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Metastability And Plasticity In A Conceptual Model of Neurons

Bo Deng1

Abstract: For a new class of neuron models we demonstrate here that typical membrane

action potentials and spike-bursts are only transient states but appear to be asymptotically

stable; and yet such metastable states are plastic — being able to dynamically change from

one action potential to another with different pulse frequencies and from one spike-burst

to another with different spike-per-burst numbers. The pulse and spike-burst frequencies

change with individual ions’ pump currents while their corr esponding metastable-plastic

states maintain the same transmembrane voltage and currentprofiles in range. It is also

demonstrated that the plasticity requires two one-way ion pumps operating in opposite trans-

membrane directions to materialize, and if only one ion pumpis left to operate, the plastic

states will be lost to a rigid asymptotically stable state either as a resting potential, or a

limit cycle with a fixed pulse frequency, or a spike-burst with a fixed spike-per-burst num-

ber. These metastable-plastic pulses and spike-bursts maybe used as information-bearing

alphabet for a communication system that neurons are thought to be.

1. Introduction. A neuron is an information processing unit either as a signaltransmitter or a sig-

nal receiver or both. A communication system must have an alphabet to code information and each

symbol of the alphabet must be represented by a physical state of the system. A communication

system is also a dynamical process in which information is coded and decoded in real time. Thus,

an efficient communication system should process the physical alphabet states in transient, not to

wait for the system to settle down to its asymptotic states. Areliable communication system, on the

other hand, should have the transient alphabet states to behave like steady states, having robust and

distinct profiles for high tolerance to small deterministicperturbations as well as nondeterministic

noises. That is, an efficient and reliable communication system needs to have both ways for its

alphabet handling. In addition, a functional communication system must be able to shift from one

alphabet state to another for information encoding and decoding. A transient state behaving like

a steady state is referred to asmetastable. The capability to internally shift from one metastable

alphabet state to another is referred to asplastic.

The purpose of this paper is to demonstrate that for a class ofneuron models introduced in [4]

they do possess both properties of metastability and plasticity, and that both properties are mediated

by two ion pumps. More specifically, the neuron models treat the passive electromagnetic current

and the passive diffusive current of an ion species differently from the ion’s active current through

a one-way ion pump, with the passive currents modeled by nonlinear resistors and the ion pumps
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modeled by one-way inductors. It was shown in [4] that under the key assumption of having

only one one-way ion pump (with currentA1), among some other reasonable conditions, action

potentials (pulses) and spike-bursts can be generated, which are referred to as thenative action

potentialsand thenative spike-bursts, respectively. In this paper, we will show that if a second,

opposite-directional ion pump is included (with current−A2), then all the sudden a new, parallel

dimension is added to the phase space where the native pulsesand spike-bursts reside, and the

native pulses and spike-bursts can then roam into the new dimension and change their temporal

profile from one frequency or spike-per-burst number to another frequency or another spike-per-

burst number, but all the while maintaining their transmembrane voltage and current profiles from

their native phase space for many temporal episodes as if they were asymptotically stable. The new

dimension that allows the metastable-plastic pulses and spike-bursts to exist is defined precisely

by the absolute sum of the ion pump currents,IS = |A1| + |A2|, which will collapse onto the net

transmembrane-pump-current dimensionIA = A1 − A2 when the second pump is shut and closed

(A2 ≡ 0), which in turn will collapse the new plasticity dimension onto the native phase space

itself, wiping out all the meta expatriates.

Since ion pumps require neuron cell’s ATP-to-ADP biochemical energy conversion to operate,

these results suggest a possible direct link between cellular metabolism and possible electrophysi-

ological mechanism for neural metastability and plasticity. These results also support the view that

the membrane action potentials and spike-bursts can be viewed as alphabet states ([7, 13]) for a

communication system that neurons are thought to be.

2. The Mathematical Models. We will describe the neuron models here with sufficiently self-

contained essentials to construct them. We refer to [4] for amore comprehensive review.

First, the conceptual model of a neuron is conventional: thebilipid cell membrane is modeled

as a capacitor, and there are various transmembrane channels for ion transportation which can be

thought all in parallel at this point until an exception is tobe made otherwise later. There are two

types of ion current channels: the passive channels and the active channels. And the passive chan-

nels are further divided into two kinds: the electro channeldue to the electromagnetic force of all

ions, and the diffusive channel for a particular ion speciesdue to that ion species’s transmembrane

concentration. The active channels are made of ion pumps which transport individual ion species

in a fixed transmembrane direction: either inward or outward. The passive channels are not related

to biochemical energy conversion but the ion pumps are.

