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Hyperlipidemia is a condition of abnormally elevated levels of lipids and/or lipoproteins 

in the blood circulation. It is usually accompanied with obesity, type 2 diabetes, insulin 

resistance, hypertension and non-alcoholic fatty liver diseases (NAFLD) and has become 

a great threat to human health. New therapeutic strategies are needed for the prevention 

and treatment of both genetic intervention-induced hyperlipidemia and environmentally 

induced hyperlipidemia. In this study, we determined the therapeutic effects of a disease-

protecting gut bacteria, Akkermansia muciniphila, and an annual legume, fenugreek, on 

hypertriglyceridemia induced by genetic depletion of cAMP responsive binding protein H 

(CREBH KO) in mice.  We found that inoculation of A. muciniphila ameliorates both 

acute and chronic hyperlipidemia in mice. Increased colonization of A. muciniphila in 

CREBH KO mice enhanced the expression of hepatic LDL receptor and facilitated the 

clearance of triglyceride (TG) rich lipoproteins. Moreover, A. muciniphila administration 

in mice also alleviated hepatic endoplasmic reticulum (ER) stress and metabolic 

inflammation. Feeding CREBH KO mice with a diet containing fenugreek seed (2%) also 

attenuated the hypertriglyceridemia caused by depletion of CREBH or induced by a high 

fat diet (HFD).  Fenugreek seed inhibited hepatic apoB100 biosynthesis and suppressed 

very low density lipoprotein (VLDL) assembly and secretion. It further improved insulin 

resistance induced by HFD. 
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Chapter one 

General Introduction 

1.1 Obesity  

Obesity represents abnormal accumulation of body fat. According to NIH (2009-2010), 

the prevalence of overweight, which means the body mass index [BMI] is 25 to 29.9, and 

obesity, the BMI is more than 30, was approximately 68.8% in the United States among 

adults aged 20 or older. Obesity is not strictly a U.S. phenomenon. It has become a 

worldwide epidemic [1, 2]. Obesity is one of the major risk factors of metabolic diseases 

such as hypertension, dyslipidemia and insulin resistance and so on[3]. 

Obesity is induced by calorie accumulation, which means that more calories are absorbed 

than consumed. The excess calories are usually stored as adipose tissue which can be 

subcutaneous or abdominal. Genetic and environmental factors such as excess intake of 

energy-rich foods or even air pollution can all increase the risk of obesity [4, 5]. Studies 

have revealed that obesity and metabolic syndrome are associated with the changes of 

bacterial divisions [6].  

 

1.2 Lipids and Lipoprotein metabolism 

A major proportion of lipids in human and animals are triglycerides (TGs), cholesterol 

(CHOL) and phospholipids. Besides these, lipids in the body contain sterols, fat-soluble 

vitamins (A, D, E and K), mono- and diglycerides, and so on. Lipids are transported 

within lipoproteins in circulation, which is the only way that these fatty substances could 
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be dissolved in the blood. Lipoproteins are risk factors for cardiovascular and metabolic 

disease.  

Structurally, lipoproteins consist of two parts: a core of fats containing TGs, cholesterol 

esters (CHOL linked to fatty acids), and fat-soluble vitamins; and a monolayer membrane 

consisted of phospholipids and small amounts of free cholesterol. Apolipoproteins 

penetrate into or through the monolayer membrane acting as cofactors or ligands for the 

process of lipid transport and metabolism.  

According to the density, lipoproteins are divided into five classes: chylomicrons (CMs), 

very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), low 

density lipoproteins (LDL) and high density lipoproteins (HDL). Each lipoprotein 

contains specific contents of protein, TG, CHOL and cholesterol ester (details showed in 

table 1) [7, 8].  

 

Table.1. Major contents of human lipoproteins 

 chylomicron VLDL IDL LDL HDL 

Protein 1% 10% 10% 20% 50% 

Triglyceride 88% 56% 29% 13% 13% 

Cholesterol 1% 8% 9% 10% 6% 

Cholesterol 

ester 

3% 15% 39% 48% 30% 
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Adapted from Biochemistry 2nd Ed. 1995 Garrett & Grisham 

 

CMs are the largest lipoproteins which carry fat from the small intestine to the liver, 

skeletal muscle and adipose tissue. In the enterocytes, TGs, CHOL, fat-soluble nutrients 

and vitamins are packaged into CMs. The main apolipoprotein contained in CMs is apoB-

48, which is 48 percent as long as apoB-100. In the blood circulation, TGs in CMs are 

hydrolyzed by lipoprotein lipase (LPL) and CMs are converted into CM remnants. The 

activation of LPL needs a cofactor, apoC-II in CMs. The CM remnants carry CHOL and 

the remaining TG to the liver. The clearance of CM remnants by liver is mediated by the 

receptors, one of which is LDL receptor, on the membrane of hepatocytes [9]. The 

apolipoprotein E (apoE) on the CM remnants, which is exchanged from HDL, is the 

ligand of LDL receptor and facilitates the uptake of CM remnants by the liver.  

VLDLs are smaller than CMs. It is assembled and secreted by the liver to transport 

endogenously synthesized TGs to peripheral tissues. The biogenesis and secretion of 

VLDL by the liver plays an essential role in lipid homeostasis. During the circulation, 

LPL removes TGs in VLDLs with the assistance of apoC-II. By the removal of TGs and 

the uptake of CHOL, VLDL is converted to IDL. IDL is further converted to LDL via the 

hydrolysis of TGs by hepatic lipase.  

LDL is smaller than VLDL and IDL and is rich in CHOL. It delivers CHOL to the 

peripheral tissues by endocytosis. This process is facilitated by the LDL receptors on the 

surface of cells. When CHOL is required by cells, the cells express LDL receptor for the 

intake of LDLs. The hepatocytes also express LDL receptors. A proportion of LDLs enter 
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the liver to be catabolized. The recognition of LDL with LDL receptors is mediated by 

apoB100, the essential apolipoprotein in LDL.  

HDL is the smallest lipoprotein. It is referred to as “good” lipoprotein because it carries 

CHOL from the peripheral tissues back to the liver. HDL is originated from the liver. 

Apolipoprotein A1 is the major apolipoprotein in HDL and plays an important role in the 

function of HDL. Lecithin-cholesterol acyltransferase (LCAT) in the outer layer of HDL 

esterifies CHOL to form cholesterol esters (CE). HDLs provides apoE, C and CE to CMs 

and VLDLs and transports the remaining CHOL to the liver. 

 

 

Adapted from Durrington, P. et al. 2014, Metabolism of Human Diseases: Organ 

Physiology and Pathophysiology. 
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ApoB can be divided into two forms according to its molecular size, apoB100 and 

apoB48. In human, ApoB100 is produced by the liver and is the essential structure 

protein of VLDL and LDL, while apoB48 is synthesized in the small intestine and is the 

main protein in CMs. In mice, however, the expression level of apoB48 is much higher 

than that of apoB100 in the liver. ApoB cannot be exchanged from VLDL to other 

lipoproteins, making it an ideal marker of VLDL [10]. Both apoB100 and apoE are 

capable of binding with LDL receptor and thus mediate the clearance of LDL and CM 

remnants respectively. It has been reported that increased level of lipids in the liver can 

lead to apoB accumulation and ER stress [11-13]. 

 

1.3 Hyperlipidemia 

Hyperlipidemia represents an abnormal increase of lipids and/or lipoproteins in blood [2]. 

There are many conditions that could be covered in hyperlipidemia. But the most 

common form is high levels of LDL [14]. It has been widely accepted that 

hyperlipidemia is one of the main comorbidities of obesity, since obese people are more 

likely to develop hyperlipidemia [15]. The excess lipids in the arteries, the main symptom 

of hyperlipidemia, can lead to the development of atherosclerosis and coronary heart 

disease [16]. Hyperlipidemia usually complicates with obesity, type 2 diabetes, insulin 

resistance, hypertension and non-alcoholic fatty liver diseases (NAFLD) [17, 18]. The 

prevalence in the United States is more than thirty percent of the adult population [10]. 

