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Generalized Confidence Intervals Compatible with the Min Test 
for Simultaneous Comparisons of One Subpopulation to Several 
Other Subpopulations

Julia N. Soulakova
Department of Statistics, University of Nebraska-Lincoln, 340 Hardin Hall-North, Lincoln, NE 
68583-0963, Phone: (402) 472-7231, Fax: (402) 472-5179

Abstract

A problem where one subpopulation is compared to several other subpopulations in terms of 

means with the goal of estimating the smallest difference between the means commonly arises in 

biology, medicine, and many other scientific fields. A generalization of Strassburger, Bretz and 

Hochberg (2004) approach for two comparisons is presented for cases with three and more 

comparisons. The method allows constructing an interval-estimator for the smallest mean 

difference, which is compatible with the Min test. An application to a fluency-disorder study is 

illustrated. Simulations confirmed adequate probability coverage for normally distributed 

outcomes for a number of designs.

1. Introduction

1.1. On Simultaneous Comparisons

Problems where one subpopulation is compared to several subpopulations in terms of a 

statistical parameter commonly arise in different scientific fields. For example, Louis et al. 

(2014) compared eight subpopulations of US and Polish students in terms of their attitudes 

towards stuttering. The study considered subpopulations corresponding to diverse majors, 

programs of study and cultures; this study is further discussed in Section 3. Jones et al, 

(2013) compared Whites, African-Americans and Mexican-Americans who were current 

smokers in terms of prevalence of menthol cigarette smoking and a set of biomarkers of 

tobacco exposure (e.g., serum cotinine, blood cadmium). One of the findings was that the 

prevalence of menthol cigarette smoking was higher for African-Americans than for Whites 

and Mexican-Americans. White et al. (2005) compared White, Black and Hispanic 

subpopulations in terms of the first ischemic stroke incidence using data from a population-

based epidemiological study. They showed that Whites have lower rates of stroke than do 

Blacks and Hispanics.

In this paper I discuss how one can perform the simultaneous comparisons of one 

subpopulation to several other subpopulations using an interval-estimating approach. For 

this purpose, the confidence interval approach proposed by Strassburger, Bretz and 

Hochberg (2004) for a case of two comparisons (termed SBH approach) is generalized to 

handle three or more comparisons. Such a confidence interval is compatible with the 

corresponding Min test for testing intersection-union hypotheses. The paper is outlines as 
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follows. First, the Min test and the corresponding SBH method for a case with two 

comparisons are reviewed in Section 1.2. Then the generalized SBH method is presented in 

Section 2 for three or more comparisons, and an application of the approach to a fluency-

disorder study is discussed in Section 3. Next, details of a simulations study conducted to 

illustrate adequate performance of the generalized method are presented in Section 4. The 

paper concludes with several remarks in Section 5.

1.2. Background: Comparisons via the Min Test and SBH Interval Estimating

The intersection-union tests, including the Min test, are commonly used to perform 

simultaneous comparisons, when the goal is to demonstrate that one subpopulation is 

“superior” or “inferior” to all other subpopulations in terms of a parameter of interest. These 

tests and their properties have been addressed in the literature for several decades (Lehmann 

1952, Berger 1982, Snapinn 1987, Hsu 1996). Specifically, the intersection-union tests were 

first discussed by Lehmann (1952), who showed a number of theoretical properties of the 

tests and illustrated applications for normal and multinomial models. However, as is pointed 

by Berger (1997), the term “an intersection-union test” appeared much later in Gleser 

(1973). Berger (1982) and Saikali and Berger (2002) addressed applications of the 

intersection-union tests for acceptance sampling problems that are commonly considered in 

quality control studies, and showed that in some settings the intersection-union test is more 

powerful than the likelihood-ratio test.

