implemented by conducting a 

physical experiment. The way of achieving the type of model can be done through the integration 

of the load components that are connected to the system, distribution network, under a certain level 

of an applied voltage to an equivalent model [7]. 

The ZIP load model is one of the best models to be fit for the behavior analysis studies. ZIP Model 

represents the sum of three categories; which are the static load characteristics that can be 

categorized into a constant impedance, constant current, and constant power load. The difference 

between the three constants is associated with the power-voltage relationship; the power 

dependency on voltage is quadratic, for constant current it is linear, and for constant power, it is 

independent of voltage [18]. 

3.1.2 Related Work 

Diverse works of load modeling were implemented by using the ZIP load model in the interest of 

analyzing the load behavior and their impact on the power system. Authors in [17] studied the 

performance of game consoles and TVs and updated the ZIP load model for the new version of 

these appliances that have released recently. Several tests were carried out on game consoles such 

as PS3, Xbox, and ZIP load model was developed for these measured values obtained from the 

laboratory tests. On the other hand, [1] developed aggregated load models for the sake of more 

accuracy in forecasting active and reactive power for the latest, non-linear, and most frequently 

used loads, such as drive-controlled motors and electronic devices. ZIP load model has been 

chosen for the developed approach and component-based method was selected to identify the 
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coefficients of this model. Work in [8] intended to update the load modeling for non-traditional 

loads, such as power electronic interfaced loads, by conducting aggregation of load modeling for 

the residential and commercial classes in the UK, taking into account the development of some 

load modeling methodologies. 

Research in [7] intended to do a comparison between the two static load models (ZIP & 

Exponential) by analyzing the outcome of each one of these models on the selected loads under 

normal operation and abnormal conditions, such as a short circuit fault. It was demonstrated that 

two models for incandescent light almost have the same accurate representation, but they are 

different for the fluorescent light. [19] aimed to improve the load model by studying the model 

performance on the end-use components taking into consideration the loads details like demand 

response and energy efficiency programs which have a significant impact on energy consumption. 

ZIP load model was executed to find out the model coefficients for different end-use loads.  

[20] proposed an approach that can be implemented in many sectors and different countries to 

improve the load modeling of the low voltage LV network in the power system. The modeled 

aggregated load was connected to the medium voltage MV, and ZIP load model was selected to 

investigate this proposed approach. The work in [21] planned to determine the ZIP load model 

parameters to prove the reliability of the Transmission-Distribution co-simulation approach, which 

is a developed model that is considering both transmission and distribution systems. ZIP load 

model was fitted to validate the suggested approach. Furthermore, the suggested work was also 

justified by comparing co-simulation to Transmission only simulation using the coefficients that 

are obtained from the new approach for the purpose of displaying the adequacy of this method in 

describing the loads' behavior in the distribution system.  
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[22] looks into the non-linear loads and their impact on the system for the purpose of developing 

a PC program. The main features of this program are the investigation of non-linear components 

behavior according to the active and reactive power under voltage variations, and the ability to 

study combined loads. Experimental measurements were conducted and ZIP model was fitted into 

the data obtained from the measurements. On the other hand, authors in [4] did not develop a load 

model through the laboratory measurement method used as used in [6], [22], [23]. Taylor Series 

Approximation was the proposed approach for the estimation of the load coefficients.  

The suggested method relies mainly on the in-situ measurements for defining the load parameters, 

which represent the active and reactive power based on the nominal values that applied in the 

utility voltage. [18] also used the ZIP model to identify the impact of voltage variations on the 

loads in the micro-grid under abnormal conditions, such as a three-phase short fault. It was found 

that ZIP models can have several power characteristics and the required load characteristics could 

be achieved by varying the percentages of ZIP parameters. From another point of view, [24] was 

mainly focused on studying the home-grid system and investigating the possibility of developing 

it more efficiently. The research proposed a new home-grid system based on solar energy which 

is called a hybrid AC/DC solar powered Home grid model. Experiments were done to study loads 

behavior. Then, ZIP model coefficients were identified to present the loads' characteristics. 
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3.2 Power System Stability 

3.2.1 General Background 

Power system stability is described as the ability of the synchronous machines of coming over the 

system disturbance to the steady-state operating point, without missing synchronism. It may be 

classified into three types: steady-state stability, transient stability, and dynamic stability [25]. 

Steady-state stability still has some gradual variations in the operating conditions. However, the 

stability analysis performed on the power system guarantees that these changes don't negatively 

impact system stability by making sure that the bus voltage is still close to the rated voltage, and 

the other parts of the system such as generators, transmission losses, and equipment are not 

overloaded. Regarding transient stability, which includes primary disturbances like faults, 

generation, and sudden load changes, synchronous machine, after occurring disturbances, are 

exposed to variation in machine power angle and transient deviations from frequency (60 Hz). The 

goal of transient stability analysis is to figure out if the machine will return to the synchronous 

frequency with new steady-state power angles [25]. 

Power system representation is very essential for analysis purposes. Thus, modeling of different 

parts of the system equipment, e.g., generation, transmission, distribution system, can be 

performed by the power industries or researchers or can be approximated through on-site 

measurements and mathematical analysis [49]. The uncertainty of load representation is one of the 

prime challenging issues that face the load modeling analysis, and this challenge is caused by the 

time-varying physical characteristics associated with loads. For this reason, most researches and 

related works were focused on the modeling of generation and transmission equipment more than 

load modeling. As a consequence, it is very imperative to investigate the load modeling impact on 

power system stability [26]. 
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Load model determination for presenting the load is a very critical matter as the load representation 

has a considerable influence on the power system analysis and transient stability is one of the main 

essential topics to be studied in the power system. Static and dynamic load models are well-known 

models in the power industry when it comes to transient stability analysis and static model 

performance has been investigated in several works [27]. Numerous work and investigations have 

been done by the industries and academia regarding load modeling due to its effectiveness. 

Consequently, an accurate load model carries out remarkable outcomes for the power system in 

terms of raising the flexibility of system operation cost-savings of system reinforcement. However, 

the inappropriate load model causes various issues that lead to the system collapse [28]. 

3.2.2 Related Work 

According to the [27], it was shown that the ZIP model is an appropriate and sufficient model for 

transient stability studies and can be considered as an accurate representation of the dynamic 

behavior of real power throughout the system disturbances. Authors in [27] examined the adequacy 

of static load models of representing transient stability by using on-line measurement data. Similar 

work in [26] was done in China where authors aimed to study the load modeling impact under 

different conditions of faults during the transient stability.  It has been demonstrated that the load 

model is significantly crucial for analyzing transient stability although the load model can be 

considered as a conservative model in some abnormal cases such as transient stability and has a 

notable impact on study results at the power system.  

Work in [29] intended to develop the ZIP model to analyze its impact on the power flow solutions, 

taking into account the voltage parameter as one of the load variables, at the MV level. The data 

for this study is based on real-time measurement data obtained from the power system in Cyprus. 
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Data were experimentally measured and collected on-site and the results concluded that the ZIP 

model that relies on real and accurate data for power flow solutions is deemed to be a suitable 

model for power flow.  

The author in [6] also employed the data obtained from the laboratory experiment in order to derive 

the model of modern loads in 1998, which can evaluate the power system behavior when it is 

exposed to unexpected variations such as voltage reduction during the operation conditions. ZIP 

model is the best fit to develop for these modern loads since the study focuses on the load behavior 

under varying voltages for a long time. The author referred to the importance of using an accurate 

load model when the load composition can be identified.  

Authors in [3] aimed to update the loads' measurements in the previous work [6] taking into 

consideration the technology advancement and the modern devices that are recently used in the 

residential and commercial classes, specifically in the small offices, and that had not been tested 

and modeled yet. Laboratory measurements of the recent appliances and the derived ZIP load 

model were investigated. It revealed that ZIP model is able to represent the behavior of the small 

motors and the power electronic conversion devices.  

While [17] worked on developing a model for the modern generation of appliances, research in [5] 

also tended to do a similar study on modern flat TVs. The authors' focus was on studying its 

behavior and investigating the energy consumption of these components and their impact on power 

system stability. Different types of TVs such as LCD and LED with several sizes were tested in 

the laboratory and subjected to different voltage variations in order to develop the ZIP load model 

and derive the coefficients. 
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3.3 Conservation Voltage Reduction 

3.3.1 General Background 

Utilities practice principle of CVR to conserve energy and minimize losses by operating the end-

user load on the lower half of the ANSI standard without exposing customers to unacceptable 

under-voltage conditions. Reduction of voltage may reduce or increase total power consumption 

depending on the end-user load type and local reactive power compensation. CVR implies that the 

load will require less energy (less peak demand and energy losses) when the applied voltage is 

reduced. So the object of this technique is to reduce the power consumption of the system. This 

can be done by reducing the voltage supplied from the feeder, so the applied voltage at the end-

user will be the lowest acceptable level of voltage corresponding to the rated values of the 

equipment and the voltage margins specified by the international standards [30]. 

CVR is one of the frequently used methods for power-conserve purpose in the utilities. Even 

though the CVR technique has been implemented in most of the systems in North America, one 

of the main CVR challenges is that it is hard to find out how CVR will perform on different sorts 

of distribution feeders. So, most of the published researches are predicated on the experimental 

field measurements and little of works is an essential analysis of CVR impact [12]. CVR is 

categorized into two kinds of performance: short term, where the CVR is deployed employed to 

conserve power at the peak time of a day, and long term, where it is employed permanently [31]. 

3.3.2 National Standards of CVR Ranges 

End-use equipment and appliances can be fed by the applied voltage levels lower than the nominal 

voltage without any shutdown or failures of this equipment. This reduction of voltage levels is 

allowed within a range of voltage levels which is determined by the International Standards ANSI 
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C84.1–2006 and IEEE std 1250-1995 [30]. As stated in the American National Standards Institute 

(ANSI) Standard C84.1, voltages at consumer levels must remain at 1 p.u. volts 5% [32]. 

According to the voltage variations range that is used for the ZIP model solution and looking back 

to the references and based on the review, it was noted that different ranges of voltage variations 

were typically imposed to obtain the voltage power functions used to compute the ZIP coefficients, 

e.g., voltage variations from Vmin% to 110% of the nominal voltage was imposed in [6], where 

Vmin is between 25% - 27%. Two voltage variations were imposed in [23]: 83% to 110% which 

is called the 100-v cutoff voltage, and Vmin% to 110% which is called the actual cutoff voltage, 

where Vmin is defined as the voltage where the load can no longer functioning. The purpose of 

finding the Vmin is that the importance of determining the shutdown minimum voltage, e.g. In 

some cases, if the Vmin value is bigger than voltage step, the lowest voltage levels will be 

redefined in the test. Voltage variations from 80% to 110% were imposed in [30] as the reference 

investigation is about the Conservation Voltage Reduction (CVR). Voltage variations from 50% 

to 110% were imposed in [17]. Voltage variations from 0% to 100% were imposed in [3]. 

In conclusion, voltage variation range selection is dependent on the work interests. However, the 

range of voltage, which is between 80% - 110%, is adopted in our research since the work purpose 

is to evaluate the load behavior under Conservation Voltage Reduction studies. Also, these ZIP 

coefficients obtained from different voltage ranges can be used together for our work interests as 

there are many works such as [2], [4] used the obtained ZIP coefficients from different previous 

measurements. 
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3.3.3 CVR Economic Advantages 

Numerous companies are attracted by the economic advantages of CVR regarding power 

consumption reduction. Many companies, such as BC Hydro, Hydro Quebec (HQ), Southern 

California Edison (SCE), Northeast Utilities (NU), Dominion Virginia Power, and Bonneville 

Power Administration (BPA) have applied CVR and observed that a range of power reduction 

between 0.3% to 1% was achieved for 1% of voltage reduction [31]. Another study shows that 

3.04% of the power consumption can be saved if the CVR is implemented across the distribution 

feeders of the USA [12]. Another study of a utility company, BC hydro, demonstrates that CVR 

application has led to reducing 1% of energy losses when 1% of the voltage reduction was 

implemented [33]. 

3.3.4 CVR implementation methods 

 CVR can be implemented utilizing the three means [34]: 

 Line Drop Compensator (LDC) with the adjustment of Load tap changers (LTC) supported 

with a controller that changes the tap position to keep the voltage within the allowed margins 

 Deploying voltage spread reduction, which is similar to the LDC method except it reduces 

the voltage in lower percentages. This method requires line reconfiguration to maintain the 

voltage within the permitted range. 

 Adaptive voltage control (AVC) by using Line Voltage Monitor (LVM), data collector, and 

controller. 

3.3.5 CVR Factor 

The impact of CVR can be assessed by the CVR factor, which is defined as the ratio of the 

percentage of change in power consumed by the load to the percentage of change in voltage level, 
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expressed in equation (14) [35], where CVRf is conservation voltage reduction factor, %∆P is the 

change percentage in power consumed by the load, %∆V is the change percentage in voltage level. 

CVRf =
%∆P

%∆V
                   (14) 

 

3.3.6 Load Modeling for CVR Studies 

load modeling is one of the most substantial means to evaluate the efficiency of the CVR technique 

in the network system, where load modeling can represent the performance of loads that are 

connected to the system. Additionally, some of the previous related works indicated the 

significance of load modeling application on CVR [30]. Load modeling also considered to be an 

important part of the CVR study. ZIP load model can be used to express the loads performance 

that are exposed to the CVR technique. The basic concept of CVR is that the loads (end-use 

components) consume less power when the applied voltage gets decreased. So the modeling 

process can be a very helpful method for investigating the impact of CVR for end-users and 

systems. Load modeling is implemented on the loads, then the model coefficients can be obtained 

and the validation of the model is done by the comparison between the actual laboratory 

measurements and the ZIP coefficients [23]. 

3.3.7 Related Works 

Some of the previous related works indicated the significance of load modeling application on 

CVR. Research in [23] aimed to validate the ZIP load model in various customer categories versus 

the measured values obtained from the laboratory test for analyzing the CVR impact. ZIP load 

model was the most appropriate for this purpose as it represents the relationship between 

consuming power and the applied voltage. It was found that the latest loads behave differently than 

the older appliances. [10] also calculates the ZIP coefficients by the values obtained from the 
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experiment in order to figure out the precision of the ZIP load model under the CVR conditions. 

It was also revealed that the ZIP load model has high accuracy with calculating the active power 

for most of the residential home appliances, but not as good as precision with the reactive power.  

Work in [36] examined the CVR impact on the behavior of residential appliances in the distribution 

network in the UK. Authors used the ZIP coefficients obtained in [6] to model 70% of the 

residential peak demand. Load components behavior was investigated by using the ZIP model due 

to the ability of this model to define the appropriate range of the voltage variations that could be 

implemented in the corresponding network. [30] primarily compared the three statics load models 

(which are polynomial ZIP, phase angle-related ZIP, and Exponential model) and discussed their 

CVR influence and suggested the ellipsoidal algorithm as an approach to achieve more accurate 

load models. It was shown that phase angle-related ZIP was the only model who has a better 

accuracy with showing the V-P relationship. Another work in [37] proves that CVR can be 

performed well when the aggregated load model is controlled by constant impedance or constant 

current loads.  

[38] conducted a research on the two types of loads, which are the ZIP loads and the Equivalent 

Thermostatic Loads (ETLs), and their impact on the energy savings of CVR estimations in the 

distribution network. Loads were subjected to ZIP and ETLs models. Then, a comparison was 

made between two models to figure out the ability of both models to catch the ambient temperature. 

Research in [39] tended to concentrate on the harmonic distortion and comprise it with the 

suggested approach of the updated ZIP load model for the sake of more accurate modeling. On the 

other hand, in [40], the ZIP load model was conducted for a study that represents a formulation 

named Mixed-Integer Nonlinear Programming MINLP.  This approach expresses a procedure of 



  37 

 

measuring the applied voltage for the sake of accurate CVR according to the network 

infrastructure. The research in [41] employed the ZIP model to investigate the Distributed Energy 

Resources (DER) as one of the CVR approaches and examine the DER applications in different 

considerations.  

[42] demonstrates that CVR can be concretely optimized by penetrating PV in the distribution 

network. Loads behavior has to be taken into account for the CVR estimations and this can be 

achieved by the ZIP modeling of the aggregated loads. From another point of view, work in [43] 

discussed the CVR applications that can be implemented on future networks, especially with the 

rising voltage demand of the future loads such as electric vehicles and heat pumps. The authors 

employed the ZIP load model as the best fit for CVR forecasts and calculations. ZIP model was 

also used in [44] to study the impact of the electric vehicles penetrated on the distribution network 

and found that the electric vehicle penetration adversely influences the CVR implementation and 

weakens its efficacious. 
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CHAPTER 4 

 

EXISTING ZIP COEFFICIENTS:  

REVIEW & ANALYSIS 

 

4.1 Framework Description 

The framework in this chapter is divided into four stages. The first stage is documenting the 

existing work of the researchers investigated in the component-based ZIP model and its 

coefficients. The second stage is grouping the ZIP coefficients of load components obtained from 

the previous works into end-use types according to a building performance simulation called 

EnergyPlus, which is an open-source whole-building energy modeling (BEM) that commonly used 

by engineers, designers, and researchers. It consists of a group of modules that are integrated 

together to calculate the energy consumption for heating, cooling, lighting, plugged equipment, 

and the other end-use types in buildings. The calculation is achieved by an integrated simulation 

of building and associated energy systems under different conditions of operation.  

The third stage is mapping and visualizing the documented load components and plotting them 

with respect to the voltage-power relationship and ZIP coefficients so the load behavior and 

response to the voltage variations can be visualized. This can be achieved through ZIP model 

equations for active and reactive power. And finally, the fourth stage is identifying the ZIP 

coefficients for each end-use category based on the load components documentation and 

visualization adopted in the previous stages. Three cases of ZIP coefficients determination for each 

end-use category are investigated in this stage: the minimum, maximum, and typical cases. Two 
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of these cases, which are min & max, of ZIP coefficients are extracted by the load components 

plots for each end-use type by identifying the most and least sensitive component with respect to 

the relationship between power and voltage. The third case, which is the typical ZIP coefficients, 

is achieved by the determination of ZIP coefficients for each end-use type in one residential house 

based on the documented load components and load composition represented by the share of 

electricity for each load. Figure 4.1 shows the framework of this paper for the review and 

visualization adopted in this work. 