Hyperlipidemia has become a great threat to the public health [15, 19, 20]. Treatment of 
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hyperlipidemia includes dietary and drug treatment. Weight loss is beneficial for 

hyperlipidemic patients with obesity. In the diets of patients, saturated fat and CHOL 

should be avoided in order to prevent the increase of LDL CHOL. Even in some cases, all 

fat should be restricted to prevent the formation of CMs. Drug treatment generally 

focused on reducing LDL CHOL [21]. There are some drugs that could be used in 

treating hyperlipidemia, such as statins, ezetimibe and so on. However, side effects and 

low efficiency remains. Therefore, it is required to find more therapeutic options, 

especially for severe and genetic hyperlipidemia. In this study, we determined the 

therapeutic effects of Akkermansia muciniphila, a disease protecting gut bacteria and 

fenugreek, an annual legume, on hypertriglyceridemia induced by depletion of Cyclic 

AMP-responsive element-binding protein H (CREBH) in mice.  

 

1.4 CREBH  

CREBH (encoded by the gene CREB3L3) belongs to the CREB/ATF family, and was 

identified as a hepatocyte-specific endoplasmic reticulum (ER) –bound bZIP transcription 

factor [22]. CREBH is expressed only in the liver and the small intestine [23, 24]. The 

expression of CREBH is dependent on hepatocyte nuclear factor 4α [25, 26]. It is 

activated from precursor protein by cleavage of protease S1P and S2P in Golgi [27]. 

Mature N-terminal portion was liberated and localized into the nucleus as transcriptional 

regulator [27, 28]. In the nucleus, CREBH activates the transcription of genes which is 

driven by CRE-containing promoter [29].  
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CREBH expression can be induced by fatty acids (FAs) and fasting [30, 31]. And it could 

be activated by ER stress. The promoter of CREBH gene contains a peroxisome 

proliferator responsive element (PPRE) for PPARα transactivation [32]. PPARα regulates 

the genes related with FA oxidation in peroxisomes and mitochondria and thus plays a 

crucial role in fasting response [33]. During fasting or exposure to synthetic agonists such 

as fibrates, adipose tissue would secrete increased concentrations of FFA, which further 

activates PPARα. Studies has reported that FFA induces CREBH transcription in 

hepatocytes [32], possibly by activating PPARα. Furthermore, it has been revealed that 

CREBH is involved in the acute phase response [25] and hepatic gluconeogenesis [34]. 

Recently, it has been revealed that CREBH plays a role in lipid metabolism. TG 

concentration in the plasma of CREBH knockout (KO) mice after fasting was higher 

compared with that of wild type (WT) mice [26] The TG content was specifically 

increased in the VLDL fraction. These mice have reduced mRNA expression levels of 

several genes involved in TG metabolism in the liver. The increase of the plasma TG 

appears to be induced by impaired TG clearance [26]. On the other hand, overexpression 

of CREBH in mice reduced the plasma TG levels [26]. Interestingly, there are some 

nonsynonymous and insertional mutations within the CREBH gene in some individuals 

with hypertriglyceridemia, but not in normolipidemic controls [26]. 

 

1.5  Microbiota and Akkermansia muciniphila  

1.5.1 Microbiota 

Microbiota is the general term indicating all the microorganisms in the body of animals 

or humans. In the GI tract of human, there are as many as 10 to 100 trillion 
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microorganisms. It is approximately 10 times more than the amount of human body cells 

[35]. The component of human microbiota is complex. The major part of microbiota is 

prokaryotes, most of which are bacteria [36, 37]. The other small part consists of 

eukaryotes and viruses [37]. Most of the bacteria in human are located in ileum, the 

terminal part of small intestine, and the large intestine. The major energy source of 

microbiota is undigested components from the diet of human. Carbohydrates, most of 

which are oligosaccharides, such as fibers, resistant starch and non-starch 

polysaccharides, are the main substrates that would be metabolized by microbiota [20, 

38]. Moreover, microbiota could also ferment some metabolites of the host, like 

glycosylated protein mucins, immunoglobulins and lipid derivatives [39, 40]. Numerous 

of products of the fermentation include gases and short chain fatty acids (SCFA). Some 

metabolic products of the microbiota are beneficial for the host. For instance, the 

fermentation of resistant starch would produce butyrate, which is a kind of energy source 

of host epithelial cells and could stimulate cell proliferation [41]. 

Louis Pasteur in 1897 first discovered that the microbiota was crucial for the host [42]. 

Studies on germ-free animals investigated the importance of microbiota. Germ free 

animals are animals that have no bacteria in their body, which are important model to 

study the function of microbiota. It was showed that the life span of germ free animals 

were short [43]. Microbiota is very important in the metabolism and physiology of 

animals [35]. It has been reported that microbiota could impact the glucose metabolism 

[44-48] and energy homeostasis [6, 45, 49, 50]. It was also associated with obesity, low-

grade inflammation, diabetes and cancers [50]. Studies have confirmed that 

conventionally raised mice with microbiota in their bodies developed more fat mass, 
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which is about 40% more, than germ-free mice [49]. Compared with gut microbiota from 

lean mice, transplanting isolated gut microbiota from obese mice to germ-free mice 

would stimulate the mice to get more body fat [6]. Another study showed that high fat 

diet was not able to induce obviously increased body weight in germ-free mice, 

suggesting a connection between gut microbiota and weight gain [51]. Gut microbiota 

was strongly influenced by high fat diet feeding, and further induced inflammatory 

responds and insulin resistance [45, 52-54]. A high fat diet, however, could not induce 

germ-free mice to develop inflammation or insulin resistance [55, 56].  Inoculation of 

strain Enterobacter cloacae B29, which is a kind of gut bacteria in an obese human, into 

germ-free mice triggered obesity with a high fat diet [56]. Beneficial bacteria were found 

to be reduced in metabolic complex animal models. The composition modulation of gut 

microbiota affected by high fat diet has been reported. Hildebrandt et al. confirmed that 

Firmicutes and Proteobacteria would increase while Bacteriodetes would decrease in 

mice treated with high fat diet [57]. Murphy et al. also found abundant Firmicutes and 

reduced Bacteroidetes in similar condition [58]. It has been widely accepted that gut 

microbiota play a role in the metabolism of the host. However, the exact mechanism of 

the interaction between gut microbiota and the host is still unclear [59]. 

1.5.2 Akkermansia muciniphila  

A. muciniphila was first isolated from the fecal sample of a Caucasian female [60, 61]. So 

far, it has been discovered in the intestines of different animals, which includes rodents, 

rabbits, donkeys, pigs, horses and so on [62-66]. A. muciniphila is the first kind of 

bacterium isolated from human which belongs to the phylum Verrucomicrobia [67]. The 

medium used to isolate A. muciniphila contained only one carbon source, mucin [61]. A. 
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muciniphila is localized in the mucus layer of the intestine [67]. One evidence was that A. 

muciniphila could metabolize mucin [61]. Another study showed that A. muciniphila was 

one of the first prior utilizers of the mucus in the mice intestine [68]. It has been reported 

that A. muciniphila is more abundant in colon than in the ileum [69, 70]. It makes up 

more than 1% of the whole microbiota in human feces [67].  

Interestingly, it has been revealed that the relative abundance of A. muciniphila increased 

under the conditions of caloric restriction in humans, mice, hamsters and snakes [67]. 

Mucosal analysis also showed that A. muciniphila was abundant in healthy subjects 

whereas it was reduced in inflammatory bowel disease (IBD) patients. In contrast, the 

amounts of Ruminococcus gnavus in IBD patients increased [71]. Different nutritional 

interventions and pharmaceutical treatments could affect the level of A. muciniphila. [67]. 