Here comes one of the key differences between our models and others in how to model these

channels. For our models, the electro channels are modeled by conductors (resistors) whoseIV -

characteristic is monotonically increasing withg ≥ 0 denoting the maximal slope which is the

conductance (usually considered in a relevant range of the voltage and current). The diffusive

channels are modeled by diffusors (negative resistors) because its effect is exactly opposite to the

electromagnetic force. As a result, the diffusive channel’s IV -characteristic is monotonically de-

creasing withd ≤ 0 denoting the minimal (or maximal in magnitude) slope which is referred to as

the diffusion coefficient. The conductors are used to model directly the current-voltage relation-
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Table 1: Model Taxon, Circuit Diagram, and Equivalent Equations

The pK+
−sNa++ Model The pK+

−dsNa++d Model
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K
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εINa,p
′ = VC − ĒNa − hNa(INa,p).

ship of ions’ electromagnetic gating mechanism while the diffusors are used to do the same but

for ions’ diffusive gating mechanism instead. Such gating mechanisms are modeled differently by

Hodgkin-Huxley type models which treat them in terms of gating probability evolution. In this

regards, our approach seems more phenomenological but witha trade-off gain in simplicity, and

more importantly in practicality because resistors and negative resistors are ubiquitous components

in circuitry.

After the resistor/negative-resistor assumptions on the passive electro and diffusive channels

comes the question of connectivity. The connectivity of a particular ion’s passive channels can be

one of two configurations: the electro and the diffusive currents going through separate parallel

channels; the electro and the diffusive currents going through a same channel. The former is re-

ferred to as aparallel conductor-diffusorand the latter is referred to as aserial conductor-diffusor.

Each configuration will give rise to a distinct characteristic to its joint IV -curve by Kirchhoff’s

Current and Voltage Laws. For the parallel connectivity, the total current of that ion species is

always a function of the common voltage over the parallel,I = f(V ). For the serial connectivity,

the total voltage across the series is always a function of the common current through the series,

V = h(I). When becoming truly nonlinear, the parallelIV -characteristic,I = f(V ), usually

takes the shape of the letter “N”, whereas the serialIV -characteristic,V = h(I), usually takes the

shape of the letter “S”.

For a parallel conductor-diffusor, letg ≥ 0 be the maximal conductance of the conductor and

d ≤ 0 be the minimal diffusion constant of the diffusor. Then the parallel conductor-diffusor has

an S-characteristic ifg + d < 0 and theIV -curve I = f(V ) is decreasing in a finite voltage

interval [v1, v2]. Similarly, the serial conductor-diffusor has anN-characteristic if1/g + 1/d < 0
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or g +d > 0, and theIV -curveV = h(I) is decreasing in a finite interval[i1, i2]. As demonstrated

in [4], the generation of action potentials require the parallel N-nonlinearity of an ion species, and

the generation of spike-bursts requires the parallelN-nonlinearity of one ion species and the serial

S-nonlinearity of another ion species. When a conductor-diffusor is decomposed into the sum

of a linear resistor and a ramp-like diffusor, the form is called canonical. One justification for the

canonical decomposition is the reason that the electromagnetic force affects all ion species in all the

voltage range, whereas the diffusive force of a particular ion only affects that ion’s transmembrane

flux in a finite range, outside of which the ion’s concentration on a given side of the cell will

saturate in one extreme or another, giving rise to a ramp-like characteristic.

The active channel of a given ion species consists of an ion pump for the ion species. An

ion pump is assumed to be fundamentally different from the passive channels in a couple ways.

First, ions are assumed to spiral their way through a pump rather in a straight manner. Second, a

particular ion species is transported only in a fixed directionality: either into the cell or outside but

not both, e.g., Na+ is pumped out from the cell and K+ is pumped into the cell. The first assumption

makes an ion pump to behave like an inductor, and the second property makes it to be a one-way

inductor. As a result, a particular ion species’s pump current, A, and the voltage across the pump,

V , are modeled by the relation,A′ = λAV , whereλ > 0 is called the ion’s pump coefficient. It is

theIV -characteristic of a variable inductor whose inductance ismediated by its current to fix the

directionality of the pump:A(t) > 0 if and only if A(0) > 0. One important consequence ([4])

of these assumptions of ion pumps is that the directionalityof an ion pump implies the polarity of

that ion’s active and passive resting potentials: an outward (resp. inward) cation pump resulting in

a positive (resp. negative) extracellular resting potential of the cation.

