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Phagosomal Proteins of DICTYOSTELIUM DISCOIDEUM 

that at least 9 of 15 IMP of EP co-migrated with IMP of PM (data 
not shown). Th ese nine co-migrating IMP-bound Con A (Figure 2, 
lanes 2 and 4), three of which, gp170, gp85 and gp68, were previously 
undetected on Con A blots (Figure 1B), although an 85 kDa species 
were observed by surface-labeling (Figure 1D). Th eir detection likely 
was due to their increased relative concentration in the treated samples 
depleted of peripheral proteins. 

EP contained cytoskeletal proteins and cytoskeletally-associ-
ated glycoproteins. Since the cytoskeleton has been shown to play a 
critical role in the engulfment step of phagocytosis [22], EP were ex-
pected to contain cytoskeletal proteins responsible for pseudopod ex-
tension. Comparison of EP and detergent-insoluble cytoskeletons on 
Coomassie Blue-stained gels showed that at least ten species of EP 
co-migrated with proteins found in cytoskeletons (indicated in Figure 
3A). Myosin II heavy chain (215 ma), actin (43 ma), and the 30 kDa-
ABP were common to both fractions. Th e species at 200 kDa observed 
in cytoskeletons (lane 2) likely was a degradation product of myosin II 
heavy chain (determined by immunoblotting; data not shown) that oc-
curred despite the inclusion of protease inhibitors. 

In addition to sharing cytoskeletal proteins, EP and cytoskeletons 
contained four Con A-binding proteins (gp152, gp130, gp105, gp70; 
Figure 3B) that corresponded to glycoproteins apparently shared by EP 
and PM (see Figure 1B). Judging by their relative Con A-binding sig-
nals, the levels of gp152, gp130 and gpl00 were relatively higher in EP 
(lane 3) than in cytoskeletons (lane 4). In contrast, gp70 was a major 
Con A-binding protein of cytoskeletons (lane 4) that had a relatively 
weak signal in both EP (lane 3) and PM (see Figure lB, lane 3). 

Figure 1. EP contained PM proteins. A. Coomassie Blue-stained gel (60 mg protein/lane). B. Autoradiogram of blot probed with 125I-Con A. C. 
Autoradiogram of blot probed with 125I -WGA. D. Surface-labeled proteins (detection by ECL). B–D. 40 mg protein/lane. PM: lanes 1, 3, 5 and 7; 
EP: lanes 2, 4, 6 and 8. Co-migrating protein species in PM and EP are labeled to the right of each panel and molecular mass standards (kDa) are 
indicated to the left of each panel. In A, myosin II heavy chain (m), actin (43a). and a 30 kDa-actin-bundling protein (30 kDa-ABP) are indicated. 
In D, a false positive detected in non-biotinylated samples is marked (+). Also indicated (*) is a species at 73 kDa detected in EP but not PM. Spe-
cies labeled immediately to the right of A and D co-migrated with glycoproteins, whereas those labeled to the far right did not correspond to lec-
tin-binding species. 

Figure 2. Integral membrane proteins of the PM were in EP. Blot 
(15 mg protein/lane) probed with biotin-Con A. PM: lane 1; NaOH-
treated PM: lanes 2; EP: lanes 3; NaOH-treated EP: lanes 4. Molecu-
lar mass standards (kDa) are indicated to the left and labels to the right 
(off set for clarity) indicate co-migrating integral membrane glycopro-
teins. Only the 55-220 kDa region is shown. 
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Th e presence of actin (Figure 3C), the 30 kDa-ABP (Figure 3D) 
and myosin II (heavy chain; data not shown) in EP was confi rmed by 
immunoblotting. By densitometry (average of three experiments), there 
was twofold more actin and 1.6-fold more of the 30 kDa-ABP in cy-
toskeletons than in EP when fractions were compared on an equal pro-
tein basis. 

Changes in phagosomes as they matured. As phagosomes in mac-
rophages mature, hydrolytic enzymes and proteins that mediate vesi-
cle fusion are added through interactions with endosomal vesicles [ 11, 
12, 42] while other phagosomal molecules are removed [1] or recycled 
to the surface of the cell [24, 36]. Similarly, we observed changes in the 
protein profi les of D. discoideum phagosomes over time. 