In biostatistics, the Min test is, probably, one of the most commonly used intersection-union 

tests. The term “Min test” was first introduced by Laska and Meisner (1989), who showed 

that for a normal model the Min test is also the likelihood ratio test. The authors discussed 

how one can use t-tests for normal distributions (with unknown but common variance), exact 

tests for binomial distributions, and Wilcoxon tests for unknown (absolutely continuous) 

distributions. They also provided formulas for sample size estimation and presented some 

tabulated results for cases involving two comparisons. Laska, Tang and Meisner (1992) 

extended the Min test methodology to a multivariate setting. Specifically, they discussed 

applications of the Min test for a multivariate normal distribution with known variance-

covariance matrix, a multivariate normal distribution with unknown variance-covariance 

matrix, and unknown (absolutely continuous) multivariate distributions. Horn, Vollandt and 

Dunnett (2000) extended methods for sample size and power computing (Laska and Meisner 

1989) to handle normal or nonparametric cases with more than two comparisons.

Applications of the Min test and methods based on the intersection-union tests for 

demonstrating drug efficacy have been addressed in several papers (Hung, Chi and Lipicky 

1993, Wang and Hung 1997, Hung 2000, Westfall, Ho and Prillaman 2001. Tamhane and 

Logan 2004, Buchheister and Lehmacher 2006, Soulakova 2009, Soulakova 2010). 

Alternative approaches to the intersection-union tests were also discussed. In particular, 

Allison et al. (2002) proposed a Bayesian alternative to the Min test with respect to a gene 

expression problem, Bi (2005, 2007) proposed methods for illustrating similarity in 

consumer studies or demonstrating bioequivalence in drug-efficacy studies which utilize 

binomial models. In addition, Saikali and Berger (2002) proposed “smoother” tests for 

acceptance sampling problems with continuous distributions including normal models. This 
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methodology was further extended by SenGupta (2007) who presented exact tests for 

acceptance sampling, bioequivalence and several other problems involving exponential and 

non-exponential families as well as mixture distributions.

The Min test can be described as follows. Consider a study, where a subpopulation, indexed 

i = 0, is compared to Kother subpopulations, indexed i = 1, …, K, in terms of the 

subpopulation means μk, k = 0, …, K, and the goal is to demonstrate that μ0 > μi for all i, 

i = 1, 2, …, K, Such a problem can be written in terms of multiple component hypotheses

H0i: μ0 − μi ≤ 0 and Hai: μ0 − μi > 0, i = 1, 2, …, K, (1)

or in terms of the global null and alternative hypotheses, respectively, given by

H0: min1 ≤ i ≤ K
(μ0 − μi) ≤ 0 and Ha: min1 ≤ i ≤ K

(μ0 − μi) > 0. (2)

Similarly, if the study goal is to demonstrate that μ0 < μi for all i, i = 1, 2, …, K, then the 

component hypotheses are H0i: μi − μ0 ≤ 0 and Hai: μi − μ0 > 0, i = 1, 2, …, K, and the global 

hypotheses are

H0: min1 ≤ i ≤ K
(μi − μ0) ≤ 0 and Ha: min1 ≤ i ≤ K

(μi − μ0) > 0. (3)

Note that in any case H0 = ∪
1 ≤ i ≤ K

H0i and Ha = ∩
1 ≤ i ≤ K

Hai, and thus, the global 

hypotheses are the intersection-union hypotheses. Then the Min test rejects the global null 

hypothesis H0 in favor of Ha at level α if (and only if) all component null hypotheses H0i are 

rejected at level α.

There is an alternative framework for the Min test in terms of the p-values. This framework 

has been presented elsewhere (Westfall, Ho and Prillaman 2001, Soulakova 2009) and is not 

discussed in this paper.

Strassburger, Bretz and Hochberg (2004) proposed several confidence intervals compatible 

with the intersection-union tests, including SBH interval compatible with the Min test, when 

a subpopulation is compared to two subpopulations via problem (2), i.e., K = 2. Let yk be the 

sample mean response for the k − th subsample (drawn from the k − th subpopulation), 

k = 0, 1, 2, where yk’s are independent and yk N(μk, σ2/nk), k = 0, 1, 2. In a case of unknown 

variance σ2, consider the pooled sample variance estimator, σ2. Then, the lower 100(1 − α)%
SBH confidence interval for the parameter min1 ≤ i ≤ 2 (μ0 − μi) is given by (L, + ∞), where 

L = min1 ≤ i ≤ 2 (y0 − yi) − tα, νσ n0
−1 + ni

−1 , and tα, ν is the (1 − α) − th percentile of the t-

distribution with ν = n0 + n1 + n2 − 3 degrees of freedom. Note that the SBH lower bound is 
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given by L = min1 ≤ i ≤ 2 Ai, where Ai denotes the lower 100(1 − α)% confidence bound for the 

component parameter μ0 − μi, i = 1, 2. The authors also noted that even if the sample means 

yk’s are correlated, the method utilizes the critical value from a univariate t-distribution, 

because the maximum probability of Type I error for the Min test does not depend on the 

correlation.