As shown in [4], these assumptions about a neuron can be systematically captured by a model

taxonomy, or a circuit diagram, or a system of differential equations, each is qualitatively equiv-

alent to another in model description. Table 1 gives an illustration for this methodology, showing

what is called a pK+−sNa++ model and a pK+−dsNa++d model, using K+ and Na+ as prototypical ion

species for illustration. Of the model notation, “pK+” stands for K+’s passive channels inparallel

connectivity while “sNa+” stands for Na+’s passive channels inserial connectivity. If the parallel

(resp. serial) connection does not produce a true nonlinearity in the shape ofN (resp.S), the model

is denoted by as cK+−sNa++ (resp. pK+−cNa+
+) with “c” standing forconductor domination over its

diffusor counterpart. Because the conductive channel is always a part of a conductor-diffusor com-

bination, a cX model can always be considered as a subsystem of a pX and an sX model, and,

similarly, a cXyY model is a subsystem of a pXyY model and an sXyY model.

The± signs for the subscript, on the other hand, denote the ion pumps’ directionality with K+

pumped into the cell (−) and Na+ pumped out the cell (+). Without a designationd, the pumps

are assumed to share a common parallel structure which in turn has a parasitic resistanceγ. With

it, the pumps are assumed to operate independently on their own with distinct pump coefficients

and distinct parasitic pump resistances. A subscript “0”, on the other hand, means the absence of

an ion pump for the referred ion species, as for the class of pK+
−sNa++cCl−0 models.
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Similarly description applies to other types of models, e.g., pNa++sK+
− models are the same as

pK+
−sNa++ models except that Na+’s passive channels are in parallel and K+’s passive channels

are in series with the polarities of the passive resting potentials and the directionalities of the ion

pumps remain unchanged.

For circuit diagrams from Table 1, a vertical box circumscribing a letterS stands for the serial

connectivity of the electro and diffusive currents of an ionspecies and a horizontal box circum-

scribing a letterN stands for the parallel connectivity of the electro and diffusive currents of an

ion species. So a horizontalN-box always goes with the pX taxon and a verticalS-box with the

sY taxon. As mentioned earlier, theS-nonlinearity and theN-nonlinearity are the most typical

nonlinearities a serial conductor-diffusor and a parallelconductor-diffusor will have, respectively.

The default current direction is chosen to be from the insideof cell to the outside, with the

exception given to the external forcing currentIext, and the ion pump directions which are fixed:

ANa > 0 is always outward and−AK < 0 is always inward. However, the net Na+-K+ion pump

current isIA = ANa −AK with the outward direction set as its default. Thus, the directed inductor

symbols stand for ion pumps which can be combined in a sub-parallel group when the pump

structure is a shared parallel or be separated in a disjoint parallel. As mentioned above, we will

assume that the polarity of an ion’s passive resting potential is automatically fixed by its pump

directionality, as in the cases of̄EK < 0 andĒNa > 0, respectively. The corresponding models

with ĒK > 0 or ĒNa < 0 cannot generate any oscillation as if for dead cells, nor be consistent

with an empirical fact that the active resting potentials for K+ and Na+ are negative and positive,

respectively. Thus, the circuit diagram and its model taxonuniquely define each other leaving only

the particular functional forms for the parallel and serialIV -characteristics to be specified.

For pK+
−sNa++ model’s system of differential equations from Table 1,I = fK(V ) defines the

parallelIV -characteristic of K+’s passive channels, which is always a function ofV by Kirchhoff’s

Current Law. Also,V = hNa(I) defines the serialIV -characteristic of Na+’s passive channels,

which is always a function ofI by Kirchhoff’s Voltage Law. The first equation of the circuitsystem

is derived from Kirchhoff’s Current Law that the sum of all transmembrane currents is conserved

at 0 and the device characteristic for the bilipid membrane as a linear capacitor:CV ′
C = IC. The

second and third equations are for the ion pumps, and, depending on whether or not the pumps

are joint or disjoint, they are slightly different as shown.The last equation is a standard practi-

cal approximation ([2]) for the serial conductor-diffusor’s IV -characteristics. More specifically,

for sufficiently smallε > 0, the equation quickly equilibriumizes to theINa,p-nullcline which is

purposely set to be theIV -curve of Na+’s serial conductor-diffusor. This is especially necessary

when the serialIV -curve shapes like anS, a so-calledS-hysteresis for which the current cannot

be explicitly solved in terms of the voltage. Note also that the circuit diagrams and the circuit

equations from Table 1 uniquely define each other as well.

