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Optimal N fertilizer rates for corn (Zea mays L.) vary substantially within and among 

fields, and by corn growth stages. Improving N side-dressing management can improve 

fertilizer use efficiency, farmers’ profitability, and the sustainability of crop production. 

The objective of this study is to introduce a framework along with a methodology that 

can find the site-specific economically optimal N rates (EONRs) within one field for a 

particular growing season. An on-farm experiment was conducted in the 2019 corn 

growing season. A base N rate was applied uniformly on the field. NDRE images from 

the Sentinel-2 satellite were observed during the V10 to V12 corn growth stages. 

Experimental side-dressing N rates ranging from 0 to 177 kg N/ha were applied. The 

marginal return of N fertilizer was calculated using estimated yield response functions 

assuming various NDRE levels. Consistent with agronomic expectations, results showed 

that the parts of the field with lower NDRE values had higher marginal returns from side-

dressing N, and the areas with the higher NDRE values needed less N fertilizer to reach 

their yield plateaus. Simulations predicted that compared to the side-dressing strategy the 

farmer would have implemented if not participating in the OFPE, profits could have been 

increased by $54.85 per hectare by using the methodology presented, applying site-

specific optimal N side-dressing can increase $ 4.53 per hectare compared to applying 



	

	

	
																																																																																																																																																												
																																																																																																																																																															
	
	

field-level optimal N. Results may vary under different base N and weather situations. 

Further study is needed to improve the featured methodology, for example, by 

considering adding covariates and finding better data resources for vegetation index 

maps.
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Introduction 

The optimal nitrogen (N) fertilizer rate for corn (Zea mays L.) varies substantially within 

and among fields, but it also varies by growth stages caused by both supply of N from the 

soil and the crop’s demand for N (Malzer et al. 1996; Harrington, Nafziger, and Hoeft 

1997; Dickson, Hendrickson, and Reid 2000; Bausch and Diker 2001; P. C. Scharf and 

Lory 2002). In agricultural productions, lower yield may be caused by under-fertilization 

(Mamo et al. 2003; Magney, Eitel, and Vierling 2017). However, excess N application 

may cause nitrogen to leach into the soil (Cameron, Di, and Moir 2013), pollute 

groundwater and surface water (Miao, Stewart, and Zhang 2011; Meisinger and Randall 

1991), and emit greenhouse gas to the atmosphere (Fowler et al. 2013). 

The application of precision agriculture (PA) is to identify variations of input 

needs in the field and to address them. This could reduce and optimize the use of 

resources and thus can promote a higher economic return for farmers and a better 

environment for humans (Stafford 2000; Zhang and Kovacs 2012). Site-specific nitrogen 

side-dressing is a promising precision agriculture practice that provides fertilizer closer to 

the time when it is needed by the crop and provides different amounts of fertilizer to each 

individual plant according to its own demand. Unlike one-time base applications, side-

dressing has more flexibility to address weather variability after planting and offers a 

better-synchronized fertilizer availability according to the crop’s nutrient uptake (Rutan 

and Steinke 2018). For example, it can avoid wet spring-caused N losses and improve 

fertilizer efficiency by applying accurate in-season crop fertilizer demand rates (Silva et 

al. 2005). Site-specific nitrogen side-dressing has been gaining much attention recently 
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thanks to technologies that make necessary information more easily accessible to support 

fertilizer decision makings. For example, satellite images, aerial photos, chlorophyll 

meters, and canopy sensing are commonly used options for side-dressing applications 

(Warren and Metternicht 2005; Zhang and Kovacs 2012; Stafford 2000; Dickson, 

Hendrickson, and Reid 2000). They could monitor crop growth status as well as input 

stresses, and thus provide growers with tools to detect crop N deficiency and guide N 

managements. The ability to detect crop N status right before N side-dressing can help 

with ensuring that the crop N demand is satisfied and also avoiding a surfeit of N 

application. 

As side-dressing becomes more and more widespread, there has been substantial 

interest in improving the efficiency of nitrogen use by crops in the last couple of decades. 

P. C. Scharf et al. (2011) provided evidence that sensor-based N application rates 

performed better than nitrogen rates chosen by farmers. There are also substantial works 

that have shown evidence that optimal nitrogen fertilizer rates for corn vary substantially 

within and among fields, and side-dressing or site-specific fertilization could help with 

profit maximization (P. C. Scharf and Lory 2002; Ruffo et al. 2006; Hively et al. 2009; 

Franzen et al. 2016; Paiao et al. 2020; X. Wang et al. 2021). 

The variability of nitrogen needs among fields has been recognized and attempted 

to address by previous studies (P. Scharf et al. 2002; P. C. Scharf and Lory 2009; Kitchen 

et al. 2010). Sufficiency Index (SI) has been widely used to help with N side-dressing 

rate decision makings (Varvel et al. 2007; Holland and Schepers 2010). However, by 

setting up the N-rich reference area and calculating the SI, the recommended side-

dressing N rates usually target to achieve the yield potential or maximizing yield, instead 
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of using fertilizer more efficiently and maximizing profits. Besides maximizing yield, P. 