In the considered setting, the SBH confidence interval (L, ∞) is compatible with the 

following Min test. Consider the component statistics T i = (y0 − yi)/(σ n0
−1 + ni

−1), i = 1, 2. 

Then the α-level test rejects the component null hypothesis H0i if T i > tα, ν, where 

ν = n0 + n1 + n2 − 3, and accepts H0i it if T i ≤ tα, ν. And the Min-test rejects the global null 

hypothesis H0 in (2) if min1 ≤ i ≤ 2 T i > cα and accepts H0 if min1 ≤ i ≤ 2 T i ≤ cα. Similarly, the Min 

test for testing hypotheses (3) can be outlined.

2. GENERALIZATION OF THE SBH METHOD FOR THREE OR MORE 

COMPARISONS

In this section, I consider hypothesis problem (2); similar steps can be used in the case of 

problem (3). Let yk be the sample mean response for the k − th subsample (drawn from the 

k − th subpopulation), k = 0, 1, …, K, where yk are independent and yk N(μk, σ2/nk), 

k = 0, 1, …, K. Consider the following component tests: if variance σ2 is known for 

k = 0, 1, …, K then to test the component hypotheses one can use two-sample z-tests, and if 

variance is unknown then one can use two-sample t-tests with the rejection region T i > tα, ν, 

i = 1, 2, …, K, where ν = n0 + n1 + … + nK − K. Furthermore, let the lower 100(1 − α)%

confidence intervals for the component parameters μ0 − μi, i = 1, 2, …, K be given by 

(Ai, + ∞), i = 1, 2, …, K, where in the case of known variance

Ai = (y0 − yi) − zασ n0
−1 + ni

−1, (4)

and in the case of unknown variance

Ai = (y0 − yi) − tα, νσ n0
−1 + ni

−1, (5)

and zα denotes the (1 − α) − th percentile of the standard normal distribution.

Next we illustrate how the SBH method can be generalized to handle simultaneous 

comparisons to three subpopulations, i.e., K = 3. Appendix presents the corresponding steps 

for a general case. To simplify the presentation, let θk = μ0 − μk, i = 1, 2, 3, then the 
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component parameters can be represented by a vector θ = (θ1, θ2, θ3), θ ∈ Θ, where 

Θ = ∪
1 ≤ k ≤ 3

H0k ∪ Hak , i.e., Θ = ℜ3.

Generalization of the SBH method as well as the original SBH method is based on the 

Partitioning Lemma (Strassburger, Bretz and Hochberg 2004), that allows constructing 

100(1 − α)% simultaneous confidence set for θ, θ ∈ Θ, provided that Θ can be partitioned into 

disjoint sets Θi such that Θ = ∪
i ∈ I

Θi, where I is some index set, and there are local α‐level

tests for testing θ ∈ Θi, for all i ∈ I. The resulting confidence set C (that depends on the 

component test statistics, e.g., T i′s) for θ is given by the union of all Θi′scorresponding to the 

accepted hypotheses θ ∈ Θi, and projecting the confidence set C on the coordinate axes 

results in the simultaneous lower confidence bounds for θi, i = 1, 2, 3. In order for the 

confidence set to be compatible with the Min test for testing hypotheses (2), the following 

two conditions must hold:

(C1) there exists a sub-partition of {Θi, i ∈ I}, let us denote it by {Θi, i ∈ J}, so that the 

null space can be represented as H0 = ∪
i ∈ J

Θi, J ⊆ I, and

(C2) the null hypothesis θ ∈ H0 is rejected in favor of θ ∈ H1 if and only if all 

hypotheses θ ∈ Θi, i ∈ J, are rejected by the corresponding α‐level component 

tests.