Some studies reported that the administration of some special dietary components, 

including complex polyphenols, oligofructose, dietary resistant starch, whole grain barley 

and so on, which improved the health of the host also increased the abundance of A. 

muciniphila [72-74]. High fat diet, however, would decrease A. muciniphila population 

[59, 75, 76]. A kind of antidiabetic drug, metformin, was investigated to be able to 

improve the proportion of A. muciniphila in mice and stimulate the growth of A. 

muciniphila in vitro [76, 77]. Flos Lonicera and ganoderma lucidum that are used as 

medicine in Asia, also enhanced the population of A. muciniphila [78-80]. Several studies 

revealed the association between the reduction of A. muciniphila abundance and various 

metabolic disorders and diseases, including obesity and related disorders and intestinal 

diseases [67]. Studies focusing on mouse models which developed obesity  or other 

symptoms of metabolic disorder induced by genetic depletion, for example, leptin 
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deficiency [59, 81], or diet (high fat diet) [82, 83] showed that the abundance of intestinal 

A. muciniphila decreased in these models [67]. Remarkably, it has been reported that 

daily gavage of A. muciniphila improved the metabolic parameters of mice fed with high 

fat diet. It prevented weight gain, restored glucose tolerance and epithelial integrity, and 

counteracted metabolic endotoxemia [59, 76]. Another study also proved that A. 

muciniphila administration significantly decreased body fat and insulin resistance of a 

mouse strain which is prone to obesity (AxB19) [84]. These studies suggested that A. 

muciniphila played a role in reducing body fat accumulation and improving insulin 

resistance. However, there are also conflicting data. Rat studies reported increased 

abundance of A. muciniphila in rats fed with high fat diet [85-87]. Further studies should 

be conducted to demonstrate the relationship between A. muciniphila and the metabolism 

of the host. In this study, we investigated the effect of A. muciniphila on 

hypertriglyceridemia induced by genetic depletion of CREBH in mice and tried to figure 

out the underlying mechanism. 

 

1.6 Fenugreek  

Fenugreek is an annual legume which belongs to Fabaceae family. It is one of the oldest 

Fabaceae family plant used as medicine in central Asia around 4000 BC [88]. It is now 

being commercially grown in various countries distributed in South Asia, Middle East, 

Europe, Africa and America [89]. Fenugreek seed is the most valuable part of the plant. It 

is rich in fiber, proteins, neural lipids, vitamins and minerals. The fiber in fenugreek 

seeds is mainly non-starch polysaccharides [88]. Fenugreek fiber plays a role in 
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moderating glucose metabolism in human. It helps to reduce glucose absorption, regulate 

sugar level and facilitates insulin action [88]. For instance, a study showed that 

galactomannans, a main soluble fiber in fenugreek seeds, lowered glucose absorption [88, 

90]. Moreover, the special materials, mucilage, tannins, pectin and hemicellulose, in the 

seeds inhibit the absorption of bile salt in the colon and hence reduce the LDL level in the 

blood [88, 91]. Proteins in fenugreek seeds mainly include albumin, globulin and lecithin 

[88]. It contains a large amount of free amino acids, especially histidine and 4-

hydroxyisoleucine.  Theses amino acids may play a role in improving insulin activity [92]. 

Fenugreek is also rich in alkaloids, flavonoids, saponins and other antioxidants, which 

makes fenugreek possess a powerful antioxidant property [88]. All these compounds 

could help to ameliorate hypercholesterolemia, diabetes and even cancer [90, 91, 93]. In 

many Asian and African civilizations, fenugreek seeds were used as part of the medicine 

to treat diabetes [92, 94]. Fenugreek has various pharmacological properties [95]. The 

polyphenolics in fenugreek could inhibit peroxidation and attenuate oxidative hemolysis 

of erythrocytes in humans [88]. Studies have reported that the optimal consumption may 

decrease the TG and CHOL level in the blood (Afef et al., 2000) [96], prevent cancer [97] 

and control diabetes mellitus [98]. It has also been investigated that the ethyl acetate 

extract of fenugreek seeds reduced TG and CHOL in LDL while increased CHOL 

contained in HDL [99]. Due to its unique properties, here we studied whether fenugreek 

seeds were capable of alleviating genetic hyperlipidemia in mice and explored the 

mechanism of the regulatory effect of fenugreek seeds on the mouse lipid homeostasis. 

 

1.7 Working Hypothesis 
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We hypothesized that increased colonization of A. muciniphila could protect the host 

from hyperlipidemia by enhancing the uptake of lipoproteins and alleviating hepatic ER 

stress and the inflammatory response in CREBH-null mice and that fenugreek seeds 

could improve hyperlipidemia by inhibiting the biosynthesis of lipoproteins and 

ameliorating insulin resistance. 

 

1.8 Study Aims  

Specific Aim 1: 

Determine the impact and mechanism of A. muciniphila on hyperlipidemia. Firstly, we 

will explore the impact of A. muciniphila on acute (olive oil gavage) and chronic 

(CREBH depletion) hyperlipidemia in mice. To figure out the mechanism of the 

regulatory effect of A. muciniphila on the host, we will subject different mice models 

with vehicle (as control), heat-inactive A. muciniphila and active A. muciniphila. Lipid 

content and lipoprotein levels in the plasma and liver of the mice will be measured to 

demonstrate if they are impaired by A. muciniphila inoculation. LDL receptor KO mice 

will be treated with A. muciniphila to verify whether LDL receptor plays an important 

role in the interaction of A. muciniphila and the host. And also, the mRNA and protein 

levels of LPL co-factors and the biomarkers of ER stress and inflammation factors in the 

liver of the mice will be analyzed to investigate whether A. muciniphila administration is 

able to alleviate hepatic stress and inflammation. 

Specific Aim 2: 

Determine the impact and mechanism of fenugreek hyperlipidemia induced by CREBH 

depletion. 
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Firstly, we will feed CREBH KO mice with fenugreek seeds rich diet to investigate the 

impact of fenugreek seeds on the hyperlipidemia of the mice. And hepatic expression 

level of apoB and lipid content will be measured to study the effect of fenugreek on 

VLDL assembly. Impact of fenugreek seeds on insulin resistance induced by high fat diet 

will also be explored. 
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Chapter Two 

Materials and Methods  

2.1  Animals and animal experimental protocols 

Three kinds of mice models were used during the experiments. Wide type (C57BL/6J) 

miceand LDLR KO mice (B6.129S7-Ldlrtm1Her/J) were got from the Jackson Laboratory, 

Maine, US. Heterozygous CREBH KO mice were kindly provided by Dr. Zhang 

Kezhong’s lab. Animals were housed in a 12h light and dark cycle with free access to 

food and water. A standard chow diet was provided to the mice which contains 62.1% 

carbohydrate, 24.6% protein, and 13.2% fat (kcal/100 kcal) (Dyets Inc., USA). Both male 

and female mice were used during the experiment. And the mice used were 12 to 14 

weeks old.  

For A. muciniphila treatment experiments, CREBH KO mice were divided into 3 groups, 

which are control group, heat-inactivated A. muciniphila treatment group, and active A. 

muciniphila treatment group (n=6-12/per group). Both WT mice and LDLR KO mice 

were divided into 2 groups, which are control group and active A. muciniphila treatment 

group. In control group, the mice were administrated by oral gavage with 200 µL PBS 

that contained 25% (vol/vol) glycerol, which was the dissolving solution of A. 

muciniphila bacteria. In the heat-inactivated A. muciniphila treatment group, the mice 

were administrated by oral gavage with 200 µL heat-inactivated A. muciniphila with a 

final concentration of 10^9 CFU/mL. In the active A. muciniphila group, the mice were 

administrated with 200 µL (10^9 CFU/mL) A. muciniphila by oral gavage. The 

administration was conducted every 2 days for two weeks. During the treatment, blood 
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samples was collected from submandibular vein after the mice were fasted overnight for 

12 hours and the TG and CHOL concentrations of the plasma were monitored every week.  