Phagosomes collected 30 and 60 min after ingestion of beads con-
tained less cytoskeletal protein than EP (Figure 4A). Densitometry of 
Coomassie-stained SDS-gels showed that there was 80% less myosin 
II heavy chain and 50% less actin in 30-min phagosomes, compared 
to EP. Densitometric scans of immunoblots confi rmed a 60% reduc-
tion of actin (data not shown). Levels of the 30 kDa-ABP remained 
constant (verifi ed also by immunoblotting; data not shown). Experi-

ments with exogenously added myc-tagged 30 kDa-ABP (see Mate-
rials and Methods) ruled out the possibility that rebinding of this pro-
tein released upon cell lysis created an artefactual association. Species 
at 68, 65 and 41 kDa, detected at low levels in EP, seemed to increase 
over time. Since comparisons were based on equal protein loads, part of 
this apparent elevation might have been due to their increased contri-
bution to the sample that occurred with the concomitant loss of cyto-
skeletal proteins. 

Th ere were varied increases in Con A-binding signals between EP 
and 30- or 60-min phagosomes (Figure 4B). A signal from a species at 
70 kDa doubled, whereas a 43-kDa signal showed a fi vefold increase 
from EP to 30- and 60-min phagosomes. Other species (at 85, 50, 41, 
40, and 35 kDa) had modest increases of 10–20% in 30- and 60-min 
phagosomes relative to EP. Antibodies specifi c for gp130, a PM glyco-
protein that may function in phagocytosis [6], showed that levels of this 
molecule were relatively unchanged from EP to 60-min phagosomes 
(Figure 4C). Th is glycoprotein probably was the same as the 130-kDa 
species that displayed a relatively constant Con A-binding signal (Fig-
ure 4B). In contrast, there were no Con A-binding proteins that de-
creased signifi cantly from EP to 30- and 60-min phagosomes and no 
changes in the WGA-binding protein profi le (data not shown). 

Th e vacuolar H+-ATPase was identifi ed in phagosomes by im-
munoblotting (Figure 5A). Cells were fed beads for 10 min and then 
chased for 0, 15, 60 and 300 min. We prepared phagosomes using an 
alternative method (see Materials and Methods) in an eff ort to pre-
vent release of peripheral proteins like the 70-kDa proton pump sub-
unit. Prepared phagosomes were subjected to SDS-PAGE and west-
ern blot analysis using antibodies to the 100-, 70-, and 41-kDa proton 
pump subunits [15, 49]. As indicated in Figure 5A, all three subunits 
were substantially enriched in 10-min phagosomes relative to their lev-
els in the PNS, which was used as the background control because this 
extract contains lysosomes and the contractile vacuole network where 
the proton pump ATPase has been localized [32, 33]. Due to its loss 
during phagosome preparations, the signal for the 70-kDa subunit was 
weaker than the signals for the other subunits. Th e relative amounts of 
the three subunits in phagosomes appeared relatively constant during 
the chase. 

Th e immunoblotting fi ndings indicated that the complete vacuo-
lar proton pump was present in phagosomes perhaps as early as 10 min 
after beads were fed to cells. To determine if phagosomes were acidic 
(implying the proton pump was active) cells were fed FITC-labeled 
bacteria for 1 h., washed and then resuspended in fresh growth me-
dium in the presence of 3 μm acridine orange. Th is chemical accumu-
lates in acidic compartments where it fl uoresces red-orange. As seen in 
Figure 5B, > 90% of the FITC-containing phagosomes also contained 
suffi  cient acridine orange that fl uoresced red-orange (Figure 5C). Sim-
ilar results were also observed when beads were fed to cells (data not 
shown). Th e acidifi cation of phagosomes was consistent with the in-
creased levels of the ATPase as vesicles progressed through the phago-
cytic pathway. 