Similarly, for a pNa++sK+
− model,I = fNa(V ) defines the parallelIV -characteristic of Na+’s

passive channels and, respectively,V = hK(I) defines the serialIV -characteristic of K+’s passive

channels, and both are left to be specified.
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Table 2:IV -Characteristic Curves

S-Nonlinearity N-Nonlinearity

V = hNa(I) I = fK(V )

pK+
∗ sNa+∗

• piecewise linear curve:

V =
1

g
Na

I +
1

d
Na

(I − i1)(i1 < I < i2)

+
1

d
Na

(i2 − i1)(i2 < I)

I = g
K
V + d

K
(V − v1)(v1 < V < v2)

+d
K
(v2 − v1)(v2 < V )

• smooth curve:

V = −

2
g
Na

+ 2
d
Na

(i2 − i1)2
[(I − i1)(I − i2)

2

−
1

3
(I − i2)

3 + i1i
2
2 −

1

3
i32]

I = −
2(g

K
+ d

K
)

(v2 − v1)2
[(V − v1)(V − v2)

2

−
1

3
(V − v2)

3 + v1v
2
2 −

1

3
v3
2]

V = hK(I) I = fNa(V )

pNa+
∗ sK+

∗

piewise linear curve:

V =
1

g
K

I +
1

d
K

(I − i1)(i1 < I < i2)

+
1

d
K

(i2 − i1)(i2 < I)

I = g
Na

V + d
Na

(v1 − v2)(V < v1)

+ d
Na

(V − v2)(v1 < V < v2)

Conditions: Conditions:

g
J

> 0, d
J

< 0, g
J
+ d

J
> 0

with J= Na+, or K+

g
J

> 0, d
J

< 0, g
J
+ d

J
< 0

with J= Na+, or K+

To complete any model for simulation, Table 2 gives some specific IV -characteristic func-

tional forms for both ions. Here, the voltage range[v1 + ĒJ, v2 + ĒJ] is dominated by ion J’s

transmembrane diffusion over its parallel electro channel, and the same for the current range

[i1, i2] for another ion’s diffusive channel over its serial electrochannel instead. The list includes

one type of piecewise linear functionals, which are canonical. More specifically, using theN-

characteristic,I = fK(V ), as an example,I = g
K
V represents the canonical conductor, and

I = d
K
(V − v1)(v1 < V < v2) + d

K
(v2 − v1)(v2 < V ) represents the ramp-like canonical diffu-

sor. Notation(a < x < b) with a ≥ −∞, b ≤ +∞ is aMatlab convention for step functions:

(a < x < b) = 1 if a < x < b and(a < x < b) = 0 otherwise. Witha = −∞ or b = +∞,

the notation is simplified to be(a < x < b) = (x < b) or (a < x < b) = (a < x), respectively.

The list includes one type of smooth functions which is quitedifferent from the listed piecewise-

linear type in shape. Another smooth and canonical type is given in [4] which, on the other hand,

is very close in shape to the piecewise-linear type. The dissimilarity of the cubic type from the

piecewise-linear type is used to demonstrate the metastable-plastic phenomenon for a wider range

of functional forms. A general method to generate all such functionals is also given in [4].

3. The Result. For more direct insights into some of the circuit models, it is more convenient

6



Table 3: Circuit Equations inVCIAISIJ,p Variables

The pK+
−sNa++ Model The pNa++sK+

− Model































CVC
′ = −[INa,p + fK(VC − ĒK)

+IA − Iext]

IA
′ = λIS[VC − γIA]

IS
′ = λIA[VC − γIA]

εINa,p
′ = VC − ĒNa − hNa(INa,p)































CVC
′ = −[IK,p + fNa(VC − ĒNa)

+IA − Iext]

IA
′ = λIS[VC − γIA]

IS
′ = λIA[VC − γIA]