For fenugreek treatment experiments, both WT mice and CREBH KO mice were divided 

into control group and fenugreek group. WT mice were fed with high fat diet, which 

contains 60% fat and 20% carbohydrate (kcal/100g) (Dyets Inc., USA). CREBH KO 

mice were fed with standard chow diet. In fenugreek group, fenugreek seeds were added 

into the diet according to a ratio of 2% (g/g). Fenugreek seeds were kindly provided by 

Dr. Dipak Santa. All the mice were fed for 7 weeks. Weight of the mice and the food 

intake amount were monitored every week. 

Mice were euthanized by isoflurane (3% mixed with oxygen). Blood was obtained from 

the heart after the mice were anesthetized by isoflurane, and was collected in lithium 

heparin coated capillary tubes (Bd Vacutainer Labware Medical, USA). Blood samples 

was then centrifuged at 6000 rpm for 10 mine and plasma was collected and stored at -

80 °C for further analysis. Tissues, including liver, duodenum, jejunum, ileum, adipose 

tissue and muscle, were snap frozen in liquid nitrogen and stored at -80 °C for further 

analysis. All the animal care, treatment and experiments were approved by the University 

of Nebraska-Lincoln Institutional Animal Care and Use Committee. 

2.2  Preparation of A. muciniphila bacterial stocks  

The bacteria A. muciniphila MucT (ATTC BAA-835) were purchased from American 

Type Culture Collection (ATCC). The bacteria were cultured in brain heart infusion agar 

(BD 211065) or broth (BD 237500) medium. And then the bacteria were washed and re-
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suspended in anaerobic PBS which included 25% (vol/vol) glycerol. The stocks were 

frozen and stored at -80 °C immediately.  

Plate counting was used to determine the concentration (CFU/mL) of the bacteria in the 

stocks. Three representative samples were gradient diluted into 4 concentrations 

respectively and inoculated in plates with mucin media containing 1% agarose. The 

average amount of the bacterial colonies were used to calculate the bacteria concentration 

in the stocks. Before used to administrate the mice, the bacteria were diluted to a final 

concentration of 10^9 CFU/mL with anaerobic PBS that contained 25% (vol/vol) 

glycerol. All the culture and preparation procedures were under strict anaerobic 

conditions.  

2.3  In vivo chylomicron collection assay 

Mice were fasted overnight for 12 hours and then administrated with 200 µL virgin olive 

oil (Great Value, Walmart) by oral gavage. 20 min after olive oil gavage, the mice were 

treated with poloxamer 407 (Pluronic F-127, Sigma) by intraperitoneal (IP) injection 

according to an amount of 500 mg/kg. Poloxamer was mixed into saline to make a 20% 

solution one day before treatment and given 2.5 µL/g body weight by IP. The mice were 

euthanized at 2 hours after poloxamer treatment. Before olive oil administration, baseline 

blood (0h) was collected from submandibular vein for the baseline lipid and protein 

contents determination. One hour after poloxamer treatment, blood samples were 

collected via submandibular vein. When sacrifice, final blood (2h) was collected via 

cardiac puncture. All the blood samples were centrifuged at 6000 rpm for 10 min for the 

plasma separation. Plasma and tissues were collected and stored at -80°C for further 

experiments. 
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2.4  Vitamin A excursion assay 

Vitamin A excursion assay was used as a method to measure the clearance of CMs 

derived from dietary fats [100]. Mice were fasted for 4 hours and then administrated with 

mixture of olive oil and [11, 12-3H]-retinol by oral gavage. 1 mL olive oil was mixed 

with 27 μCi of [11, 12-3H]-retinol (PerkinElmer) in ethanol. Submandibular vein blood 

was sampled at 0h (baseline), 2h, 3.5h, 7.5h and 11h for determining the radioactivity in 

the blood. Baseline blood was collected before gavage. 10 µL of serum was used to 

detect the 3H level by scintillation counting. The measurement was conducted in 

triplicate. At 11 hours after fat administration, mice were euthanized. Cardiac puncture 

was conducted to collect the blood samples. Plasma and tissues were stored at -80°C for 

further experiments.  

2.5  Lipoprotein Characterization 

Gel filtration fast protein liquid chromatography (FPLC) was used to separate the 

lipoproteins subclasses in the plasma [101]. 150 µL plasma samples were injected onto a 

Superose 6 10/200 GL column (Amersham Pharmacia Biotechnology, Piscataway, NJ). 

The flow rate of the whole process was 0.5 ml/min. Specific eluent was used to elute the 

different fractions from the column. And the TG and CHOL concentrations of each 

fractions were measured. The receipt of the eluent is: 10 mM Tris, 150 mM NaCl, 2 mM 

CaCl2, 100 μM DTPA, 0.02% NaN3, pH 7.4. 

2.6  Immunoblot analysis 

Tissue Lysate Preparation: 100mg tissue (liver or jejunum) was homogenized in 200 µL 

RIPA buffer in 1.5mL microfuge tube using tissue homogenization mixer (VWR 
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International, Radnor, PA) till there was no fragment left. Then add 800 µL RIPA buffer 

and mix completely by vortex. Sonicate for 3 × 10 seconds. And keep the samples in ice 

for 10 min. After centrifuging at 12000 rpm for 10 min at 4°C in a Heraeus Biofuge Pico 

centrifuge (Thermo Electron Corporation Canada, Gormley, ON), carefully transfer the 

protein lysate under the fat cake to a new 1.5mL microfuge tube. The lysates were then 

mixed with 4 × SDS Loading Buffer by vortex and heated at 100°C for 6 to 10 min. The 

samples could be stored at -80°C before further analysis. 

Plasma Lysate Preparation: 2 µL plasma was mixed with 98 µL RIPA buffer. Then add 

100 µL 2 x SDS loading buffer and mix the lysate by vortex. After that, the lysates were 

boiled at 100°C for 6 to 10 min and stored at -80°C for further analysis. 

The receipt of RIPA buffer is: 150 mM sodium chloride (NaCl) (Fisher Scientific, 

Waltham, MA), 10 mM tris (hydroxymethyl) aminomethane (Tris) (pH 7.4) (Fisher 

Scientific, Waltham, MA), 1 mM ethylenediaminetetraacetic acid (EDTA) (Sigma-

Aldrich Canada Ltd., Oakville, ON), 1% Nonidet P-40 (Sigma-Aldrich Canada Ltd., 

Oakville, ON), and protease inhibitor cocktail tablet (Roche Applied Science, Laval, 

QC.). 

The receipt of 4x SDS loading buffer is: 200mM Tris-HCl, pH6.8 (Fisher Scientific, 

Waltham, MA), 8% SDS (Fisher Scientific, Waltham, MA), 40% Glycerol (Fisher 

Scientific, Waltham, MA) and 0.002% Bromophenol Blue (Sigma-Aldrich, St. Louis, 

MO). Before use, add 200mM DTT immediately from a 1M DTT stock. The buffer could 

be stored at -20℃ for up to 6 months. 



20 
 

Western Blotting Analysis: Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) was performed for protein detection. 6% acrylamide gels were used for 

apoB detection, 8% acrylamide gels were for Toll-like Receptor 4 (TLR4), and 10% for 

all other proteins. Running buffer contained 25 nM Tris, 192 mM glycine (Fisher 

Scientific, Waltham, MA) and 0.1% SDS. And a mini-PROTEAN electrophoresis system 

(Bio-Rad Laboratories Ltd., Mississauga, ON) was used as the power supply for 

electrophoresis and transfer. Proteins in gels were transferred onto polyvinylidene 

fluoride (PVDF) membranes (PerkinElmer, Woodbridge, ON) under a voltage of 40V at 

4°C overnight using a wet transfer apparatus (Bio-Rad Laboratories Ltd., Mississauga, 

ON). Transfer buffer contained 190 mM glycine, 25 mM Tris and 10% methanol which 

was freshly prepared. 