Discussion

Phagosomes from D. discoideum were examined in order to estab-
lish that these vesicles contained molecules from both the PM and the 
actin-based cytoskeleton. Enzyme assays verifi ed that latex bead-con-
taining phagosomes isolated on sucrose gradients were relatively en-
riched in lysosomal acid phosphatase and minimally contaminated with 
other membranes (Table 1). We also observed that membranes col-
lected in signifi cant amounts at the 10–25% sucrose interface on step 
gradients only when latex beads were fed to cells, indicating the purity 

Figure 3. EP contained proteins found in cytoskeletons. A. Coo-
massie Blue-stained gel (60 mg protein/lane). B. Autoradiogram of 
blot probed with 125I-Con A (40 mg proteidlane). C. Anti-actin im-
munoblot. D. Anti-30 kDa actin-bundling protein immunoblot. C and 
D. 20 mg protein/lane. EP: lanes 1, 3, 5 and 7; Cytoskeletons: lanes 2, 
4, 6 and 8. In A and B, molecular mass standards (kDa) are indicated 
on the left, and molecular masses of co-migrating protein species found 
in EP and cytoskeletons are indicated to the right. Labels are off set for 
clarity. 
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Figure 4. Changes in protein profi les during phagosome processing. A. Coomassie Blue-stained gel (60 μg proteinfl ane). B. autoradiogram of 125I 
Con A-binding proteins (40 μg proteidane). C. Anti-gp130 immunoblot (20 pg proteidlane). EP: lanes 1, 4 and 7; 30-min phagosomes: lanes 2, 5 
and 8; 60-min phagosomes: lanes 3, 6 and 9. In A, myosin II heavy chain (m), actin (a), and a 30 kDa actin-bundling protein (30 kDa-ABP) are in-
dicated. Molecular mass standards (kDa) are indicated to the left of A and B. Signals that changed in intensities are marked to the right of each 
panel. 

Figure 5. Phagosomes contained the vacuolar H+-ATPase and were acidifi ed. A. Protein blot (10 μg protein/lane) probed with antibodies to the 
100, 70, and 41 kDa subunits of the vacuolar H+-ATPase. PNS: lane 1; EP: lane 2; 30-, 60- and 300-min phagosomes: lanes 3,4 and 5, respectively. 
B. FITC-labeled bacteria ingested by D. discoideum cells. C. acridine orange fl uorescence coincided with the bacteria of the cells in B. Bar = 5 μm. 
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of our preparations. Comparative protein analyses verifi ed that a num-
ber of EP proteins were derived from the PM (Figs. 1, 2) and a popula-
tion of cytoskeletal proteins appeared to have relatively long-lived asso-
ciations (60 min) with phagosomes (Figure 3). 

Th e zipper model of phagocytosis [23] proposes that particle in-
gestion requires the interaction of cell-surface receptors with the entire 
particle surface and that the phagosome membrane remains closely ad-
hered to the ingested particle. If the mechanism of phagocytosis in D. 
discoideum proceeded according to the zipper model, we might expect 
an enrichment of receptors in newly formed phagosomes. Th e idea that 
specifi c receptors involved in mediating phagocytosis are included in 
nascent phagosomes is supported by the selective removal of Fc-recep-
tors from mouse macrophage PM during phagocytosis [32] and by the 
concentration of complement receptor in phagocytic vacuoles of human 
monocytes containing Legionella pneumophila [8]. Generally, however, 
we found that the relative levels of Con A-binding and surface (bio-
tin)-labeled signals within EP were comparable to those of PM (Figure 
1), indicating that phagosomes largely contained a representative sam-
pling of PM proteins. Th is fi nding was similar to the analyses by Cohn 
and co-workers [24, 34, 35] who found that phagolysosomes (contain-
ing latex beads) from macrophages and fi broblasts had the same rela-
tive proportion of cell-surface proteins as the PM of those cells. 

