
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Dissertations and Student Research: 
Architectural Engineering 

Durham School of Architectural Engineering 
and Construction 

11-2021 

Investigation of the Prevalence of Faults in the Heating, Investigation of the Prevalence of Faults in the Heating, 

Ventilation, and Air-Conditioning Systems of Commercial Ventilation, and Air-Conditioning Systems of Commercial 

Buildings Buildings 

Amir Ebrahimifakhar 
University of Nebraska-Lincoln 

Follow this and additional works at: https://digitalcommons.unl.edu/archengdiss 

 Part of the Architectural Engineering Commons, and the Mechanical Engineering Commons 

Ebrahimifakhar, Amir, "Investigation of the Prevalence of Faults in the Heating, Ventilation, and Air-
Conditioning Systems of Commercial Buildings" (2021). Dissertations and Student Research: 
Architectural Engineering. 68. 
https://digitalcommons.unl.edu/archengdiss/68 

This Article is brought to you for free and open access by the Durham School of Architectural Engineering and 
Construction at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in 
Dissertations and Student Research: Architectural Engineering by an authorized administrator of 
DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/archengdiss
https://digitalcommons.unl.edu/archengdiss
https://digitalcommons.unl.edu/architectengineer
https://digitalcommons.unl.edu/architectengineer
https://digitalcommons.unl.edu/archengdiss?utm_source=digitalcommons.unl.edu%2Farchengdiss%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/774?utm_source=digitalcommons.unl.edu%2Farchengdiss%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.unl.edu%2Farchengdiss%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/archengdiss/68?utm_source=digitalcommons.unl.edu%2Farchengdiss%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages


INVESTIGATION OF THE PREVALENCE OF FAULTS IN THE 

HEATING, VENTILATION, AND AIR-CONDITIONING SYSTEMS OF 

COMMERCIAL BUILDINGS 

 

by 

Amir Ebrahimifakhar 

 

A DISSERTATION 

 

Presented to the Faculty of  

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements  

For the Degree of Doctor of Philosophy 

 

 

Major: Architectural Engineering 

Under the Supervision of Professor David Yuill 

Lincoln, Nebraska 

November, 2021 



INVESTIGATION OF THE PREVALENCE OF FAULTS IN THE HEATING, 

VENTILATION, AND AIR-CONDITIONING SYSTEMS OF COMMERCIAL 

BUILDINGS 

Amir Ebrahimifakhar, Ph.D. 

University of Nebraska, 2021 

 

Advisor: David Yuill 

This dissertation describes a large-scale investigation of heating, ventilation, and 

air-conditioning (HVAC) fault prevalence in commercial buildings in the United States. 

A multi-year dataset with 36,556 pieces of HVAC equipment including air handling units 

(AHUs), air terminal units (ATUs), and packaged rooftop units (RTUs) was analyzed to 

determine values for several HVAC fault prevalence metrics. The primary source of data 

for this study comes from three commercial fault detection and diagnostics (FDD) 

providers. Since each FDD provider uses different terms to refer to the same fault in an 

HVAC system, a mapping function was created for each FDD provider’s dataset, to 

convert the fault reports to a single standardized fault identifier. The fault identifier is 

taken from a standard taxonomy that was created for this purpose. 

Since the commercial FDD software outputs are inherently subject to some level 

of error, i.e., they could have false negatives and false positives, a field study was 

conducted to gain greater insight into the commercial FDD software results. Two 

buildings from among the buildings of one of the FDD providers were selected. The 

RTUs serving these two buildings were monitored for about two weeks using our 

installed data loggers. The actual faults in these buildings were identified using methods 

that we developed or selected from the literature. The results of the field study were 

compared with the FDD provider fault reports. 
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This study also proposes a data-driven FDD strategy for RTUs, using machine 

learning classification methods. The FDD task is formulated as a multi-class 

classification problem. Seven typical RTU faults are discriminated against one another as 

well as the normal condition. Nine classification methods were applied to a dataset of 

simulation data, which was split into a training set and a test set. The performance of the 

classifiers for individual faults was characterized using true positive rate and false 

positive rate statistical measures. The relative importance of input variables was 

analyzed, and is also discussed in the dissertation. 
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CHAPTER 1. Introduction 