εIK,p
′ = VC − ĒK − hK(IK,p)

to cast their circuit equations in another equivalent form by a change of variables for the pump

currentsANa, AK as bellow,
{

IA = ANa − AK

IS = ANa + AK

equivalently

{

ANa = 1
2
(IS + IA)

AK = 1
2
(IS − IA)

Here,IA is the net current for the Na+-K+ ion pump whereasIS is the absolute sum of the indi-

vidual pump currents, which is expected to correlate with the ATP-to-ADP energy conversion of

the neuron cells. It is straightforward to check that the equivalent systems for the pK+−sNa++ model

and the pNa++sK+
− model are as listed in Table 3. The equations inIA andIS for the xK+

−dyNa+
+d

models are not as clean nor convenient as for the xK+
−yNa+

+ counterparts, and they are not shown

here. As it will become clear later that the advantage to use theIAIS-form of the equations for the

xK+
−yNa+

+ models is the fact that the total absolute pump currentIS-variable is decoupled from the

rest of the equations, and the fact thatIS’s nontrivial nullcline,VC = γIA, coincides that ofIA’s

nullcline.

For the discussion on ion pump currents earlier in the Introduction, we have correspondingly

A1 = −AK and A2 = −ANa. Thus, without the Na+ pump ANa ≡ 0, the native K+ phase

spaceVCAKINa,p corresponds to the 3-dimensional subspaceIA = −IS of the full 4-dimensional

VCIAISINa,p-space. It is useful to notice that for the pK+
−sNa++ (resp. pNa++sK+

−) models, whatever

the nullcline configurations theVC, IA, INa,p (resp. IK,p) equations define in the native subspace

IA = −IS, they will automatically extend without alteration into the full space parallelly along the

IS-axis.

Regarding the metastability and plasticity of action potentials and spike-bursts, some relevant

results of [4] are summarized here. It was demonstrated thatto depolarized the membrane from

its resting potential, ion diffusion against concentration gradient across the cell membrane must

dominate in some membrane potential range (i.e.[v1 + ĒJ, v2 + ĒJ]). More specifically, action

potentials require only one ion species’s diffusion domination over its conductive channel in par-

allel. They are the prominent feature of pXcY or just simply pX models. On the other hand,

spike-bursts require one ion species’ diffusion domination over its conductive channel in parallel
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for the burst and another ion species’ diffusion dominationover its conductive channel in series

for the spikes (i.e. over a current range[i1, i2]). They are the prominent feature of pXsY models.

Thus, K+-mediated action potentials are the result of K+’s parallel diffusion domination in pK+−
and pK+

−sNa++ models. Similarly, Na+-K+ spike-bursts are the result of K+’s parallel diffusion

domination for the burst and Na+’s serial diffusion domination for the spikes in pK+
−sNa++ mod-

els. Likewise, Na+-mediated action potentials and K+-Na+ spike-bursts are among the prominent

dynamical features of pNa+
+sK+

− models. Furthermore, the presence of an ion pump for the ion

species having passive channels in parallel is absolutely essential for action potential generation

as well as for spike-burst generation — shutting it down turns off both types of spiking activities.

For examples, pK+−sNa+0 type models permit both types of spiking activities, referred to asnative

action potentialsandnative spike-bursts, respectively, but pK+0 sNa++ do not. In other words, there

are native oscillatory inhabitants in theVCAKINa,p-space but not in theVCANaINa,p-space, and the

roaming metastable-plastic oscillations into the full space VCAKANaINa,p-space (or equivalently

theVCIAISINa,p-space) are the result of the addition of the Na+ pump, opposite in directionality

against the K+ pump.

3.1. Action Potential Metastability and Plasticity for pXyY Models. As demonstrated in [4],

the K+-mediated (resp. Na+-mediated) action potentials are among the prominent features of

pK+
− type (resp. pNa++ type ) models for which the effective region of the action potentials is not

affected by the diffusion domination of ion Na+ (resp. K+). Certain but typical conditions need to

be satisfied for their generation. Chief among them is the condition of K+’s (resp. Na+’s) diffusion

domination of all passive conductive channels. For the pK+
−sNa++ (resp. pK+−sNa++) models, the

condition is.

d
K

+ g
K

+ g
Na

< 0 (resp. d
Na

+ g
Na

+ g
K

< 0).

As an example, Fig.1 shows that if action potentials are permitted in a pK+
−sNa++ model, they must

be metastable and plastic transient states.