We did observe that several PM proteins appeared to be excluded 
or partially excluded from phagosomes. A WGA-binding protein, 
gp166, had a consistently weaker signal in phagosomes relative to PM 
(Figure 1C) and from the surface (biotin)-labeled protein profi le, there 
was an absence from EP of a prominent 17 kDa PM species (Figure 
1D). Clemens and Horwitz [8] observed the exclusion of class I and 
II major histocompatibility complex molecules from monocyte phago-
somes containing either E. coli or L. pneumophila, and suggested that 
PM proteins irrelevant to phagocytosis may be excluded during phago-
some formation. Alternatively, the depletion of species from D. discoi-
deum EP could be explained by their rapid return to the PM. Rapid re-
cycling is possible based on studies of D. discoideum pinocytosis that 
showed that turnover equivalent to the PM surface area occurs every 
45 min [51]. Muller et al. [36] showed that the recycling of macro-
phage membrane components from phagosomes back to the PM also 
was rapid and on the order of minutes. Finally, because the phagosomes 
were being acidifi ed (Figure 5), it is possible that degradation or a mod-
ifi cation of the proteins could have masked their detection. 

Th e association of cytoskeletal proteins in phagosomes (Figs. 3A, 
3C–D, 4A) was predicted from biochemical and microscopy studies 
showing that myosin, actin and actin-binding proteins are involved in 
macrophage [1, 12, 47, 48] and D. discoideum phagocytosis [16, 17, 58]. 
Reagents disrupting fi lamentous actin, such as cytochalasin A, inhibit 
D. discoideum phagocytosis [29], supporting the involvement of the cy-
toskeleton in this process. 

Th e three monitored cytoskeletal proteins varied in their degree of 
dissociation from phagosomes over time. Th ere were noticeable reduc-
tions in actin and myosin levels from EP to 30-min phagosomes (50% 
and 80%, respectively; Figure 4A and immunoblotting analyses). Th e 
loss of actin over time similarly was observed by immunofl uorescence 
microscopy of zymosan particles ingested by macrophages [1]. Th e ini-
tial high level of myosin, which is believed to have a nonessential role 
in phagocytosis [45], and its subsequent reduction may be attributed 
to its interaction with actin. In contrast, levels of the 30 ma-ABP re-
mained constant in EP, 30- and 60-min phagosomes. It was shown, 
however, by microscopy that the 30 kDa-ABP was enhanced in phago-
cytic cups and subsequently depleted from phagolysosomes [16, 17]. 
Re-binding of this protein to our phagosome preparations was min-
imal because added myc-tagged 30 kDa-ABP did not attach to vesi-
cles in whole cell lysates. A possible explanation for the even levels of 

the 30 kDa-ABP is that there was a relatively rapid and immediate dis-
sociation of the protein from phagosomes, and the signal observed on 
immunoblots was from residual protein. Also, because we lack an un-
changing internal marker that would allow normalization of samples 
(for example, on a per phagosome basis), our comparative analyses of 
EP, 30- and 60-min phagosomes were based on a equal protein loads. 
Th e large amounts of actin and myosin in EP meant that the other 
cytoskeletal and membrane proteins were under-represented. Th us the 
level of the 30 kDa-ABP likely was higher in EP than in 30- and 60-
min samples. 

Th e cytoskeletal fraction also contained PM proteins (Figure 3B), 
as observed by others [40], and has been suggested to contain recep-
tors that may associate with the cytoskeleton [39, 52]. Four of the nine 
integral membrane proteins of EP that bound Con A (gp65, gp105, 
gp130 and gp152; Figure 2) co-migrated with Con A-binding pro-
teins in cytoskeletons (Figure 3). We suggest that PM proteins found 
also in cytoskeletons and EP to be potential links between the PM and 
the cytoskeleton. Th e best candidate appeared to be gp105 because its 
Con A-binding signal was relatively strong in both EP and cytoskele-
tons. Because both gp130 and gp152 had weak signals in cytoskeletons, 
they either did not have a genuine interaction with the cytoskeleton or 
the detergent-extraction procedure used to prepare cytoskeletons dis-
rupted the interaction. Surface-labeling experiments support the idea 
that there is a 70-kDa PM glycoprotein (data not shown) so the pres-
ence of a Con A-binding protein at 70 kDa in cytoskeletons suggests 
its enrichment in this fraction. Whether this interaction occurs in vivo 
is under further study. 