Membranes were then blocked in 5% milk (Bio-Rad Laboratories Ltd., Mississauga, ON) 

in 1x TBST for at least 2 hours at room temperature on an orbital shaker. The receipt of 

TBST is 10 mM Tris, 150 mM NaCl and 0.05% triton x 100 (Fisher Scientific, Waltham, 

MA). After blocking, membranes were washed in 1x TBST 5 times for 5 min using 1x 

TBST. Then the membranes were incubated with primary antibodies overnight at 4°C. 

The antibodies were diluted according to the datasheet provided by manufacturers. The 

antibodies used are as follows: anti-apoB, anti-apoE and anti-albumin (Midland 

Bioproducts, Boone, IA); anti-β-actin (Sigma-Aldrich, St. Louis, MO); anti-TLR4, anti-

JNK-p, anti-Bip (Cell Signaling, Danvers, MA); and anti-eIF2α (Invitrogen, Carlsbad, 

CA). Membranes were then washed 5 times for 5 minutes using 1x TBST and then 

incubated with secondary antibody for 1 hour at room temperature. There are three kinds 

of secondary antibodies used in the project, including donkey anti-rabbit IgG-HRP (GE 
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Healthcare, Buckinghamshire, UK), sheep anti-mouse IgG-HRP (GE Healthcare, 

Buckinghamshire, UK) or donkey anti-goat IgG-HRP (Santa Cruz, Dallas, TX). The anti-

rabbit and anti-mouse antibodies were diluted in 5% milk for 1:2000. And the anti-goat 

antibody was diluted in 5% milk for 1:3333. Membranes were washed 5 times for 5 

minutes in 1x TBST. Enhanced chemiluminescence reagents (Amersham Biosciences, 

Pittsburgh, PA) was used to expose the protein bands on membranes to signals in 

autoradiography film (Denville Scientific Inc., Metuchen, NJ) in exposure cassettes 

(Eastman Kodak Company, Rochester, NY). Bands were quantified by densitometry 

using Image J. 

2.7  mRNA analysis by real-time PCR 

Total RNA was extracted from liver of mice using TRIzol (Invitrogen, Carlsbad, CA) 

according to the protocol that was provided with the reagent by the manufacturer. The 

RNA was reversed to cDNA using a high capacity cDNA reverse transcription kit 

(Applied Biosystems). The mRNA expression levels of target genes were tested by 

quantitative real-time PCR using a SYBR Green PCR Kit (Applied Biosystems, Carlsbad, 

CA). The qPCR was conducted with a Prism 7300 Sequence Detecting System (Applied 

Biosystems, Carlsbad, CA). 

2.8  Lipid extraction and measurement 

Lipids were extracted from tissue according to the method mentioned by Folch, J [102]. 

100 mg of tissues (liver or jejunum) were completely homogenized in 1ml triton lysis 

buffer. The homogenate was then put in ice for 30 min for lipid extraction. After adding 2 

ml of Folch/BHT reagent, the samples were oscillated by vortex for 3 x 10 sec. Then the 
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samples were centrifuged at 2000 rpm for 10 min at RT in a Heraeus Biofuge Pico 

centrifuge (Thermo Electron Corporation Canada, Gormley, ON). The lower phase was 

moved to new glass reaction tubes and was dried under N2 to about 100 ul. 1ml of 

CHCl3 (Fisher Scientific, Waltham, MA) and 1% Triton x 100 in CHCl3 was used to 

wash the samples successively. And the reagents were all dried by N2. Samples was 

finally diluted in 600ul distilled water and stored at 4°C for further analysis. 

2 µL of plasma or the extracted lipid aliquots were used to measure the CHOL and TG 

contents using an enzymatic/GPO TG and CHOL assay kit (Pointe Scientific, Canton, MI) 

according to the instruction provided by the manufacturer with the kit. 

The receipt of Folch/BHT reagent is: 280 ml chloroform(Fisher Scientific, Waltham, 

MA), 140 ml methanol(Fisher Scientific, Waltham, MA) and 42mg BHT (to 

100ug/ml)( Acros Organics, New Jersey, USA) 

The receipt of triton lysis buffer is: 80 mM NaCl (Fisher Scientific, Waltham, MA), 50 

mM Tris (pH 8.0) (Fisher Scientific, Waltham, MA), 2 mM CaCl2 (Fisher Scientific, 

Waltham, MA), and 1% Triton x 100 (Fisher Scientific, Waltham, MA). 

2.9  Glucose tolerance test and insulin tolerance test 

For glucose tolerance test, the mice were fasted for 12h overnight. The baseline blood 

glucose concentration was tested. Then the mice were treated with glucose by IP injection 

or oral gavage according to an amount of 2 μg/g body weight. Blood glucose 

concentrations of the mice were then tested at 15, 30, 45, 60 and 120 min after glucose 

treatment. 
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For insulin tolerance test, the mice were fasted for 4h early in the morning. The baseline 

blood glucose levels was tested before insulin treatment. Mice was gave insulin (0.5 U/kg) 

(Eli Lilly, Indianapolis, IN) via IP injection. And then glucose levels in the blood of the 

mice were measured at 15, 30, 45, 60 and 120 min after insulin treatment. 

2.10 Statistical analysis 

Digital data were evaluated using GraphPad Prism 5 (La Jolla, CA, USA). In all the 

groups throughout the project, at least three subjects were analyzed. T-tests were used to 

compare parallel experiments. Results were presented as means ± standard error of the 

mean. P values which were less than 0.05 were considered statistically significant and 

were marked with a single asterisk (*). P values less than 0.01 were marked with two 

asterisks (**).  
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Chapter Three 

Results 

 

Part 1 

Determine the beneficial property of A. muciniphila on genetic induced 

hyperlipidemia and the underlying metabolism 

Previous study in our lab has investigated that after administrating 200 µL A. muciniphila 

(2x10^8 cfu/0.2 mL) to 12-week old WT (C57BL/6J) mice every two days for 2 weeks, 

the plasma lipid contents (TG and CHOL) of the mice treated with A. muciniphila were 

comparable with that of control group, which was treated with vehicle (PBS containing 

25% glycerol) for 2 weeks. To further explore the effects of A. muciniphilaon on the 

host’s acute lipid absorption, after 2 weeks of A. muciniphila administration, the mice 

were fasted for 12 hours, and then treated with 200 µL olive oil by oral gavage. 500 

mg/kg poloxamer was further treated by IP injection at 20 min after oil administration. 

Poloxamer could restrain the activity of LPL and suppress the hydrolysis of lipoproteins 

in the blood. Protein levels of plasma apoB48, apoB100 and apoE, which were the key 

proteins in VLDL and CMs, were analyzed. Protein levels before poloxamer treatment 

were comparable between the two groups (Figure 1 A. Data from Xuedong Tong). 2 

hours after poloxamer injection, the expression of apoB48 and apoB100 in the plasma of 

vehicle group was significantly higher than that of A. muciniphila group (Figure 1 B). 