Among several possible partitions we consider the one given by {Θ( j, r), ( j, r) ∈ J}, where 

Θ(1, r) = {η:η1 = r, η2 ≥ r, η3 ≥ r}, Θ(2, r) = {η:η1 > r, η2 = r, η3 ≥ r}, 

Θ(3, r) = {η:η1 > r, η2 > r, η3 = r}, r ∈ ℜ, and J = {( j, r), j = 1, 2, 3, r ∈ ℜ}. First, we will show 

that for such a partition, conditions C1 and C2 are satisfied. Because the null space can be 

represented as

H0 = {Θ(1, r), r ∈ ( − ∞, 0]} ∪ {Θ(2, r), r ∈ ( − ∞, 0]} ∪ {Θ(3, r), r ∈ ( − ∞, 0]},

condition C1 is met. Also, we consider component tests such that an α‐leveltest rejects 

θ ∈ Θ( j, r) if and only if A j ≥ r, j = 1, 2, 3, r ∈ ℜ, and the Min test that rejects θ ∈ H0 if and 

only if hypotheses θ ∈ Θ( j, r) are rejected for all ( j, r), j = 1, 2, 3, r ∈ ( − ∞, 0]. Therefore, 

condition C2 is also met. Thus, both conditions are satisfied and therefore, the 100(1 − α)%
confidence set for θ is given by

C = {η:η1 > A1, η2 ≥ η1, η3 ≥ η1} ∪ {η:η1 > η2, η2 > A2, η3 ≥ η2} ∪ {η:η1 > η3, η2 > η3, η3 > A3} .

Next, projecting the confidence set C on the coordinate axes provides the simultaneous 

confidence bounds for θi of the form Li = min1 ≤ i ≤ 3 {ηi:η ∈ C}. And the corresponding lower 

confidence bound for min1 ≤ i ≤ 3 {θi} is given by L = min1 ≤ i ≤ 3 Ai, where Ai is given by (4) if 
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variance is known or (5) if variance is unknown. In general, as is presented in Appendix for 

Kcomparisons, the generalized SBH lower 100(1 − α)% confidence bound for min1 ≤ i ≤ K
θi is 

given by min1 ≤ i ≤ K
Ai.

3. ESTIMATING THE SMALLEST AVERAGE DIFFERENCE IN ATTITUDES 

TOWARDS STUTTERING OF COLLEGE STUDENTS

Louis et al. (2014) reported results of a two-country study where US and Polish students 

majoring in speech-language pathology (SLP) and other disciplines were compared in terms 

of attitudes towards stuttering. Here we use subsamples corresponding to five non-

overlapping subpopulations of US students, i.e., graduate SLP-major students, graduate non-

SLP-major students, undergraduate SLP-major students, undergraduate non-SLP-major 

students, and Native American (NA) non-SLP-major students; note that the first four 

subpopulations correspond to non-NA students. The study used eight subsamples with 50 

subjects per group, where five subsamples were drawn from the above subpopulations and 

three more were drawn from three subpopulations of Polish students. The study aim was to 

assess potential effect of SLP-major, training and cultural factors on students’ attitudes 

toward stuttering. The statistical analyses included ANOVA and pairwise comparisons via 

Bonferroni adjustments for multiplicity. Among several conclusions, the authors stated that 

the SLP-major students have more positive attitude towards stuttering, on average, than do 

non-SLP-major students, and the US graduate students have more positive attitude towards 

stuttering, on average, than do undergraduate students.

To illustrate the generalized SBH interval we used 95% confidence level and performed 

comparisons of graduate SLP-major students to each of the four subpopulations in terms of 

the overall stuttering score, which ranges from −100 to 100 with higher scores 

corresponding to more positive attitudes towards stuttering. The goal was to interval-

estimate the smallest difference in the average stuttering scores, i.e., the parameter of interest 

was min1 ≤ i ≤ 4 {μ0 − μi}, where indices i = 0, i = 1, i = 2, i = 3, and i = 4, respectively, 

corresponded to graduate SLP-major non-NA students, graduate non-SLP-major non-NA 

students, undergraduate SLP-major non-NA students, undergraduate non-SLP-major non-

NA students, and NA non-SLP-major students. The problem was stated in terms of 

hypotheses (2) with K = 4.

