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RobustBF: An R Package for Robust
Solution to the Behrens-Fisher Problem
by Gamze Güven, Şükrü Acıtaş, Hatice Şamkar and Birdal Şenoğlu

Abstract Welch’s two-sample t-test based on least squares (LS) estimators is generally used to test the
equality of two normal means when the variances are not equal. However, this test loses its power
when the underlying distribution is not normal. In this paper, two different tests are proposed to test
the equality of two long-tailed symmetric (LTS) means under heterogeneous variances. Adaptive
modified maximum likelihood (AMML) estimators are used in developing the proposed tests since
they are highly efficient under LTS distribution. An R package called RobustBF is given to show
the implementation of these tests. Simulated Type I error rates and powers of the proposed tests are
also given and compared with Welch’s t-test based on LS estimators via an extensive Monte Carlo
simulation study.

Introduction

Testing the equality of two population means is one of the most encountered problems in applied
sciences. Student’s t-test, which is uniformly most powerful unbiased, is commonly used under
normality and homogeneity of variances assumptions. The well-known Behrens-Fisher (BF) problem
arises when the assumption of homogeneity of variances is not met. This problem can be defined as
testing the null hypothesis

H0 : µ1 = µ2 (1)

when Yi1, Yi2, ..., Yini (i = 1, 2) are independent random samples from N
(
µi, σ2

i
)

distribution. Fisher
(1939) endorsed Behrens’ solution to the BF problem by using the fiducial theory. Many researchers
studied this problem. For example, Welch (1938) proposed a test statistic and provided its degrees
of freedom approximately. It should be noted that degrees of freedom provided by Welch (1938) can
also be obtained by using the Satterthwaite approximation; see Satterthwaite (1946). This is why
the mentioned degrees of freedom is also known as Welch-Satterthwaite degrees of freedom in the
literature. Wang (1971) calculated the Type I error rates of the Welch’s two-sample t-test and Aspin-
Welch test for different sets of degrees of freedom and nominal significance levels and concluded that
Welch’s t-test could be used in practice with little loss of accuracy. Davenport and Webster (1975)
considered the test suggested by Fairfield Smith (1936) for the BF problem and compared its Type I
error rates with those of Mehta and Srinivasan (1970). They concluded that this test is a very practical
solution to the BF problem besides being stable in regard to size and having adequate power. Best
and Rayner (1987) calculated the Wald score and likelihood ratio statistics and showed that the test
based on Wald statistics has the same asymptotic properties as the Welch’s t-test. Kim and Cohen
(1998) presented a review of basic concepts and applications concerning the BF problem under fiducial,
Bayesian and frequentist approaches. Singh et al. (2002) developed a test based on the Jackknife
estimator of the common population variance and compared the powers of the proposed test with
those of Welch’s t-test and Cochran and Cox (1957) test. According to the results of their study, the
proposed test is more powerful than the Cochran-Cox test for all cases, while it is more preferable to
Welch’s t-test for some cases. Chang and Pal (2008) developed a computational approach test (CAT)
for the BF problem and compared it with Welch’s t-test, Cochran-Cox text, Generalized p-value test,
and Singh–Saxena–Srivastava test under the normal and t-model. They found that Welch’s t-test,
Cochran-Cox text, and CAT are robust under the heavier tailed t-models besides having similar size
and power.

When the literature is examined, it can be seen that Welch’s t-test has a very good performance as
compared to other tests in the case of heteroscedasticity and unequal sample sizes in the context of
normality. The power of Welch’s t-test decreases very rapidly when the underlying distribution is
long-tailed symmetric (LTS) since the least squares (LS) estimators are not robust to the violation of
normality. It is known that non-normal distributions are more common in real-life problems. Yuen
(1974) proposed a two-sample trimmed t-test and compared its performance of it with Welch’s t-test for
both normal and long-tailed samples. Tiku and Singh (1981) proposed Welch-type statistics based on
modified maximum likelihood (MML) estimators and showed that the proposed test is more powerful
than Yuen (1974)’s trimmed t-test. In addition, Tiku and Singh (1981) investigated the analogous test
based on the robust bisquare estimators BS82 and showed that this test statistic gives misleading Type
I errors.

In this study, a robust version of Welch’s t-test for the BF problem is proposed when the underlying
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distribution is LTS. A second test using the fiducial model, which is a special case of a functional
model given by Dawid and Stone (1982), is also proposed; see Fisher (1933, 1935) for more information
about the fiducial approach. The reason for including a robust version of fiducial-based test into this
study is to see its performance in the context of BF problem and to make comprehensive comparisons
with its rivals (i.e., robust version of Welch’s t-test and the traditional Welch’s t-test). Both of the
proposed tests are based on adaptive modified maximum likelihood (AMML) estimators, see Tiku and
Sürücü (2009) and Dönmez (2010). To the best of our knowledge, this is the first study using AMML
estimators for testing the equality of two LTS means under heterogeneous variances. These estimators
are efficient and easy to compute for LTS samples, see Tiku and Sürücü (2009).

The R packages stats by R Core Team (1970) and asht by Fay (2020) include Welch’s t-test based on
LS estimators and BF test under normality, respectively. WRS2 by Mair and Wilcox (2021) contains
Yuen’s test based on the trimmed sample means. Different from the earlier studies, we provide an
R package RobustBF computing the values of the proposed test statistics and/or the corresponding
p-values.

The rest of this study is organized as follows. Firstly, AMML estimators are given. Secondly, the
robust Welch test and robust test based on the fiducial approach are developed. Thirdly, an extensive
Monte Carlo simulation study is conducted to compare the performances of the proposed tests with
the traditional Welch’s t-test based on LS estimators. The proposed tests are applied to a real data set
via RobustBF package. This paper is finalized some concluding remarks.

AMML Estimators

Assume that Yi1, Yi2, ..., Yini (i = 1, 2) be independent random samples from LTS (p, µi, σi) distribution

f (y) =
1√

kβ (1/2, p − 1/2) σ

(
1 +

(y − µ)2

kσ2

)−p

, −∞ < y < ∞;−∞ < µ < ∞; σ > 0; p ≥ 2, (2)

where µ is the location parameter, σ is the scale parameter, p is the shape parameter, and k = 2p − 3
(Tiku and Kumra, 1985). It should be noted that E (y) = µ, V (y) = σ2, and t =

√
(ν/k) (y/σ) has

Student’s t distribution with ν = 2p − 1 degrees of freedom.