C. Scharf and Lory (2002), Dellinger, Schmidt, and Beegle (2008), Barker and Sawyer 

(2010), and X. Wang et al. (2021) proposed field-level economically optimal side-

dressing N rates based on corn and fertilizer prices. However, various in-season N has 

been uniformly applied to each field in these studies. In other words, previous studies 

have been mainly focusing on addressing the variability of nitrogen needs among fields 

and providing the field-level variable rates of nitrogen fertilizer. In order to further 

recognize and address the variability of optimal N rate within a field, the potential of 

using different Vegetation Indices (VIs) for estimating crop parameters has been 

analyzed and compared (Hunt Jr et al. 2011; Magney, Eitel, and Vierling 2017). They 

showed that VIs that measure light reflectance have the potential of providing N side-

dressing needs across a field due to their ability to indicate leaf chlorophyll concentration 

and therefore, indicate the crop N content (Raun et al. 2002; Inman et al. 2007; Shanahan 

et al. 2008; Shaver, Khosla, and Westfall 2011; Montealegre et al. 2019; Tilling et al. 

2007). Nevertheless, those papers only confirmed if yield values, crop N uptake, and VIs 

are correlated or not, and tested how good the VIs are as proxies for crop N status. 

Although X. Wang et al. (2021) showed that it is promising to use machine learning 

(ML) methods to improve corn N management on a split-plot scale, there is very limited 

research providing site-specific recommendations for the amount of fertilizer that should 

be applied for side-dressing in each individual site. As a result, further refining fertilizer 

decision algorithms is needed for farmers to make site-specifically in-season N 

fertilization decisions. Thus, this paper aims at filling up the gap of the lack of 

appropriate decision support systems for site-specifically in-season N applications. 
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Due to the development and accessibility of variable rate devices, farmers and 

researchers are able to conduct on-farm experiments at a field scale (Bullock et al. 2019; 

Kyveryga 2019). This allows researchers to explore the potential of using precision 

agriculture technologies to detect yield variability patterns and provide fertilizer 

recommendations; and farms can make decisions based on recent data from their own 

fields, which will lead to improved productivity and higher economic returns (Alesso et 

al. 2019; Laurent et al. 2019; Kyveryga 2019). The on-farm precision experimentation 

(OFPE) in Illinois provided the data as well as the feasibility of this study: finding the 

economically optimal N side-dressing rates across a field. 

The objective of this paper is to develop a framework and an algorithm that can 

provide recommended site-specific economically optimal nitrogen rate (EONR) within a 

field to corn producers so that the highest profit can be achieved. Side-dressing data from 

a field in Effingham County, IL in the 2019 corn growing season, as well as Normalized 

Difference Red Edge (NDRE) index collected from satellite during V10 to V12 corn 

growth stages are used to meet the objective of this study. The Shape constrained additive 

model (SCAM) approach is used to estimate the production function. Estimated yield in 

each site, corn price, nitrogen price, and side-dressing N rates are used to calculate the 

optimal level of site-specific N side-dressing rates. Economically optimal N rates 

(EONR) are determined as the side-dressing N that can provide the highest economic 

return. 

Results indicate that the marginal impact of a change in N side-dressing rate on 

corn yield significantly depends on observed NDRE values. In the experimental field of 

this study during the 2019 corn growing season, the optimal N side-dressing rates by sites 
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are positively correlated with the NDRE values observed on June 30th, 2019. According 

to the results, there are a substantial number of the sites that have optimal side-dressing N 

rates less than the maximal side-dressing N rate in this experiment, with optimal side-

dressing N rates ranging from 135 to 176 kg/ha. And a higher estimated profit can be 

observed by applying site-specifically side-dressing N, compared to uniformly applied N. 

In addition, the algorithm is further evaluated with different NDRE values and N side-

dressing rates. Results show a wide range of the optimal N side-dressing rates across the 

field, which showed evidence of the feasibility of the algorithm providing site-specific 

economically optimal side-dressing N rates to farmers.
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Conceptual Framework 

The ultimate goal of this study is to find the economically optimal side-dressing nitrogen 

amount site-specifically based on vegetation index values that vary across fields, instead 

of merely confirming if yield values and VI are correlated or not. To achieve this goal, 

two steps are vital. The first is to understand the marginal impacts of additional N on 

increasing yield under different current N status, and the second is to find a reliable 

indicator that can reflect crops’ current N status. 

For the first step, a yield response function based on N side-dressing rates and 

contains the in-season crop N status at a given level of base1 nitrogen level is the key. 