These data were consistent with the result of plasma lipid concentration analysis. The 

apoE expression was a little higher in vehicle group. But the difference was not 

significant (Figure 1 B). This indicates that the secretion of CMs and VLDL was 

increased, or their clearance was decreased in vehicle group. 
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 (Shen et al. ATVB 2016) 

Figure 1. The impact of A. muciniphila on the host’s acute lipid absorption. 12-week old 

WT (C57BL/6J) mice was administrated with 200 µL vehicle or A. muciniphila (2x10^8 

cfu/0.2 mL) every two days for 2 weeks. Then the mice were fasted for 12 hours, and 

then treated with 200 µL olive oil by oral gavage. 500 mg/kg poloxamer was further 

treated by IP injection 20 min after oil administration. Protein levels of plasma apoB48, 

apoB100 and apoE were analyzed, before and 2 hours after poloxamer treatment. A) The 

protein levels before poloxamer treatment were comparable between the two groups 

(Data from Xuedong Tong). B) After poloxamer injection, apoB48 and apoB100 levels in 

the plasma of vehicle group was significantly higher than that of A. muciniphila group. 

Results are shown as means ± SD for two experiments that were performed in triplicate. 

*P<0.05, **P<0.01. 
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To investigate the effect of A. muciniphila colonization on chronic hyperlipidemia 

induced by gene depletion, CREBH KO mice were used. The depletion of CREBH of 

mice could induce hypertriglyceridemia. 200 µL of vehicle or A. muciniphila were 

respectively administrated by gavage to two groups of CREBH KO mice for 2 weeks. 

Previous study in the lab indicated that plasma TG level of the mouse group treated with 

A. muciniphila was significantly lower than that of control group after treated for 2 

weeks. To find out if the colonization of A. muciniphila could ameliorate insulin 

resistance induced by CREBH depletion, we subjected the two groups of mice to an oral 

glucose tolerance test. After glucose delivery, the growth of blood glucose level of A. 

muciniphila group was slower than vehicle treatment group (Figure 2 A), indicating that 

A. muciniphila could improve glucose intolerance in CREBH KO mice.  

To further explore if it is necessary that A. muciniphila is alive to regulate the metabolism 

of the host, two groups of CREBH KO mice were subjected with active A. muciniphila 

and heat-inactive A. muciniphila every two days for two weeks. The plasma TG level of 

heat-inactive A. muciniphila group didn’t decrease after two weeks of administration, 

while the plasma TG level of active A. muciniphila group was significantly decreased at 

the end of two weeks (Figure 2 C). Oral glucose tolerance test also showed that inactive 

A. muciniphila could not improve the glucose tolerance of CREBH KO mice (Figure 2 B). 
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(Shen et al. ATVB 2016) 

Figure 2. The impact of A. muciniphila colonization on chronic hyperlipidemia induced 

by gene depletion. A) 200 µL of vehicle or A. muciniphila were respectively 

administrated by gavage to two groups of CREBH KO mice for 2 weeks. At the end of 

week 2, the mice were subjected to an oral glucose tolerance test. The alteration of 

glucose concentration in the mice blood after glucose treatment was shown in the graph. 

B) CREBH KO mice were subjected with active A. muciniphila and heat-inactive A. 

muciniphila every two days for two weeks. Oral glucose tolerance test was conducted 

after 2-week oral gavage. C) The plasma TG and CHOL levels of heat-inactive A. 
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muciniphila group and active A. muciniphila group was compared before and after A. 

muciniphila administration. Results are shown as means ± SD for two experiments that 

were performed in triplicate. *P<0.05, **P<0.01. 
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To investigate the mechanism of A. muciniphila ameliorating the hyperlipidemia in 

CREBH KO mice, we tested the mRNA expression levels of LPL co-factors, apoC2, 

apoA4, apoA5, by real-time PCR in vehicle and A. muciniphila treated WT and CREBH 

KO mice. It has been reported that the depletion of CREBH in mice would depress the 

expression of LPL co-factors, inducing inefficient hydrolysis of lipoprotein TGs by LPL 

and thus leading to hypertriglyceridemia. However, there were no significant differences 

in the mRNA expression of apoA4, apoA5 or apoC2 between vehicle and A. muciniphila 

groups (Figure 4 A B C). We had investigated that the expression of LDL receptor in the 

liver of CREBH KO mice treated with A. muciniphila was significantly higher than that 

of control group. To further confirm whether LDL receptor signaling could be 

upregulated by A. muciniphila colonization to help clearing VLDL remnants, we used gel 

filtration fast-phase liquid chromatography (FPLC) to analyze the plasma lipoprotein 

content. The TG level in the VLDL, IDL and LDL particles in A. muciniphila group was 

significantly decreased, suggesting that the clearance of IDL and LDL was increased by 

A. muciniphila colonization (Figure 3 A). The CHOL level in VLDL, IDL, LDL and 

large HDL was also slightly decreased in A. muciniphila group (Figure 3 B). This shows 

that A. muciniphila treatment may upregulate the clearance of VLDL remnants by LDL 

receptor pathway. To confirm the specificity of LDL receptor in the effect of A. 

muciniphila on the host, we administrated A. muciniphila and vehicle to two groups of 

LDL receptor KO mice every other day for two weeks respectively. A. muciniphila 

administration didn’t ameliorate the hypercholesterolemia induced by LDL receptor 

depletion (Figure 5 B). Oral glucose tolerance test also revealed that A. muciniphila failed 

to improve insulin sensitivity of LDL receptor KO mice (Figure 5 A), indicating that  
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LDL receptor was crucial in the regulatory role of A. muciniphila.  

 

(Shen et al. ATVB 2016) 

Figure 3. CREBH KO mice were treated with 200 µL of vehicle or A. muciniphila by 

gavage for 2 weeks. Gel filtration fast-phase liquid chromatography (FPLC) was used to 

analyze the plasma lipoprotein content in mice. A) The TG level in the VLDL, IDL and 

LDL particles in A. muciniphila group was significantly decreased. B) The CHOL level 

in VLDL, IDL, LDL and large HDL was slightly decreased in A. muciniphila group. 
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(Shen et al. ATVB 2016) 

Figure 4. Impact of A. muciniphila on the expression of LPL co-factors. WT and 

CREBH KO mice were separately subjected with 200 µL vehicle or A. muciniphila every 

two days for 2 weeks. The mRNA expression levels of apoA4, apoA5 or apoC2 were 

analyzed. Results are shown as means ± SD for two experiments that were performed in 

triplicate. *P<0.05, **P<0.01. 
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(Shen et al. ATVB 2016) 

Figure 5. Effect of A. muciniphila on LDL receptor KO mice. A. muciniphila and vehicle 

were administrated to two groups of LDL receptor KO mice every other day for two 

weeks respectively. A) Oral glucose tolerance test was conducted after A. muciniphila 

administration. The result revealed that A. muciniphila failed to improve insulin 

sensitivity of LDL receptor KO mice. B) Plasma lipid concentration analysis showed that 

A. muciniphila administration didn’t ameliorate the hypercholesterolemia induced by 

LDL receptor depletion. Results are shown as means ± SD for two experiments that were 

performed in triplicate. *P<0.05, **P<0.01. 
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To determine whether A. muciniphila inoculation impacts the CM assembly and secretion 

in the intestinal enterocytes, we treated CREBH KO mice with vehicle or A. muciniphila 

for two weeks followed by an in vivo CM collection assay which is described in 

Materials and Methods. Lipid was extracted from the jejunum of both groups which was 

collected 2 hours after olive oil gavage. Measurement of lipid contents showed that the 

TG and CHOL contents in the jejunum of both groups were the same (Figure 6 A). This 

meant that A. muciniphila colonization didn’t impair the fat absorption or CM 

biosynthesis in the intestine. To test the clearance rate of CMs in the circulation, a 

vitamin A excursion assay was conducted as described in Materials and Methods. The 

[3H]-retinol which was mixed with olive oil treated by gavage was used to synthesize 

fatty acid esters in the enterocytes. This kind of [3H]-labeled fatty acid esters was 

incorporated into CMs, secreted into the blood and removed by the liver [100]. At 3.5, 

7.5 and 11 hours after oil gavage, the [3H] level in the plasma of A. muciniphila treated 

CREBH KO mice was significantly lower than that of vehicle treated mice (Figure 6 B), 

suggesting a faster clearance of CMs by the liver in A. muciniphila treated mice. This 

increased clearance may be mediated by the increased expression of LDL receptors in the 

liver of A. muciniphila group.  