The simulations are for the pK+−sNa++ circuit equations with the piecewise linear functionals

fK, hNa from Table 2. Here, the K+-mediated action potentials are also referred to as K+-pulses,

or just pulses for short. The start of a pulse is defined when the membrane potentialVC crosses the

IA-nullcline surface (which coincidesIS’s nontrivial nullcline surface) while increasing. A pulse

terminates when the membrane voltage crosses the same surface but while decreasing. The pulse

period (resp. frequency) is the time (resp. the reciprocal of) between the start and the end of a

pulse. The pulse refractory period is the time between the end of a pulse and the start of the next

pulse.

At a first glance, Fig.1(a) appears to show five distinct limitcycles. But, in fact, the only limit

cycle is the dashed cycle which is the native cycle on the native subspaceIA = −IS when the Na+

pump is shut off (ANa(0) = 0). In this case, Na+’s transmembrane diffusion does not dominate in

the effective region of the action potentials, and as a result, theINa,p-equation can be solved exactly

with ε = 0 andINa,p = g
Na

(VC−ĒNa) in the effective region. Substituting this relation into the first

VC-equation and eliminating theANa-equation sinceANa(0) = 0 from the pK+
−sNa++ equations of
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Figure 1: Dimensionless simulations of a pK+
−sNa++ model with parameter values:g

Na
=

0.17, d
Na

= −0.06, i1 = 0.5, i2 = 1, ĒNa = 0.6, g
K

= 1, d
K

= −1.25, v1 = 0.5, v2 =

2, ĒK = −0.7, C = 0.01, λ = 0.05, γ = 0.1, Iext = 0, ε = 0.001. (a) The phase portrait in

the ISVCIA-space with the native limit cycle (dashed cycle) and 4 transient orbits (solid cycles).

The 2-dimensional nullcline configuration for theVC, IA variables extends cylindircally into the

IS-dimension. (b) Top panel, time series plot for a typical pulse train. Bottom panel, showing

the frequency of K+-pulses, and the ratio of the pulse period over the refractory period between

adjacent pulses, all averaged over integration time interval [0, 50] for each selectedIS value.

Table 1 lead to a 2-dimensional system. As a result, the native attractor is a limit cycle. However,

when the Na+ pump is on withANa(0) > 0, theANa-equation is included in the system which now

becomes 3-dimension. The four solid pieces of Fig.1(a) are only transient orbits over different

ranges of the absolute pump current variableIS. (This point becomes obvious in the simulation

Fig.3(e,f) for a pK+−dsNa++d model.) Notice that every pulsing episode in theVCIA-profile tracks

around the sameVC-nullcline surface, appearing asymptotically stable, butnonetheless drifting

slowly in the absolute pump currentIS.

The top panel of Fig.1(b) shows a typical train of pulses in time-series. The bottom panel

of Fig.1(b) shows the averaged pulse frequency over a fixed time periodt = 50 for a discrete

set of startingIS value. Notice from the frequency plot that the greaterIS, the greater the spike

frequency. This is perfectly consistent with theIA equation for whichIS(t) can be viewed as a

positive proportionality coefficient for the rate of changeIA
′(t), and the greater theIS, the shorter

the period of the metastable pulse. Also notice that the ratio of the spike period over its refractory

period changes little.

3.2. Spike-Burst Metastability and Plasticity for pK+
−sNa++ Models. Similarly, the Y-spike-X-

bursts are among the primary features of pXsY models for which the effective region is affected

by the diffusion domination of both ion species. Again, certain but typical conditions need to be

9



satisfied for their generation. Chief among them for a pK+
−sNa++ model is the same K+’s diffusion

domination condition

d
K

+ g
K

+ g
Na

< 0

and the condition of Na+’s diffusion intervention

hNa(i1) + ĒNa < v2 + ĒK.

Fig.2 shows that if Na+-spike-K+-bursts exist in a pK+−sNa++ model, they must be metastable and

plastic transient states.

Here, the generation of spike-bursts can be described briefly as follows. What is an X-mediated

action potential for a pX type model now becomes an X-mediated burst for a corresponding pXsY

type model. More specific, the start and the end of a burst for the pXsY model take place at the

same locations on theIAIS-nullcline surface as the action potentials do for the pX model. But

unlike the action potentials, now Y’s diffusion does intervene, and the interrupted action potential

is now referred as aburst. In addition, the Y-mediated spikes are then inserted into the intervened

period of the burst. For the simulation, the start and the endof a Y-spike are defined when the

corresponding orbit crosses the middle voltage value,ĒY + [hY(i1) + hY(i2)]/2, of theS-shape

characteristic of ion Y’s serial conductor-diffusor when the membrane voltage increases and de-

creases, respectively. The spike period and frequency are defined similarly.