The log-likelihood (ln L) function is given by

ln L = −N ln
(√

kβ (1/2, p − 1/2)
)
−

2

∑
i=1

ni ln (σi)− p
2

∑
i=1

ni

∑
j=1

ln

1 +

(
yij − µi

)2

kσ2
i

 , (3)

where N = n1 + n2. Then, the likelihood equations are obtained as follows

∂ ln L
∂µi

=
2p
kσi

ni

∑
j=1

g
(

zij

)
= 0 (4)

∂ ln L
∂σi

= −ni
σi

+
2p
kσi

ni

∑
j=1

zijg
(

zij

)
= 0 (5)

where

g
(

zij

)
=

zij

1 + (1/k) z2
ij

and zij =
yij − µi

σi
. (6)

By solving the above likelihood equations, (4) and (5), simultaneously, the maximum likelihood
(ML) estimators of the parameters µi and σi are obtained. However, these equations involve nonlinear
functions of the parameters, and so ML estimators cannot be obtained explicitly. Hence, numerical
methods can be used to solve these equations. Numerical methods may cause convergence problems
like non-convergence of iterations, convergence to wrong roots, or multiple roots (Puthenpura and
Sinha, 1986; Vaughan, 1992). MML methodology proposed by Tiku (1967, 1968) overcomes these
mentioned problems by providing explicit solutions to likelihood equations. In MML methodology,
firstly, the standardized statistics are ordered in ascending way, i.e., zi(1) ≤ zi(2) ≤ ... ≤ zi(ni). Then,
likelihood equations in (4) and (5) are rewritten in terms of zi(j) and g(zi(j)) (i = 1, 2; j = 1, 2, ..., ni) as
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shown in (7) and (8) since summation is invariant to ordering, i.e.,
ni

∑
j=1

zi(j) =
ni

∑
j=1

zij.

∂ ln L
∂µi

=
2p
kσi

ni

∑
j=1

g
(

zi(j)

)
= 0 (7)

∂ ln L
∂σi

= −ni
σi

+
2p
kσi

ni

∑
j=1

zi(j)g
(

zi(j)

)
= 0. (8)

Here, zi(j) =
yi(j)−µi

σi
and g(zi(j)) =

zi(j)

1+(1/k)z2
i(j)

. The nonlinear function g(zi(j)) is linearized utilizing

the first two terms of the Taylor series expansion around the expected values of the ordered statistics
E(zi(j)) = ti(j) as follows

g
(

zi(j)

)
∼= αij + βijzi(j), (9)

where

αij =
(2/k) t3

i(j)(
1 + (1/k) t2

i(j)

)2 and βij =
1 − (1/k) t2

i(j)(
1 + (1/k) t2

i(j)

)2 . (10)

Since ti(j) values cannot be obtained exactly, approximate values of ti(j) which do not affect the
efficiencies of the resulting estimators are used,∫ ti(j)

−∞
f (z) dz =

j
ni + 1

, i = 1, 2; j = 1, 2, ..., ni. (11)

Secondly, modified likelihood equations are obtained by inserting the approximation (9) into Eqs. (7)
and (8)

∂ ln L∗

∂µi
=

2p
kσi

ni

∑
j=1

(
αij + βijzi(j)

)
= 0 (12)

∂ ln L∗

∂σi
= −ni

σi
+

2p
kσi

ni

∑
j=1

zi(j)

(
αij + βijzi(j)

)
= 0. (13)

Finally, MML estimators of µi and σi are found by solving Eqs. (12) and (13). They are given as follows

µ̂i =

ni

∑
j=1

βijyi(j)

mi
and σ̂i =

Bi +
√

B2
i + 4niCi

2
√

ni (ni − 1)
, (14)

where

Bi =
2p
k

ni

∑
j=1

αij

(
yi(j) − µ̂i

)
, Ci =

2p
k

ni

∑
j=1

βij

(
yi(j) − µ̂i

)2
and mi =

ni

∑
j=1

βij; (15)

see Tiku and Suresh (1992). The asymptotic properties of the MML estimators µ̂i and σ̂i can be
demonstrated with the help of the following theorems.

Theorem 1 µ̂i is the minimum variance bound (MVB) estimator and is asymptotically normally distributed
with mean µi and variance σ2

i /Mi (Mi = 2pmi/k).

Theorem 2 (ni − 1) σ̂2
i /σ2

i is distributed as chi-square (more accurately a multiple of chi-square) with (ni − 1)
degrees of freedom.

For proofs of theorems, see, e.g. Şenoğlu and Tiku (2001); Güven et al. (2019).

MML estimators have the same asymptotic properties as the ML estimators and are as efficient as
ML estimators, even for small samples. They are easy to compute and robust to the outliers.

It should be noted that the shape parameter p is assumed to be known in the MML methodology.
However, in some real-life applications, it may be possible to assume that the data comes from a
certain type of distribution, namely LTS distribution, but there is no opportunity to specify the value
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of the shape parameter. Hence, Tiku and Sürücü (2009) proposed AMML methodology, which is a new
version of MML methodology, see Dönmez (2010) and Acıtaş et al. (2020, 2021). This methodology
relaxes the assumption of the known shape parameter. AMML estimators are computed in two
iterations. In the first iteration, initial tij values are calculated from the sample data, as shown below

tij =
(

yij − T0i

)
/S0i i = 1, 2; j = 1, ..., ni. (16)

Here, T0i and S0i are the initial estimates of µi and σi and they are calculated as

T0i = med
{

yij

}
and S0i = 1.483med

{
| yij − T0i |

}
i = 1, 2; j = 1, ..., ni, (17)

respectively. Using the tij values in (16), αij and βij coefficients are calculated as follows

αij =
(1/k) tij

1 + (1/k) t2
ij

and βij =
1

1 + (1/k) t2
ij

. (18)

Then, the AMML estimates of the parameters µi and σi are obtained using Eq. (14) and αij and βij
values given in Eq. (18). To distinguish these estimates from the MML estimates, they are represented
by µ̂i(AMML) and σ̂i(AMML) in the rest of the paper. In the second iteration, tij values are revised as
follows

tij =
(

yij − µ̂i(AMML)

)
/σ̂i(AMML) i = 1, 2; j = 1, ..., ni (19)

and recalculate the αij and βij values using the equalities in (18) for these tij values. Then final AMML
estimates of µi and σi are obtained.

It should be noted that in AMML methodology, yij observations are used rather than the ordered
yi(j) observations since tij values are calculated from the sample observations. In addition, the shape
parameter p is taken to be 16.5 in the calculations of αij and βij coefficients since this value makes
AMML estimators efficient for normal and near normal distributions. It also makes them robust to
mild outliers. The reason why we use AMML methodology in the proposed tests is that it provides the
same asymptotic properties as MML methodology and, as mentioned before, relaxes the assumption
of known shape parameter p.

Proposed Test Statistics

In this section, we propose two different tests for testing the equality of two LTS means.

Robust Welch (RW) Test

In this subsection, we briefly introduce Welch’s t-test proposed by Welch (1938) under normal theory
and then give the robust version of it. Welch’s t-test based on LS estimators is defined as W =

{(x̄1 − x̄2)− (µ1 − µ2)} /
√{(

s2
1/n1

)
+
(
s2

2/n2
)}

. It is known that W is approximately distributed as
Student’s t with degrees of freedom

f =
1

{c2/ (n1 − 1) + (1 − c2) / (n2 − 1)}
, (20)

where c =
(
s2

1/n1
)

/
{(

s2
1/n1

)
+
(
s2

2/n2
)}

. Here, x̄i and s2
i (i = 1, 2) are the sample means and sample

variances, respectively. The value of W test can be obtained using t.test function available in R.