To determine whether inactive A. muciniphila could also regulate the CM metabolism of 

the host, we subjected two groups of CREBH KO mice to CM collection assay which had 

already been administrated with alive A. muciniphila or heat-inactive A. muciniphila for 

two weeks. The protein level of apoB in the plasma of heat-inactive A. muciniphila group 

was significantly higher than that of A. muciniphila group before and at 2 hours after 
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olive oil and poloxamer treatment (Figure 7 A B), indicating that heat-inactive A. 

muciniphila was not able to play a regulatory role in CM clearance.  
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(Shen et al. ATVB 2016) 

Figure 6. Impact of A. muciniphila inoculation on the CM metabolism. CREBH KO mice 

was administrated with vehicle or A. muciniphila every two days for two weeks followed 

by an in vivo CM collection assay. A) Lipid was extracted from the jejunum of both 

groups of mice which was collected 2 hours after olive oil gavage. The TG and CHOL 

contents in the jejunum of both groups were the same. B) A vitamin A excursion assay 

was conducted to test the clearance rate of CMs in the circulation. The [3H]-retinol was 

mixed with olive oil and subjected to the mice by gavage. At 3.5, 7.5 and 11 hours after 

oil gavage, the [3H] levels in the plasma of both groups of mice were analyzed. Results 

are shown as means ± SD for two experiments that were performed in triplicate. *P<0.05, 

**P<0.01. 

  



36 
 

 

(Shen et al. ATVB 2016) 

Figure 7. Two groups of CREBH KO mice were subjected to CM collection assay which 

had already been administrated with alive A. muciniphila or heat-inactive A. muciniphila 

for two weeks. The protein levels of apoB48 and apoB100 in the plasma of heat-inactive 

A. muciniphila group and A. muciniphila group before (A) and at 2 hours after (B) olive 

oil and poloxamer treatment were compared. Results are shown as means ± SD for two 

experiments that were performed in triplicate. *P<0.05, **P<0.01. 
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Since hyperlipidemia is closely related with hepatic inflammation and ER stress, we 

hypothesize that increased colonization of A. muciniphila could alleviate the ER stress 

and inflammation induced by CREBH depletion. Both WT and CREBH KO mice were 

subjected with vehicle or A. muciniphila administration by oral gavage every two days 

for two weeks. Protein levels of biomarkers of ER stress and inflammation in the 

hepatocytes of the mice were measured by immuoblotting analysis. It was found that the 

expression of TLR-4, an important proinflammatory factor associated with circulating 

lipopolysaccharide (LPS) level, was not affected by A. muciniphila inoculation (Figure 8). 

The phosphorylation of JNK1 and JNK2, the inflammation transcription factors which 

was stimulated by CREBH depletion, was significantly decreased by A. muciniphila 

administration in CREBH KO mice (Figure 8). In WT mice, the colonization of A. 

muciniphila also inhibited the phosphorylation of JNK1 and JNK2 (Figure 8). The 

expression level of ER stress biomarker, GRP94, was also increased by the depletion of 

CREBH, and was reduced by A. muciniphila inoculation (Figure 8). However, in the liver 

of WT mice, the GRP94 level was not significantly affected by A. muciniphila treatment 

(Figure 8). These results demonstrate that increased colonization of A. muciniphila in 

CREBH KO mice may ameliorate the inflammation and ER stress in the hepatocytes 

which were induced by CREBH depletion. 
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(Shen et al. ATVB 2016) 

Figure 8. Impact of increased colonization of A. muciniphila on ER stress and 

inflammation induced by CREBH depletion. Both WT and CREBH KO mice were 

subjected with vehicle or A. muciniphila administration by oral gavage every two days 

for two weeks. Protein levels of biomarkers of ER stress and inflammation in the 

hepatocytes of the mice were measured by immuoblotting analysis. The expression of ER 

stress biomarker, GRP94, and inflammation transcription factors, JNK1 and JNK2 

phosphorylation, were stimulated by the depletion of CREBH, and reduced by A. 

muciniphila inoculation. Results are shown as means ± SD for two experiments that were 

performed in triplicate. *P<0.05, **P<0.01. 
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Part 2 

Determine the beneficial property of Fenugreek on genetic induced hyperlipidemia  

To investigate the effect of fenugreek seeds on genetic induced hyperlipidemia, two 

groups of CREBH KO mice were respectively fed with control chow diet and chow diet 

mixed with 2% of fenugreek seeds for 7 weeks. CREBH depletion in mice induced a 

significantly higher TG level in the plasma compared with that of WT mice. At the end of 

the 7-week feeding, the mice were fasted for 12 hours and the plasma lipid contents of 

the mice were measured. The TG level of the fenugreek fed CREBH KO mice was 

significantly lower than that of control group, suggesting that fenugreek helped to 

alleviate the hypertriglyceridemia in CREBH KO mice (Figure 9 A). The CHOL level in 

the plasma of the mice was not affected by fenugreek treatment (Figure 9 B). 

Hyperlipidemia was closely related with insulin resistance. To verify whether fenugreek 

seeds were able to regulate the glucose sensitivity, we fed two groups of C57BL/6J (WT) 

mice with high fat diet to induce insulin resistance, and added 2% fenugreek seeds into 

the diet of one group. The mice were fed the special diets for 7 weeks and then subjected 

to glucose tolerance test and insulin tolerance test. After 12-hour fasting, a dose of 

glucose or insulin was injected into enterocoelia of the mice and glucose concentration in 

the blood was measured. The blood glucose level of the mice fed with fenugreek 

decreased faster than that of high fat diet fed mice in both glucose and insulin tolerance 

tests (Figure 10 A B). This indicates that the uptake of the glucose by adipose tissue and 

liver was enhanced and insulin resistance was ameliorated by fenugreek seed feeding. 
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Figure 9. Fenugreek seeds were able to alleviate the hypertriglyceridemia induced by 

CREBH depletion. Two groups of CREBH KO mice were respectively fed with control 

chow diet and chow diet mixed with 2% of fenugreek seeds for 7 weeks. After the 7-

week feeding, the mice were fasted for 12 hours and the plasma lipid contents, TG (A) 

and CHOL (B), of the mice were measured. Results are shown as means ± SD for two 

experiments that were performed in triplicate. *P<0.05, **P<0.01. 
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To demonstrate whether the low TG level in the plasma of fenugreek seed feeding 

CREBH KO mice was induced by decreased assembly and secretion of VLDL in the liver, 

we analyzed the expression level of apoB100 in the liver of two groups of CREBH KO 

mice which were fed chow diet or chow diet mixed with 2% fenugreek seeds for 7 weeks 

by immunoblotting analysis. The result showed that the protein level of apoB100 in the 

liver of fenugreek group was significantly lower compared with that of chow diet group 

(Figure 11 A), indicating that fenugreek seeds treatment inhibited the biosynthesis of 

apoB100. Lipid was then extracted from the liver and TG and CHOL contents were 

measured. TG content in the liver of chow diet group was much higher than that of 

fenugreek group, while CHOL content was comparable in the liver of both groups 

(Figure 11 B). The results suggests than fenugreek seeds suppressed the apoB100 

biosynthesis and inhibited the assembly of VLDL in the liver of CREBH KO mice. This 

may further lead to the decreased secretion of VLDL into the circulation and helped to 

attenuate the hypertriglyceridemia induced by depletion of CREBH. 
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Figure 10. Effect of fenugreek seeds on insulin sensitivity of mice. Two groups of 

C57BL/6J (WT) mice were fed with high fat diet to induce insulin resistance, and 2% 

fenugreek seeds were added into the diet of one group. The mice were fed the special 

diets for 7 weeks and then subjected to glucose tolerance test and insulin tolerance test. 