 

Figure 4.1 framework for ZIP model coefficients: review & visualization 

 

4.2 Inventory: Detailed Review & Discussion 

Diverse works were conducted by many researchers to develop the ZIP model and identify its 

coefficients for different directions of focuses. The summaries of works related to the ZIP 

coefficients determination has been reviewed and shown in the following sections. The author in 

[6] employed the data obtained from the laboratory experiment in order to derive the ZIP model 
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coefficients of modern loads in the residential class such as refrigerator, battery charger, 

microwave oven. The purpose of modeling is to evaluate the power system behavior when it is 

exposed to unexpected variations such as voltage reduction during the operation conditions. 

Authors concluded that modern loads can significantly minimize the voltage reduction impact on 

the power system. Work in [22] looked into the non-linear loads and their impact on the system 

for the purpose of developing a PC program to investigate the non-linear components behavior. A 

field survey was done to identify the most common non-linear loads in the residential and 

commercial classes. Then, experimental measurements of elevator, escalator, pump, fan, and other 

commercial loads were conducted based on this survey. The ZIP load model was fitted into the 

data obtained from the measurements. Similar research in [3] aimed to update the ZIP coefficients 

in [6] taking into consideration the technology advancement and the modern devices used in the 

residential and commercial classes. It revealed that ZIP model is able to represent the small motors 

behavior and the power electronic conversion devices, but it is not convenient for presenting the 

motor loads behavior that carry mechanical loads with constant torque. [19] also aimed to 

determine the ZIP coefficients by studying the model performance on the end-use components 

taking into account the loads details such as demand response and energy efficiency programs that 

have a significant impact on energy consumption. ZIP coefficients of several lighting fixtures, e.g., 

CFL, LED, and incandescent, were determined in this work.  

Authors in [17] studied the performance of game consoles and TVs by updating the ZIP model 

coefficients for the new version of these appliances that have released recently. The model was 

developed based on several tests were carried out on game consoles such as PS3, Xbox. Research 

in [5] also tended to do a similar study on modern flat TVs by studying its behavior and 

investigating the energy consumption of these components and their impact on power system 
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stability. Different types of TVs such as LCD and LED with several sizes were tested in the 

laboratory and subjected to different voltage variations in order to develop the ZIP model and 

derive the coefficients. [23] aimed to validate the ZIP model in various customer classes versus 

the measured values obtained from the laboratory test. Authors also used the information obtained 

from the previous laboratory experiment to compare between the behavior of the recent and old 

loads by determining the ZIP model to represent the loads that are exposed to CVR technique. The 

modeled load in this work are the plugged equipment, lighting fixtures, cooling system, and some 

commercial loads such as air compressor and fans. It was found that the latest loads behave 

differently than the older appliances. 

According to [10], based on the determination of model coefficients, ZIP model has high accuracy 

with calculating the active power for most of the residential home appliances, but not as good as 

precision with the reactive power. On the other hand, [24] proposed a new home-grid system based 

on solar energy which is called a hybrid AC/DC solar powered Home grid model. This new system 

was suggested based on the specifications of the most frequently used loads in residential homes. 

Thus, experiments were done to study loads behavior, and ZIP model coefficients were identified 

to present the loads' characteristics. [1] developed aggregated load models for the sake of more 

accuracy in forecasting active and reactive power for the latest, non-linear, most frequently loads, 

such as drive-controlled motors and electronic devices. ZIP load model has been chosen for the 

developed approach and component-based method was selected to identify the coefficients of this 

model.  

[30] primarily compared the three statics load models, which are polynomial ZIP, phase angle-

related ZIP, and Exponential model, and discussed their CVR influence and suggested the 
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ellipsoidal algorithm as an approach to achieve more accurate load models. The coefficients of the 

three models were identified and the results illustrated that phase angle-related ZIP was the only 

model who has a better accuracy with showing the V-P relationship where the power is decreased 

by raising the applied voltage. Work in [8] intended to update the load modeling for non-traditional 

loads, such as power electronic interfaced loads, by conducting aggregation of load modeling for 

the residential and commercial classes in the UK. Important changes in load characteristics were 

noticed in this study, which leads to the necessity of more extensive assessment of demand-side 

management and its association with distributed generation.[12] also extracted ZIP coefficients for 

the CFL and LED lighting fixtures to study CVR advantages for individual distribution feeder 

types, and investigate the CVR impact on national levels. 

Thus, a comprehensive review of all ZIP coefficients is executed to document all these above-

mentioned researches that identified ZIP model coefficients for the loads from 1998 to the present. 

The ZIP coefficients tables below are classified into two categories: US-based voltage and 

International based voltage. The US-based voltage is the voltage that is used in the United States, 

which is a single-phase voltage is 120 V & 277 V with 60 Hz frequency, and the international-

based voltage is the voltage used in Europe and Asia, where the single-phase voltage is 220 & 230 

V with 50 Hz frequency. 

4.2.1 120V / 60 Hz – US Based Voltage 

4.2.1.1 Constant-Based ZIP coefficients 

The constant-based ZIP coefficients is this section are related to the Constant Impedance Z, 

Constant Current I, and Constant Power P for the active and reactive power. These ZIP coefficients 

are grouped according to EnergyPlus, and the energy consumption of facilities in EnergyPlus is 

grouped according to end-use category type for the purpose of the data collected and the available 
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end-use categories in EnergyPlus, the following are selected and utilized: Heating, Cooling, 

Interior Lighting, Exterior Lighting, Interior Equipment, Exterior Equipment, Fans, Pumps, Heat 

Rejection, Humidification, Heat Recovery, water systems, and Refrigerator [45]. Thus, the ZIP 

coefficients review in this section are sorted based on the US based voltage. 

Heating 

Heating end-use includes the devices used for heating purposes such as resistive and baseboard 

heater. Tables 4.1 shows the ZIP coefficients for load components in the heating end-use, where 

Resistive heater (1) is the ZIP coefficients with 100 V cutoff voltage, Resistive heater (2) is the ZIP 

coefficients with variable cutoff voltage which is the shut off voltage. 

Table 4.1: ZIP Coefficients for Heating components – 120V US based voltage 

Component Ref Zp Ip Pp Zq Iq Pq 

Resistive heater (1) [23] 0.640 0.590 -0.230 0.130 0.750 0.120 

Resistive heater (2) [23] 0.920 0.100 -0.020 0.150 0.860 -0.010 

Resistive Load [22] 1.000 0.000 0.000 0.000 0.000 1.000 

Dryer heater [6] 0.960 0.050 -0.010 0.000 0.000 0.000 

Industrial heater/ blower [6] 0.980 0.020 0.000 0.690 0.250 0.060 

Baseboard heater [6] 1.000 0.000 0.000 0.000 0.000 0.000 

 

Cooling 

Cooling end-use includes the systems used in the residential class to cool the place such as air 

conditioner. Table 4.2 shows the ZIP coefficients for cooling components. 

Table 4.2: ZIP Coefficients for Cooling components – 120V US based voltage 

Component Ref Zp Ip Pp Zq Iq Pq 

Air conditioner (1) [23] 1.170 -1.830 1.660 15.680 -27.150 12.470 

Air conditioner (2) [23] 1.600 -2.690 2.090 12.530 -21.110 9.580 
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Interior/Exterior Lighting 

The interior/exterior lighting end-use includes the indoor and outdoor lighting components used 

in the residential class. Interior light fixtures can be installed in different areas of the house such 

as bathroom, kitchen, and living room. On the other hand, the exterior light is used to illuminate 

the outside areas such as garage, porch, and patio. The documented lighting fixtures are 

fluorescent, compact fluorescent lamp (CFL), incandescent, Light Emitting Diode (LED), high-

pressure sodium (HID), Tungsten light, halogen, and induction light. Table 4.3 shows the ZIP 

coefficients for Interior/Exterior Lighting components.  

Table 4.3: ZIP Coefficients for interior/exterior lighting – 120V US based voltage 

Component Ref Zp Ip Pp Zq Iq Pq 

Fluor lamp (U-shape) [22] -0.300 1.270 0.040 -9.230 16.640 -6.400 

Fluor lamp (Spot) [22] -0.640 2.170 -0.530 -1.020 2.800 -0.780 

Fluor lamp (Magnetic) [22] -5.240 10.710 -4.470 -5.680 12.270 -5.590 

Fluor lamp (Electronic) [22] -7.420 13.970 -5.550 7.420 -10.590 4.180 

Fluor lamp T8_32W - Instant-on 

electronic ballast  
[3] 0.350 0.720 -0.040 0.280 -0.900 0.030 

Fluor lamp T12_40W - Instant-on 

electronic ballast  
[3] 0.340 0.710 -0.030 0.200 -0.760 0.020 

Fluor lamp T8_32W- Instant-on no 

flicker electronic ballast 
[3] -0.030 1.100 -0.050 0.320 -0.750 0.030 

Fluor lamp T12_40W- Instant-on no 

flicker electronic ballast 
[3] 0.060 0.970 -0.030 0.240 -0.600 0.020 

Electronically ballasted Fluor 1- 

(composite load) 
[6] -2.480 5.460 -1.970 0.000 0.000 0.000 

Electronically ballasted Fluor 2- 

(composite load) 
[6] -1.600 3.580 -0.980 0.790 -0.160 0.360 

CFL(1) [23] 0.810 -1.030 1.220 0.860 -0.820 0.960 

CFL(2) [23] -0.630 1.660 -0.030 -0.340 1.400 -0.060 

Electronic CFL 1 [6] 0.140 0.770 0.090 -0.060 -0.340 -0.600 

Electronic CFL 2 [6] 0.160 0.790 0.050 0.180 -0.830 -0.350 
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Magnetic CFL [6] 0.340 1.310 -0.650 3.030 -2.890 0.860 

CFL 19W [3] -0.420 1.500 -0.060 0.660 -1.160 0.060 

CFL 23W [3] -0.280 1.350 -0.050 0.580 -1.110 0.050 

CFL 20W [3] -0.300 1.360 -0.050 0.600 -1.080 0.040 

External Fluor dimmer [6] -0.480 1.890 -0.410 12.210 -18.380 7.160 

Incandescent light(1) [23] 0.470 0.630 -0.100 0.550 0.380 0.070 

Incandescent light(2) [23] 0.540 0.500 -0.040 0.460 0.510 0.030 

Incandescent [30] 0.690 0.000 0.300 0.000 0.000 0.000 

LightBulb 100W [3] 0.640 0.400 0.000 0.000 0.000 0.000 

Incandescent light [22] 0.430 0.640 -0.080 0.000 0.000 1.000 

LED light(1) [23] 0.580 1.130 -0.710 1.780 -0.800 0.020 

LED light(2) [23] 0.690 0.920 -0.610 1.840 -0.910 0.070 

High pressure sodium HID(1) [23] 0.090 0.700 0.210 16.600 -28.770 13.170 

High pressure sodium HID(2) [23] -0.160 1.200 -0.040 3.260 -4.110 1.850 

High pressure sodium lamps [6] 0.980 -0.030 0.060 29.840 -45.260 14.410 

Mercury vapor HID light(1) [23] 0.520 1.020 -0.540 -1.330 2.400 -0.070 

Mercury vapor HID light(2) [23] -0.160 2.330 -1.170 0.420 -1.010 1.590 

Halogen(1) [23] 0.460 0.640 -0.100 4.260 -6.620 3.360 

Halogen(2) [23] 0.510 0.550 -0.050 0.430 0.520 0.050 

Halogen_100W [3] 0.660 0.390 0.000 0.000 0.000 0.000 

Halogen [22] 0.480 0.570 -0.050 -3.570 0.690 0.000 

Induction light(1) [23] 2.960 -6.040 4.080 1.480 -1.290 0.810 

Induction light(2) [23] 0.180 -0.750 1.570 7.510 -12.350 5.840 

Tungsten light(1) [23] 0.430 0.700 -0.130 -0.110 0.660 0.450 

Tungsten light(2) [23] 0.450 0.660 -0.110 0.210 0.110 0.680 

Electronic ballast(1) [23] 0.220 -0.500 1.280 9.640 -21.590 12.950 

Metal halide HID electronic ballast(1) [23] 1.000 -2.020 2.020 8.800 -18.640 10.840 

Electronic ballast(2) [23] -0.070 0.080 0.990 9.320 -20.960 12.640 

Metal halide HID electronic ballast(2) [23] -0.030 -0.060 1.090 11.400 -23.500 13.100 

Electronic dimming ballast [6] -0.160 1.770 -0.620 0.000 0.000 0.000 
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Magnetic ballast (1) [23] -1.580 3.790 -1.210 36.180 -67.780 32.600 

Metal halide HID magnetic ballast (1) [23] 0.860 -0.660 0.800 32.540 -59.830 28.290 

Magnetic ballast (2) [23] -3.160 6.850 -2.690 34.260 -64.040 30.780 

Metal halide HID magnetic ballast (2) [23] -0.200 1.350 -0.150 1.370 -0.630 0.260 

 

Interior/Exterior Equipment 

Interior/exterior equipment includes several sorts of electrical appliances used in the residential 

house for different functionalities such as cooking and cleaning. Most of this equipment are listed 

in the following tables according to the review adopted in the last section. Table 4.4 shows ZIP 

coefficients for equipment and appliances obtained from the literature review, e.g., battery charger, 

coffee maker, computer, oven, dish washer, iron, and vacuum cleaner. Tables 4.5 and 4.6 also lists 

the ZIP coefficients for video game console, which are PS4 and Xbox, and TVs such as CRT, 

LED, and LCD for different sizes. 

Table 4.4: ZIP Coefficients for home appliances – 120V US based voltage 

Component Ref Zp Ip Pp Zq Iq Pq 

Battery charger [6] 3.510 -3.940 1.430 5.800 -7.260 2.460 

Coffee maker(1) [23] 0.130 1.620 -0.750 3.890 -6.000 3.110 

Coffee maker(2) [23] 0.980 0.030 -0.010 0.840 -0.300 0.460 

PC (Monitor & CPU)(1) [23] 0.200 -0.300 1.100 0.000 0.600 0.400 

PC (Monitor & CPU)(2) [23] 0.180 -0.260 1.080 -0.190 0.960 0.230 

PC [30] 0.340 0.000 0.650 0.000 0.000 0.990 

Computer [22] 0.270 -0.610 1.340 -0.110 0.020 1.080 

Copier(1) [23] 0.870 -0.210 0.340 2.140 -3.670 2.530 

Copier(2) [23] 0.520 0.450 0.030 0.390 -0.250 0.860 

DishWasher_HD [3] 0.950 0.000 0.000 0.000 0.000 0.000 

DishWasher_NW [3] 0.990 0.000 0.000 0.000 0.000 0.000 

DishWasher_PP [3] 1.000 0.000 0.000 0.000 0.000 0.000 
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Dryer [3] 1.020 0.000 0.000 1.000 0.000 0.000 

Laptop charger(1) [23] -0.280 0.500 0.780 -0.370 1.270 0.130 

Laptop charger(2) [23] 0.250 -0.480 1.230 0.140 0.320 0.540 

Microwave(1) [23] 1.390 -1.960 1.570 50.070 -93.550 44.480 

Microwave(2) [23] -0.270 1.160 0.110 15.640 -27.740 13.100 

Microwave [22] 0.550 1.860 -1.400 19.740 -31.300 12.560 

Microwave [6] -2.780 6.060 -2.280 0.000 0.000 0.000 

Minibar(1) [23] 2.500 -4.100 2.600 2.560 -2.760 1.200 

Minibar(2) [23] 3.950 -6.460 3.510 4.840 -6.640 2.800 

Office equipment 1 [6] 0.340 -0.320 0.980 0.000 0.000 0.000 

Office equipment 2 [6] 0.080 0.070 0.850 0.000 0.000 0.000 

Oven [3] 0.990 0.000 0.000 0.000 0.000 0.000 

Projector(1) [23] 0.230 -0.520 1.290 0.240 -0.170 0.930 

Projector(2) [23] 0.190 -0.450 1.260 10.180 -18.010 8.830 

Range [3] 0.970 0.000 0.000 0.000 0.000 0.000 

TV, Printers, Fax [22] 1.000 0.000 0.000 0.000 0.000 1.000 

Vacuum cleaner(1) [23] 1.180 -0.380 0.200 4.100 -5.870 2.770 

Vacuum cleaner(2) [23] 0.920 0.070 0.010 0.910 -0.020 0.110 

Washing machine [6] 0.050 0.310 0.630 -0.560 2.200 -0.650 

Iron [30] 0.920 0.000 0.070 0.800 0.160 0.040 

Mixer [30] 0.710 0.000 0.280 0.290 0.700 0.000 

 

Table 4.5: ZIP Coefficients for Video Game Console – 120V US based voltage 

Component Ref Zp Ip Pp Zq Iq Pq 

Game console (1) [23] -0.630 1.230 0.400 0.760 -0.930 1.170 

Game console (2) [23] 0.360 -0.580 1.220 0.340 -0.120 0.780 

Xbox 360 [17] 0.115 -0.301 1.186 2.875 -5.912 4.037 

Xbox 360 & LCD TV [17] 0.384 -0.733 1.349 1.890 -3.371 2.481 

Xbox 360 & LCD TV ss [17] 0.307 -0.630 1.323 1.282 -1.857 1.575 

Xbox 360 & LED TV [17] -0.033 -0.104 1.137 2.304 -4.303 2.998 
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Xbox 360 & LED TV ss [17] 0.249 -0.516 1.266 2.104 -3.635 2.531 

Wii [17] 0.318 -0.338 1.019 2.078 -3.468 2.390 

Wii & LCD TV [17] 0.416 -0.798 1.382 -0.377 1.643 -0.266 

Wii & LCD TV 50% v [17] 0.438 -0.795 1.357 -0.344 1.595 -0.251 

Wii & LED TV ss [17] 0.314 -0.568 1.254 0.763 0.156 0.081 

Wii & LED TV [17] 0.789 -1.204 1.415 0.816 0.076 0.108 

PS3 [17] 0.376 -0.738 1.362 0.831 0.409 -0.240 

PS3 ss [17] 0.167 -0.269 1.102 0.627 0.719 -0.346 

PS3 & LCD TV ss [17] 0.196 -0.416 1.220 -0.084 1.513 -0.429 

PS3 & LCD TV 50% v [17] 0.232 -0.501 1.268 -0.048 1.477 -0.429 

PS3 & LED TV [17] 0.202 -0.374 1.172 0.490 1.070 -0.560 

PS3 & LED TV ss [17] 0.178 -0.357 1.179 0.615 0.844 -0.459 

 

LCD 22 " (3) is the ZIP coefficients with no constraints, which means that coefficients not bounded 

to [0,1], LCD 22 " (4) is the ZIP coefficients with one constraints that Zp + Ip + Pp = 1, and LCD 

22 " (5) is the ZIP coefficients with two constraints: coefficients bounded to [0,1] and Zp + Ip + Pp. 