In this study, we propose the following test statistics based on AMML estimators as a robust
alternative to Welch’s t-test

RW =

(
µ̂1(AMML) − µ̂2(AMML)

)
− (µ1 − µ2)√(

σ̂2
1(AMML)/M1

)
+
(

σ̂2
2(AMML)/M2

) . (21)

As we shall see at the end of this section, the null distribution of RW is approximately distributed
as Student’s t based upon Theorems 1 and 2 . The approximate degrees of freedom for this test is
obtained using the Satterthwaite (1946) approximation as follows.
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Let

c1 =
σ2

1
(n1 − 1) M1

, c2 =
σ2

2
(n2 − 1) M2

(22)

Q1 =
(n1 − 1) σ̂2

1(AMML)

σ2
1

and Q2 =
(n2 − 1)σ̂2

2(AMML)

σ2
2

(23)

where Q1 and Q2 are independent chi-square random variables with degrees of freedom (n1 − 1) and
(n2 − 1), respectively (see Theorem 2). If the linear combination of Q1 and Q2 is written as

Q = c1Q1 + c2Q2 =
σ̂2

1(AMML)

M1
+

σ̂2
2(AMML)

M2
, (24)

then νQ/E (Q) has an approximate χ2 distribution with the following degrees of freedom

ν =

[
c1Q1 + c2Q2

]2

([
c1Q1

]2
/ν1

)
+
([

c2Q2

]2
/ν2

)

=

((
σ̂2

1(AMML)/M1

)
+
(

σ̂2
2(AMML)/M2

))2

(
σ̂2

1(AMML)/M1

)2
/ (n1 − 1) +

(
σ̂2

2(AMML)/M2

)2
/ (n2 − 1)

.

(25)

Here,

ν1 = n1 − 1, ν2 = n2 − 1 and E (Q) =
σ2

1
M1

+
σ2

2
M2

. (26)

RW in (21) can be rewritten as follows

RW =

((
µ̂1(AMML) − µ̂2(AMML)

)
− (µ1 − µ2)

)
/
√(

σ2
1 /M1

)
+
(
σ2

2 /M2
)√(

σ̂2
1(AMML)/M1

)
+
(

σ̂2
2(AMML)/M2

)
/
√(

σ2
1 /M1

)
+
(
σ2

2 /M2
) . (27)

Since this expression is equivalent to

Z
√

Q/
√

E (Q)
, (28)

it is obvious that RW is approximately distributed as Student’s t with ν degrees of freedom. Here,
Z ∼ N(0, 1) (see Theorem 1) and

√
Q/
√

E (Q) ∼
√

χ2
ν/ν.

To verify the null distribution of the RW, the probabilities

p1 = Pr
(
|RW| ≥ t1−α/2,ν

)
(29)

are simulated from 10,000 Monte Carlo runs for various combinations of the sample sizes n1 and n2.
The results are demonstrated in Table 1. Here, ν is the degrees of freedom for RW.

Robust Fiducial (RF) Based Test

In this section, fiducial-based test is proposed using the concept of fiducial inference and pivotal
model; see Fisher (1933, 1935) and Dawid and Stone (1982). Let denote the RW test based on the
observed values as

RW∗ =

(
µ̂∗

1(AMML) − µ̂∗
2(AMML)

)
− (µ1 − µ2)√

σ̂2∗
1(AMML)

M1
+

σ̂2∗
2(AMML)

M2

. (30)

First, the fiducial distribution of RW∗ is derived using pivotal quantities and fiducial distribution of

the parameters of interest. Then, the corresponding p-value is obtained. Here,
(

µ̂∗
i(AMML), σ̂2∗

i(AMML)

)
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are the observed values of
(

µ̂i(AMML), σ̂2
i(AMML)

)
(i = 1, 2). Let

Zi =
µ̂i(AMML) − µi

σi/
√

Mi
(31)

and

Qi =
(ni − 1) σ̂2

i(AMML)

σ2
i

(32)

are mutually independent pivotal quantities. They have asymptotically N(0, 1) and χ2
(ni−1) distri-

butions, respectively (see Theorems 1 and 2). Using pivotal quantities Zi and Qi, data generating
equations are obtained as given below

µ̂i(AMML) = µi +
(

σi/
√

Mi

)
Zi (33)

and

σ̂2
i(AMML) = σ2

i Qi/ (ni − 1) . (34)

Given
(

µ̂∗
i(AMML), σ̂2∗

i(AMML)

)
, Eqs. (33) and (34) are expressed as follows

µ̂∗
i(AMML) = µi +

(
σi/
√

Mi

)
zi (35)

and

σ̂2∗
i(AMML) = σ2

i qi/ (ni − 1) . (36)

Here, (zi, qi) are the observed values of (Zi, Qi). Eqs. (35) and (36) have the unique solutions as given
below

µi = µ̂∗
i(AMML) −

zi√
qi/ (ni − 1)

σ̂∗
i(AMML)√

Mi
(37)

and

σ2
i =

(ni − 1) σ̂2∗
i(AMML)

qi
. (38)

Since Zi√
Qi/(ni−1)

is distributed as a ti variable with (ni − 1) degrees of freedom, the fiducial distribution

of µi is the same as that of

T∗
µi
= µ̂∗

i(AMML) −
tiσ̂

∗
i(AMML)√

Mi
(39)

for given
(

µ̂∗
(AMML), σ̂2∗

(AMML)

)
. Therefore, the fiducial distribution of RW∗ in (30) is derived by

utilizing the fiducial distribution of µi as follows

TRF =

((
t1σ̂∗

1(AMML)

)
/
√

M1

)
−
((

t2σ̂∗
2(AMML)

)
/
√

M2

)
√(

σ̂2∗
1(AMML)

)
/M1 +

(
σ̂2∗

2(AMML)

)
/M2

, (40)

where t1 ∼ t(n1−1) and t2 ∼ t(n2−1). Since

RW∗
0 =

(
µ̂∗

1(AMML) − µ̂∗
2(AMML)

)
√(

σ̂2∗
1(AMML)

)
/M1 +

(
σ̂2∗

2(AMML)

)
/M2

(41)

is the observed value of TRF under H0 : µ1 = µ2, the corresponding p-value is given by

p = Pr (TRF ≥ RW∗
0 ) . (42)
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An algorithm for calculating the fiducial p-value in Eq.(42) via Monte Carlo simulation study is given
as follows

Algorithm 1

Step 1 For the given data, compute µ̂∗
i(AMML), σ̂∗

i(AMML) (i = 1, 2) and then RW∗
0 utilizing Eq. (41).

Step 2 Generate ti ∼ t(ni − 1), (i = 1, 2).

Step 3 Compute T2
RF utilizing Eq. (40).

Step 4 Let Fl = 1 if T2
RF > RW2∗

0 , else Fl = 0

Step 5 Repeat the steps 2-4 K times.

Step 6 Compute the simulated p-value using p = 1
K

K
∑

j=1
Fj.