Such a function may be written as follows: 

𝑦! = 𝑓(𝑁!", 𝑁!# , c! , z$%"&)  (1) 

In this equation, 𝑖 indicates the 𝑖th site in the experimental field. The dependent 

variable, 𝑦, is the corn yield in each site. 𝑁!" is the N side-dressing rate. c! is a multi-

element vector with site characteristics that vary spatially within a field but not much 

temporally, such as soil sand content and elevation. z$%"& is a multi-element vector of the 

weather information after side-dressing, which varies temporally but not much spatially 

within a field. 𝑁!# is the corn N content right before side-dressing, which depends on N 

content existing in the soil before the base application (𝑁!'), N base rate (𝑁!(), whether 

	

1	The	base	N	in	this	experiment	was	uniformly	applied	to	all	subplots.	
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applied before or during planting, soil characteristics (c!), and pre-side-dressing weather 

(z)*&'): 

𝑁!# = 𝑔(𝑁!' , 𝑁!( , c! , z)*&')  (2) 

A two-stage maximization problem can be shown in the two functions stated 

above. The first stage is to determine the time and rates for the base N and the second 

stage is to determine the time and rates for the side-dressing N. In this paper, base N is 

treated as given and only focuses on solving the second-stage maximization problem. 

Based on correlations between vegetation indexes (VIs) and crop N status found 

in previous studies, VIs showed promising to be used as an indicator of crop N status (K. 

Wang, Huggins, and Tao 2019; Paiao et al. 2020; Bausch and Diker 2001; Shaver, 

Khosla, and Westfall 2011), and therefore used as the signal to provide crop N 

information. Thus, VI can be a good proxy for 𝑁!#, the crop N content right before side-

dressing. Then, the understanding of the impact of side-dressing N fertilizer on corn yield 

at different VI levels becomes the key. 

Once the N content before side-dressing, 𝑁!#, is quantified using the VI proxy, the 

following second-stage profit maximization problem can be solved: 

max
+!"
  𝛱! = 𝑃# ∗ 𝑓(𝑁!", 𝑁!# , c! , z$%"&) − 𝑃+ ∗ (𝑁!" + 𝑁!()  (3) 

Where 𝑃# and 𝑃+ are the prices of corn and nitrogen fertilizer, respectively. The 

first term on the right-hand side of the equation is the revenue from corn production in 

site 𝑖. The second term of the equation is the cost of the base N plus the side-dressed N 

fertilizer in each site. 𝑁!( is fixed (the same for all the sites within the field) and known at 
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the time of determining the side-dressing N rate. Since the Sentinel-2 satellite images are 

free to the public, the cost of acquiring NDRE data is assumed to be zero. 

The first-order condition to the above profit-maximization problem is as follows: 

	𝑃# ⋅
𝜕𝑓(𝑁!", 𝑁!# , c! , z$%"&)

𝜕𝑁!"
= 𝑃+  (4) 

The above condition states that the maximum profit is achieved when a change in 

revenue is zero. In other words, when one more unit of nitrogen is applied, the increased 

revenue (𝑃# ∗ 𝛥𝑦) is the same as the cost of the additional unit of nitrogen (𝑃+). 

Figure 1 illustrates the concepts visually that economically optimal N rates are 

different on different yield response curves based on VI values. 
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	Literature Review 

In the precision agriculture literature, there has been much work done regarding the 

improved efficiency of nitrogen fertilizer use, especially using crops’ current N status to 

support in-season fertilization decision making (T. M. Blackmer and Schepers 1996; 

Dellinger, Schmidt, and Beegle 2008; Holland and Schepers 2010; Williams et al. 2010; 

Zhang and Kovacs 2012; Franzen et al. 2016; Khalilian et al. 2017; Paiao et al. 2020; X. 

Wang et al. 2021). The most traditional method of estimating crops’ nitrogen needs was 

taking samples of plants and soil and then performing chemical testings (Magdoff 1991). 

However, this requires considerable repeated sampling and time for laboratory analysis, 

which may be expensive and cause a delay in fertilizer application (Dickson, 

Hendrickson, and Reid 2000). 

In the effort to overcome the weakness of testing plants and soil samples, 

researchers have been using optical sensors to indicate crop N status searching for useful 

information for in-season N fertilizer decision makings (Wood et al. 1992; Hansen and 

Schjoerring 2003; Oliveira et al. 2013; Yuan et al. 2016; Padilla et al. 2020). Hand-held 

chlorophyll meters, for example, SPAD-502 (T. Blackmer and Schepers 1995; Padilla et 

al. 2018), is one of the commonly used optical sensors (T. Blackmer and Schepers 1995; 

P. C. Scharf, Brouder, and Hoeft 2006; Hatfield et al. 2008; Yuan et al. 2016). However, 

despite their abilities to measure crop N status and provide the results quickly, the 

measured area is generally small and further calibration is usually required, so creating 

appreciable replication and measurement protocols could be challenging for farmers and 

researchers (Shanahan et al. 2008; Monostori et al. 2016). 
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Considering the limitations of using chlorophyll meters, reflectance sensors have 

shown the advantages of providing crop status stably and reliably in a much larger area. 