Fig.2(a) shows the time-series of a typical spike-burst. The isospike number 3 would remain

fixed for many more bursts before changing to 2 or 4 depending on specific models. That is, they

appear to be asymptotically stable over a finite and long period of time, but are not in actual-

ity. Fig.2(b) shows the native spike-burst in dots and a few metastable spike-bursts in solid with

isospike number equal to 7, 3, 2, 1, respectively, each restarted at a different value ofIS. If one

starts at the left most 7-isospike burst and continues the simulation for the entirely transition to

reach the 1-isospike burst, the plot would show all the isospiking bursts, and all then-to-(n − 1)

bursting transitions. Various measurements of the isospike bursts are collected in Fig.2(c). It in-

cludes the spike frequency — the reciprocal of the averaged time between the start and the end of

a spike during a burst; the burst frequency which is similarly defined; the refractory-period which

is the time from the end of a burst to the start of the next burst. The figure also shows the ratio

of the burst-period to the refractory-period as a function of the absolute current. It also shows

the isospike number plot. Notice that the spike frequency (SF), the burst frequency (BF), and the

isospike number (IN) are related by SF = BF× IN.

Fig.2(d) shows a rough partial partition for isospike bursts in terms of individual ion pump

currents . It is the same partition in theIA, IS variables but translated to theANa, AK variables.

The region below the dash line corresponds toIA = ANa − AK > I∗
A (whose definition is defined

below). This region is then partitioned by linesIS = ANa+AK = constant, which in reality should

be interpreted as a narrow region in which transitions ofn-to-(n − 1) isospike bursts take place.

The planar region should be interpreted as an open region in the full state space with theVC, INa,p

variables hidden from the view. In fact, the full open regioncontains the joint, attractive (or
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Figure 2: (a) The time-series plot for a typical spike-burst. (b) The dotted spike-burst is the native

spike-burst in the invariance spaceIA = IS (or ANa = 0). Metastable 7-, 3-, 2-, 1-isospike bursts

are shown along theIS-axis. (c) Various frequencies plot. (d) A rough partition of metastable

isospiking bursts in terms of individual ion pump currents,with other variables occupying an open

region around the attracting branch of theVCINa,p-nullcline corresponding to the refractory phase

of the spike-bursts.
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conductive) branch of theVCINa,p-nullcline onINa,p’s nullcline surface, which in turn corresponds

to the refractory phase of the spike-bursts (see [4] for a more detailed geometric illustration on

the nullcline surfaces). Here, the joint conductive branchends when K+’s diffusion becomes

dominant. In the voltage range for the piecewise-line case,K+’s diffusive domination occurs in

[v1+ĒK, v2+ĒK]. Corresponding to the left critical valuev1+ĒK, K+’s diffusive domination starts

at theI∗
A value in theIA variable. For any initial point from then-isospike region, the immediate

transient burst has exactlyn spikes. The start of all bursts takes place precisely at theI∗
A value in

theIA variable and atv1 + ĒK in theVC variable, respectively.

3.3. Spike-Burst Metastability and Plasticity of Other Models. To show the ubiquity of

metastable-plastic spike-bursts, three different modelsare used here. We begin with an alterna-

tive pK+
−sNa++ model from Table 1 for which the cubic polynomial functions from Table 2 are used

for K+’s N-shaped characteristic and Na+’s S-shape characteristic. The functional forms are sig-

nificantly different from the piecewise-linear ones, preserving only the properties that[v1, v2] and

[i1, i2] are the diffusion dominated ranges for K+, Na+, respectively. By the method of [4], all the

functional forms can be determined from their derivatives in general, and for the cubic polynomials

in particular, they are obtained as below:

fK
′(V ) = −

4(g
K

+ d
K
)

(v2 − v1)2
(V − v1)(V − v2), and fK(V ) =

∫ V

0

fK
′(v)dv,

hNa
′(I) = −

4
g
Na

+ 4
d
Na

(i2 − i1)2
(I − i1)(I − i2), and hNa(I) =

∫ I

0

hNa
′(i)di.