Except for changes in actin and myosin levels, few changes were 
observed in Coomassie Blue-stained gels of EP, 30- and 60-min phago-
somes (Figure 4A). Blots probed with Con A, however, showed that 
some modifi cations of phagosomes had occurred. Con A-binding pro-
teins at 85, 70, and 43 kDa were enhanced in 30- and 60-min phago-
somes compared to EP (Figure 4B). Signals at 41, 40 and 35 kDa also 
appeared slightly stronger with time. Th e absence of signifi cant changes 
in maturing phagosomes of macrophages as monitored by SDS-PAGE 
was noted by Pitt et al. [41]. However, protein blots probed with spe-
cifi c antibodies for endosomal-associated proteins showed diff erences 
during phagosome processing. Muller et al. [36] saw an enrichment in 
mouse macrophage phago-lysosomes of a 21 kDa PM protein using 
immunoprecipitation with a monoclonal antibody. Mellman et al. [32] 
was able to follow the fate of the Fc receptor also with an antibody. 
Th e introduction of the vacuolar H+-ATPase to D. discoideum phago-
somes was detected by immunoblotting (Figure 5; [37]). Th us, changes 
in protein levels during phagosome processing may not be discerned 
when examining the proteins as a group, as in SDS-gels, and may re-
quire specifi c reagents to distinguish diff erences in quantities and orga-
nization. Similarly, examination of specifi c D. discoideurn proteins may 
reveal subtle changes in protein quantities and organization unnoticed 
in total protein comparisons. 

Another possible explanation for the lack of major detectable 
changes in the protein profi les of phagosomes is that indigestibility of 
latex beads prevents normal processing, as suggested by Chastellier et 
al. [10]. In this study, phagosomes containing Mycobacterium avium, 
Bacillus subtilis and latex beads were compared. Macrophage phago-
somes containing undegraded latex beads do not mature into phagoly-
sosomes. Th ey remain fusogenic with early endosomes and do not ac-
quire digestive enzymes as quickly as phagosomes containing bacteria. 
Since phagosome maturation and delivery of lysosomal enzymes in-
volve major events of membrane recycling that presumably require free 
membrane exchange [10, 50], the tightly wrapped membranes around 
latex beads appear to hinder this process. Dictyostelium cells are incapa-
ble of digesting latex beads, and it is plausible that phagosome matura-
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tion was retarded, as in macrophages fed latex beads. Th e unchanging 
levels of gp130 (Figure 4C), a postulated phagocytosis receptor [6] that 
was expected to be removed from vesicles, may have been the conse-
quence of indigestible beads that arrested normal membrane recycling. 

While it is possible that latex beads interrupted the conversion 
of phagosomes into phagolysosomes, acidifi cation, presumably by the 
vacuolar H+-ATPase, did occur rapidly (Figure 5). Th is fi nding agrees 
with immunocytochemical [37] and biochemical [38] studies of D. dis-
coideum that showed a proton pump to be present in vacuoles corre-
sponding to acidosomes, the contractile vacuole complex, lysosomes 
and phagosomes but not on plasma membranes [35, 55]. Phagosomes 
isolated 2 min after cells were exposed to beads showed no enrichment 
of the proton pump (unpublished observations) supporting the idea 
that pump, absent from the plasma membrane, is then delivered to the 
phagosome. Acidifi cation of phagosomes in macrophages also occurs 
quickly and is mediated by a vacuolar H+- ATPase [3, 28]. Bouvier et 
al. [3] suggested that acidifi cation and phagosome-lysosome fusion are 
regulated by diff erent mechanisms, which is consistent with our obser-
vation that acidifi cation of latex bead-containing phagosomes was not 
coupled to phagosome maturation. 

As expected, both PM and cytoskeletal proteins were found within 
nascent phagosomes. As latex bead uptake is likely nonspecifi c [9], 
the inability to detect an enrichment of specifi c receptors in this study 
was not a surprise. Bacteria or bacteria attached to latex beads (which 
would allow phagosome collection based on their buoyancy) would be 
more suitable ‘ligands’ for the identifi cation, and potentially, the isola-
tion of specifi c phagocytosis receptor(s) of D. discoideum. EP, however, 
contained molecules presumably involved in mediating membrane-cy-
toskeletal interactions. EP thus should be useful in identifying specifi c 
molecular associations through, for example, crosslinking studies, which 
should provide insights into the mechanisms linking membrane recep-
tors to the cytoskeleton during the process of phagocytosis. 
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