It should be noted that the squares of TRF and RW∗
0 in Steps 3 and 4 are taken since the alternative

hypothesis is two-sided, i.e., H1 : µ1 − µ2 ̸= 0; see Li et al. (2011).

Monte Carlo Simulation

In this section, Type I error rates and powers of the proposed tests (RW and RF) are compared with
those of the W test under the specified nominal level α = 0.05. The plan of the simulation study is
outlined as follows:

We use the following population distributions while generating samples.

Population 1 Population 2

(a) Cauchy(0, 1) Cauchy(0, 1)
(b) 5 × Cauchy(0, 1) Cauchy(0, 1)
(c) Normal(0, 32)/Uni f orm(0, 1) Normal(0, 1)/Uni f orm(0, 1)

(d) 0.8Normal(0, 42) + 0.2 Normal(0,42)
Uni f orm[0,1] 0.8Normal(0, 1) + 0.2 Normal(0,1)

Uni f orm[0,1]
(e) 3t2 t2
(f) 2t5 t5
(g) Logistic(0, 3) Logistic(0, 1)
(h) Laplace(0, 1) Laplace(0,

√
6)

Here, ta: Student’s t distribution with a degrees of freedom.

10,000 different samples are considered for each of size ni (i = 1, 2). Sample sizes are taken
as (n1, n2)=(6, 6),(6, 10),(10, 10),(10, 15),(10, 30), (20, 20),(20, 30),(20, 50),(30, 50) and (50, 50) while
comparing the Type I error rates and powers of the tests. Simulations are conducted in R software.

To compute the Type I error rates of the RW, RF, and W tests, firstly, samples are generated under
the null hypothesis H0:µ1 = µ2 for given (n1, n2) . Then AMML and LS estimates of the parameters
are calculated. The probability in Eq. (29) gives the Type I rates of the RW test. It should be noted that
this probability shows that how close the distribution of the RW test is to Student’s t with degrees
of freedom ν. RF is carried out using Algorithm 1 with K=5,000. The fiducial p-value for the RF is
computed in the final step of the mentioned algorithm. This procedure is repeated for each of the
10,000 samples. The proportion of the 10,000 p-values that are less than the nominal level α = 0.05
gives Type I error rates of the RF.

To compute the power of the tests, similar steps are followed, but a constant d is added to the
observations in the first population. Any test can be considered powerful if it achieves maximum
power and adheres to the prescribed significance level.

Results

The results of the Monte Carlo simulation study are given in Tables 1-9. The Type I error rates and
power of the tests are given in Table 1 and Tables 2-9, respectively.

Numerical results of Table 1 can be summarized for Models (a)-(h) as follows
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• Models (a)-(c): Type I error rates of the RW, RF, and W tests are smaller than the nominal level
of α = 0.05. However, Type I error rates of the RW test are much closer to the nominal level
than those of RF and W. RW test is followed by RF. W test is conservative regardless of the
sample sizes.

• Models (d)-(e): Type I error rates of the RW test are closest to the nominal level of α = 0.05 for all
sample sizes even for small ones. RW test is followed by RF. W test is conservative compared
to the RW and RF.

• Models (f)-(h): Type I error rates of the RW, RF, and W tests are close to the nominal level of
α = 0.05. However, RW has very good performance in terms of Type I error rates, even for small
samples. Type I error rates of the RF test are slightly smaller than the nominal level for small
sample sizes in Model (h).

The numerical results of Tables 2-9 can be summarized as follows. It should be noted that the first
line of Tables 2-9, that is, d = 0.00 presents simulated Type I error rates of the tests.

• Model (a): The RW test appears to be more powerful than the RF for small to moderate sample
sizes. However, as sample sizes increase, powers of RW and RF tests get closer to each other.
These two tests outperform the W test for all sample sizes. The power of the W test is decreasing
with increasing sample sizes.

• Models (b)-(e): The RW and RF tests exhibit similar power properties, and they have the most
power for all sample sizes. The W test has the least power. However, the W test shows the worst
performance in Model (b) when sample sizes are large and equal, i.e., (n1, n2)=(50, 50).

• Models (f)-(g): RW, RF, and W tests have similar power properties for small to moderate sample
sizes. However, as sample sizes increase the RW and RF tests exhibit better performance than
the W test.

• Model (h): The RW test has the most power followed by RF. The W test has the least power
especially for moderate to large sample sizes.

Overall, the RW test can be recommended for testing the equality of two LTS means under the
assumption of heterogeneous variances since it has the best performance with respect to size and
power. Although the performance of the RF test is not as good as the RW test, it has better performance
than the traditional Welch’s t-test.

Using RobustBF package

In the RobustBF package, we show the implementation of the proposed tests (RW and RF), based
on AMML estimators, and W test, based on LS estimators, using the data representing the values of
10(y − 2.0) (y is the pollution level (measurement of lead) in water samples from two lakes). It has
been shown that long-tailed symmetric distribution provides a plausible model for the mentioned
data; see Tiku and Akkaya (2004) and also reference therein.

To run RobustBF package, we first install the package and then load it by typing:

> install.packages("RobustBF")
> library(RobustBF)

respectively. Next the pollution level data are inputted for each lakes (Lake 1 and Lake 2) in terms of
the vectors as shown below

y1 <- c(-1.48, 1.25, -0.51, 0.46, 0.60, -4.27, 0.63, -0.14, -0.38, 1.28,
0.93, 0.51, 1.11, -0.17, -0.79, -1.02, -0.91, 0.10, 0.41, 1.11)

y2 <- c(1.32, 1.81, -0.54, 2.68, 2.27, 2.70, 0.78, -4.62, 1.88, 0.86,
2.86, 0.47, -0.42, 0.16, 0.69, 0.78, 1.72, 1.57, 2.14, 1.62)

The value of the RW test, its degrees of freedom with the corresponding p-value, AMML estimates
of the location parameters (µ̂1(AMML), µ̂2(AMML)), and AMML estimates of the scale parameters
(σ̂1(AMML), σ̂2(AMML)) are given by using the function

> RW(y1,y2)

The p-value and AMML estimates of the location and scale parameters are given for the RF test by
using the function

> RF(y1,y2,iter=5000)
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It should be noted that the p-value for the RF test is obtained using a computational approach, and
it is based on the replication number in Algorithm 1, denoted as iter in the RF function. When the
above-mentioned functions in the RobustBF package are performed, the following results are obtained

> RW(y1,y2)

Robust Welch's Two Sample t-Test

data: y1 and y2
RW = -3.1602, df = 36.892, p-value = 0.0031
alternative hypothesis: true difference between in means is not equal to 0
sample estimates:
mean of y1 mean of y2 sd of y1 sd of y2

0.0626 1.2391 1.0861 1.2876

> RF(y1,y2,iter=5000)

Robust Fiducial Based Test

data: y1 and y2
p-value = 0.0032
alternative hypothesis: true difference in means is not equal to 0
sample estimates:
mean of y1 mean of y2 sd of y1 sd of y2

0.0626 1.2391 1.0861 1.2876

We also use t.test function in R to test the null hypothesis H0:µ1 = µ2 and obtain its p-value as 0.0243.
It can be seen from these results, RW, RF, and W tests reject the null hypothesis at α = 0.05 significance
level since the p-values corresponding to these tests are all less than 0.05. However, p-values for RW
and RF tests are much smaller than the ones obtained for W. Results of the RW and RF tests are
more reliable since the AMML estimates of the σ1 and σ2 (σ̂1(AMML) = 1.0861, σ̂2(AMML) = 1.2876) are
less than the corresponding LS estimates (σ̂1(LS) = 1.2819, σ̂2(LS) = 1.6542). It should be noted that
RW and RF tests reject the null hypothesis while W fails to reject it at the significance level α = 0.01.
These results are in agreement with the simulation results in the context of long-tailed symmetric
distributions.