Table 4.6: ZIP Coefficients for TVs – 120V US based voltage 

Component Ref Zp Ip Pp Zq Iq Pq 

LCD Television (1) [23] 0.110 -0.170 1.060 1.580 -1.720 1.140 

LCD Television (2) [23] 0.330 -0.570 1.240 19.000 -33.220 15.220 

LCD 22 " (3) [5] 0.473 -0.898 1.427 9.035 -16.732 8.658 

LCD 22 " (4) [5] 0.465 -0.889 1.425 9.225 -16.934 8.709 

LCD 22 " (5) [5] 0.000 0.000 1.000 0.000 0.000 1.000 

LCD 40 " (3) [5] 0.163 -0.325 1.161 0.464 1.000 -0.465 

LCD 40 " (4) [5] 0.170 -0.333 1.164 0.479 0.981 -0.460 

LCD 40 " (5) [5] 0.000 0.000 1.000 1.000 0.000 0.000 

LCD 55 " (3) [5] 0.546 -1.051 1.499 -0.646 2.204 -0.560 

LCD 55 " (4) [5] 0.580 -1.088 1.509 -0.637 2.194 -0.557 

LCD 55 " (5) [5] 0.000 0.000 1.000 0.247 0.753 0.000 
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LCD [30] 0.000 0.000 1.000 0.030 0.000 0.960 

LCD TV [17] 0.497 -0.941 1.444 -0.766 2.398 -0.632 

LCD TV - black sc [17] 0.447 -0.848 1.401 -0.795 2.436 -0.641 

LCD TV - black sc 1080 [17] 0.580 -0.976 1.396 -0.636 2.218 -0.582 

LCD TV - white sc [17] 0.540 -0.977 1.437 -0.793 2.452 -0.659 

LCD TV - white sc 1080 [17] 0.496 -0.941 1.445 -0.819 2.483 -0.664 

LCD [3] 0.000 0.000 1.000 0.000 0.000 0.150 

LED 26 " (3) [5] 0.285 -0.563 1.278 3.127 -5.580 3.428 

LED 26 " (4) [5] 0.286 -0.564 1.279 3.260 -5.726 3.466 

LED 26 " (5) [5] 0.000 0.000 1.000 0.000 0.000 1.000 

LED 32 " (3) [5] 0.551 -1.026 1.464 6.396 -11.078 5.673 

LED 32 " (4) [5] 0.613 -1.096 1.483 6.453 -11.143 5.690 

LED 32 " (5) [5] 0.000 0.000 1.000 0.000 0.000 1.000 

LED 55 " (3) [5] 0.276 -0.546 1.271 0.546 0.909 -0.482 

LED 55 " (4) [5] 0.271 -0.540 1.269 0.726 0.697 -0.423 

LED 55 " (5) [5] 0.000 0.000 1.000 1.000 0.000 0.000 

LED TV [17] 2.694 -4.291 2.597 0.590 0.866 -0.456 

LED TV - BL0 [17] 0.258 -0.334 1.077 0.546 0.680 -0.226 

LED TV - BL14 [17] 0.394 -0.690 1.296 0.389 1.193 -0.582 

LED TV - BL20 [17] 0.410 -0.721 1.311 0.176 1.664 -0.840 

CRT [3] 0.000 0.000 1.000 0.000 0.000 0.150 

TV [30] 0.000 0.000 0.990 0.040 0.000 0.950 

 

Fan 

Fan end-use covers the fan used in the residential appliances as shown in table 4.7 

Table 4.7: ZIP Coefficients for Fans – 120V US based voltage 

Component Ref Zp Ip Pp Zq Iq Pq 

Fan (1) [23] -0.470 1.710 -0.240 2.340 -3.120 1.780 

Fan (2) [23] 0.260 0.900 -0.160 0.500 0.620 -0.120 



  50 

 
Fan [30] 0.870 0.000 0.120 0.750 0.000 0.240 

Fan1 [22] 0.610 0.420 -0.040 0.830 0.170 0.000 

Fan2 (VSD) [22] -0.960 3.050 -1.090 -8.210 14.270 -5.060 

Fan - speed 1 [3] 0.870 0.140 -0.010 0.110 0.160 -0.010 

Fan - speed 2 [3] 0.740 0.270 -0.020 0.030 0.280 -0.020 

Fan - speed 3 [3] 0.390 0.660 -0.050 -0.100 0.460 -0.030 

Fan - speed 3B [3] 0.450 0.570 -0.040 -0.030 0.340 -0.020 

 

Pump 

Pump end-use includes the components used in the residential class such as heat pump, as shown 

in table 4.8 below. 

Table 4.8: ZIP Coefficients for Pumps – 120V US based voltage 

Component Ref Zp Ip Pp Zq Iq Pq 

Heat pump 1 (split design) [6] 0.720 -0.980 1.250 14.780 -23.720 9.930 

Heat pump 2 blower [6] 5.460 -14.210 9.760 -14.850 31.590 -15.740 

Heat pump 2 compressor [6] 0.850 -1.400 1.560 22.920 -40.390 18.470 

Pump 1 [22] 5.510 -11.300 6.820 11.770 -24.280 13.510 

Pump 2 (VSD) [22] -35.500 75.710 -39.250 19.230 -40.250 22.020 

 

Refrigerator 

The refrigerator end-use presents the loads used for food preservation such as refrigerator and 

freezer. Table 4.9 shows the ZIP coefficients for the components reviewed in the literature review. 

Table 4.9: ZIP Coefficients for Refrigerators – 120V US based voltage 

Component Ref Zp Ip Pp Zq Iq Pq 

Refrigerator (1) [23] 1.170 -1.830 1.660 7.070 -10.940 4.870 

Refrigerator (2) [23] 5.030 -8.480 4.450 17.440 -28.620 12.180 

Refrigerator/freezer [6] 1.190 -0.260 0.070 0.590 0.650 -0.240 
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Motor 

Table 4.10 shows the ZIP coefficients for Adjustable Speed Drive motors (ASD) and dryer motor 

Table 4.10: ZIP Coefficients for motors – 120V US based voltage 

Component Ref Zp Ip Pp Zq Iq Pq 

ASD 1 [6] 0.430 0.610 -0.050 -1.210 3.470 -1.260 

ASD 2 [6] 3.190 -3.840 1.650 1.090 -0.180 0.090 

Dryer motor [6] 1.910 -2.230 1.330 2.510 -2.340 0.830 

 

Commercial Loads 

Table 4.11: ZIP Coefficients for commercial loads – 120V US based voltage 

Component Ref Zp Ip Pp Zq Iq Pq 

Air compressor 1 Ph(1) [23] 0.710 0.460 -0.170 -1.330 4.040 -1.710 

Air compressor 3 Ph(1) [23] 0.240 -0.230 0.990 4.790 -7.610 3.820 

Air compressor 1 Ph(2) [23] 0.730 0.380 -0.110 0.450 0.510 0.040 

Air compressor 3 Ph(2) [23] 1.160 -1.810 1.650 3.580 -5.250 2.670 

Elevator(1) [23] 0.400 -0.720 1.320 3.760 -5.740 2.980 

Elevator(2) [23] 2.360 -4.150 2.790 11.690 -19.500 8.810 

Elevator (simulated in lab) [22] -2.330 4.950 -1.620 2.500 -3.690 2.180 

Escalators (simulated in lab) [22] 12.580 -26.300 14.670 8.510 -14.210 6.700 

 

4.2.1.2 Phase Angle-Based ZIP Coefficients 

This form of ZIP model can be described by the active power and phase angle of load components, 

which can be measured at each voltage level. Thus, the active and reactive power of ZIP loads can 

be calculated by the given equations (8-9). The constants are limited with the constraint in equation 

(10). 

Pi =
Va

2

Vo
2  . So . Z% . cos(Zθ) + 

Va

 Vo
 . So . I% . cos(Iθ) + So . P% . cos(Pθ)                    (8) 
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Qi =
Va

2

Vo
2  . So . Z% . Sin(Zθ) + 

Va

 Vo
 . So . I% . Sin(Iθ) + So . P% . Sin (Pθ)                    (9) 

Z% + I% + P% = 1                                                                                                   (10) 

Where Pi is an active power consumption of the ith load, Qi is reactive power consumption of the 

ith load, Va is actual terminal voltage, Vo is nominal terminal voltage, So is apparent power 

consumption at nominal voltage, Z% is fraction of load that is constant impedance, I% is fraction 

of load that is constant current, P% is fraction of load that is constant power, Zθ is phase angle of 

the constant impedance component,Iθis phase angle of the constant current component, Pθis phase 

angle of the constant power component. The six constants in the following equations are 

representing the ZIP loads behavior as a function of the applied voltage. Once the six values of 

constants are experimentally determined, they can be inserted to (5) and (6) to calculate P and Q 

for each load component. The following tables are the review of all the ZIP coefficients determined 

in the previous researches. Lighting, equipment, and fan end-use are shown in the tables 4.12, 4.13, 

4.14 respectively. 

Interior/Exterior Lighting  

Table 4.12: Phase angle-based ZIP Coefficients for interior/exterior lighting 

Component Ref Z% I% P% Zpf Ipf Ppf 

Incandescent [30] 0.6886 0.0001 0.3015 0.0000 -3.1400 0.0000 

Incandescent light 75W [19] 0.5711 0.4257 0.0032 1.0000 -1.0000 0.9996 

Incandescent 75W [12] 0.5711 0.4257 0.0032 1.0000 -1.0000 1.0000 

CFL [30] 0.2700 0.1600 0.5600 -1.7300 -1.5400 -0.4400 

CFL 13W [19] 0.4085 0.0067 0.5849 -0.8785 0.4208 -0.7792 

CFL 42W [19] 0.4867 -0.3752 0.8884 -0.9702 -0.6980 -0.7895 

CFL 20W [19] -0.0105 1.0000 0.0105 0.0000 -0.8101 0.8998 

CFL-13W [12] 0.4085 0.0067 0.5849 -0.8800 0.4200 -0.7800 
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Interior/Exterior Equipment 

Table 4.13: Phase angle-based ZIP Coefficients for interior/exterior equipment 

Component Ref Z% I% P% Zpf Ipf Ppf 

Iron [30] 0.9183 0.0000 0.0717 0.0000 -0.3600 -0.0100 

Mixer [30] 0.7065 0.0000 0.2835 0.1300 -0.0800 0.1700 

PC [30] 0.3273 0.1251 0.5430 1.2000 -1.1100 -1.0800 

TV [30] 0.1402 0.0187 0.8352 -3.0300 -2.4500 -0.6500 

Plasma-Sony TV [19] -0.3207 0.4836 0.8371 0.8491 0.9083 -0.9924 

Plasma - Sony [12] -0.3207 0.4836 0.8371 0.8500 0.9100 -0.9900 

LCD [30] 0.1745 0.0015 0.8146 -3.0500 -3.0200 -0.6600 

LCD - Del l 1901FP [19] -0.4070 0.4629 0.9441 -0.9712 -0.9779 -0.9717 

LCD-Clarity TV [19] -0.0383 0.0396 0.9987 0.6079 -0.5374 -0.9998 

LCD - Dell [12] -0.4070 0.4629 0.9441 -0.9700 -0.9800 -0.9700 

LCD - Clarity [12] -0.0383 0.0396 0.9987 0.6100 -0.5400 -1.0000 

TV-Magnovox CRT [19] 0.0015 0.8266 0.1719 -0.9872 0.9999 -0.9204 

TV-Magnavox CRT [12] 0.0015 0.8266 0.1719 -0.9900 1.0000 -0.9200 

 

Fan 

Table 4.14: Phase angle-based ZIP Coefficients for fans 

Component Ref Z% I% P% Zpf Ipf Ppf 

Fan [30] 0.8457 0.0000 0.1444 0.3600 0.5500 0.7300 

Fan [19] 0.7332 0.2534 0.0135 0.9686 0.9530 -0.9997 

Fan and 20W CFL [19] 0.5518 0.5188 -0.0706 0.9848 -0.9994 -0.9215 

CFL-20W [12] -0.0105 1.0000 0.0105 0.0000 -0.8100 0.9000 

CFL-42W [12] 0.4867 -0.3752 0.8884 -0.9700 -0.7000 -0.7900 

LED light - High quality [19] -0.4280 0.8664 0.5616 0.9990 -0.9990 0.9990 

LED light - low quality [19] 0.9852 0.0094 0.0054 -0.3455 -0.9996 0.7876 

LED light - medium quality [19] -0.4550 0.4573 0.9977 -0.8191 -0.9843 -0.8613 
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Oscillating Fan [12] 0.7332 0.2534 0.0135 0.9700 0.9500 -1.0000 

 

4.2.2 220V / 50 Hz – International Based Voltage 

The following tables are the review of all the ZIP coefficients in the previous researches according 

to 220V – international based, and categorized into cooling, lighting, equipment, fan, and 

refrigerators end-use. 

Cooling 

Table 4.15: ZIP Coefficients for cooling – 220V International based 

Component Ref Zp Ip Pp Zq Iq Pq 

Air conditioner [10] 1.550 -2.120 1.570 1.560 -2.140 1.580 

Air conditioner [24] 0.442 0.442 0.116 1.215 0.090 -0.304 

 

Interior/Exterior Lighting 

Table 4.16: ZIP Coefficients for interior/exterior lighting – 220V International based 

Component Ref Zp Ip Pp Zq Iq Pq 

Incandescent light [10] 0.490 0.590 -0.080 2.200 -1.770 0.570 

Incandescent light [24] 0.796 0.406 -0.202 0.313 0.365 0.322 

Fluor lamp [24] 2.037 -0.795 -0.242 0.638 0.488 -0.125 

CFL [10] 0.110 0.640 0.250 0.000 1.090 -0.090 

CFL [24] -0.887 2.145 -0.258 -0.500 1.839 -0.339 

CFL [8] 0.100 0.900 0.000 0.270 -1.260 -0.010 

CFL [1] -0.010 0.960 0.050 0.100 -0.730 -0.370 

LFL [1] 0.000 0.000 1.000 0.000 0.000 0.000 

LED light [10] 0.730 -1.700 1.970 0.520 -1.410 1.890 

LED light [24] -0.553 0.500 1.053 -0.026 0.909 0.117 

LP LED [8] 0.230 0.850 -0.080 -1.050 0.040 0.010 

HP LED [8] 0.790 0.820 -0.620 4.120 -4.590 1.480 

HP LED [8] -0.920 1.840 0.090 -0.490 -0.220 1.700 
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HP LED [8] -4.240 9.560 -4.320 -8.480 17.800 -8.310 

HP LED [8] -0.860 1.820 0.040 0.390 0.140 0.480 

 

Interior/Exterior Equipment 

Table 4.17: ZIP Coefficients for interior/equipment – 220V International based 

Component Ref Zp Ip Pp Zq Iq Pq 

Battery charger [24] 2.177 3.378 -4.556 1.215 1.022 -1.237 

Bread toaster [10] 0.940 0.090 -0.030 0.610 0.560 -0.170 

Bread toaster [24] 1.501 0.349 -0.850 -0.500 1.033 0.467 

Coffee maker [10] 1.010 -0.020 0.010 1.030 -0.040 0.010 

Computer [24] 1.425 0.799 -1.224 1.068 1.773 -1.841 

Cooler [24] 0.867 0.354 -0.221 1.980 -0.888 -0.092 

Dishwasher [10] 0.890 0.110 0.000 -2.750 6.290 -2.540 

Induction cooktop [24] 0.034 0.311 0.655 0.500 3.093 -2.593 

Iron [10] 0.990 0.010 0.000 3.920 -4.860 1.940 

Iron [24] 1.550 1.977 -2.527 1.354 0.173 -0.527 

Kettle [10] 0.950 0.070 -0.020 0.290 1.020 -0.310 

Laptop charger [24] 0.895 0.051 0.055 0.381 1.032 -0.412 

Microwave [10] 1.000 0.600 -0.600 0.000 2.020 -1.020 

Microwave [24] 1.516 0.499 -1.015 1.997 1.872 -2.869 

Mixer [24] 1.129 1.006 -1.135 -1.000 2.988 -0.988 

Oven [10] 0.870 0.220 -0.090 0.870 0.220 -0.090 

Rice cooker [24] 1.883 1.331 -2.214 0.969 1.525 -1.494 

UPS [24] 1.925 1.696 -2.621 0.430 0.973 -0.403 

Vacuum cleaner [10] 0.820 0.220 -0.040 5.950 -7.330 2.380 

Washing machine [10] 0.780 0.340 -0.120 -2.290 5.510 -2.220 

LCD-TV [10] -0.400 0.450 0.950 3.920 -4.860 1.940 

Television [24] 0.571 0.484 -0.055 2.212 1.233 -2.445 

PC desktop [10] -0.320 1.140 0.180 1.560 -2.130 1.570 
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PC monitor [10] 0.480 -0.640 1.160 0.140 0.260 0.600 

 

Fan 

Table 4.18: ZIP Coefficients for fans – 220V International based 

Component Ref Zp Ip Pp Zq Iq Pq 

Fan [10] 2.740 -2.640 0.090 1.190 -0.020 -0.170 

Fan [24] 0.583 1.277 -0.860 1.688 2.506 -3.195 

 

Refrigerator 

Table 4.19: ZIP Coefficients for refrigerators – 220V International based 

Component Ref Zp Ip Pp Zq Iq Pq 

Refrigerator [10] 1.040 -1.570 1.530 5.690 -8.560 3.870 

Refrigerator [24] 0.758 -0.297 0.539 1.000 1.412 -1.412 

 

Motor 

The ZIP coefficients for motors determined in [1] are included Adjustable Speed Drive (ASD), 

higher & power directly connected motors, Single-phase Induction Motor (SPIM), Single-phase 

Adjustable Speed Drive (SASD), and other types. 