For example, GreenSeeker, a commercially available optical sensor by Ntech Industries, 

can be mounted on tractors and make continuous “on-the-go” measurements across fields 

(Govaerts and Verhulst 2010; Padilla et al. 2020). Because chlorophyll absorbs and 

reflects different bands of light over the spectrum (Knipling 1970), reflected energy from 

crop leaves can estimate chlorophyll concentration, and therefore reflect crop N status 

(Haboudane et al. 2002; P. Scharf et al. 2002; Khalilian et al. 2017; Paiao et al. 2020). 

Two main ways have been discussed in previous studies of using reflectance sensing as 

the indicator to direct various optimal in-season N application rates (Raun et al. 2002; 

Dellinger, Schmidt, and Beegle 2008; Schmidt, Dellinger, and Beegle 2009; Holland and 

Schepers 2010). The first one is to compare nitrogen-deficient plots and nitrogen-

sufficient plots. Because nitrogen-deficient corn reflects more light over the visible 

spectrum than nitrogen-sufficient corn (T. M. Blackmer, Schepers, and Varvel 1994), the 

larger the difference in colors between unfertilized field and well-fertilized field, the 

more side-dressing N is recommended by the studies (P. Scharf et al. 2002; Kitchen et al. 

2010). For example, the sufficiency index (SI), which can be calculated as the ratio of the 

N-rich reference area and response plot areas using VI values, has been widely used to 

find the recommended N fertilizer rates Kitchen et al. (2010). However, the optimal N 

rates that have been found in those studies are the N rates reach the yield potential while 

maximizing the yield. Without considering the cost and marginal returns of side-dressing 

N, those agronomic-optimal N rates (AONR) are higher than the economically optimal N 

rates that can maximize profits, which is more desirable by farmers. 
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The second one is to find the optimal N rate from the yield production function: 

the optimal side-dressing N rates were driven either at the point when yield reaches the 

plateau (Sripada et al. 2006), or as the N rate corresponding to the maximum return based 

on corn and fertilizer prices (P. C. Scharf and Lory 2002; Dellinger, Schmidt, and Beegle 

2008; Barker and Sawyer 2010; X. Wang et al. 2021). In the first case, again, AONR 

with a higher N rate was generated instead of EONR. The second case is similar to the 

conceptual steps that have been discussed earlier. However, those studies have only 

focused on finding the various EONR for different fields at different locations but 

haven’t well addressed the variabilities of EONR within a field. 

The strong relationships between VIs and crop N status found in previous studies 

(Bausch and Diker 2001; Sripada et al. 2006; Inman et al. 2007; Paiao et al. 2020) have 

shown the ability of VIs to determine crop N variability across fields and to be used as a 

proxy for canopy N content (Shaver, Khosla, and Westfall 2011; Magney, Eitel, and 

Vierling 2017), which provided a bridge for more efficient N within-field management 

(Hively et al. 2009). As the variability of N needs across a field has been driving more 

attention, a wide variety of VIs for estimating crop parameters have been analyzed (Hunt 

Jr et al. 2011). For example, in Magney, Eitel, and Vierling (2017)’s work, 14 out of 17 

VIs were significantly correlated with the N uptake. Sensor-based NDVI values showed 

significant relationships with applied N rates (𝑟, > 0.89) in Shaver, Khosla, and Westfall 

(2011)’s work. Tilling et al. (2007) found that NDRE is able to account for 68% of the 

nitrogen stress index and 41% of crop N status in a wheat field. These consistent results 

indicated that VIs could be potentially used as the signal, which has been discussed 
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earlier in the conceptual steps, to indicate crops’ current N status and then help with N 

fertilizer decision makings. 

Recently, the NDRE index has shown a better performance as a measure of crop 

nitrogen content than other commonly used VIs, and a strong agreement with the actual 

harvest N uptake values and NDRE nitrogen uptake models has been observed in 

previous studies (Magney, Eitel, and Vierling 2017; K. Wang, Huggins, and Tao 2019; 

Argento et al. 2020; X. Wang et al. 2021). Magney, Eitel, and Vierling (2017) used high-

resolution satellite data to evaluate the relationships between VIs and N uptake. Results 

showed that NDRE index performed the best (𝑅, = 0.81, RMSE = 15.94) out of 17 

commonly used spectral VIs, followed by NDVI index (𝑅, = 0.71, RMSE = 20.96). 

These results are consistent with the findings in Zillmann et al. (2015), Magney, Eitel, 

and Vierling (2017), K. Wang, Huggins, and Tao (2019), and Paiao et al. (2020). 

However, in spite of the correlation between VIs, especially NDRE, and crop N status 

has been widely recognized, without proposing how to provide EONR for the next 

growing season, the implication has been stagnated as showing the potential of using 

NDRE for improving N use efficiency. How to use this information in real agricultural 

activities is still unclear. According to Schimmelpfennig (2016), in the United States, 

only 30-40 percent large2 corn farms adopted precision agricultural technologies, and 

most of them are just using yield monitors. There is a large room for developing and 

adopting variable-rate technologies on farms. 