Conclusion

Reviewing the literature shows that comparing two means is a commonly encountered problem,
especially in applied sciences when the usual normality and homogeneity of variances assumptions
are violated. For this reason, in this study, we present RobustBF package and propose RW and
RF tests to test the equality of two LTS means when the variances are unknown and arbitrary. The
first test included in the package is a robust version of Welch’s t-test, and the other one is a robust
fiducial-based test. The proposed tests are based on AMML estimators. Also, we use t.test function
available in R to compare the proposed tests with Welch’s t-test in terms of Type I error rates and
powers. Examining the results of the simulation study reveals that Type I error rates of the RW test are
closer to the nominal level in general. Therefore, the RW test verifies the obtained null distribution
for long-tailed symmetric samples. This test is followed by RF. RF does not require the knowledge
of sampling distribution of the test statistics. W test appears to be conservative except for the t5,
Logistic and Laplace distributions. RW shows the best power performance among the others besides
being robust for the contamination model for the scenarios considered in this study. Therefore, the
proposed RW test can be recommended for testing the equality of two LTS means under heterogeneity
of variances. W test performs poorly in almost all cases. According to our knowledge, the proposed
tests presented in the RobustBF package are not available in any other R tool.
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Model (a) Model (b)

n1 n2 RW RF W RW RF W

6 6 0.023 0.014 0.015 0.031 0.025 0.019
6 10 0.026 0.016 0.017 0.033 0.027 0.020
10 10 0.025 0.020 0.018 0.031 0.027 0.020
10 15 0.023 0.016 0.017 0.029 0.027 0.020
10 30 0.030 0.025 0.020 0.029 0.028 0.020
20 20 0.024 0.022 0.020 0.028 0.026 0.021
20 30 0.028 0.025 0.024 0.027 0.026 0.022
20 50 0.026 0.024 0.021 0.028 0.027 0.020
30 50 0.027 0.025 0.021 0.026 0.026 0.022
50 50 0.030 0.028 0.020 0.027 0.026 0.020

Model (c) Model (d)

n1 n2 RW RF W RW RF W

6 6 0.035 0.024 0.022 0.047 0.036 0.030
6 10 0.037 0.030 0.020 0.053 0.047 0.037
10 10 0.030 0.025 0.020 0.046 0.042 0.033
10 15 0.031 0.026 0.018 0.046 0.043 0.033
10 30 0.031 0.029 0.022 0.046 0.044 0.030
20 20 0.030 0.027 0.019 0.042 0.040 0.027
20 30 0.030 0.028 0.021 0.046 0.044 0.030
20 50 0.030 0.030 0.022 0.045 0.044 0.030
30 50 0.031 0.029 0.020 0.042 0.041 0.026
50 50 0.030 0.028 0.019 0.044 0.044 0.025

Model (e) Model (f)

n1 n2 RW RF W RW RF W

6 6 0.040 0.030 0.034 0.050 0.042 0.042
6 10 0.050 0.045 0.035 0.054 0.042 0.046
10 10 0.044 0.038 0.038 0.049 0.043 0.044
10 15 0.045 0.042 0.033 0.054 0.048 0.049
10 30 0.042 0.040 0.037 0.055 0.052 0.051
20 20 0.044 0.042 0.028 0.054 0.049 0.047
20 30 0.040 0.037 0.038 0.052 0.049 0.048
20 50 0.041 0.041 0.026 0.051 0.049 0.046
30 50 0.043 0.042 0.036 0.053 0.053 0.049
50 50 0.044 0.043 0.028 0.054 0.052 0.049

Model (g) Model (h)

n1 n2 RW RF W RW RF W

6 6 0.053 0.041 0.045 0.048 0.032 0.044
6 10 0.056 0.052 0.051 0.044 0.034 0.043
10 10 0.055 0.048 0.047 0.044 0.036 0.042
10 15 0.055 0.052 0.048 0.045 0.039 0.044
10 30 0.052 0.050 0.044 0.045 0.039 0.045
20 20 0.054 0.053 0.049 0.044 0.041 0.044
20 30 0.054 0.053 0.048 0.047 0.044 0.047
20 50 0.055 0.055 0.049 0.050 0.046 0.049
30 50 0.054 0.054 0.048 0.046 0.045 0.046
50 50 0.054 0.053 0.049 0.054 0.051 0.052

Table 1: Simulated Type I error rates of the RW, RF and W tests for Models (a)-(h).
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d RW RF W d RW RF W

0.00 0.023 0.014 0.015 0.00 0.024 0.022 0.020
1.60 0.19 0.15 0.11 0.60 0.10 0.09 0.04

n = (6, 6) 3.20 0.51 0.46 0.30 n = (20, 20) 1.20 0.35 0.33 0.09
4.80 0.74 0.70 0.46 1.80 0.65 0.64 0.17
6.40 0.84 0.82 0.56 2.40 0.84 0.83 0.25
8.00 0.91 0.89 0.64 3.00 0.94 0.94 0.33

d RW RF W d RW RF W

0.00 0.026 0.016 0.017 0.00 0.028 0.025 0.024
1.50 0.21 0.17 0.10 0.50 0.09 0.08 0.03

n = (6, 10) 3.00 0.57 0.53 0.29 n = (20, 30) 1.00 0.31 0.29 0.07
4.50 0.78 0.76 0.44 1.50 0.59 0.58 0.13
6.00 0.89 0.88 0.57 2.00 0.80 0.79 0.20
7.50 0.94 0.93 0.62 2.50 0.92 0.91 0.27

d RW RF W d RW RF W

0.00 0.025 0.020 0.018 0.00 0.026 0.024 0.021
1.00 0.13 0.11 0.06 0.46 0.10 0.09 0.04

n = (10, 10) 2.00 0.43 0.39 0.18 n = (20, 50) 0.92 0.32 0.30 0.06
3.00 0.70 0.67 0.32 1.38 0.60 0.59 0.12
4.00 0.85 0.83 0.42 1.84 0.81 0.81 0.18
5.00 0.92 0.91 0.51 2.30 0.92 0.92 0.25

d RW RF W d RW RF W

0.00 0.023 0.016 0.017 0.00 0.027 0.025 0.021
0.80 0.11 0.09 0.05 0.40 0.09 0.09 0.03

n = (10, 15) 1.60 0.36 0.33 0.14 n = (30, 50) 0.80 0.30 0.29 0.06
2.40 0.64 0.61 0.24 1.20 0.60 0.59 0.10
3.20 0.80 0.79 0.35 1.60 0.83 0.83 0.16
4.00 0.90 0.89 0.43 2.00 0.94 0.94 0.22

d RW RF W d RW RF W

0.00 0.030 0.025 0.020 0.00 0.030 0.028 0.020
0.70 0.12 0.10 0.05 0.32 0.08 0.08 0.030

n = (10, 30) 1.40 0.37 0.35 0.11 n = (50, 50) 0.64 0.26 0.26 0.05
2.10 0.65 0.63 0.21 0.96 0.55 0.54 0.08
2.80 0.80 0.79 0.30 1.28 0.79 0.78 0.11
3.50 0.90 0.89 0.39 1.60 0.93 0.92 0.16