Using the group sample sizes ni = 50, i = 0, 1, …, 4, and reported by Louis et al. (2014) 

summary statistics (that are illustrated in Table 1), we computed the pooled variance 

estimator 251, i.e., σ ≈ 15.84, and used t0.05, 245 = 1.97 to construct the lower bounds (5). 

Table 1 illustrates the corresponding lower bounds. Thus, the 95% lower bound for the 

minimum average difference in the overall stuttering score was L = 3.76. The value of the 

bound indicates that graduate SLP-major non-NA students, on average, have more positive 

attitude towards stuttering than do the other four subpopulations of students.
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4. SIMULATIONS

The goal of the simulation study was to illustrate the theoretical property shown in Section 

3, i.e., to illustrate that the probability coverage of the generalized SBH method is adequate 

in balanced and unbalanced settings with known and unknown variance when the 

distribution model is as described in Section 2. Cases with three comparisons, i.e., K = 3, 

were considered. The mean values (μ0, μ1, μ2, μ3) were chosen to reflect four different cases 

of mean differences θi, i = 1, 2, 3, i.e., (θ1 ≤ 0, θ2 ≤ 0, θ3 ≤ 0), (θ1 > 0, θ2 ≤ 0, θ3 ≤ 0), 

(θ1 > 0, θ2 > 0, θ3 ≤ 0) and (θ1 > 0, θ2 > 0, θ3 > 0). Confidence levels of 90% and 95% were 

considered.

A single simulation run was as follows. For each specified setting of component parameter 

values (μ0, μ1, μ2, μ3), confidence level, and sample sizes, depicted in Table 2, data were 

generated, so that yk were independent and yk N(μk, σ2/nk), k = 0, 1, 2, 3. In the case of known 

variance these data were used directly to construct the component bounds Ai, i = 1, 2, 3, via 

(4) and the corresponding lower bound L = min1 ≤ i ≤ 3 Ai. In the case of unknown variance, 

independently on yk′s, a value x was generated from the chi-square distribution with 

ν = n0 + n1 + n2 + n3 − 4 degrees of freedom, the value was used to obtain the sample 

variance and construct the lower bounds (5) and the corresponding lower bound L. In any 

case, if the lower bound satisfied L < min1 ≤ i ≤ K
(μi − μ0) then the confidence interval was said 

to capture the true parameter and the case was noted; otherwise, if L ≥ min1 ≤ i ≤ K
(μi − μ0)

then the confidence was said not to capture the true parameter.

The above simulation steps were repeated 106 times. The proportion of replicates when the 

confidence interval captured the true parameter provided the estimated probability coverage. 

If the proportion was less than 94.97%, where 95 − 1.96 95 ∗ 5/106 = 94.97, then the 95% 

confidence level interval was said to result in under-coverage, and if the proportion was less 

than 89.94%, then the 90% confidence level interval was said to result in under-coverage.

Table 2 depicts the results of the simulations. The confidence intervals did not result in 

under-coverage in any considered settings. In addition, in each considered setting, the two 

intervals based on (4) and (5) perform similarly for settings with group sample size of at 

least 50 (in this case, the t-distribution has 196 degrees of freedom). Among balanced 

settings (given the means, variance, and confidence level are fixed), the probability coverage 

decreases as the sample size increases. Similarly, in the case of known variance, the 

probability coverage increases as the variance increases (when the rest of the simulation 

parameters are fixed). In addition, in all settings, the probability coverage decreases as the 

confidence level decreases (when the other simulation parameters are fixed).
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5. CONCLUSIONS

In this paper a generalization of the SBH method for interval-estimating compatible with the 

Min test for multiple simultaneous comparisons is discussed. The generalized SBH interval 

in based on the confidence intervals for the mean differences and can be easily computed 

when these confidence intervals are available. Results of the simulation study agreed with 

the theoretical result that for the considered model the approach has adequate probability 

coverage in balanced and unbalanced settings for different cases of the means, and known 

and unknown variance. The results also indicated that in some settings the generalized SBH 

interval can exhibit over-coverage, i.e., in these cases the Min test is over-conservative. An 

application of the method is illustrated via an example for simultaneous comparisons of one 

subpopulation of students to other four subpopulations of students in terms of the average 

overall stuttering score, a measure for assessing one’s attitude towards stuttering. Similar 

settings, where a certain subpopulation is compared to several other subpopulations 

simultaneously, also commonly arise in fields other than educational psychology, e.g., other 

behavioral and medical sciences. In these settings, the generalized SBH method can provide 

an essential interval-estimation statistical tool.