Table 4.20: ZIP Coefficients for ASD Motor – Discontinuous Mode of Operation 

Component Ref Zp Ip Pp Zq Iq Pq 

Lower power V/Hz open-loop ASDs 

– CT 
[1] 0.400 -0.890 1.490 1.600 -3.100 2.500 

Lower power V/Hz open-loop ASDs 

– LT 
[1] 0.020 0.000 0.980 1.100 -1.910 1.810 

Lower power V/Hz open-loop ASDs 

– QT 
[1] -0.270 0.760 0.510 0.700 -0.980 1.280 

Lower power V/Hz open-loop ASDs 

– CP 
[1] 1.080 -2.500 2.420 2.670 -5.490 3.810 

Lower power V/Hz closed-loop 

ASDs - All 
[1] 1.080 -2.500 2.420 2.510 -5.960 4.450 
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Higher power V/Hz open-loop and 

closed-loop ASDs - All 
[1] 0.130 -0.330 1.200 0.550 -1.700 2.150 

Lower and higher power V/Hz 

ASDs w/ advanced control - All 
[1] 0.000 0.000 1.000 1.220 0.450 -0.670 

 

Table 4.21: ZIP Coefficients for ASD Motor – continuous Mode of Operation 

Component Ref Zp Ip Pp Zq Iq Pq 

Lower power V/Hz open-loop ASDs 

- CT 
[1] 0.450 -1.070 1.620 1.750 -3.550 2.800 

Lower power V/Hz open-loop ASDs 

- LT 
[1] 0.020 0.000 0.980 1.180 -2.180 2.000 

Lower power V/Hz open-loop ASDs 

- QT 
[1] -0.270 0.760 0.510 0.660 -0.970 1.310 

Lower power V/Hz open-loop ASDs 

- CP 
[1] 1.080 -2.500 2.420 2.640 -5.500 3.900 

Lower power V/Hz closed-loop 

ASDs - All 
[1] 1.080 -2.500 2.420 2.640 -5.500 3.900 

Higher power V/Hz open-loop and 

closed-loop ASDs - All 
[1] 0.130 -0.330 1.200 1.300 -2.380 2.080 

Lower and higher power V/Hz 

ASDs w/ advanced control - All 
[1] 0.000 0.000 1.000 0.990 -1.960 1.970 

 

Table 4.22: ZIP Coefficients for higher power directly connected motors 

Component Ref Zp Ip Pp Zq Iq Pq 

Higher power motors [1] 0.030 -0.060 1.030 1.600 -2.100 1.500 

 

Table 4.23: ZIP Coefficients for lower power directly connected motors 

Component Ref Zp Ip Pp Zq Iq Pq 

CT [1] 0.270 -0.630 1.360 1.550 -1.700 1.150 

LT [1] 0.020 -0.020 1.000 1.550 -1.700 1.150 

QT [1] -0.150 0.430 0.720 1.550 -1.700 1.150 

CP [1] 0.640 -1.530 1.890 1.550 -1.700 1.150 

 



  58 

 

Table 4.24: ZIP Coefficients for SPIM 

Component Ref Zp Ip Pp Zq Iq Pq 

RSIR CT [1] 0.630 -1.200 1.570 1.400 -0.910 0.510 

RSIR LT [1] 0.310 -0.430 1.120 1.400 -0.910 0.510 

RSIR QT [1] 0.100 0.100 0.800 1.400 -0.910 0.510 

RSIR CP [1] 1.160 -2.420 2.260 1.400 -0.910 0.510 

RSCR CT [1] 0.500 -0.610 1.110 1.540 -1.430 0.890 

RSCR LT [1] 0.340 -0.220 0.880 1.540 -1.430 0.890 

RSCR QT [1] 0.220 0.090 0.690 1.540 -1.430 0.890 

RSCR CP [1] 0.730 -1.160 1.430 1.540 -1.430 0.890 

 

Table 4.25: ZIP Coefficients for SASD 

Component Ref Zp Ip Pp Zq Iq Pq 

Higher power V/Hz open-loop 

SASDs - CT 
[1] 0.400 -0.890 1.490 1.540 -3.950 3.410 

Higher power V/Hz open-loop 

SASDs - LT 
[1] 0.020 0.000 0.980 0.950 -2.600 2.660 

Higher power V/Hz open-loop 

SASDs - QT 
[1] -0.270 0.760 0.510 0.540 -1.650 2.110 

Higher power V/Hz open-loop 

SASDs - CP 
[1] 1.080 -2.500 2.420 2.470 -6.040 4.560 

Higher power V/Hz closed-loop 

SASDs - All 
[1] 1.080 -2.500 2.420 2.470 -6.040 4.560 

Higher power advanced controlled 

SASDs - All 
[1] 0.000 0.000 1.000 1.450 -3.660 3.190 

Lower power V/Hz open-loop 

SASDs - CT 
[1] 0.400 -0.890 1.490 -3.320 10.500 -8.180 

Lower power V/Hz open-loop 

SASDs - LT 
[1] 0.020 0.000 0.980 -3.650 10.340 -7.690 

Lower power V/Hz open-loop 

SASDs - QT 
[1] -0.270 0.760 0.510 -3.670 10.310 -7.640 

Lower power V/Hz open-loop 

SASDs - CP 
[1] 1.080 -2.500 2.420 -3.020 10.620 -8.600 
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Lower power V/Hz closed-loop 

SASDs - All 
[1] 1.080 -2.500 2.420 -3.020 10.620 -8.600 

Lower power advanced controlled 

SASDs - All 
[1] 0.000 0.000 1.000 -3.610 10.390 -7.780 

 

Table 4.26: ZIP Coefficients for EV type battery charger – 220V International based 

Component Ref Zp Ip Pp Zq Iq Pq 

EV Type battery charger - A [8] 0.010 0.990 0.000 0.127 1.281 -0.402 

EV Type battery charger - B [8] 0.075 0.926 0.000 0.861 0.062 0.084 

 

4.3 Mapping and Visualization 

With regard to all previous works that related to ZIP model coefficients determination, and 

grouping all of them into end-use categories, the visualization of load components based on the 

ZIP coefficients obtained from the literature review is achieved in this section. The load 

components are selected among the reviewed ZIP coefficients based on the most commonly used 

in the residential class. Then, residential load components are grouped into end-use types 

according to EnergyPlus categorization. 

In order to visualize the end-use components, the active and reactive power at different voltage 

levels for each component needs to be obtained throughout the mathematical equations of the 

polynomial model shown in the following: 

P = Po [Zp (
V

Vo
)
2

+ Ip (
V

Vo
) + Pp]                    (6) 

Q = Qo [Zq (
V

Vo
)
2

+ Iq (
V

Vo
) + Pq]                    (7) 

 

Where Zp, Ip, Pp and Zq, Iq, Pq are ZIP model coefficients for the active power and reactive power 

respectively. ZIP coefficients will be obtained from the literature review of the previous work. 𝑃𝑜 
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is equal to 1 pu as it is the nominal active power of the load component. 𝑉𝑜 equal to 1 pu, and 𝑉 is 

the applied voltage that is changed within a specific range of voltage variations starting from 0.80 

pu to the 1.10 pu of the nominal voltage. This range of voltage is defined according to the reference 

[23] based on the American National Standards Institute (ANSI) Standard for Conservation 

Voltage Reduction (CVR) study purposes . Therefore, ZIP coefficients obtained from the literature 

review & applied voltage within CVR ranges are substituted into ZIP model equations so the active 

and reactive power can be calculated at each voltage level. 

An example of the implemented calculation is provided in table 4.27 for the compact fluorescent 

lamp (CFL) in lighting end-use type. The ZIP coefficients for the compact fluorescent lamp Zp, 

Ip, Pp, Zq, Iq, and Pq are 0.810, -1.030, 1.220, 0.860, -0.820, and 0.960 respectively [23].With 

respect to ZIP model equations for active and reactive power, ZIP coefficients are substituted for 

each voltage level to calculate the active and reactive power. At voltage 0.80 pu, the active and 

reactive power for the compact fluorescent lamp are 0.625 pu and 0.803 pu respectively. By 

increasing the voltage values, the active and reactive power will be increased. For instance, the 

active and reactive power for the CFL at voltage 0.85 pu are 0.743 pu and 0.851 pu respectively. 

Table 4.27: Calculated active and reactive power for the CFL 

V (pu) Calculated P (pu) Calculated Q (pu) 

0.80 0.914 0.854 

0.85 0.930 0.884 

0.90 0.949 0.919 

0.95 0.973 0.957 

1.00 1.000 1.000 

1.05 1.032 1.047 

1.10 1.067 1.099 
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The figure 4.2 shows the relationship between voltage and active power for all documented 

interior/exterior lighting components, where the horizontal axis represents the applied voltage V 

in pu, which is varied from 0.80 to 1.10, and the vertical axis represents the calculated active power 

P in pu. Similar work is plotted and shown in figure 4.3 for reactive power Q 
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4.3.1 Interior/Exterior Lighting 

 

  

Figure 4.2 V-P for Interior/Exterior Lighting End-Use Components 

 

  

Figure 4.3 V-Q for Interior/Exterior Lighting End-Use Components 
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4.3.2 Interior/Exterior Equipment 

 

 

Figure 4.4 V-P for Interior/Exterior Equipment End-Use Components 

 

 

Figure 4.5 V-Q for Interior/Exterior Equipment End-Use Components 
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4.3.3 Refrigerator 

 

 

Figure 4.6 V-P for Refrigerators End-Use Components 

 

  

Figure 4.7 V-Q for Refrigerators End-Use Components 

 

 

 

 



  65 

 

4.3.4 Fan 

 

  

Figure 4.8 V-P for Fans End-Use Components 

 

  

Figure 4.9 V-Q for Fans End-Use Components 
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4.3.5 Heating 

 

 
Figure 4.10 V-P for Heating End-Use Components 

 

 
Figure 4.11 V-Q for Heating End-Use Components 
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4.3.6 Cooling 

 

Figure 4.12 V-P for Cooling End-Use Components 

 

Figure 4.13 V-Q for Cooling End-Use Components 
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4.3.7 Pump 

 

  

Figure 4.14 V-P for Pumps End-Use Components 

 

  

Figure 4.15 V-Q for Pumps End-Use Components 
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4.4 ZIP Coefficients Identification for End-Use Types 

The object of work in this section is to determine the ZIP coefficients for end-use types, which are 

interior/exterior lighting, interior/exterior equipment, heating, cooling, pump, fan, and refrigerator, 

relying on the load components documented in the previous section.  

Three cases of ZIP coefficients for each end-use category are considered in this study: the 

minimum case, maximum case, and typical cases. ZIP coefficients of two cases, which are min & 

max, are extracted by the load components plots for each end-use type by identifying the most and 

least sensitive component with respect to the relationship between power and voltage. The third 

case, which is the typical ZIP coefficients, is achieved by the determination of ZIP coefficients for 

end-use types in one residential house based on two main factors, which are the most commonly 

used load components in the residential sector, and the participation factor for each load. 

Participation factor represents the share of electricity consumption for each component.  

The investigation of ZIP coefficients determination for end-use types is covered in two sections: 

section 4.4.1 demonstrates ZIP coefficients boundaries by identifying the minimum and maximum 

case of the coefficients for each end-use. Section 4.4.2 illustrates the methodology applied to 

determine the typical ZIP model coefficients for a residential house. And section 4.4.3 provides a 

summary of three cases of ZIP coefficients resulted in 4.4.1 and 4.4.2 sections. 

4.4.1 Min & Max Cases for ZIP Coefficients Boundaries  

The method of ZIP coefficients determination implemented here is primarily dependent on the 

visualization of load components adopted in section 4.3 mapping and visualization. According to 

the observation of plotted load components, two main cases are extracted for each end-use types: 

minimum and maximum ZIP coefficients. The minimum case of the ZIP coefficients for a certain 



  70 

 

end-use type refers that the relationship between power and voltage is equal to the least sensitive 

load component at each end-use category, to arrive at final ZIP coefficients, and the maximum 

case of ZIP coefficients means that the relationship between active power and voltage is equal to 

the most sensitive component in each end-use category, to arrive at final ZIP coefficients. 

The min & max ZIP coefficients for the interior/exterior lighting end-use is an instance of the 

observation adopted in this study. Figure 4.16 shown below represents the load components of the 

interior/exterior lighting end-use, and Table 4.28 lists the ZIP coefficients for lighting end-use. 

This group of lighting fixtures is collected from the documented review adopted in the previous 

section and it consists of several types of the most frequently used lighting fixtures in the 

residential class such as incandescent, Compact Fluorescent Lamp (CFL), Halogen, and Light 

Emitting Diode (LED).  

Table 4.28: Load components for interior/exterior Lighting End-Use 

No. Components Ref Zp Ip Pp Zq Iq Pq 

1 CFL [23] 0.81 -1.03 1.22 0.86 -0.82 0.96 

2 CFL 19W [3] -0.42 1.50 -0.06 0.66 -1.16 0.06 

3 CFL 23W [3] -0.28 1.35 -0.05 0.58 -1.11 0.05 

4 CFL 20W [3] -0.30 1.36 -0.05 0.60 -1.08 0.04 

5 Fluor lamp T8_32W [3] 0.35 0.72 -0.04 0.28 -0.90 0.03 

6 Fluor lamp T12_40W [3] 0.34 0.71 -0.03 0.20 -0.76 0.02 

7 Fluor lamp T8_32W [3] -0.03 1.10 -0.05 0.32 -0.75 0.03 

8 Fluor lamp T12_40W [3] 0.06 0.97 -0.03 0.24 -0.60 0.02 

9 Fluor lamp (Spot) [22] -0.64 2.17 -0.53 -1.02 2.80 -0.78 

10 Electronic CFL 1 [6] 0.14 0.77 0.09 -0.06 -0.34 -0.60 

11 Electronic CFL 2 [6] 0.16 0.79 0.05 0.18 -0.83 -0.35 

12 Magnetic CFL [6] 0.34 1.31 -0.65 3.03 -2.89 0.86 

13 Electronically ballasted Fluor 1 [6] -2.48 5.46 -1.97 0.00 0.00 0.00 

14 Electronically ballasted Fluor 2 [6] -1.60 3.58 -0.98 0.79 -0.16 0.36 

15 Incandescent light [23] 0.47 0.63 -0.10 0.55 0.38 0.07 

16 LightBulb 100W [3] 0.64 0.40 0.00 0.00 0.00 0.00 

17 Incandescent light [22] 0.43 0.64 -0.08 0.00 0.00 1.00 

18 LED light [23] 0.58 1.13 -0.71 1.78 -0.80 0.02 
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19 Halogen [23] 0.46 0.64 -0.10 4.26 -6.62 3.36 

20 Halogen_100W [3] 0.66 0.39 0.00 0.00 0.00 0.00 

21 Halogen [22] 0.48 0.57 -0.05 -3.57 0.69 0.00 

22 CFL [30] 0.00 0.00 1.00 0.00 0.99 0.00 

23 Incandescent light [30] 0.69 0.00 0.30 0.00 0.00 0.00 

 

 

According to lighting fixtures plot shown in the figure 4.16, it is noticed that the CFL and LED 

light, obtained from [23], are drawing the boundaries for the voltage-power relationship of 23 

lighting fixtures displayed in the interior/exterior lighting end-use, where LED and CFL lights to 

represent the minimum and maximum boundaries respectively. Consequently, the min ZIP 

coefficients for the lighting end-use type are determined by LED light, and similarly, the max ZIP 

coefficients are determined by CFL. 

 
Figure 4.16: Min/Max ZIP Coefficients for interior/exterior Lighting End-use  
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Table 4.29 below displays the summary of the min & max case of the ZIP coefficients boundaries 

for the end-use types. 

 

Table 4.29: Min & Max Case of ZIP Coefficients Boundaries for End-Use Types 

# End-Use   Component Ref Zp Ip Pp Zq Iq Pq 

1 Heating 
Min Baseboard heater [6] 1.00 0.00 0.00 0.00 0.00 0.00 

Max Resistive heater [23] 0.64 0.59 -0.23 0.13 0.75 0.12 

2 Cooling 
Min Air conditioner [23] 1.17 -1.83 1.66 15.68 -27.15 12.47 

Max Air conditioner [23] 1.17 -1.83 1.66 15.68 -27.15 12.47 

3 Int/Ext Lighting 
Min CFL [30] 0.00 0.00 1.00 0.00 0.99 0.00 

Max LED light [23] 0.58 1.13 -0.71 1.78 -0.80 0.02 

4 Int/Ext Equipment 
Min DishWasher_PP [3] 1.00 0.00 0.00 0.00 0.00 0.00 

Max Computer [22] 0.27 -0.61 1.34 -0.11 0.02 1.08 

5 Fan 
Min Fan - speed 1 [3] 0.87 0.14 -0.01 0.11 0.16 -0.01 

Max Fan - speed 3B [3] 0.45 0.57 -0.04 -0.03 0.34 -0.02 

6 Pumps 
Min Heat pump 1 (split design) [6] 0.72 -0.98 1.25 14.78 -23.72 9.93 

Max Heat pump 2 compressor [6] 0.85 -1.40 1.56 22.92 -40.39 18.47 

7 Refrigerators 
Min Refrigerator [23] 1.17 -1.83 1.66 7.07 -10.94 4.87 

Max Refrigerator/freezer [6] 1.19 -0.26 0.07 0.59 0.65 -0.24 
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4.4.2 Typical ZIP Model Coefficients for One Residential House 

This section describes the methodology of applying the component-based ZIP model for a typical 

residential house to determine the ZIP coefficients for each end-use category. Figure 4.17 shows 

the general methodology adopted for this study. The object of this study is to determine the typical 

ZIP coefficients for each end-use type based on load components obtained from the documented 

work, and load composition represented by the share of electricity for each load. The typical case 

of ZIP coefficients for a residential house assumes a given load composition based on weighted 

component coefficients in each end-use category, to arrive at final ZIP coefficients. 