Table 2: Simulated powers of the RW, RF and W tests for Model (a).
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d RW RF W d RW RF W

0.00 0.031 0.025 0.019 0.00 0.028 0.026 0.021
5.40 0.22 0.19 0.13 2.00 0.11 0.11 0.04

n = (6, 6) 10.80 0.52 0.50 0.34 n = (20, 20) 4.00 0.34 0.34 0.11
16.20 0.72 0.71 0.49 6.00 0.61 0.60 0.19
21.60 0.83 0.83 0.60 8.00 0.80 0.79 0.30
27.00 0.90 0.90 0.68 10.00 0.90 0.90 0.38

d RW RF W d RW RF W

0.00 0.033 0.027 0.020 0.00 0.027 0.026 0.022
5.30 0.22 0.21 0.13 2.00 0.10 0.10 0.05

n = (6, 10) 10.60 0.53 0.52 0.35 n = (20, 30) 4.00 0.33 0.33 0.10
15.90 0.72 0.71 0.50 6.00 0.62 0.62 0.20
21.20 0.82 0.82 0.59 8.00 0.81 0.80 0.29
26.50 0.90 0.90 0.68 10.00 0.90 0.90 0.37

d RW RF W d RW RF W

0.00 0.031 0.027 0.020 0.00 0.028 0.027 0.20
3.60 0.17 0.16 0.09 2.00 0.11 0.11 0.05

n = (10, 10) 7.20 0.47 0.46 0.23 n = (20, 50) 4.00 0.35 0.34 0.11
10.80 0.71 0.71 0.38 6.00 0.62 0.62 0.20
14.40 0.84 0.84 0.49 8.00 0.80 0.80 0.29
18.00 0.92 0.92 0.58 10.00 0.91 0.91 0.37

d RW RF W d RW RF W

0.00 0.029 0.027 0.020 0.00 0.026 0.026 0.022
3.60 0.17 0.16 0.09 1.60 0.10 0.10 0.04

n = (10, 15) 7.20 0.49 0.48 0.23 n = (30, 50) 3.20 0.32 0.32 0.08
10.80 0.72 0.72 0.39 4.80 0.62 0.62 0.15
14.40 0.85 0.85 0.50 6.40 0.82 0.82 0.23
18.00 0.92 0.91 0.57 8.00 0.92 0.92 0.30

d RW RF W d RW RF W

0.00 0.029 0.028 0.020 0.00 0.027 0.026 0.020
3.40 0.16 0.16 0.09 1.12 0.08 0.08 0.03

n = (10, 30) 6.80 0.45 0.45 0.22 n = (50, 50) 2.24 0.26 0.26 0.05
10.20 0.69 0.69 0.36 3.36 0.53 0.53 0.09
13.60 0.83 0.83 0.47 4.48 0.76 0.76 0.13
17.00 0.90 0.90 0.55 5.60 0.90 0.90 0.18

Table 3: Simulated powers of the RW, RF and W tests for Model (b).
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d RW RF W d RW RF W

0.00 0.035 0.024 0.022 0.00 0.030 0.027 0.019
5.00 0.23 0.20 0.14 1.70 0.10 0.10 0.04

n = (6, 6) 10.00 0.55 0.52 0.37 n = (20, 20) 3.40 0.33 0.32 0.11
15.00 0.76 0.75 0.53 5.10 0.60 0.59 0.19
20.00 0.87 0.86 0.62 6.80 0.80 0.80 0.29
25.00 0.92 0.92 0.70 8.50 0.92 0.91 0.38

d RW RF W d RW RF W

0.00 0.037 0.030 0.020 0.00 0.030 0.028 0.021
4.80 0.23 0.21 0.14 1.70 0.10 0.10 0.04

n = (6, 10) 9.60 0.56 0.54 0.36 n = (20, 30) 3.40 0.33 0.33 0.11
14.40 0.75 0.74 0.52 5.10 0.62 0.61 0.20
19.20 0.86 0.86 0.62 6.80 0.81 0.81 0.30
24.00 0.92 0.92 0.69 8.50 0.92 0.92 0.37

d RW RF W d RW RF W

0.00 0.030 0.025 0.020 0.00 0.030 0.030 0.022
3.00 0.15 0.14 0.08 1.70 0.11 0.11 0.05

n = (10, 10) 6.00 0.44 0.42 0.22 n = (20, 50) 3.40 0.35 0.35 0.11
9.00 0.71 0.69 0.37 5.10 0.63 0.63 0.20
12.00 0.84 0.84 0.48 6.80 0.82 0.82 0.30
15.00 0.92 0.92 0.56 8.50 0.92 0.92 0.38

d RW RF W d RW RF W

0.00 0.031 0.026 0.018 0.00 0.031 0.029 0.20
2.60 0.13 0.12 0.06 1.30 0.09 0.09 0.03

n = (10, 15) 5.20 0.38 0.37 0.18 n = (30, 50) 2.60 0.31 0.30 0.07
7.80 0.64 0.63 0.32 3.90 0.58 0.58 0.13
10.40 0.79 0.79 0.44 5.20 0.79 0.79 0.20
13.00 0.90 0.90 0.54 6.50 0.92 0.92 0.29

d RW RF W d RW RF W

0.00 0.031 0.029 0.022 0.00 0.030 0.028 0.019
2.60 0.14 0.13 0.07 0.96 0.08 0.08 0.03

n = (10, 30) 5.20 0.39 0.39 0.18 n = (50, 50) 1.92 0.25 0.25 0.05
7.80 0.64 0.64 0.32 2.88 0.54 0.53 0.09
10.40 0.80 0.80 0.44 3.84 0.78 0.77 0.13
13.00 0.90 0.90 0.54 4.80 0.91 0.91 0.20

Table 4: Simulated powers of the RW, RF and W tests for Model (c).
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d RW RF W d RW RF W