	

2	The	size	of	the	farm	is	over	1,174	Hectares	
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In summary, there have been substantial studies done related to N side-dressing 

activities. The evidence indicates that vegetation indices observed from remote sensing 

show promise in providing crop nitrogen status and N side-dressing needs (Inman et al. 

2007; Hunt Jr et al. 2011; Magney, Eitel, and Vierling 2017). However, the studies 

providing optimal in-season nitrogen rates for cornfields only recognized the variable-

rates among different fields (P. C. Scharf and Lory 2002; Dellinger, Schmidt, and Beegle 

2008; Kitchen et al. 2010), but ignored the variability of nitrogen needs within one field. 

Moreover, past literature worked on improving site-specific N decision makings have 

been only focusing on testing the explanatory power of the VIs to crop N status and 

checking how accurate the VIs are in helping to make N side-dressing decisions (Bausch 

and Diker 2001; K. Wang, Huggins, and Tao 2019; Paiao et al. 2020). To the author’s 

knowledge, so far, there are no studies have developed practicable algorithms that 

provide site-specifically EONR within individual farms to farmers. There is a clear need 

to further refine fertilizer decision algorithms and fill up the gap of lacking appropriate N 

side-dressing decision support systems. In this study, a crop simulation model is 

estimated using side-dressing data from Effingham County, IL and NDRE values 

collected from the sentinel-2 satellite. According to the production function, corn yield 

can be simulated with each level of NDRE and N side-dressing rate. Thus, profits can be 

estimated, and optimal N side-dressing rates can be selected by a given corn price and N 

price. 
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	Materials and Methods 

1.  Data 

In 2019, the Data Intensive Farm Management project (DIFM, (Bullock et al. 2019)) 

conducted an on-farm experiment on a 31.22-ha Illinois field, which generated this 

study’s data on corn yield response to nitrogen fertilizer application rates. The 

participating farmer planted corn on May 16th, 2019 and harvested on October 19th, 

2019 using a CaseLH 8240 combine with a 12-row corn head. He applied an N base of 

135 kg/ha uniformly across the field. Figure 2 shows that the experimental N side-

dressing rates ranged of from 0 to 177kg/ha. Data from 9-meter buffer zone around the 

perimeter of the field was excluded from the experiment. The interior of the field was 

partitioned into twenty-two 8.8m-wide strips, each containing approximately 85 subplots, 

which were treated as units of observation. As a result, the trial was partitioned into 1867 

subplots with an average size of 0.0167 ha. Urea ammonium nitrate (UAN, 32% N) was 

applied as the side-dressing N to the soil surface on July 16th, 2019 by DMI anhydrous 

applicators. The field’s 2019 growing season’s minimum and maximum temperatures of 

14.9∘C and 26.6∘C were close to the 1999-2019 averages; its 855mm precipitation was 

higher than the 611m 1999 to 2019 average. Figure 2 shows each subplot’s mean as-

applied side-dressing rate and yield. 

The Normalized Difference Red Edge index (NDRE) (Barnes et al. 2000; 

Rodriguez et al. 2006) is a vegetation index related to the red edge reflectance obtained 

from multispectral image sensors. NDRE is calculated as: 
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𝑁𝐷𝑅𝐸 = (𝑅+./ 	− 	𝑅/01	0130)	/	(𝑅+./ 	+ 	𝑅/01	0130),  (5) 

where 𝑅+./ and 𝑅/01	0130 refer to near-infrared bands (790 nm) and red-edge 

bands (720 nm), respectively. The R package, sen2r (Ranghetti et al. 2020), was used to 

acquire 10-m resolution NDRE images from the European Copernicus Program’s 

Sentinel-2 satellite (Sentinel 2015). The participating farmer planted on May 17th. At the 

field’s latitude, corn reaches the V10-V12 growth stages around eight hundred growing-

degree days after planting (Lee and others 2011). The NDRE data mapped in Figure 3 

were taken from June 30th, 2019 images, based availability from Sentinel-2. Growth 

stages were verified using the Midwestern Regional Climate Center’s decision support 

tool (U2U@MRCC, n.d.). Table 1 presents summary statistics of the yield, NDRE, side-

dressing (N), electro-conductivity (ECS), elevation (DEM), and slope levels. 
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2.  Method 

Site-specific corn production function was estimated by regression using shape 

constrained additive model (SCAM) using the scam package (Pya 2020) in R (R Core 

Team 2020). Among commonly used VIs, NDRE (Barnes et al. 2000), has been selected 

due to its better performance as a measure of crop nitrogen content shown in the previous 

studies (Magney, Eitel, and Vierling 2017; K. Wang, Huggins, and Tao 2019; Argento et 

al. 2020). Statistical analyses and regression are performed with R programming. 