 
Figure 4.17: Methodology of identifying the ZIP Coefficients for End-Use Category 
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The first step is to determine the most frequently used components in a residential house such as 

lighting fixtures, interior equipment, and heating components. The components can be obtained 

and listed from the review adopted in the previous section. The second step is to list the ZIP 

coefficients and the participation factor for load components. The participation factor is the relative 

contribution of each component into the electrical system and mainly represents the share of 

electricity consumption for each component. Then, the final step is to apply the equations to 

calculate the ZIP coefficients of the end-use types for both active and reactive power according to 

the ZIP coefficients and participation factor of each load component. 

In order to implement the component-based ZIP modeling for the end-use types, the data about the 

load inventory at the residential house in the US should be collected, i.e. the type of loads that 

usually existed in the residential house, and the share of electricity for each load component so the 

percentage of participation can be obtained. Therefore, this information is drawn from the Building 

Energy Data Book [46]. This document is developed by the Department of Energy (DOE) and 

designed for internal use in the United States to provide an accurate set of inclusive data related to 

buildings energy consumption in different classes, residential, commercial, and industrial. Table 

4.30 shows the energy consumption and percentage of Electricity Use for the residential house.  

Table 4.30: Energy Consumption & Percentage of Electricity Use for Residential Loads 

No. End Use Components 

Annual 

kWh Ref Electricity Use 

1 Heating Resistive heater 314 [23] 6% 

    water heater 4770 [47] 94% 

2 Cooling Air conditioner 1041 [23] 100% 

3 Int/Ext Lighting Incandescent light 75W 40 [19] 7% 

    

Incandescent light 

100W 
70 [23] 

12% 

    Compact Fluorescent 20 [23] 4% 

    Halogen 440 [23] 77% 
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4 

Int/Ext 

Equipment Range 70 [3] 3% 

    Dishwasher (Pot&Pan) 120 [3] 5% 

    Dryer 1000 [3] 40% 

    Microwave 131 [23] 5% 

    Oven 126 [3] 5% 

    Coffee maker 58 [23] 2% 

    Vacuum cleaner 55 [23] 2% 

    Washing machine 110 [6] 4% 

    Video game console 41 [23] 2% 

    TV - LED 55" 455 [5] 18% 

    PC (Monitor & CPU) 322 [23] 13% 

5 Fan Fan 81 [23] 100% 

6 Pumps Pump 725 [22] 100% 

7 Refrigeration Refrigerator 660 [23] 100% 
 

Figure 4.18 below is a demonstration of load composition in the residential class, where it is shown 

the comprehensive end-use types consumption in the residential house. The participation factor of 

the interior/exterior equipment, presented by the yellow color, is a 23% of the total consumption, 

whereas the pie chart on the left side represents the participation percentage for each load 

component in the interior/exterior equipment end-use, which is derived from the total end-use of 

the residential house. 

 

Figure 4.18: Load composition in the residential class 
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As mentioned in the literature review, the component-based ZIP model starts from the load 

components which comprise the end-use types for the residential class represented by the typical 

house in this case. Therefore, The ZIP coefficients of these load components are obtained from the 

ZIP model-related works reviewed and documented in the previous section. Table 4.31 shows the 

documented ZIP coefficients for our case study of the typical residential house.  

Table 4.31: ZIP Coefficients for Residential Loads 

No. Components Ref Zp Ip Pp Kp Zq Iq Pq Kq 

1 Resistive heater [23] 0.64 0.59 -0.23 1.00 0.13 0.75 0.12 1.00 

2 water heater [47] 0.92 0.10 -0.02 1.00 0.15 0.86 -0.01 1.00 

3 Air conditioner [23] 1.17 -1.83 1.66 1.00 15.68 -27.15 12.47 1.00 

4 Incandescent light 75W [19] 0.57 0.43 0.00 1.00 1.00 -1.00 1.00 1.00 

5 Incandescent light [23] 0.47 0.63 -0.10 1.00 0.55 0.38 0.07 1.00 

6 Compact Fluorescent [23] 0.81 -1.03 1.22 1.00 0.86 -0.82 0.96 1.00 

7 Halogen [23] 0.46 0.64 -0.10 1.00 4.26 -6.62 3.36 1.00 

8 Range [3] 0.97 0.00 0.00 1.03 0.00 0.00 0.00 1.00 

9 Dishwasher (Pot & Pan) [3] 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 

10 Dryer [3] 1.02 0.00 0.00 0.98 1.00 0.00 0.00 1.00 

11 Microwave [23] 1.39 -1.96 1.57 1.00 50.07 -93.55 44.48 1.00 

12 Oven [3] 0.99 0.00 0.00 1.01 0.00 0.00 0.00 1.00 

13 Coffee maker [23] 0.13 1.62 -0.75 1.00 3.89 -6.00 3.11 1.00 

14 Vacuum cleaner [23] 1.18 -0.38 0.20 1.00 4.10 -5.87 2.77 1.00 

15 Washing machine [6] 0.05 0.31 0.63 1.01 -0.56 2.20 -0.65 1.01 

16 Video game console [23] -0.63 1.23 0.40 1.00 0.76 -0.93 1.17 1.00 

17 TV - LED 55" [5] 0.27 -0.54 1.27 1.00 0.73 0.70 -0.42 1.00 

18 PC (Monitor & CPU) [23] 0.20 -0.30 1.10 1.00 0.00 0.60 0.40 1.00 

19 Fan [23] -0.47 1.71 -0.24 1.00 2.34 -3.12 1.78 1.00 

20 Pump [22] 5.51 -11.30 6.82 0.97 11.77 -24.28 13.51 1.00 

21 Refrigerator [23] 1.17 -1.83 1.66 1.00 7.07 -10.94 4.87 1.00 
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The determination of ZIP coefficients can be achieved through the following equations (15-16), 

where each load component is weighted with the percentage of participation for each load, which 

can be obtained from the annual consumption for each. Therefore, this calculation can be 

implemented through equations (15) and (16) for active and reactive power respectively. 

(Zp, Ip, Pp)end−use
= ∑ Cn(Zp, Ip, Pp)n

N
i=1                     (15) 

(Zq, Iq, Pq)end−use
= ∑ Cn(Zq, Iq, Pq)n

N
i=1                     (16) 

Where (Zp, Ip, Pp)end−use
  are the ZIP coefficients for the end-use type, Cn is the participation 

percentage for the load component, N is the number of load components, and (Zp, Ip, Pp)n
 is the 

ZIP coefficients for a certain load.  

An example of identifying the typical ZIP coefficients for heating end-use in the residential house 

is provided here for clarification. As shown in table 4.32, the percentage of electricity use for the 

resistive heater and water heater in the heating end-use is 6% and 94% respectively. 

Table 4.32: Percentage of electricity use for end-use type 

End-Use Components Zp Ip Pp Zq Iq Pq 

Annual 

kWh 

% of 

Electricity Use  

Heating 
Resistive heater 0.64 0.59 -0.23 0.13 0.75 0.12 314 6% 

Water heater 0.92 0.10 -0.02 0.15 0.86 -0.01 4,770 94% 

 

In order to calculate the ZIP coefficients for heating end-use, ZIP coefficients of load components 

and the percentage of electricity use, demonstrated in the table 4.32 above, are substituted in 

equation (15). The active power ZIP coefficients, Zp, Ip, Pp, for resistive heater are 0.64, 0.59, and 

-0.23, and for water heater are 0.92, 0.10, -0.02 will be substituted in the equation, and share of 
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electricity represented in Cn are substituted with 6% and 94% for resistive heater and water heater 

respectively. 

(Zp, Ip, Pp)end use
= ∑ Cn(Zp, Ip, Pp)n

N=2
i=1 = 6% (ZIP Resistive Heater) + 94%(ZIP Water Heater)  

(Zp, Ip, Pp)end use
= ∑ Cn(Zp, Ip, Pp)n

N=2

i=1

= 6% (0.64, 0.59, −0.23) + 94%(0.92, 0.10, −0.02) 

(Zp, Ip, Pp)end use
= (0.90, 0.13, −0.03)end use  

 

Where N is the number of loads in the heating end-use, and Cn is the percentage of electricity use 

for each load component. Thus, Table 4.33 shows the calculated ZIP coefficients, energy 

consumption and percentage of electricity use for end-use types.  

Table 4.33: ZIP Coefficients, Energy Consumption and Percentage of Electricity Use for End-

Use Types 

No. End-Use Type Zp Ip Pp Zq Iq Pq Annual KWh % 

1 Heating 0.90 0.13 -0.03 0.15 0.85 0.00 5084 48% 

2 Cooling 1.17 -1.83 1.66 15.68 -27.15 12.47 1041 10% 

3 Int/Ext Lighting 0.48 0.57 -0.05 3.46 -5.16 2.71 570 5% 

4 Int/Ext Equipment 0.70 -0.18 0.48 3.34 -4.91 2.44 2488 23% 

5 Fans -0.47 1.71 -0.24 2.34 -3.12 1.78 81 1% 

6 Pumps 5.35 -10.97 6.62 11.77 -24.28 13.51 725 7% 

7 Refrigeration 1.17 -1.83 1.66 7.07 -10.94 4.87 660 6% 
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4.4.3 Summary Table of ZIP Coefficients for End-Use Types 

This section provides a summary of three cases of ZIP coefficients for each end-use category that 

are investigated in this stage: minimum, maximum, and typical case. Two of these cases, which 

are min & max, of ZIP coefficients are extracted by the load components plots for each end-use 

type by identifying the most and least sensitive component with respect to the relationship between 

power and voltage. The third case, which is the typical ZIP coefficients, is achieved by the 

determination of ZIP coefficients for each end-use type in one residential house based on the 

documented load components and load composition represented by the share of electricity for each 

load.  

Table 4.34: Summary of Min, Max, and Typical Cases of ZIP Coefficients for End-Use Types 

# End-Use Case Component Ref Zp Ip Pp Zq Iq Pq 

1 Heating 

Min Baseboard heater [6] 1.00 0.00 0.00 0.00 0.00 0.00 

Max Resistive heater [23] 0.64 0.59 -0.23 0.13 0.75 0.12 

Typical     0.90 0.13 -0.03 0.15 0.85 0.00 

2 Cooling 

Min Air conditioner [23] 1.17 -1.83 1.66 15.68 -27.15 12.47 

Max Air conditioner [23] 1.17 -1.83 1.66 15.68 -27.15 12.47 

Typical     1.17 -1.83 1.66 15.68 -27.15 12.47 

3 Int/Ext Lighting 

Min LED light [23] 0.58 1.13 -0.71 1.78 -0.80 0.02 

Max CFL [30] 0.00 0.00 1.00 0.00 0.99 0.00 

Typical     0.48 0.57 -0.05 3.46 -5.16 2.71 

4 Int/Ext Equipment 

Min DishWasher_PP [3] 1.00 0.00 0.00 0.00 0.00 0.00 

Max Computer [22] 0.27 -0.61 1.34 -0.11 0.02 1.08 

Typical     0.70 -0.18 0.48 3.34 -4.91 2.44 

5 Fan 

Min Fan - speed 1 [3] 0.87 0.14 -0.01 0.11 0.16 -0.01 

Max Fan - speed 3B [3] 0.45 0.57 -0.04 -0.03 0.34 -0.02 

Typical     -0.47 1.71 -0.24 2.34 -3.12 1.78 

6 Pumps 

Min Heat pump 1 (split design) [6] 0.72 -0.98 1.25 14.78 -23.72 9.93 

Max Heat pump 2 compressor [6] 0.85 -1.40 1.56 22.92 -40.39 18.47 

Typical     5.35 -10.97 6.62 11.77 -24.28 13.51 

7 Refrigerators 

Min Refrigerator [23] 1.17 -1.83 1.66 7.07 -10.94 4.87 

Max Refrigerator/freezer [6] 1.19 -0.26 0.07 0.59 0.65 -0.24 

Typical     1.17 -1.83 1.66 7.07 -10.94 4.87 
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CHAPTER 5 

 

ZIP MODEL DEVELOPMENT 

FOR LED LIGHTS 

 

5.1 Light-emitting diodes (LEDs) 

5.1.1 General Background 

Light-emitting diodes (LEDs) are recognized to be one of the semiconductor devices which have 

the current flows in only one direction (unidirectional) and this polarization results in direct light 

emission. Nowadays, the LEDs are superior to many other lighting sources such as fluorescent and 

incandescent due to the LED high efficacy and long life [48]. 

Compact Fluorescent Lamps (CFL) are superior to the incandescent lights as it has a better 

performance of energy consumption reduction and efficiency. Therefore, due to the low efficacy 

of incandescent lights, many countries have been eliminating it and replace it with CFL although 

of the widespread use of incandescent lights in all class sector [48]. On the other hand, 

semiconductor lights (LEDs) were improved and considered to be a light source for the sake of 

efficiency higher than other light sources (CFL and incandescent). Many of the companies and 

researchers were pulled by the advantages of this technology like the high efficiency and the small 

size and led them to develop the lighting by utilizing the semiconductor. While this technology is 

used to be employed for electronic purposes and controlling system, now semiconductor is being 

able to replace other light sources in different utilization [49]. 
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Light Emitting Diodes (LEDs) is a solid-state lighting source currently being employed in different 

areas such as transportation equipment lighting (e.g., backlights, and brake lights of the vehicle), 

communications, medical services, and as a light source of many applications, e.g., backlighting 

of flat TV, mobile phones, and general lighting.  

LEDs have been evolved over time to play a more essential role with respect to energy saving and 

power environmental pollution reduction, and the LED future is anticipated to be more involved 

into many different applications such as general lighting (e.g., LED light bulb, LED projector), 

communication lighting (visible light communication), and other critical application in system 

control (e.g. biomedical sensors). General lighting applications can be classified into indoor 

lighting (such as LED lighting bulbs and desk lighting), outdoor lighting (e.g., bridge lighting and 

stadium lighting), and special lighting (e.g., TV lightings) [50]. 

5.1.2 LEDs Development 

Over the decades, LED has improved and had a better performance of brightness, color variation, 

and many of its aspects have been developed such as flexibility and efficiency. So, LED can be 

divided into three generations, and each generation has its own characteristics regarding the 

development of phosphor material, fabrication technology, and heat dissipation packaging 

technologies. In the first generation, from the 1960s to the 1980s, the first LED product was 

released in the 1960s. Additionally, high-brightness LED (300 mcd1) was the first commercially 

successful LED that was developed by the Fairchild company in the 1980s. 

The second generation, which is considered to be the period between the 1990s to the present, 

high-brightness LEDs became well-known and was implemented in many different applications, 
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e.g., vehicle LED lighting, TV LED backlighting, LED flashers, and cellphones. And finally, the 

third generation is now arriving in the business [50]. 

5.1.3 Advantages  

LEDs are superior to traditional lighting in terms of the mechanical impact resistance. LEDs have 

low health influence because of the low radiation of Ultraviolet and are deemed to be 

environmentally friendly lightings with no mercury [50]. From the perspective of efficiency, LEDs 

that have a single color are beyond ten times efficient compared to incandescent lamps [51]. The 

usage of LEDs in general lighting has been growing so fast and has diverse lighting applications; 

for instance, street lighting, commercial lighting, and residential lightings [50]. 

5.1.4 Disadvantages  

LED has some issues that make the spreading of the LED in the market more challenging. These 

issues can be defined as the cost and lack of information in regard to reliability [50]. Over the last 

years, LEDs prices are considered to be too expensive for the lighting applications and the prices 

of the conventional lighting are much cheaper comparing to the LED lights although its prices are 

declining rapidly. However, LEDs are superior to incandescent light according to life cycle costs, 

where the life cycle cost of LED lighting is less than for an incandescent [52]. Lighting costs 

consist of the initial price, electricity, and replacement costs. However, as the life cycle savings 

are not ensured in the lighting, the larger initial costs are still an impediment for growing the LED 

lights in the market [50]. 

One way to solve the cost issue of LED lights and to grow the market share is to decrease the 

manufacturing cost and selling price taking into consideration that LED lights still have the same 

reliability. dependent on the research done by Samsung, it was revealed that the white LED lights 
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can be more competitive with fluorescent lights over the next five years on condition that the 

selling price of LED lights was reduced by 50% [52]. 

5.2 ZIP Load Model for LED Lights  

5.2.1 LED Load Model 

Load model is very essential for network design and analysis, hence the ZIP load model should be 

updated over time for many reasons, such as the rapid advancement in technology and the 

involvement of modern loads into the market. Therefore, the updated load model will be able to 

precisely represent the load characteristics and the evolution of load behavior in the power system.  

LED lights is an example of these modern loads as it has been growing rapidly it different customer 

classes, residential, commercial, and industrial, where the LED lights have diverse lighting 

applications; for instance, street lighting, commercial lighting, and residential lightings [50]. 

Several works were adopted to develop the ZIP load model for the LED light in order to understand 

the load behavior and its impact on the power system. Table 5.1 shows the list of LED lights ZIP 

coefficients determined by the previous works. 