0.00 0.047 0.036 0.030 0.00 0.42 0.040 0.027
2.00 0.15 0.13 0.11 0.80 0.11 0.10 0.07

n = (6, 6) 4.00 0.42 0.40 0.34 n = (20, 20) 1.60 0.30 0.29 0.17
6.00 0.69 0.67 0.57 2.40 0.57 0.56 0.32
8.00 0.84 0.83 0.71 3.20 0.78 0.78 0.46
10.00 0.91 0.91 0.78 4.00 0.91 0.91 0.57

d RW RF W d RW RF W

0.00 0.053 0.047 0.037 0.00 0.046 0.044 0.030
2.00 0.16 0.15 0.12 0.80 0.13 0.13 0.09

n = (6, 10) 4.00 0.43 0.42 0.34 n = (20, 30) 1.60 0.37 0.36 0.25
6.00 0.70 0.69 0.59 2.40 0.65 0.65 0.47
8.00 0.84 0.84 0.72 3.20 0.82 0.82 0.62
10.00 0.91 0.91 0.79 4.00 0.91 0.91 0.71

d RW RF W d RW RF W

0.00 0.046 0.042 0.033 0.00 0.045 0.044 0.030
1.30 0.12 0.12 0.09 0.80 0.11 0.11 0.06

n = (10, 10) 2.60 0.36 0.34 0.26 n = (20, 50) 1.60 0.31 0.31 0.17
3.90 0.63 0.62 0.46 2.40 0.57 0.56 0.32
5.20 0.81 0.81 0.60 3.20 0.79 0.79 0.46
6.50 0.92 0.92 0.71 4.00 0.92 0.92 0.58

d RW RF W d RW RF W

0.00 0.046 0.043 0.033 0.00 0.042 0.041 0.026
1.30 0.13 0.12 0.09 0.64 0.11 0.11 0.05

n = (10, 15) 2.60 0.37 0.36 0.26 n = (30, 50) 1.28 0.30 0.30 0.14
3.90 0.65 0.64 0.47 1.92 0.56 0.56 0.27
5.20 0.83 0.82 0.62 2.56 0.79 0.79 0.39
6.50 0.92 0.91 0.71 3.20 0.92 0.92 0.51

d RW RF W d RW RF W

0.00 0.046 0.044 0.030 0.00 0.044 0.044 0.025
1.30 0.13 0.13 0.09 0.48 0.10 0.10 0.05

n = (10, 30) 2.60 0.37 0.36 0.25 n = (50, 50) 0.96 0.27 0.27 0.10
3.90 0.65 0.65 0.47 1.44 0.53 0.53 0.19
5.20 0.82 0.82 0.62 1.92 0.78 0.77 0.30
6.50 0.91 0.91 0.71 2.40 0.92 0.92 0.39

Table 5: Simulated powers of the RW, RF and W tests for Model (d).
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d RW RF W d RW RF W

0.00 0.040 0.030 0.034 0.00 0.044 0.042 0.028
2.00 0.16 0.13 0.13 0.80 0.11 0.11 0.07

n = (6, 6) 4.00 0.44 0.40 0.38 n = (20, 20) 1.60 0.30 0.29 0.17
6.00 0.70 0.67 0.62 2.40 0.55 0.55 0.31
8.00 0.84 0.83 0.76 3.20 0.78 0.78 0.46
10.00 0.92 0.91 0.85 4.00 0.91 0.91 0.57

d RW RF W d RW RF W

0.00 0.050 0.045 0.035 0.00 0.040 0.037 0.038
1.90 0.15 0.14 0.11 0.80 0.10 0.10 0.08

n = (6, 10) 3.80 0.41 0.40 0.33 n = (20, 30) 1.60 0.31 0.30 0.23
5.70 0.67 0.66 0.55 2.40 0.59 0.58 0.42
7.60 0.83 0.83 0.71 3.20 0.81 0.81 0.60
9.50 0.90 0.90 0.77 4.00 0.92 0.92 0.74

d RW RF W d RW RF W

0.00 0.044 0.038 0.038 0.00 0.041 0.041 0.026
1.26 0.12 0.10 0.10 0.80 0.11 0.11 0.06

n = (10, 10) 2.52 0.35 0.33 0.29 n = (20, 50) 1.60 0.30 0.30 0.17
3.78 0.62 0.60 0.50 2.40 0.58 0.58 0.32
5.04 0.80 0.80 0.67 3.20 0.79 0.79 0.46
6.30 0.91 0.91 0.78 4.00 0.91 0.91 0.57

d RW RF W d RW RF W

0.00 0.045 0.042 0.033 0.00 0.043 0.042 0.041
1.24 0.12 0.12 0.09 0.64 0.11 0.11 0.08

n = (10, 15) 2.48 0.33 0.33 0.23 n = (30, 50) 1.28 0.31 0.31 0.21
3.72 0.60 0.60 0.44 1.92 0.59 0.58 0.38
4.96 0.80 0.80 0.59 2.56 0.81 0.81 0.56
6.20 0.90 0.90 0.68 3.20 0.93 0.93 0.70

d RW RF W d RW RF W

0.00 0.042 0.040 0.037 0.00 0.044 0.043 0.028
1.24 0.13 0.13 0.11 0.48 0.10 0.10 0.05

n = (10, 30) 2.48 0.36 0.36 0.29 n = (50, 50) 0.96 0.27 0.27 0.10
3.72 0.63 0.63 0.52 1.44 0.55 0.55 0.20
4.96 0.81 0.81 0.69 1.92 0.78 0.78 0.30
6.20 0.91 0.91 0.80 2.40 0.92 0.92 0.41

Table 6: Simulated powers of the RW, RF and W tests for Model (e).
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d RW RF W d RW RF W

0.00 0.050 0.042 0.042 0.00 0.054 0.049 0.047
0.90 0.13 0.10 0.11 0.40 0.11 0.11 0.10

n = (6, 6) 1.80 0.33 0.29 0.30 n = (20, 20) 0.80 0.27 0.26 0.24
2.70 0.60 0.54 0.56 1.20 0.53 0.51 0.47
3.60 0.80 0.77 0.77 1.60 0.76 0.75 0.69
4.50 0.92 0.90 0.89 2.00 0.90 0.90 0.85

d RW RF W d RW RF W

0.00 0.054 0.042 0.046 0.00 0.052 0.049 0.048
0.90 0.13 0.11 0.12 0.40 0.11 0.11 0.09

n = (6, 10) 1.80 0.37 0.34 0.34 n = (20, 30) 0.80 0.29 0.29 0.25
2.70 0.63 0.59 0.59 1.20 0.55 0.54 0.48
3.60 0.83 0.81 0.80 1.60 0.77 0.77 0.71
4.50 0.92 0.92 0.90 2.00 0.92 0.92 0.87

d RW RF W d RW RF W

0.00 0.049 0.043 0.044 0.00 0.051 0.049 0.046
0.64 0.11 0.10 0.10 0.40 0.12 0.11 0.10

n = (10, 10) 1.28 0.32 0.29 0.29 n = (20, 50) 0.80 0.30 0.30 0.27
1.92 0.59 0.55 0.54 1.20 0.57 0.57 0.51
2.56 0.80 0.78 0.76 1.60 0.79 0.78 0.72
3.20 0.93 0.92 0.90 2.00 0.92 0.92 0.88