In order to test the impact of different values of NDRE on corn yield, four NDRE 

intervals are divided based on each 25 percentile of its distribution. Assuming that if 

observed NDRE values fall into a same range, the marginal impact of side-dressing N on 

yield stays the same. In this case, by using NDRE as the proxy for plants’ current N 

content, the interactions between side-dressing N rates and different crop current N status 

become observable. Thus, all fields plots are partitioned into four groups according to 

their NDRE levels and the yield response functions in each NDRE level are assumed to 

take the functional form in (6): 

𝑦! = 𝑓(𝑁!") + 𝑔(𝐸𝐶𝑆!) + 𝑘(𝑇𝑃𝐼!) + ℎ(𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛!) + 𝑚(𝑋!) + 𝑛(𝑌!) + 𝑗(𝑋! ∗ 𝑌!), (6) 

where the response variable, 𝑦!, represents corn yield in each subplot. 

Independent variables included site-specific nitrogen side-dressing rates (𝑁!"), shallow 

soil electrical conductivity (𝐸𝐶𝑆!), topographic position index (𝑇𝑃𝐼!), and elevation 

values derived from digital elevation models (𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛!) are included in the model. 𝑋! 

and 𝑌! are geographical controls for longitudinal and latitudinal spatial changes, 
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respectively. By comparing the four yield response functions based on the four groups of 

NDRE levels, different marginal impacts of side-dressing nitrogen on yield under 

different NDRE levels can be observed. Higher side-dressing nitrogen rates are expected 

to associate with higher yield levels. More importantly, as discussed earlier, the different 

slops of the yield response functions could show how the marginal impact of side-

dressing nitrogen rates on corn yield associate with NDRE levels in each plot. Given this 

information, EONR can be selected when the marginal return of one more unit of N 

equals its marginal price. 

The profit maximization problem for each plot 𝑖 is as follows: 

max
+"
!   𝛱! = 𝑃# ∗ 𝑦! − 𝑃+ ∗ 𝑁!"  (7) 

The inflation-adjusted average historical corn price in Illinois of $0.157 kg45 and 

an N price of $0.88 kg45 were assumed. Side-dressing rates considered were bounded by 

the experiment’s maximum and minimum targeted rates. 
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Results and Discussions 

According to the regression results, side-dressing rates are statistically significant at 1% 

level for all zones with four NDRE levels. Unlike traditional regressions, the regression 

results of non-parametric regression are best presented using figures as the individual 

coefficients themselves are not meaningful. Figure 4 presents the regression results of the 

SCAM estimation of the yield response function. It shows the impact of N side-dressing 

on corn yield at four different NDRE levels. As expected, N side-dressing rates positively 

affect corn yield and NDRE values significantly influence the marginal impact of N 

fertilizer on yield. Specifically, the marginal benefit on yield decreases when NDRE gets 

higher, reflected by the decreasing slopes when NDRE levels increase. 

Based on the production functions, at a side-dressing N rate lower than 125 kg/ha, 

the yield is lower for the parts of the fields with lower NDRE. This is consistent with 

agronomic expectations because a lower NDRE value indicates a more significant N 

deficiency, then the parts of the fields with lower NDRE should have lower yields. Due 

to the objectives of this study is to maximize farmer’s profit instead of reaching the yield 

potential, as discussed earlier, the marginal impact of a change in side-dressing N rate on 

yield is more important here. Despite the marginal return of side-dressing N is quite high 

for the area with the highest NDRE level when side-dressing N rates are lower than 75 

kg/ha, the marginal impact of N is generally greater for parts of the field with lower 

NDRE values. For example, increasing N side-dressing rates from 55 to 130 kg/ha can 

help increasing corn yield by 2573 kg/ha (from 10671 to 13244 kg/ha) in the subplots 

with the lowest level of observed NDRE values. However, the same amount of side-
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dressed N can only increase corn yield by 1444 kg/ha (from 13621 to 15065 kg/ha) if the 

observed NDRE values fall in the highest level. In other words, when NDRE values are 

less than 0.241, the yield response function had the highest slope, which indicates that the 

side-dressing N showed the highest marginal effect in increasing corn yield. This is 

consistent with agronomic expectations because a lower NDRE value indicates a more 

significant N deficiency, adding in-season N then has a more marginal impact on corn 

yield. When the NDRE value is less than 0.333, the marginal impact of N on corn yield 

stays positive with less marginal returns of N, compared to the areas that have the lowest 

NDRE, and the economic optimal N rates are the maximum amount of N applied in the 

experiment. When the NDRE value is higher than 0.333, corn yield reaches the plateau 

when the N rate is 135 kg N/ha. This is again consistent with agronomic expectations 

because a higher NDRE value indicates a less significant N deficiency, requiring less N 

to reach the yield plateau. The areas having high observed NDRE values showed high N 

marginal return when side-dressing N rates are lower than 75 kg/ha. This could because 

the soil in high NDRE areas has a better capacity of absorbing N. Thus, after applying 

side-dressing N fertilizer, the crops can get N and reach the yield potential quickly. 