Work in [8] updated the load modeling for the residential and commercial classes in the UK. The 

authors in this research developed the ZIP model for LED light for different wattages: 4, 5, 7, and 

9W, and found that the active power demand characteristics vary from constant power to constant 

current to constant impedance. [23] also determined the ZIP coefficients for the residential loads 

and updated the load model for the most common loads used in the lighting end-use back in 2013 

such as incandescent, compact fluorescent lamp, halogen, and LED lights. ZIP model was 

developed according to two different ranges of voltage changes: The Conservation Voltage 

Reduction (CVR) range that falls between 0.83 – 1.10 pu of the rated voltage, and shut off voltage 
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range, which is between the Voff – 1.10 pu of the rated voltage, where the Voff is the voltage when 

the load is completely shut off and not operated anymore.  

[24] tended to develop the home grid system and update the ZIP model in the residential class to 

present the behavior of residential loads. ZIP coefficients of LED light were identified for that 

purpose. [10] identified the load model for smart home appliances and update the ZIP model for a 

single LED light within the range Voff – 1.10 pu of rated voltage. It was revealed that LED light 

has a good agreement with the active power ZIP model but it is not compatible with the 

measurement at certain voltage levels. However, ZIP model does not precisely represent the 

reactive power measurements of the LED light.  

Table 5.1: Previous work of ZIP coefficients determination for LED lights 

No. Name Ref Year Vo Zp Ip Pp Zq Iq Pq 

1 Low power LED light [8] 2013 230 0.23 0.85 -0.08 -1.05 0.04 0.01 

2 High power LED light 4W [8] 2013 230 0.79 0.82 -0.62 4.12 -4.59 1.48 

3 High power LED light 5W [8] 2013 230 -0.92 1.84 0.09 -0.49 -0.22 1.7 

4 High power LED light 7W [8] 2013 230 -4.24 9.56 -4.32 -8.48 17.8 -8.31 

5 High power LED light 9W [8] 2013 230 -0.86 1.82 0.04 0.39 0.14 0.48 

6 LED light [23] 2014 120 0.58 1.13 -0.71 1.78 -0.8 0.02 

7 LED light [23] 2014 120 0.69 0.92 -0.61 1.84 -0.91 0.07 

8 LED light [24] 2015 220 -0.55 0.5 1.05 -0.03 0.91 0.12 

9 LED light [10] 2020 220 0.73 -1.7 1.97 0.52 -1.41 1.89 

 

As seen in the previous review, multiple works in developing the ZIP model for LED light were 

adopted by researchers in order to update the evolution of load behavior. Most of these ZIP model 

development works were implemented in 2013 and 2014 without considering the evolution of LED 

lights design over the recent years, hence LED light has not deeply investigated although the rapid 

growth in recent years as most focuses were only oriented toward other lighting types that were 

common, such as incandescent, compact fluorescent lamps, and Halogen. Thus, these lighting 

types are not used anymore with the spread of LED light. 
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In this work, ZIP load models for LED Lights are developed and model coefficients is determined 

to update the ZIP model of the recently produced LED lighting and have a better representation of 

the load behavior and power consumption when the load exposed to the conservation voltage 

reduction (CVR). In order to achieve that, a laboratory experiment is conducted to measure the 

active power and reactive power response to the voltage variations within the CVR range. Then, 

the measured data is exposed to the ZIP model to determine the coefficients. LED lights are chosen 

based on the most frequently LED lights used in the residential class. Table 5.2 shows the list of 

light fixtures that are tested in the laboratory. 

Table 5.2: List of tested LED light fixtures in the lab 

No. Type Brand 

Soft White 

/Daylight Dimmability 

Power 

rated 

Power 

replc 

1 Bulb EcoSmart Daylight Non-dimmable 5.5 40 

2 Bulb GE Soft White  Dimmable 9 60 

3 Bulb EcoSmart Daylight Non-dimmable 9 60 

4 Bulb EcoSmart Soft White  Non-dimmable 9 60 

5 Bulb Great Value Soft White  Non-dimmable 9 60 

6 Bulb EcoSmart Daylight Dimmable 9.5 60 

7 Bulb Cree Daylight Dimmable 10 60 

8 Bulb Great value Daylight Non-dimmable 12.5 75 

9 Bulb GE Soft White  Dimmable 13 100 

10 Bulb EcoSmart Daylight Non-dimmable 13 100 

11 bulb Sylvania Daylight Non-dimmable 14 100 

12 Bulb Great Value Daylight Non-dimmable 14 100 

13 bulb Feit Electric Daylight Non-dimmable 15 100 

14 Bulb EcoSmart Daylight Dimmable 15.5 100 

15 bulb Feit Electric Daylight Dimmable 17.5 100 

16 bulb Sylvania Soft White  Non-dimmable 22 200 

17 bulb Feit Electric Daylight Dimmable 28 150 

18 Candle Yansun Daylight Non-dimmable 5 40 

19 Candle Yansun Daylight Non-dimmable 6 60 

20 Tube toggled Daylight Non-dimmable 8 20 

21 Tube toggled Daylight Non-dimmable 16 40 
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5.2.2 Experimental Setup 

To develop the static load model, the laboratory test of the lighting fixtures is conducted in a 

controlled environment. The power is acquired by the grid, and the range of voltage variation in a 

slow ramp is implemented by an adjustable AC power supply. Standard instrumentation is used in 

these tests, and these instrumentations consist of a programmable AC power supply, power 

analyzer, and computer software. The required instruments for this experiment are adjustable AC 

Power Supply: California instruments model 1251rp, power logger: AMEC PEL 103, PC 

Software: PEL software for reading & recording monitored quantities. 

 

Figure 5.1: Experiment setup 

5.2.3 Test Procedure 

Before each test, lighting fixtures are operated under a rated voltage 120V for 30 minutes before 

start conducting the test. This settling down period is to avoid the transient stability of the cold 

start, and to assure that fixtures are operated and tested under steady-state. A range of voltage 

variations is applied to each lighting fixture, and the lighting behavior is recorded. Starting at the 
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rated value 120V, the voltage is decreased from 120V in the step of 3V and kept for 1 minutes at 

each step to avoid any transient undesired transient. The voltage is kept lowering until the light 

fixture reaches Voff, which is called shut down voltage. Voff is the voltage where the lighting 

fixture shut down and stop functioning.  

This voltage level should be taking into account when lowering the applied voltage. Then, voltage 

is manually increased to 110% of its rated voltage, in a slow ramp of 3V voltage step. Therefore, 

the laboratory test is implemented for different voltage levels. The recorded data will be transferred 

to a usable form to derive the ZIP model coefficients. Step test is performed according to [17]. 

5.2.4 Data Handling 

The monitored quantities, which are voltage, current, active power, reactive power, and power 

factor, are measured and recorded at each voltage step. This measured data needs to be collected 

in digital form for analysis purposes. The measured data will be in a row format. Since the research 

focus is to study the impact of Conservation Voltage Reduction (CVR) on the LED lighting fixture, 

part of this data, which is between 83% below and 110% above the rated voltage [23], will be 

specified and selected as a valid data to be analyzed. After measuring both active power and 

reactive power of each lighting fixture for each different level, the ZIP model for each LED 

lighting fixture can be developed. The recorded data is processed with R Studio to derive the ZIP 

coefficients.  

5.2.5 Determination of ZIP Coefficients 

The ZIP model represents the relationship between the applied voltage and the characteristic of 

the load power in a polynomial equation as the sum of Constant Impedance (𝑍𝑃), Constant Current 

(𝐼𝑝), and Constant Power (𝑃𝑃) to identify the real power (active power). In a similar way, the 



  88 

 

reactive power is defined by the following equations (6-7) using the coefficients: Constant 

Impedance (𝑍𝑞), Constant Current (𝐼𝑞), and Constant Power (𝑃𝑞). algebraically, the ZIP model is 

represented by the two equations (6-7) shown below [1]:  

P = Po [Zp (
V

Vo
)
2

+ Ip (
V

Vo
) + Pp]                (6) 

Q = Qo [Zq (
V

Vo
)
2

+ Iq (
V

Vo
) + Pq]               (7) 

Where Zp, Ip, Pp, Zq, Iq, Pq: ZIP load model coefficients for active and reactive power. These ZIP 

Model coefficients can be determined by using numerical methods. For this work, the ZIP 

coefficients of the LED lighting fixtures are calculated by using Polynomial Regression as curve 

fitting approach, which is also called Least-Square Regression. The function can be described as 

the difference between measured and calculated values of active and reactive power. This function 

is shown in the following equation:  

L = ∑Li
2 = ∑(f(Vi) − fi)

2

n

i=1

n

i=1

                  (17) 

Where: f(Vi) = Zp (
Vi

V0
)
2

+ Ip (
Vi

V0
) + Pp     (18),    fi =

Pi

P0
               (19) 

L =  ∑[Zp (
Vi

V0
)
2

+ Ip (
Vi

V0
) + Pp −

Pi

P0
]

2n

i=1

 

Limited with: Zp + Ip + Pp = 1                    (20) 

L =  ∑[Zq (
Vi

V0
)
2

+ Iq (
Vi

V0
) + Pq −

Qi

Q0
]

2n

i=1

 

Limited with: Zq + Iq + Pq = 1 

Where 𝐿 is the error to be minimized, 𝑉𝑖 and 𝑃𝑖 is the input values in p.u., 𝑉𝑖/𝑉𝑜 and 𝑃𝑖/𝑃𝑜 are 

correspond to its per-unit values and they can be called only as 𝑉𝑖 and 𝑃𝑖. n is the number of 
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measured quantities at each voltage level, where the measured quantities are voltage, active power, 

and reactive power.  Therefore, the ZIP coefficients of active power (𝑍𝑃, 𝐼𝑃, 𝑃𝑃) can be determined 

through the partial derivation of 𝐿 in respect of each coefficient, and the resulted equation will be 

equal to zero, as given in the following:  

dL

dZp
= ∑2

n

i=1

(
Vi

V0
)
2

+ (Zp (
Vi

V0
)
2

+ Ip (
Vi

V0
) + Pp −

Pi

Po
) = 0                     (21) 

dL

dIp
= ∑2

n

i=1

Vi

V0
+ (Zp (

Vi

V0
)
2

+ Ip (
Vi

V0
) + Pp −

Pi

Po
) = 0 

dL

dPp
= ∑2

n

i=1

(Zp (
Vi

V0
)
2

+ Ip (
Vi

V0
) + Pp −

Pi

Po
) = 0 

The three equations can be re-written in a matrix form as shown in equation (22):  

[
 
 
 
 
 
 
 
 ∑Vj

4

n

j=1

∑Vj
3

n

j=1

∑Vj
2

n

j=1

∑Vj
3

n

j=1

∑Vj
2

n

j=1

∑Vj

n

j=1

∑Vj
2

n

j=1

∑Vj

n

j=1

n
]
 
 
 
 
 
 
 
 

[

Zp

Ip
Pp

] =

[
 
 
 
 
 
 
 
 ∑Pj Vj

2

n

j=1

∑Pj Vj

n

j=1

∑Pj

n

j=1 ]
 
 
 
 
 
 
 
 

                    (22) 

Thus, the three ZIP coefficients for active power can be obtained from the matrix equation. The 

exact procedure is achieved to calculate the ZIP coefficients for reactive power.  
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5.2.6 Results and Discussions 

5.2.6.1 ZIP Model Coefficients for LED Lights 

Laboratory experiment is conducted of LED light fixtures for different wattages to measure the 

active and reactive power values with the voltage variations. After identifying the rated value of 

active power 𝑃𝑜, it should be pointed out that 𝑃𝑜 values are larger than the rated wattages stated on 

the nameplate for each light fixture. The comparison is shown in table 5.3 between rated wattages 

on the nameplates and the 𝑃𝑜, which is described as the active power consumption for LED light 

at the rated voltage 𝑉𝑜. Table 5.3 also shown the monitored quantities for LED lights tested in the 

lab, which are, rated voltage 𝑉𝑜, Frequency 𝐹, shutoff voltage 𝑉𝑜𝑓𝑓, current 𝐼𝑜, active power 𝑃𝑜, 

reactive power 𝑄𝑜, and apparent power 𝑆𝑜. 

Table 5.3: Monitored quantities for LED lights tested in the lab 

No. Type Brand 

Soft White 

/Daylight Dimmability 

Power 

rated 

Power 

replc 

Vo 

(V) 

Voff 

(V) 

F 

(Hz) 

Io 

(A) 

Po 

(W) 

Qo 

(VAR) 

So 

(VA) 

1 Bulb EcoSmart Daylight Non-dimmable 5.5 40 120 47 60 0.103 7 10 12 

2 Bulb GE Soft White  Dimmable 9 60 120 100 60 0.106 10 8 13 

3 Bulb EcoSmart Daylight Non-dimmable 9 60 120 89 60 0.15 11 14 18 

4 Bulb EcoSmart Soft White  Non-dimmable 9 60 120 94 60 0.152 11 14 18 

5 Bulb Great Value Soft White  Non-dimmable 9 60 120 102 60 0.142 11 13 16 

6 Bulb EcoSmart Daylight Dimmable 9.5 60 120 93 60 0.128 11 10 15 

7 Bulb Cree Daylight Dimmable 10 60 120 67 60 0.099 11 5 12 

8 Bulb Great value Daylight Non-dimmable 12.5 75 120 94 60 0.186 13 18 23 

9 Bulb GE Soft White  Dimmable 13 100 120 46 60 0.126 15 5 16 

10 Bulb EcoSmart Daylight Non-dimmable 13 100 120 96 60 0.232 13 23 28 

11 Bulb Sylvania Daylight Non-dimmable 14 100 120 67 60 0.204 13 21 25 

12 Bulb Great Value Daylight Non-dimmable 14 100 120 50 60 0.226 16 22 27 

13 Bulb Feit Electric Daylight Non-dimmable 15 100 120 96 60 0.242 13 26 29 

14 Bulb EcoSmart Daylight Dimmable 15.5 100 120 91 60 0.187 17 14 22 

15 Bulb Feit Electric Daylight Dimmable 17.5 100 120 31 60 0.128 14 5 15 

16 Bulb Sylvania Soft White  Non-dimmable 22 200 120 63 60 0.390 23 42 48 

17 Bulb Feit Electric Daylight Dimmable 28 150 120 30 60 0.220 25 6 26 

18 Candle Yansun Daylight Non-dimmable 5 40 120 47 60 0.068 5 6 8 

19 Candle Yansun Daylight Non-dimmable 6 60 120 102 60 0.06 6 4 7 

20 Tube toggled Daylight Non-dimmable 8 20 120 81 60 0.095 10 4 11 
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21 Tube toggled Daylight Non-dimmable 16 40 120 87 60 0.155 18 5 19 

 

ZIP model is employed to estimate the load profile for LED lights, represented by active and 

reactive power, taking into account the voltage variations within the CVR range from 0.83 – 1.10 

pu, and ZIP model coefficients are determined for each light fixture. Therefore, ZIP models and 

data obtained from the experiment for active and reactive measurements are plotted together to 

show the agreement comparison between model and measurement.  

ZIP model is fitted to the measured data taking into account two cases of constrains [5]: 

1. No constraints: This is called the accurate load model. 

2. One constraint: sum of the ZIP coefficients should be equal to one: 𝑍𝑃 + 𝐼𝑃  +  𝑃𝑃  =  1 

Therefore, ZIP coefficients can be derived from the load model in two ways: constrained 

coefficients and accurate coefficients. The constrained load model is the most widely known to the 

system operators and system planners as it describes the situation in the field better. The 

constrained coefficients are found as a fit to the measured data with the constraint that the sum of 

the ZIP coefficients 𝑍𝑃, 𝐼𝑃, and 𝑃𝑃 should be equal to one [22].  The main purpose of this constrain 

is to ensure that the load consumes the correct power at the nominal voltage [19], [5].  

On the other hand, accurate load model, known as non-constrained model, is employed for the 

measured data with no constraints. Table 5.4 and 5.5 shows the ZIP Model coefficients extracted 

from the experiments for LED light fixtures for non-constrained and constrained ZIP model 

respectively. 

Adjustment factor 𝐾 is used to extract the constrained ZIP coefficients and employ the fact that 

the load consumes the correct power at the rated voltage (power is 1 pu when voltage is 1 pu) [3]. 
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This can be achieved by multiplying 𝐾𝑃 and 𝐾𝑞 by ZIP coefficients for 𝑃 and 𝑄.where 𝐾𝑃 and 𝐾𝑞 

are the adjustment factor for active power and reactive power respectively. 