A simulation is shown in Fig.3(a,b). Fig.3(c,d) shows a simulation of the pNa++sK+
− equations

from Table 3 with the piecewise-linearIV -curves from Table 2. And last, Fig.3(e,f) shows a

simulation of the pK+−dsNa++d equations from Table 1 with the piecewise-linearIV -curves from

Table 2. Unlike the others, the absolute pump currentIS drifts down and at a faster rate. This is

true for both the spike-bursts as shown and the action potentials not shown. Again, dotted curves

are for the native spike-burst attractors.

3.4. Spike Atrophy — Loss of Plasticity with One Ion Pump. As mentioned earlier that the

native action potential is a 2-dimensional limit cycle on a planar subspace of the invariant space

IA = −IS when the Na+ pump is shut (ANa = 0). We can see from Fig.1(a) that the metastable-

plastic pulses exist only in the extended space along theIS-axis when the second pump is turned

on. We can also see that when projected onto the subspaceIA = −IS along theIS-axis, all the meta

pulses take up the same profile as the native limit cycle because the nullcline configuration of the

equations that determines the shape of the oscillations is independent of theIS variable. Because

the system is autonomous and the metastable-plastic pulsesoccupy the sameVCIA-phasespace

under projection, they cannot exist without the extra dimension provided byIS, or equivalently the

second opposite-directional Na+ pump.

The same argument and conclusion can also be made for spike-bursts. In particular, without

the Na+ pump, the system is 3-dimensional and the spike-burst is a 3-dimensional structure. The
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Figure 3: Metastability and plasticity simulations for various models. (a,b) pK+−sNa++ model with

the cubicIV -curves. Parameter values:v1 = 0.5, v2 = 2.5, g
K

+ d
K

= −1, i1 = 0.25, i2 =

0.8, 1
g
Na

+ 1
d
Na

= −2.27, ĒNa = 0.6, ĒK = −0.7, C = 0.01, λ = 0.5, γ = 0.1, Iext = 0, ε =

0.0005. (c,d) pNa++sK+
− model with the piecewise-linearIV -curves. Parameter values:g

Na
=

1, d
Na

= −1.21, v1 = −0.7, v2 = −0.2, ĒNa = 0.6, g
K

= 0.17, d
K

= −0.08, i1 = 0.18, i2 =

0.5, ĒK = −0.7, C = 0.01, λ = 0.05, γ = 0.1, Iext = 0, ε = 0.0005. (e,f) pK+
−dsNa++d model

with the same parameter values as Fig.2 except forγ
Na

= 0.1, γ
K

= 0.05, λ
Na

= 0.05, λ
K

= 0.1.
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corresponding native spike-burst lies in the subspaceIA = −IS. Again, for the same reason as

above, metastable-plastic spike-bursts cannot exist without the additional dimension provided by

theIS-variable.

4. Discussions.The main result of this paper can be summarized as follows.

1. pX±yY∓ and pX±dyY∓d models withy = c and s can generate metastable-

plastic action potentials of varying frequencies at different absolute ion pump

currents.

2. pX±sY∓ and pX±dsY∓d models can generate metastable-plastic spike-bursts of

varying isospike numbers at different absolute ion pump currents.

3. The plastic spike-bursts of pX±sY∓ and pX±dsY∓d models are arranged in the

order of natural number progression in their isospike numbers against the abso-

lute ion pump current.

4. The action potentials and spike-bursts of pX±yY0 models withy = c and/or s

cannot be plastic.

These results cannot be derived from Hodgkin-Huxley type models ([9, 6, 12, 11, 1, 10, 8, 3])

because the latter do not distinguish neurons’ ion pump dynamics from their electro and diffusive

counterparts.

Many open questions remain. For examples, what is the largest isospike number that a given

neuron model can have? How is it related to the native spike-burst? If this largest isospike number

is finite, what is the optimal range in the isospike numbers that a neuron model should have? How

does a communication system work based on the assumption that the metastable-plastic spike-

bursts are information alphabet? Last and perhaps most importantly, does the phenomenon of ion-

pump-mediated metastability and plasticity exist in real neurons? These questions and conceivably

many more need to be explored elsewhere. A few of which will bestudied in [5].

Acknowledgement:Special thanks to Jack Hale and Shui-Nee Chow who believed inthe project

in its inception when the outcome was nothing but uncertain.
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