The result of the negatively correlated relationship between Vegetation Indies and 

EONR is consistent with previous works (Sripada et al. 2006; Dellinger, Schmidt, and 

Beegle 2008). However, as discussed earlier, previous studies have been mainly 

addressing the variability of N needs among fields and only finding the average EONR 

for each field. So, the in-season N recommendations for corn proposed earlier are 

determined at a field scale. Even though different N needs within fields have been 

recognized (Malzer et al. 1996), it is still difficult to predict the EONR at a subplot or 
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subfield scale (Dellinger, Schmidt, and Beegle 2008). This study takes the 

recommendation of in-season N a step further. The experiment of this study is conducted 

within one field and the variability of EONR is addressed across the field. By dividing 

the whole field into many 0.017-hectare plots and then group those plots based on their 

observed NDRE values, farmers can apply different amounts of recommended N to each 

subplot according to its own N demand. Although some of the chlorophyll meters and on-

the-go sensing devices have been used to attempt to address N variability within fields, 

again, most of them focused on finding the side-dressing N rates that can reach the yield 

potential. Compared to applying N uniformly within the field or maximizing yield, the 

method proposed in this paper can apply N fertilizer at the places where the highest N 

marginal benefits can be returned, which could provide more economic and 

environmental benefits. This is consistent with the expectations and results by Bullock et 

al. (2019). 

As stated earlier, the key goal of this study is to provide site-specific side-dressing 

N rate recommendations to farmers based on observed NDRE values. The map of EONR 

in the experiment field is presented in Figure 5. As can be observed in the figure, EONR 

rates vary substantially across the field. This implies that there is a room to improve N 

use efficiency via NDRE-based site-specific N side-dressing, which in turn can mitigate 

the environmental consequences of N over-application. Moreover, the results showed that 

142 kg/ha is the optimal uniformly applied in-season N rate in this field during the 2019 

corn growing season, which could provide the maximum net revenues of $2236 per 

hectare. While, under the same condition, the average of site-specific EONR is 162 

kg/ha, and it could provide an estimated net revenue of $2317 per hectare. These results 
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matched with the expectations of this study that the site-specific side-dressing can ensure 

more N fertilizer is applied at the place, within the field, where it is needed and therefore 

increase the corn yield and economic returns. 

Differing marginal impacts of side-dressing nitrogen rate results in heterogeneous 

optimal side-dressing amount based on NDRE. Table 2 shows how the economically 

optimal nitrogen rate changes according to the value of NDRE. While the EONR goes up 

slightly when NDRE increases from the lowest level to the second-lowest level, EONR 

goes down as NDRE increases after 𝑁𝐷𝑅𝐸 = 0.288. In addition, EONR significantly 

dropped when the subplots have NDRE values higher than 0.333. This further proved the 

feasibility of providing side-specific side-dressing N rates using the algorithm proposed 

in this study. 

However, NDRE is not a pure indication of the lack of N. The “greenness” of a 

crop is not just affected by its N concentration, but also many other factors, for example, 

environment, illumination, disease, soil type, soil properties, deficiencies of other 

nutrients (Rorie et al. 2011). All of these could significantly affect the productivity of 

fields and crops’ yield potential. If, for example, a field is large enough or there are more 

heterogeneities within a field, different areas of the field may have different 

productivities due to the conditions of nutrients other than N. Then the nutrient sufficient 

subplots may have higher NDRE values, but higher side-dressing N rates are still needed 

to reach the higher yield potential than the nutrient-deficient subplots. In this case, 

economically optimal N rates could be positively correlated with NDRE. 
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In previous studies, N Sufficient Index (SI) or relative colors have been 

commonly used to find optimal N rates Barker and Sawyer (2010). Sripada et al. (2006) 

had a consistent result with P. C. Scharf and Lory (2002) that absolute VIs are not 

significant predictors of EONR so that a high-reference is necessary to predict N needs. 

This is because the correlations were tested between EONR and VIs among different 

locations under different irrigation and soil type conditions. As discussed earlier, the 

yield potential and absolute colors among different fields may be very different and not 

relevant. Since the algorithm suggested in this study is using the NDRE observed in one 

field and providing site-specific EONR within the specific area, establishing reference 

plots and calculating sufficiency values is not required. But instead, this method requires 

farmers to find each field’s yield response function and be consistent with the ways of 

observing NDRE values. 

134 kg/ha base N is applied in this field. However, results will vary with different 

amounts of base fertilizer application, and residual soil N. Other environmental and water 

stresses can affect corn yield response to N. During the 2019 corn growing season, 

precipitation was slightly higher than the twenty-year average and temperatures were 

very close to the average levels. Results are likely to be different during drought years or 

having extreme heat. Weeds, pests, the mixture of soil could be other factors that 

influence the performance of this method; for example, more weeds may increase the 

NDRE values and then reduce the recommended optimal N side-dressing rates. Optimal 

N side-dressing rates could also be influenced by field management practices such as 

irrigation management, planting dates, inherent soil variability, and different corn 

species. These variables could potentially be brought into the modeling framework 
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presented in this work to refine the crop yield simulation model and optimal N side-

dressing rates. 