d RW RF W d RW RF W

0.00 0.054 0.048 0.049 0.00 0.053 0.053 0.049
0.60 0.12 0.11 0.10 0.32 0.11 0.11 0.10

n = (10, 15) 1.20 0.31 0.29 0.28 n = (30, 50) 0.64 0.29 0.28 0.25
1.80 0.56 0.54 0.52 0.96 0.55 0.55 0.49
2.40 0.78 0.77 0.73 1.28 0.78 0.78 0.71
3.00 0.92 0.91 0.88 1.60 0.92 0.92 0.87

d RW RF W d RW RF W

0.00 0.055 0.052 0.051 0.00 0.054 0.052 0.049
0.60 0.12 0.11 0.11 0.26 0.11 0.11 0.10

n = (10, 30) 1.20 0.32 0.31 0.29 n = (50, 50) 0.52 0.30 0.29 0.25
1.80 0.58 0.57 0.54 0.78 0.55 0.54 0.47
2.40 0.80 0.79 0.75 1.04 0.79 0.79 0.71
3.00 0.93 0.92 0.89 1.30 0.93 0.93 0.88

Table 7: Simulated powers of the RW, RF and W tests for Model (f).
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d RW RF W d RW RF W

0.00 0.053 0.041 0.045 0.00 0.054 0.053 0.049
1.90 0.13 0.11 0.12 0.86 0.11 0.11 0.10

n = (6, 6) 3.80 0.33 0.29 0.30 n = (20, 20) 1.72 0.30 0.29 0.26
5.70 0.60 0.56 0.57 2.58 0.55 0.54 0.50
7.60 0.81 0.78 0.78 3.44 0.78 0.78 0.74
9.50 0.92 0.91 0.90 4.30 0.92 0.91 0.89

d RW RF W d RW RF W

0.00 0.056 0.052 0.051 0.00 0.054 0.053 0.048
1.90 0.13 0.12 0.11 0.86 0.12 0.11 0.10

n = (6, 10) 3.80 0.35 0.33 0.32 n = (20, 30) 1.72 0.30 0.30 0.27
5.70 0.61 0.59 0.58 2.58 0.56 0.56 0.51
7.60 0.82 0.81 0.80 3.44 0.80 0.79 0.76
9.50 0.93 0.92 0.91 4.30 0.92 0.92 0.90

d RW RF W d RW RF W

0.00 0.055 0.048 0.047 0.00 0.055 0.055 0.049
1.24 0.11 0.10 0.10 0.82 0.11 0.11 0.10

n = (10, 10) 2.48 0.28 0.27 0.25 n = (20, 50) 1.64 0.29 0.29 0.26
3.72 0.53 0.51 0.49 2.46 0.53 0.53 0.49
4.96 0.75 0.74 0.72 3.28 0.76 0.75 0.71
6.20 0.90 0.89 0.87 4.10 0.90 0.90 0.87

d RW RF W d RW RF W

0.00 0.055 0.052 0.048 0.00 0.054 0.054 0.048
1.24 0.11 0.11 0.10 0.64 0.11 0.11 0.10

n = (10, 15) 2.48 0.29 0.28 0.27 n = (30, 50) 1.28 0.27 0.27 0.24
3.72 0.54 0.53 0.50 1.92 0.50 0.50 0.46
4.96 0.76 0.75 0.72 2.56 0.74 0.74 0.70
6.20 0.90 0.90 0.88 3.20 0.89 0.89 0.86

d RW RF W d RW RF W

0.00 0.052 0.050 0.044 0.00 0.054 0.053 0.049
1.24 0.12 0.11 0.10 0.50 0.11 0.11 0.09

n = (10, 30) 2.48 0.30 0.29 0.27 n = (50, 50) 1.00 0.26 0.26 0.23
3.72 0.55 0.54 0.51 1.50 0.50 0.49 0.45
4.96 0.76 0.76 0.73 2.00 0.73 0.73 0.68
6.20 0.90 0.90 0.88 2.50 0.90 0.89 0.86

Table 8: Simulated powers of the RW, RF and W tests for Model (g).
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d RW RF W d RW RF W

0.00 0.048 0.032 0.044 0.00 0.044 0.041 0.044
1.16 0.13 0.10 0.12 0.54 0.11 0.10 0.10

n = (6, 6) 2.32 0.35 0.30 0.31 n = (20, 20) 1.08 0.30 0.29 0.26
3.48 0.61 0.56 0.56 1.62 0.57 0.56 0.49
4.64 0.80 0.77 0.76 2.16 0.79 0.79 0.71
5.80 0.91 0.90 0.88 2.70 0.93 0.92 0.86

d RW RF W d RW RF W

0.00 0.044 0.034 0.043 0.00 0.047 0.044 0.047
0.84 0.11 0.09 0.10 0.44 0.11 0.10 0.09

n = (6, 10) 1.68 0.30 0.26 0.27 n = (20, 30) 0.88 0.28 0.27 0.24
2.52 0.57 0.52 0.51 1.32 0.56 0.54 0.47
3.36 0.78 0.74 0.72 1.76 0.79 0.78 0.69
4.20 0.91 0.89 0.69 2.20 0.92 0.92 0.86

d RW RF W d RW RF W

0.00 0.044 0.036 0.042 0.00 0.050 0.046 0.049
0.80 0.12 0.10 0.11 0.34 0.10 0.09 0.09

n = (10, 10) 1.60 0.32 0.30 0.28 n = (20, 50) 0.68 0.27 0.26 0.23
2.40 0.57 0.55 0.50 1.02 0.50 0.49 0.42
3.20 0.79 0.77 0.73 1.36 0.74 0.73 0.64
4.00 0.91 0.90 0.86 1.70 0.90 0.89 0.82

d RW RF W d RW RF W

0.00 0.045 0.039 0.044 0.00 0.046 0.045 0.046
0.64 0.11 0.10 0.10 0.34 0.11 0.10 0.09

n = (10, 15) 1.28 0.29 0.27 0.25 n = (30, 50) 0.68 0.29 0.28 0.24
1.92 0.55 0.52 0.48 1.02 0.55 0.54 0.45
2.56 0.78 0.76 0.71 1.36 0.79 0.78 0.69
3.20 0.91 0.90 0.85 1.70 0.92 0.92 0.85

d RW RF W d RW RF W

0.00 0.045 0.039 0.045 0.00 0.054 0.051 0.052
0.48 0.11 0.09 0.10 0.30 0.10 0.09 0.08

n = (10, 30) 0.96 0.28 0.26 0.24 n = (50, 50) 0.60 0.25 0.25 0.21
1.44 0.54 0.51 0.46 0.90 0.48 0.48 0.40
1.92 0.77 0.75 0.68 1.20 0.73 0.72 0.62
2.40 0.91 0.90 0.85 1.50 0.90 0.89 0.80

Table 9: Simulated powers of the RW, RF and W tests for Model (h).
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