Note that the probability coverage of the generalized SBH interval depends on the 

probability coverage of the intervals for the component parameters and thus, if one uses 

approximate component confidence intervals then performance of the proposed method 

should be first verified via theoretical derivations or simulations. Future research can be 

targeted on developing interval-estimating methods compatible with the Min test for other 

types of models, e.g., binomial. In addition, future research can focus on generalizing the 

SBH method for more complex designs, e.g., multistage surveys, as well as developing 

suitable computing software packages.
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APPENDIX

To simplify the presentation, let θi = μ0 − μi, i = 1, 2, …, K, then the parameter of interest is 

θ = (θ1, θ2, …, θK), θ ∈ Θ, where Θ = ∪
1 ≤ i ≤ K

H0i ∪ Hai = ℜK. I consider the following sets

Θ(1, r) = {η: η1 = r, ηs ≥ r for all s = 2, 3, …, K}, r ∈ ℜ;

Θ(2, r) = {η:η1 > r, η2 = r, ηs ≥ r for all s = 3, 4, …, K}, r ∈ ℜ;

…
Θ( j, r) = {η:ηt > r for all t = 1, 2, …, j − 1, η j = r, ηs ≥ r for all s = j + 1, j + 2, …, K}, r ∈ ℜ;

…
Θ(K, r) = {η: ηt > r for all t = 1, 2, …, K − 1, ηK = r}, r ∈ ℜ .
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The above sets are mutually exclusive and their union over the index set 

J = {( j, r), 1 ≤ j ≤ K, r ∈ ℜ} is Θ, i.e., Θ = ∪
1 ≤ j ≤ K

{Θ( j, r), r ∈ ℜ}. Thus, these sets provide 

a partition of Θ. Also, the null space is given by the union of the sets over the index set 

J′ = {( j, r), 1 ≤ j ≤ K, r ∈ ( − ∞, 0]}. Consider a local α‐level test that rejects θ ∈ Θ( j, r) if and 

only if A j ≥ r, where j = 1, 2, …, K, r ∈ ℜ; and θ ∈ H0 is rejected if and only if hypotheses 

θ ∈ Θ( j, r) are rejected for all ( j, r) such that j = 1, 2, …, K and r ∈ ( − ∞, 0]. Therefore, the 

100(1 − α)% confidence set for θ is given by

C = {η:ηt > A1, ηs ≥ η1 for all s = 2, 3, …, K}

        ∪ {η:ηt > η2, η2 > A2, ηs ≥ η2 for all s = 3, 4, …, K}

       …
        ∪ {η:ηt > η j for all t = 1, 2, …, j − 1, η j > A j, ηs ≥ η j for all s = j + 1, j + 2, …, K}

       …
        ∪ {η:ηt > ηK for all t = 1, 2, …, K − 1, ηK > AK .

And thus, the lower 100(1 − α)% confidence bound for min1 ≤ i ≤ K
θi is given by min1 ≤ i ≤ K

Ai, 

where Ai, i = 1, 2, …, K, is as depicted in (4) and (5) for known and unknown variance, 

respectively.
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Table 1

Summary Statistics Taken from Louis et al. (2014) and Lower Bounds for the Mean Differences

Group* Sample Mean Stuttering Score (SE) 95% Lower Bounds for Mean Difference

Graduate SLP-major non-NA students 43 (17)

Graduate non-SLP-major non-NA students 31 (15) 5.76

Undergraduate SLP-major non-NA students 33 (14) 3.76

Undergraduate non-SLP-major non-NA students 24 (16) 12.76

NA non-SLP-major students 31 (17) 5.36

*
SLP stands for speech-language pathology, NA stands for Native American.
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