𝐾𝑝 =  
1

𝑍𝑃 + 𝐼𝑃 + 𝑃𝑃
                 (23) 

𝐾𝑞 =  
1

𝑍𝑞 + 𝐼𝑞 + 𝑃𝑞
                (24) 

P = Po  [KP. ZP (
V

Vo
)

2

+ KP. IP (
V

Vo
) + KP. PP]               (25) 

Q = Qo [Kq. Z𝑞 (
V

V𝑜
)

2

+ K𝑞 . I𝑞 (
V

Vo
) + K𝑞 . P𝑞]               (26) 

Where: 

𝐾𝑃. 𝑍𝑃 + 𝐾𝑃. 𝐼𝑃 + 𝐾𝑃. 𝑃𝑃 = 1                (27) 

𝐾𝑞 . 𝑍𝑞 + 𝐾𝑞 . 𝐼𝑞 + 𝐾𝑞 . 𝑃𝑞 = 1                 (28) 

 

Table 5.4: ZIP model coefficients for LED lights – non constrained model 

No. Type Brand 

Soft White 

/Daylight Dimmability 

Power 

rated 

Power 

replc Zp Ip Pp Zq Iq Pq 

1 Bulb EcoSmart Daylight Non-dimmable 5.5 40 -1.43 3.90 -1.11 0.74 -1.96 0.25 

2 Bulb GE Soft White  Dimmable 9 60 -22.51 45.82 -22.26 23.25 -47.48 22.95 

3 Bulb EcoSmart Daylight Non-dimmable 9 60 -6.81 16.27 -8.26 5.24 -12.84 6.54 

4 Bulb EcoSmart Soft White  Non-dimmable 9 60 -9.11 20.71 -10.55 10.30 -23.21 11.86 

5 Bulb Great Value Soft White  Non-dimmable 9 60 -5.65 14.46 -7.96 0.38 -4.43 3.10 

6 Bulb EcoSmart Daylight Dimmable 9.5 60 -8.36 18.43 -9.03 8.95 -18.42 8.35 

7 Bulb Cree Daylight Dimmable 10 60 2.33 -4.07 2.68 -9.46 16.61 -8.28 

8 Bulb Great value Daylight Non-dimmable 12.5 75 -5.85 15.47 -8.38 2.66 -8.83 5.15 

9 Bulb GE Soft White  Dimmable 13 100 -1.47 3.27 -0.81 0.27 -2.21 0.87 

10 Bulb EcoSmart Daylight Non-dimmable 13 100 -13.92 29.35 -14.44 12.28 -26.38 13.03 

11 Bulb Sylvania Daylight Non-dimmable 14 100 0.00 0.00 1.00 0.00 -0.39 -0.56 

12 Bulb Great Value Daylight Non-dimmable 14 100 0.00 0.00 0.94 -1.25 2.05 -1.79 

13 Bulb Feit Electric Daylight Non-dimmable 15 100 -10.92 24.84 -12.93 8.74 -20.09 10.42 

14 Bulb EcoSmart Daylight Dimmable 15.5 100 -10.21 22.05 -10.81 10.45 -21.11 9.57 

15 Bulb Feit Electric Daylight Dimmable 17.5 100 0.00 0.00 1.00 1.60 -4.36 1.84 

16 Bulb Sylvania Soft White  Non-dimmable 22 200 -1.11 1.95 0.11 0.52 -1.38 -0.05 

17 Bulb Feit Electric Daylight Dimmable 28 150 0.00 0.00 1.00 12.72 -26.94 13.20 
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18 Candle Yansun Daylight Non-dimmable 5 40 0.19 1.12 -0.06 -2.53 3.99 -2.51 

19 Candle Yansun Daylight Non-dimmable 6 60 -17.88 38.75 -19.68 -2.54 4.01 -1.60 

20 Tube toggled Daylight Non-dimmable 8 20 -1.79 3.98 -1.21 0.70 -2.69 0.81 

21 Tube toggled Daylight Non-dimmable 16 40 -0.04 0.35 0.67 2.33 -4.83 1.23 

 

Table 5.5: ZIP model coefficients for LED lights – constrained model 

No. Type Brand 

Soft White 

/Daylight Dimmability 

Power 

rated 

Power 

replc Zp Ip Pp Zq Iq Pq 

1 Bulb EcoSmart Daylight Non-dimmable 5.5 40 -1.06 2.87 -0.81 -0.76 2.02 -0.26 

2 Bulb GE Soft White  Dimmable 9 60 -21.44 43.64 -21.20 -18.12 37.01 -17.89 

3 Bulb EcoSmart Daylight Non-dimmable 9 60 -5.72 13.66 -6.94 -4.99 12.22 -6.23 

4 Bulb EcoSmart Soft White  Non-dimmable 9 60 -8.74 19.86 -10.12 -9.87 22.23 -11.36 

5 Bulb Great Value Soft White  Non-dimmable 9 60 -6.55 16.78 -9.23 -0.40 4.66 -3.26 

6 Bulb EcoSmart Daylight Dimmable 9.5 60 -7.97 17.57 -8.61 -8.04 16.54 -7.50 

7 Bulb Cree Daylight Dimmable 10 60 2.47 -4.32 2.85 8.42 -14.79 7.37 

8 Bulb Great value Daylight Non-dimmable 12.5 75 -4.71 12.45 -6.74 -2.59 8.61 -5.02 

9 Bulb GE Soft White  Dimmable 13 100 -1.49 3.31 -0.82 -0.25 2.07 -0.82 

10 Bulb EcoSmart Daylight Non-dimmable 13 100 -14.21 29.95 -14.74 -11.47 24.65 -12.17 

11 Bulb Sylvania Daylight Non-dimmable 14 100 0.00 0.00 1.00 0.00 0.41 0.59 

12 Bulb Great Value Daylight Non-dimmable 14 100 0.00 0.00 1.00 1.26 -2.07 1.81 

13 Bulb Feit Electric Daylight Non-dimmable 15 100 -11.12 25.29 -13.17 -9.30 21.40 -11.09 

14 Bulb EcoSmart Daylight Dimmable 15.5 100 -9.85 21.28 -10.43 -9.55 19.29 -8.75 

15 Bulb Feit Electric Daylight Dimmable 17.5 100 0.00 0.00 1.00 -1.73 4.72 -1.99 

16 Bulb Sylvania Soft White  Non-dimmable 22 200 -1.18 2.07 0.11 -0.58 1.52 0.06 

17 Bulb Feit Electric Daylight Dimmable 28 150 0.00 0.00 1.00 -12.52 26.51 -12.99 

18 Candle Yansun Daylight Non-dimmable 5 40 0.15 0.90 -0.05 2.40 -3.79 2.39 

19 Candle Yansun Daylight Non-dimmable 6 60 -14.99 32.48 -16.49 19.55 -30.87 12.32 

20 Tube toggled Daylight Non-dimmable 8 20 -1.81 4.04 -1.22 -0.60 2.28 -0.69 

21 Tube toggled Daylight Non-dimmable 16 40 -0.04 0.36 0.68 -1.83 3.80 -0.97 
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R-squared (𝑅2) and Root Mean Square Error (𝑅𝑀𝑆𝐸) are calculated in this study as a means to 

evaluate the ZIP model performance, where R-squared is a statistical measure of how close the 

measured data is to the fitted model, and 𝑅𝑀𝑆𝐸 is another method to measure the error of the ZIP 

model in predicting the measurement data. Table 5.6 summarizes the calculated 𝑅2 and 𝑅𝑀𝑆𝐸 for 

each active and reactive power ZIP model. 

Table 5.6: 𝑅2 & 𝑅𝑀𝑆𝐸 values for active & reactive power ZIP model 

No. Type Brand 

Soft White 

/Daylight Dimmability 

Power 

rated 

Power 

replc 𝑹𝑷
𝟐  𝑹𝑸

𝟐   𝑹𝑴𝑺𝑬𝑷 𝑹𝑴𝑺𝑬𝑸 

1 Bulb EcoSmart Daylight Non-dimmable 5.5 40 87.6% 55.6% 0.0373 0.0415 

2 Bulb GE Soft White  Dimmable 9 60 83.7% 77.3% 0.1021 0.1354 

3 Bulb EcoSmart Daylight Non-dimmable 9 60 99.4% 98.8% 0.0206 0.0273 

4 Bulb EcoSmart Soft White  Non-dimmable 9 60 97.8% 97.9% 0.0406 0.0428 

5 Bulb Great Value Soft White  Non-dimmable 9 60 98.4% 100.0% 0.0350 0.0045 

6 Bulb EcoSmart Daylight Dimmable 9.5 60 98.8% 97.0% 0.0243 0.0221 

7 Bulb Cree Daylight Dimmable 10 60 77.7% 91.2% 0.0198 0.0443 

8 Bulb Great value Daylight Non-dimmable 12.5 75 99.6% 99.3% 0.0234 0.0268 

9 Bulb GE Soft White  Dimmable 13 100 83.0% 87.0% 0.0223 0.0573 

10 Bulb EcoSmart Daylight Non-dimmable 13 100 99.4% 98.9% 0.0196 0.0279 

11 Bulb Sylvania Daylight Non-dimmable 14 100 - 84.0% 0.0000 0.0145 

12 Bulb Great Value Daylight Non-dimmable 14 100 - 90.7% 0.0000 0.0107 

13 Bulb Feit Electric Daylight Non-dimmable 15 100 99.2% 99.7% 0.0309 0.0163 

14 Bulb EcoSmart Daylight Dimmable 15.5 100 98.0% 84.3% 0.0300 0.0450 

15 Bulb Feit Electric Daylight Dimmable 17.5 100 - 80.0% 0.0000 0.0558 

16 Bulb Sylvania Soft White  Non-dimmable 22 200 79.9% 95.1% 0.0092 0.0073 

17 Bulb Feit Electric Daylight Dimmable 28 150 - 57.3% 0.0000 0.1961 

18 Candle Yansun Daylight Non-dimmable 5 40 82.5% 64.1% 0.0568 0.0575 

19 Candle Yansun Daylight Non-dimmable 6 60 98.0% 22.0% 0.0468 0.1401 

20 Tube toggled Daylight Non-dimmable 8 20 75.9% 74.1% 0.0239 0.0634 

21 Tube toggled Daylight Non-dimmable 16 40 75.5% 19.9% 0.0137 0.0735 
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5.2.6.2 ZIP Model vs. Measurement Data Comparison  

LED light – Bulb Type 

The bulb type-LED light fixtures were tested for different wattages. Table 5.7 shows ZIP 

coefficients for the LED lights with bulb type for different characteristics. A comparison between 

ZIP model and measured data of active & reactive power for LED lights – bulb type within the 

CVR range, from 0.80 – 1.10 pu, are shown from figure 5.2 to figure 5.18. With respect to the 

comparison, it should be pointed out that the ZIP model has a good compatibility with the 

measured data for each active and reactive power obtained from the experiment for LED light, 

bulb type, at the rated wattages: 5.5W, 9W, 9.5W, 10W, 12.5W, 13W, 14W, 15W, 15.5W, 17.5W, 

22W, and 28W. This can be confirmed by the calculated R2 for LED lights shown in table 5.6.  

An example of R2 is provided for LED light bulb, daylight, non-dimmable, rated wattage 9W. R2 

for active power and reactive power for this light bulb are 99.4% and 98.8% respectively, and the 

figure 5.4 shows how ZIP model has a good agreement with the measured data for each active and 

reactive power. Table 5.6 shows the calculated R2 for bulb type-LED lights.  

However, ZIP model for “LED EcoSmart Bulb Daylight Non-dimmable 5.5W” is shown 

in figure 5.2. With reference to the reactive power, the ZIP model of this light fixture is only 

compatible with the reactive power measurements at certain voltage levels such as 0.87 and 1.08 

pu, hence ZIP model does not have a good accuracy to present the reactive power demand as the 

accuracy of the active power, where the calculated R2 values for active power and reactive power 

are 87.6% and 55.6% respectively. 
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Table 5.7: ZIP coefficients for bulb type LED lights 

No. Type Brand 

Soft White 

/Daylight Dimmability 

Power 

rated 

Power 

replc Zp Ip Pp Zq Iq Pq 

1 Bulb EcoSmart Daylight Non-dimmable 5.5 40 -1.06 2.87 -0.81 -0.76 2.02 -0.26 

2 Bulb GE Soft White  Dimmable 9 60 -21.44 43.64 -21.20 -18.12 37.01 -17.89 

3 Bulb EcoSmart Daylight Non-dimmable 9 60 -5.72 13.66 -6.94 -4.99 12.22 -6.23 

4 Bulb EcoSmart Soft White  Non-dimmable 9 60 -8.74 19.86 -10.12 -9.87 22.23 -11.36 

5 Bulb Great Value Soft White  Non-dimmable 9 60 -6.55 16.78 -9.23 -0.40 4.66 -3.26 

6 Bulb EcoSmart Daylight Dimmable 9.5 60 -7.97 17.57 -8.61 -8.04 16.54 -7.50 

7 Bulb Cree Daylight Dimmable 10 60 2.47 -4.32 2.85 8.42 -14.79 7.37 

8 Bulb Great value Daylight Non-dimmable 12.5 75 -4.71 12.45 -6.74 -2.59 8.61 -5.02 

9 Bulb GE Soft White  Dimmable 13 100 -1.49 3.31 -0.82 -0.25 2.07 -0.82 

10 Bulb EcoSmart Daylight Non-dimmable 13 100 -14.21 29.95 -14.74 -11.47 24.65 -12.17 

11 Bulb Sylvania Daylight Non-dimmable 14 100 0.00 0.00 1.00 0.00 0.41 0.59 

12 Bulb Great Value Daylight Non-dimmable 14 100 0.00 0.00 1.00 1.26 -2.07 1.81 

13 Bulb Feit Electric Daylight Non-dimmable 15 100 -11.12 25.29 -13.17 -9.30 21.40 -11.09 

14 Bulb EcoSmart Daylight Dimmable 15.5 100 -9.85 21.28 -10.43 -9.55 19.29 -8.75 

15 Bulb Feit Electric Daylight Dimmable 17.5 100 0.00 0.00 1.00 -1.73 4.72 -1.99 

16 Bulb Sylvania Soft White  Non-dimmable 22 200 -1.18 2.07 0.11 -0.58 1.52 0.06 

17 Bulb Feit Electric Daylight Dimmable 28 150 0.00 0.00 1.00 -12.52 26.51 -12.99 
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1. EcoSmart Bulb Daylight Non-dimmable 5.5W 

 

 

 

 

 

 

Figure 5.2: P & Q comparison - Bulb Daylight Non-dimmable 5.5W 

 

2. GE Bulb Soft White Dimmable 9W 

 

 

 

 

 

 

Figure 5.3: P & Q comparison - Bulb Soft White Dimmable 9W 

 

3. EcoSmart Bulb Daylight Non-dimmable 9W 

 

 

 

 

 

 

Figure 5.4: P & Q comparison - Bulb Daylight Non-dimmable 9W 
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4. EcoSmart Bulb Soft White Non-dimmable 9W 

 

 

 

 

 

 

Figure 5.5: P & Q comparison - Bulb Soft White Non-dimmable 9W 

 

5. Great Value Bulb Soft White Non-dimmable 9W 

 

 

 

 

 

 

Figure 5.6: P & Q comparison - Bulb Soft White Non-dimmable 9W 

 

6. EcoSmart Bulb Daylight Dimmable 9.5W 

 

 

 

 

 

 

Figure 5.7: P & Q comparison - Bulb Daylight Dimmable 9.5W 
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7. Cree Bulb Daylight Dimmable 10W 

 

 

 

 

 

 

Figure 5.8: P & Q comparison - Bulb Daylight Dimmable 10W 

 

8. Great value Bulb Daylight Non-dimmable 12.5W 

 

 

 

 

 

 

Figure 5.9: P & Q comparison - Bulb Daylight Non-dimmable 12.5W 

 

9. GE Bulb Soft White Dimmable 13W 

 

 

 

 

 

 

Figure 5.10: P & Q comparison - Bulb Soft White Dimmable 13W 
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10. EcoSmart Bulb Daylight Non-dimmable 13W 

 

 

 

 

 

 

Figure 5.11: P & Q comparison - Bulb Daylight Non-dimmable 13W 

 

11. Sylvania Bulb Daylight Non-dimmable 14W 

 

 

 

 

 

 

Figure 5.12: P & Q comparison - Sylvania Bulb Daylight Non-dimmable 14W 

 

12. Great Value Bulb Daylight Non-dimmable 14W 

 

 

 

 

 

 

Figure 5.13: P & Q comparison - Great Value Bulb Daylight Non-dimmable 14W 
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13. Feit Electric Bulb Daylight Non-dimmable 15W 

 

 

 

 

 

 

Figure 5.14: P & Q comparison - Feit Electric Bulb Daylight Non-dimmable 15W 

 

14. EcoSmart Bulb Daylight Dimmable 15.5W 

 

 

 

 

 

 

Figure 5.15: P & Q comparison - Bulb Daylight Dimmable 15.5W 

 

15. Feit Electric Bulb Daylight Dimmable 17.5W 

 

 

 

 

 

 

Figure 5.16: P & Q comparison - Feit Electric Bulb Daylight Dimmable 17.5W 
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16. Sylvania Bulb Soft White Non-dimmable 22W 

 

 

 

 

 

 

Figure 5.17: P & Q comparison - Sylvania Bulb Soft White Non-dimmable 22W 

 

17. Feit Electric Bulb Daylight Dimmable 28W 

 

 

 

 

 

 

Figure 5.18: P & Q comparison - Feit Electric Bulb Daylight Dimmable 28W 

 

LED light – Linear & Candle Type 

The candle type-LED light fixtures were tested for daylight, non-dimmable, 40W and 60W power 

replacement, and 5W and 6W of power rated. Table 5.8 shows ZIP coefficients for the LED lights 

with candle type. It is obvious from the figures 5.19 and 5.20 that ZIP model can be used to 

determine the active power consumption within the conservation voltage reduction (CVR) range 

as the calculated R2 for the active power ZIP model of 5W and 6W LED lights are 82.5% and 

98.0% respectively. Therefore, the active power ZIP model for 6W LED light is more accurate 

than the ZIP model for 5W.  
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On the other hand, ZIP model does not have a good precision of predicting the reactive power, 

where R2 values are 64.1% and 22.0% for 5W and 6W LED lights. Thus, the reactive power ZIP 

model is not as accurate as ZIP model for active power measurements. 

With respect to LED light – Tube, table 5.8 also shows ZIP coefficients for the LED lights 

with tube type. The developed ZIP model for active power in the tube type-LED light is not able 

to represent the load behavior as it does for the bulb and candle type, where R values for 8W and 

16W LED lights are 75.9% and 75.5% respectively. Similar cases are clearly observed for reactive 

power measurements; it is shown by the figures 5.15 and 5.19 that ZIP model does not have an 

agreement with the reactive power consumption for the tube LED lights. 