Previous studies have shown the potential of using corn colors from V6 to V9 

growth stages for in-season N recommendations (P. C. Scharf and Lory 2002, 2009; X. 

Wang et al. 2021). P. C. Scharf and Lory (2002) has discussed that V6 is the earliest 

stage that crop N needs can be reflected by plant colors. However, in this study, corp 

colors observed by 10 m resolution satellite images are not varied enough to help with 

making N decisions until V10 to V12. Waiting until this period to observe VIs and make 

N application decisions will require very time-intensive analysis before corn growing too 

tall for side-dressing equipment. Some special or taller equipment may be needed for 

fertilizer application, which could increase the cost. Applying side-dressing N at V10 to 

V12 growth stages may also increase the risk of reducing yield due to not applying N in 

time. 

Satellite images acquired from the Sentinel-2 are used to calculate NDRE values 

in this study, which can provide more spatial information than chlorophyll meters and 

potentially reduce the cost due to it is free for public acquisitions. Moreover, satellite 

images are able to provide more consistent information in bigger-size fields without 

problems related to bias caused by different angles from cameras, overexposure, and film 

size (P. C. Scharf and Lory 2002). However, in some situations, images from unmanned 

aerial vehicle (UAV) or on-the-go sensing devices have advantages than satellite images 

if the plot size is relatively small, or higher quality and finer resolution images are 

required so that more accurate yield response functions and optimal N rates can be 

provided (Argento et al. 2020). They are also usually less restricted by weather or 
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atmospheric conditions (Rambo et al. 2010), satellite geometry, sun-angles (Holben 

1986), and soil backgrounds since they are held closely above the crops (Govaerts and 

Verhulst 2010). However, the costs of these kinds of reflectance sensors are usually high 

(Padilla et al. 2020). Nevertheless, due to the width of N fertilizer applicators, N cannot 

be applied very finely even the high-resolution images are available. Overall, it will be 

interesting for future studies to examine the trade-offs between the cost of acquiring VI 

values and the benefit brought from the information. 
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	Conclusion 

Despite the increasing interest in variable rates of N side-dressing based on 

sensor-based VIs, very little has been done to generate the site-specific economically 

optimal side-dressing N amount based on VIs. As argued earlier, most studies stopped 

either at finding the EONRs for different fields or simply confirming the correlation of 

VIs and N deficiency, without going further to come up with finding the VI-based site-

specific economically optimal side-dressing N amount. 

This study takes the recommendation of in-season N a step further with proposed 

a framework and method to come up with finding the VI-based site-specific economically 

optimal side-dressing N amount. The critical information is the quantified relationship 

between, yield, side-dressing N rate, and VI (here, NDRE). This study used on-farm field 

experiments, satellite imagery, and statistical methods to find such a relationship. The 

EONR is then estimated by solving site-specific profit maximization problems. Our 

results are consistent with agronomic expectations, where the parts with lower NDRE 

requiring higher amounts of side-dressing N. 

A better understanding of the impacts of other environmental factors and soil 

properties on crop yield would be helpful to improve the quality of site-specific N side-

dressing recommendations in the future. While NDRE is used as the VI, the framework 

laid out in this study is very much general and can be applied to any VI, such as Green 

Normalized Difference Vegetation Index (GNDVI). Moreover, the framework is 

perfectly compatible with the method of obtaining VIs. This study used Sentinel-2 data. 
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While it is free, it comes at the cost of low spatial resolution and more instability due to 

weather conditions. There exists an interesting trade-off between the qualities of the 

sources of VIs and their cost. It would be a fruitful study to examine the economic 

potential of other methods of obtaining VIs, such as drone. 
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Tables 

Table 1: Summary Statistics 

 	 Yield	 NDRE	 N	 ECS	 DEM	 Slope	

mean	 12967.03	 0.29	 104.94	 29.55	 625.73	 0.04	

SD	 2001.09	 0.06	 36.88	 5.47	 2.76	 0.01	

Min	 4877.22	 0.14	 0.00	 16.09	 620.91	 0.03	

Max	 17650.45	 0.47	 177.21	 53.65	 631.94	 0.10	

NDRE was observed on June 30th, 2019	
N is the side-dressing nitrogen rate (kg/ha) applied on July 16th, 2019	
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Table 2: The impact of NDRE on optimal nitrogen side-dressing rate 

NDRE Levels EONR (kg/ha) 

[0.139, 0.241] 165 

(0.214, 0.288] 176 

(0.288, 0.333] 170 

(0.333, 0.472] 136 
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	Figures 

 

Figure 1: Estimated economically optimal side-dressing N rates, given estimates of the 
yield response function and of the vegetative index values 
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Figure 2: As-applied side-dressing N map and yield level map 



						

	

																																																																																																																																																														31	
	
																																																																																																																																																												
																																																																																																																																																															
	
	

 

Figure 3: NDRE values observed on June 30th, 2019 
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Figure 4: Yield response functions at different levels of NDRE 
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Figure 5: Optimal side-dressing N rate by subplots in the experiment in 2019 
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