After 12-hour fasting, a dose of glucose or insulin was injected into enterocoelia of the 

mice and glucose concentration in the blood was measured. The results of glucose 

tolerance test (A) and insulin tolerance test (B) were shown. Results are shown as means 

± SD for two experiments that were performed in triplicate. *P<0.05, **P<0.01. 
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Figure 11. Impact of fenugreek seeds on VLDL assembly. Two groups of CREBH KO 

mice were fed with chow diet or chow diet mixed with 2% fenugreek seeds for 7 weeks. 

A) The protein level of apoB100 in the liver of two groups of mice were measured by 

immunoblotting analysis. Fenugreek seeds treatment significantly reduced the expression 

of apoB100 in the liver of the mice. B) Lipid was extracted from the liver and TG and 

CHOL contents were measured. TG content in the liver of chow diet group was much 

higher than that of fenugreek group, while CHOL content was comparable in the liver of 

both groups. Results are shown as means ± SD for two experiments that were performed 

in triplicate. *P<0.05, **P<0.01.  
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Chapter Four 

Discussion  

Part 1  

A. muciniphila ameliorates hyperlipidemia by enhancing the expression of hepatic 

LDL receptors to facilitate the clearance of TG rich lipoproteins and alleviating 

hepatic ER stress and metabolic inflammation 

Pervious study in our lab has revealed that colonization of A. muciniphila didn't affect the 

lipid content in the plasma of WT mice, whose plasma lipid concentration was within 

normal levels. However, the inoculation of A. muciniphila in CREBH KO mice, which 

suffered from hypertriglyceridemia because of CREBH depletion, significantly reduced 

the plasma TG level of the mice after 2-week treatment. We further explored the impact 

of A. muciniphila on lipid metabolism of the host, and found that after acute lipid 

treatment, the protein concentrations of apoB48 and apoB100 in A. muciniphila-WT mice 

were significantly lower than that of vehicle-WT mice, indicating lower CMs and VLDL 

content in the plasma of A. muciniphila group. This shows that A. muciniphila was able to 

protect the mice from instantaneous fat load. FPLC analysis showed that the TG content 

of VLDL, IDL and LDL particles in the plasma of CREBH KO mice was decreased by 

the inoculation of A. muciniphila. At the same time, heat-inactive A. muciniphila failed to 

ameliorate the extremely high level of TG in the plasma of CREBH KO mice or improve 

its insulin sensitivity, suggesting that A. muciniphila had to be active to play regulatory 

role in the metabolism of the host. These data imply that the effect of A. muciniphila on 
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the host may only be exerted when the host is within abnormal conditions, like 

hyperlipidemia or metabolic complications.  

Previous study in our lab also investigated that the hepatic expression of LDL receptors 

in CREBH KO mice was remarkably increased by A. muciniphila administration. LDL 

receptor is important in mediating the clearance of VLDL remnants, IDL particles into 

the liver from circulation. Endogenously synthesized lipids are secreted from the liver via 

VLDL particles and are partially cleared via LDL receptor pathway. TGs in VLDLs are 

hydrolyzed by LPL in the blood to form IDLs. A part of the IDLs are rapidly 

endocytosed into hepatocytes mediated by the interaction of LDL receptor in the 

membrane of hepatocytes and apoE, a major ligand in IDLs. The other portion of IDL 

particles are converted to LDL by hepatic lipase. Administration of A. muciniphila to 

LDL receptor KO mice proved that A. muciniphila was not able to alter the abnormal 

lipid content in the plasma of the mice. In addition, the glucose sensitivity of LDL 

receptor KO mice was not improved by A. muciniphila treatment. These results suggested 

that A. muciniphila inoculation alleviated the hyperlipidemia by stimulating the 

expression of LDL receptors and promoting the uptake of lipoprotein particles. FPLC 

analysis also confirmed that the CHOL contents of VLDL, IDL, LDL and larger HDL 

particles in the plasma of CREBH KO mice are slightly reduced by increased 

colonization of A. muciniphila, consisting with the enhanced expression of hepatic LDL 

receptors. One of the important factors that causes hypertriglyceridemia in CREBH KO 

mice is impaired expression of apoA4, apoA5 and apoC2, which are the coactivators of 

LPL [56]. This impairment suppressed the LPL activity and inhibited the hydrolysis of 

TGs in lipoproteins [26]. Our study revealed that A. muciniphila treatment didn’t alter the 
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mRNA level of apoA4, apoA5 or apoC2, the expression of which are defected by 

CREBH depletion. This indicates that the regulatory role of A. muciniphila is not 

mediated by restoring the ineffective LPL activity.  

Hyperlipidemia is closely related with hepatic stress, insulin resistance and inflammation 

responds [103-105]. By analyzing the expression of the biomarkers of hepatic ER stress 

and metabolic inflammation signaling in A. muciniphila treated CREBH KO mice, we 

determined that A. muciniphila colonization helped to attenuate ER stress and 

inflammation stimulated by CREBH depletion. Moreover, the insulin sensitivity of the 

mice was improved by A. muciniphila treatment.  

In summary, the inoculation of A. muciniphila improves the hyperlipidemia, induced by 

genetic depletion, for instance, of the host mice. The underlying mechanisms of the 

process would be enhancing the expression of hepatic LDL receptors to facilitate the 

clearance of TG rich lipoproteins and alleviating hepatic ER stress and metabolic 

inflammation, which could further ameliorate the host’s insulin sensitivity. Further 

studies should be conducted to explore the exact regulatory impact of A. muciniphila and 

the detailed mechanism of the process. 

 

Part 2  

Fenugreek seed alleviates hyperlipidemia by inhibiting the assembly of VLDL 

particles and attenuating insulin resistance 

In this study, we investigated the impact of fenugreek seeds on the hyperlipidemia of 

CREBH KO mice. 7-week treatment of fenugreek rich diet (2%) apparently reduced the 
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TG level in the plasma of the mice, suggesting the anti-hyperlipidemia property of 

fenugreek seeds. Fenugreek feeding on another mice model, WT mice fed with high fat 

diet, revealed that fenugreek ameliorated the impaired insulin sensitivity and enhanced 

the uptake of glucose into liver and adipose tissue. This further may exert beneficial 

effect on improving hyperlipidemia of mice. More studies should be conducted to explore 

the underlying mechanism that fenugreek seeds improve insulin sensitivity. 

A major part of the TGs that caused hypertriglyceridemia in CREBH KO mice is in the 

VLDL particles in the blood of the mice [106]. Our study demonstrated that fenugreek 

seeds rich diet inhibited the expression of apoB100 in the liver of CREBH KO mice, and 

reduced the hepatic TG level. This indicated that fenugreek seeds are able to suppress the 

biosynthesis of apoB100 and the assembly and secretion of VLDL in the liver of CREBH 

KO mice, which induced the decrease of the TG contents in the circulation. Further 

researches are needed to find out whether fenugreek seeds could accelerate the clearance 

of lipoproteins in the blood of the mice.  

In summary, fenugreek seeds have a beneficial property to alleviate hyperlipidemia 

induced by CREBH depletion in mice. Fenugreek seeds rich diet also help to attenuate 

insulin resistance. A potential mechanism of the anti-hyperlipidemia property of 

fenugreek seeds is that they could inhibit the biosynthesis of apoB100 and suppress the 

assembly of VLDL particles. Further studies are needed to investigate the mechanism of 

how fenugreek seeds impact lipoprotein metabolism and the effect of fenugreek seeds on 

hepatic stress and inflammatory responds of the mice.  
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