Table 5.8: ZIP coefficients for linear & candle type LED lights 

No. Type Brand 

Soft White 

/Daylight Dimmability 

Power 

rated 

Power 

replc Zp Ip Pp Zq Iq Pq 

1 Candle Yansun Daylight Non-dimmable 5 40 0.15 0.90 -0.05 2.40 -3.79 2.39 

2 Candle Yansun Daylight Non-dimmable 6 60 -14.99 32.48 -16.49 19.55 -30.87 12.32 

3 Tube toggled Daylight Non-dimmable 8 20 -1.81 4.04 -1.22 -0.60 2.28 -0.69 

4 Tube toggled Daylight Non-dimmable 16 40 -0.04 0.36 0.68 -1.83 3.80 -0.97 

 

 

1. Yansun Candle Daylight Non-dimmable 5W 

 

 

 

 

 

 

Figure 5.19: P & Q comparison - Candle Daylight Non-dimmable 5W 
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2. Yansun Candle Daylight Non-dimmable 6W 

 

 

 

 

 

 

Figure 5.20: P & Q comparison - Candle Daylight Non-dimmable 6W 

 

3. toggled Tube Daylight Non-dimmable 8W 

 

 

 

 

 

 

Figure 5.21: P & Q comparison - Tube Daylight Non-dimmable 8W 

 

4. toggled Tube Daylight Non-dimmable 16W 

 

 

 

 

 

 

Figure 5.22: P & Q comparison - Tube Daylight Non-dimmable 16W 
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5.2.6.3 CVR impact on LED Lights 

As discussed in chapter 3, the conservation voltage reduction (CVR) method is one of the 

power-conserve applications used in the utilities. This technique implies that the load consumes 

less power when the applied voltage is reduced less than its rated value. Therefore, our goal in this 

study is to identify the impact of CVR on the LED lights, and how the light fixtures perform when 

it is exposed to voltage reduction. In our experiment, the lights here were subjected to the voltage 

range from 83% – 110% of the rated voltage 120V [23]. 

The conservation voltage reduction CVR has an effective impact on most LED lights, where it 

enables the lights to consume less power with the same performance at the rated voltage. An 

example of that is demonstrated for 9W LED bulb. Figure 5.4 shows that the light consumed 0.56 

pu of its rated active power when CVR is implemented. Also, a very good compatibility between 

ZIP model and the measurement data of active power within the CVR range is noticed for this 

light. 

LED Lights – Tube Type 

With respect to the tube type of LED lights for 8W and 16W, it was clearly observed that 

CVR technique does not greatly impact the performance of the linear type. This is shown by figures 

5.17 and 5.18 of the active power measurements for LED light – tube type, the minimum power 

required for this type is around 0.90 and 0.95 pu of its rated active power for LED 8W and 16W 

respectively. Additionally, the light does not perform well and start flickering when the applied 

voltage goes under the CVR range, hence there is no high power reduction achieved when applying 

the CVR technique for the LED light – tube type.   
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Constant power 𝑷𝒑 LED lights  

CVR has no impact on some high wattages LED lights with 14W, 17W, and 28W of LED 

– bulb types, which is demonstrated in the figures 5.12, 5.13, 5.16, and 5.18, where the active 

power consumption is constant during the CVR range. This is also proved by the ZIP load 

modeling, where the ZIP coefficients for active power 𝑍𝑃, 𝐼𝑃 and 𝑃𝑃 are 0, 0, and 1 respectively, 

hence the ZIP model represents the LED light as a constant power 𝑃𝑃. Table 5.9 lists all the LED 

lights with high wattages. Consequently, there is no power – conserve achieved when CVR is 

performed for most of the high wattages of LED light – bulb type. 

Table 5.9: ZIP coefficients for constant power – LED lights 

No. Type Brand 

Soft White 

/Daylight Dimmability 

Power 

rated 

Power 

replc Zp Ip Pp Zq Iq Pq 

1 Bulb Sylvania Daylight Non-dimmable 14 100 0.00 0.00 1.00 0.00 0.41 0.59 

2 Bulb Great Value Daylight Non-dimmable 14 100 0.00 0.00 1.00 1.26 -2.07 1.81 

3 Bulb Feit Electric Daylight Dimmable 17.5 100 0.00 0.00 1.00 -1.73 4.72 -1.99 

4 Bulb Feit Electric Daylight Dimmable 28 150 0.00 0.00 1.00 -12.52 26.51 -12.99 
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5.2.6.4 Power Consumption Estimation Based on ZIP Coefficients 

Conservation voltage reduction (CVR) was applied to LED lights in order to study the 

effectiveness of CVR on the light components, and ZIP model coefficients were determined 

according to the CVR accomplished in the experiment. Therefore, the impact of CVR can be 

mathematically assessed by the CVR f-actor, which is described as the ratio of the change in power 

consumed by the load to the voltage variations. Thus, the power reduction resulted from CVR 

needs to be estimated as well. 

In this section, the power consumption for LED lights is estimated based on the ZIP model 

coefficients for each light component. Then, this estimated power consumption is validated against 

the actual recordings of power consumption achieved under CVR technique. Figure 5.23 shows 

the validation methodology of power consumption estimation based on ZIP model Coefficients. 

 

Figure 5.23: Validation methodology of power consumption estimation based on ZIP model  
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Conservation voltage reduction factor 𝐶𝑉𝑅𝑓 for LED lights can be extracted based on the ZIP 

coefficients determined in the previous section. This can be implemented by the derivation of 

active power in equation (29)[53]. 

𝑃 = 𝑃𝑜 [𝑍𝑃  (
𝑉

𝑉𝑜
)
2

+ 𝐼𝑃  (
𝑉

𝑉𝑜
) + 𝑃𝑃]                 (29) 

Per unit (p.u.) is the unit used for active power and rated voltage values in the ZIP model equation. 

This can be achieved by substituting 𝑃𝑛 =
𝑃

𝑃𝑜
  and 𝑉𝑛 = 

𝑉

𝑉𝑜
 , where 𝑃𝑛 is the active power in per 

unit, and 𝑉𝑛 is the rated voltage in per unit. Equation (30) will be derived for the rated voltage in 

per unit 𝑉𝑛, as shown in the following: 

𝑃𝑛 = 𝑍𝑃 𝑉𝑛
2 + 𝐼𝑝 𝑉𝑛 + 𝑃𝑃                  (30) 

𝜕𝑃𝑛

𝜕𝑉𝑛
= 2 𝑍𝑃 𝑉𝑛 + 𝐼𝑃 

Voltage variations 𝜕𝑉𝑛 , which presents 𝜕𝑉𝑛 =
𝑉−𝑉𝑜

𝑉𝑜
= 𝑉𝑛 − 1  → 𝑉𝑛 = 𝜕𝑉𝑛 + 1, will be replaced 

as shown in equation (31), hence the derived active power equation will be expressed as follows:  

𝜕𝑃𝑛 = [2𝑍𝑃(𝜕𝑉𝑛 + 1) + 𝐼𝑃] 𝜕𝑉𝑛                     (31) 

𝜕𝑃𝑛 = [2𝑍𝑃 𝜕𝑉𝑛
2 + 2𝑍𝑃 𝜕𝑉𝑛 + 𝐼𝑃 𝜕𝑉𝑛] 

𝜕𝑃𝑛 = (2𝑍𝑃 + 𝐼𝑃) 𝜕𝑉𝑛 + 2𝑍𝑃 𝜕𝑉𝑛
2   

𝜕𝑃𝑛

𝜕𝑉𝑛
= 2𝑍𝑃 + 𝐼𝑃 

𝜕𝑉𝑛
2 is negligible and can be ignored for simplicity. Therefore, conservation voltage reduction 

factor 𝐶𝑉𝑅𝑓 can be calculated based on ZIP model coefficients, which are constant impedance 𝑍𝑃 

and constant current 𝐼𝑃, as shown in equation (32).  

𝐶𝑉𝑅𝑓 = 2𝑍𝑃 + 𝐼𝑃                   (32) 
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Thus, the power reduction executed by CVR technique can be estimated by equation (33), where 

𝑃𝑟 is the amount of power reduction, 𝑃𝑜 is the rated active power for LED light, 𝐶𝑉𝑅𝑓 is the 

calculated CVR factor based on ZIP model coefficients, and ∆𝑉𝑛 is the voltage reduction. 

𝑃𝑟 = 𝑃𝑜 𝐶𝑉𝑅𝑓 ∆𝑉𝑛                           (33) 

∆𝑉𝑛 =
𝑉𝑜 − 𝑉𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑉0
=

120𝑉 − 100𝑉

120𝑉
= 0.16             (34) 

Since the CVR range in our study is from the 0.83 – 1.10 pu of the rated voltage, the applied 

voltage reduction is equal to 100V. Consequently, ∆𝑉𝑛 is calculated by equation (34), where 𝑉𝑜 is 

the rated voltage 120V, and 𝑉𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is the applied voltage reduction during the CVR application 

and equal to 100V. Table 5.10 demonstrates the calculated 𝐶𝑉𝑅𝑓 and estimated power reduction 

𝑃𝑟 values for LED lights. 

Table 5.10: Calculated 𝐶𝑉𝑅𝑓 and Power reduction 𝑃𝑟 values for LED lights 

No. Type Brand 

Soft White 

/Daylight Dimmability 

Power 

rated 

Power 

replc 

Po 

(W) 𝑪𝑽𝑹𝒇 ∆𝑽𝒏 𝑷𝒓 

1 Bulb EcoSmart Daylight Non-dimmable 5.5 40 7.0 0.8 0.16 0.85 

2 Bulb GE Soft White  Dimmable 9 60 10.0 0.8 0.16 1.21 

3 Bulb EcoSmart Daylight Non-dimmable 9 60 11.0 2.2 0.16 3.90 

4 Bulb EcoSmart Soft White  Non-dimmable 9 60 11.0 2.4 0.16 4.19 

5 Bulb Great Value Soft White  Non-dimmable 9 60 11.0 3.7 0.16 6.48 

6 Bulb EcoSmart Daylight Dimmable 9.5 60 11.0 1.6 0.16 2.88 

7 Bulb Cree Daylight Dimmable 10 60 11.0 0.6 0.16 1.11 

8 Bulb Great value Daylight Non-dimmable 12.5 75 13.0 3.0 0.16 6.31 

9 Bulb GE Soft White  Dimmable 13 100 15.0 0.3 0.16 0.79 

10 Bulb EcoSmart Daylight Non-dimmable 13 100 13.0 1.5 0.16 3.18 

11 Bulb Sylvania Daylight Non-dimmable 14 100 13.0 0.0 0.16 0.00 

12 Bulb Great Value Daylight Non-dimmable 14 100 16.0 0.0 0.16 0.00 

13 Bulb Feit Electric Daylight Non-dimmable 15 100 15.0 3.0 0.16 7.31 

14 Bulb EcoSmart Daylight Dimmable 15.5 100 17.0 1.6 0.16 4.29 

15 Bulb Feit Electric Daylight Dimmable 17.5 100 14.0 0.0 0.16 0.00 

16 Bulb Sylvania Soft White  Non-dimmable 22 200 23.0 -0.3 0.16 -1.09 

17 Bulb Feit Electric Daylight Dimmable 28 150 25.0 0.0 0.16 0.00 

18 Candle Yansun Daylight Non-dimmable 5 40 5.0 1.2 0.16 0.96 

19 Candle Yansun Daylight Non-dimmable 6 60 6.0 2.5 0.16 2.41 

20 Tube toggled Daylight Non-dimmable 8 20 10.0 0.4 0.16 0.66 
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21 Tube toggled Daylight Non-dimmable 16 40 18.0 0.3 0.16 0.81 

The predicted power consumption at certain voltage level of CVR, which is 100V in our study, 

can be estimated according to equation (35), where 𝑃𝑜 is the rated active power for LED light, and 

𝑃𝑟 is the power reduction. 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 @𝐶𝑉𝑅 = 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 @100𝑉 = 𝑃𝑜 − 𝑃𝑟                  (35) 

Consequently, the predicted power consumption at 100V of the applied voltage is calculated for 

each LED light and compared with the actual measurements of power consumption at 100V to 

validate the estimation of power consumption based on ZIP model. Table 5.11 shows a comparison 

between predicted & actual power consumption at 100V for LED lights. 

Table 5.11: Comparison between predicted & actual power consumption at 100V for LED lights 

No. Type Brand 

Soft White 

/Daylight Dimmability Po 

Predicted P  

@100V 

Actual P  

@100V 

Percentage 

Change 

1 Bulb EcoSmart Daylight Non-dimmable 7 6 8 -25% 

2 Candle Yansun Daylight Non-dimmable 5 4 5 -20% 

3 Bulb Feit Electric Daylight Dimmable 14 14 15 -7% 

4 Bulb Cree Daylight Dimmable 11 10 10 0% 

5 Bulb Great value Daylight Non-dimmable 13 7 7 0% 

6 Bulb Sylvania Daylight Non-dimmable 13 13 13 0% 

7 Bulb Feit Electric Daylight Dimmable 25 25 25 0% 

8 Candle Yansun Daylight Non-dimmable 6 3 3 0% 

9 Tube toggled Daylight Non-dimmable 10 9 9 0% 

10 Tube toggled Daylight Non-dimmable 18 17 17 0% 

11 Bulb Great Value Daylight Non-dimmable 16 16 15 6% 

12 Bulb GE Soft White  Dimmable 15 14 13 7% 

13 Bulb Sylvania Soft White  Non-dimmable 23 24 22 8% 

14 Bulb EcoSmart Soft White  Non-dimmable 11 6 5 17% 

15 Bulb EcoSmart Daylight Non-dimmable 13 10 8 20% 

16 Bulb Great Value Soft White  Non-dimmable 11 4 3 25% 

17 Bulb EcoSmart Daylight Dimmable 11 8 6 25% 

18 Bulb EcoSmart Daylight Dimmable 17 12 9 25% 

19 Bulb EcoSmart Daylight Non-dimmable 11 7 5 29% 

20 Bulb GE Soft White  Dimmable 10 8 5 38% 

21 Bulb Feit Electric Daylight Non-dimmable 15 7 4 43% 
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With the comparison between the predicted power consumption, based on ZIP model, and the 

actual power consumption, obtained from the actual measurement, it should be pointed out that 

the values of predicted power consumption based on the ZIP model has a good agreement with the 

actual measurements of power consumption at 100V of the applied voltage for LED lights. Figure 

5.24 shows the comparison between predicted & actual power consumption for LED lights. 

The error between the predicted and actual consumption is calculated to evaluate the ZIP model 

as shown in table 5.11, it should be pointed out that the average error is 9.1%. Consequently, ZIP 

load model is considered to be a significant means to assess the conservation voltage reduction 

(CVR) effectiveness in the network system, and can be employed for the modern lights such as 

LED, where it precisely represents the behavior of lighting components that are subjected to CVR 

technique. 

 

Figure 5.24: Comparison between predicted & actual power consumption for LED lights 
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5.2.6.5 LED Boundaries Based on ZIP Model 

ZIP coefficient boundaries for tested LED lights have been developed and plotted in figure 5.25 

in order to extract the minimum and maximum boundaries of LED lights. It should be mentioned 

that bulb LED light at the wattage 9W represent the maximum boundary, which is the most 

sensitive to voltage variations. Therefore, CVR is most effective at this wattage level. However, 

constant power P_P LED lights is the least sensitive to CVR as the load draws constant power 

under CVR as shown in table 5.12. 

Table 5.12: Constant power 𝑃𝑃 LED lights 

  Name Zp Ip Pp Zq Iq Pq 

Min ZIP 

Bulb 14W Daylight Non-dimmable - Sylvania  0.00 0.00 1.00 0.00 0.41 0.59 

Bulb 14W Daylight Non-dimmable - Great Value  0.00 0.00 1.00 1.26 -2.07 1.81 

Bulb 17.5W Daylight Dimmable - Feit Electric  0.00 0.00 1.00 -1.73 4.72 -1.99 

Bulb 28W Daylight Dimmable - Feit Electric  0.00 0.00 1.00 -12.52 26.51 -12.99 

Max ZIP Bulb 9W Soft white Non-dimmable - Great Value  -6.55 16.78 -9.23 -0.40 4.66 -3.26 

 

Figure 5.25: LED ZIP coefficients boundaries 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Thesis Summary 

The main objective of this thesis was to develop the ZIP load model for LED lights with 

different wattages and types. The purpose of this modeling is to update the load model for the 

modern LED lights, which have not deeply discussed before, and to have a better representation 

of load behavior under the conservation voltage reduction (CVR) technique. Next, the CVR impact 

on LED lights was investigated in this thesis, and CVR factor and power reduction were calculated 

based on ZIP model coefficients for each lighting component. Additionally, power consumption 

estimation for LED lights under CVR was validated against the measurement data obtained from 

the experiment. Finally, ZIP coefficients boundaries for the tested LED lights was developed, and 

the minimum and maximum cases of lighting components was determined. 

Also, this thesis offered a comprehensive literature review for the existing work of the 

component-based ZIP model and documented the ZIP coefficients for load components 

determined by previous works. Then, the ZIP coefficients of these load components were grouped 

into end-use categories and employed to identify the ZIP model coefficients for end-use types 

according to three potential cases. 
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6.2 Conclusions 

ZIP load model was developed, and the experimental determination of ZIP model 

coefficients for LED lights was adopted for each light fixture in this thesis. It was revealed that 

ZIP load model is a good representative for modern load components, such as LED lights, as it has 

a good agreement with the behavior of load components that are exposed to conservation voltage 

reduction (CVR).  

Furthermore, ZIP model is an essential approach that should be taken into account for the 

evaluation of conservation voltage reduction technique and how CVR impacts the LED lights. 

This was confirmed by validating the power consumption estimation based on ZIP model 

coefficients for lighting components and comparing it with the actual recordings obtained from the 

experiment. It was proved that power consumption calculated based on ZIP model has a good 

agreement with the actual measurement of power consumption of light components. 

6.3 Future Work 

Most research works on load modeling were done before 2014, hence An extension to this 

work can be done by developing the ZIP load model for the other equipment that is rapidly 

involved with the market and have not modeled yet.  

With respect to the literature review conducted in this thesis, it was obviously noticed that 

load model investigations for commercial loads are very limited, and most of the works are focused 

on residential equipment. Therefore, future research should be more oriented to the commercial 

sector. Also, the three potential cases of ZIP model coefficients were identified for each end-use 

type based on the individual ZIP coefficients for load components obtained from the review. 

Therefore, a real-time ZIP load model should be developed for every timestamp. 
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