This dissertation presents the study for a large-scale investigation of heating, ventilation, 

and air-conditioning (HVAC) fault prevalence in commercial buildings in the United 

States. HVAC faults are studied for several years, but there is no large-scale effort to 

quantify the magnitude of prevalence of individual HVAC faults. A comprehensive 

literature review was performed to understand the status of knowledge, key gaps, and 

potential value in doing research on quantifying the prevalence of HVAC faults in 

commercial buildings. Our literature review showed that there is only small number of 

studies that investigated the prevalence of faults in HVAC systems. Most of these studies 

had small sample sizes (small number of buildings and HVAC equipment), and mainly 

focused on specific climate zones or building types. Also, fault prevalence values change 

significantly between different studies. These limitations show there is a need for 

empirical data on the prevalence of HVAC faults in commercial buildings at the desired 

level of granularity. 

Air handling units (AHUs), air terminal units (ATUs), and packaged rooftop units 

(RTUs) are very common in the United States commercial buildings. Unfortunately, the 

performance of these HVAC systems is often far from optimal. Fault detection and 

diagnostics (FDD) is a powerful tool that can monitor the operation of HVAC equipment 

and detect their problems. Although there is a significant growth in using of the FDD 

tools, there is still lack of reliable data about the prevalence of HVAC faults within the 

commercial buildings. 
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In this study, a multi-year dataset, provided by three commercial fault detection and 

diagnostics (FDD) company, including thousands of HVAC equipment from multiple 

climate zones and building types is analyzed to determine a range of HVAC fault 

prevalence metrics. Since each FDD company had different data formats, fault names, 

and fault reporting, data from each company are converted to a standard format, which is 

called binary daily fault (BDF) data. To quantitatively characterize the HVAC fault 

prevalence, several metrics are defined: monthly fault presence, average monthly fault 

presence, and mean number of faults per building per month. The most common AHU, 

ATU, and RTU faults in commercial buildings are found, and fault prevalence values 

calculated for different FDD providers are compared. 

FDD software results inherently have a certain level of error, i.e., they might have false 

negatives and false positives. In order to better understand the correlation between fault 

reporting by FDD tools, and the true presence of faults, field verification has been carried 

out on a small subset of those buildings for which FDD data were collected. This allows 

verification of the presence of flagged faults, and checking for faults that were not 

flagged by the FDD tools. These site visits were conducted on two retail buildings that 

are each served by multiple packaged rooftop units (RTU). 

A significant challenge of commercial FDD providers is to make sense of the building 

automation system (BAS) points, which provide the inputs for FDD algorithms. For some 

fault types, there are not sufficient sensors to be able to detect them. For example, non-

condensable gas in the refrigerant and loose fan belt faults are not targeted by FDD 

providers, but can easily be found with field measurements. As efforts to standardize the 
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naming of BAS data and metadata (ontologies) progress, the opportunities for low-cost 

FDD are expanding. The issue of the accuracy and utility of diagnostic outputs is 

expected to become increasingly important in this environment. Lessons learned by 

comparisons, such as those produced in this study, may be valuable for potential 

adopters, users, and developers of FDD. 

The basic elements of this study are addressed in the following sections. 

 

1.1. Study Scope  

Since a comprehensive study on HVAC fault prevalence in commercial buildings in the 

United States is an ambitious task, this study focuses on selected mechanical systems that 

are commonly used in commercial buildings in the United States, rather than on all 

possible system types. Specifically, this study includes air handling units (AHUs), air 

terminal units (ATUs), and packaged rooftop units (RTUs). AHUs are a key element of 

the HVAC systems that are common in large commercial buildings. ATUs are one of the 

major building HVAC systems and directly affect the building zone comfort. RTUs serve 

the conditioning requirements for nearly half of the United States commercial building 

floor space (DOE, 2011). 

 

1.2. HVAC Fault Prevalence Metrics 

There are many different approaches for expressing HVAC fault prevalence. For 

example, the HVAC fault occurrence rates could be specified on a monthly, seasonal or 
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annual time basis. In addition to time basis, there are several options for the physical 

boundaries that are drawn to determine HVAC fault prevalence. HVAC faults can be 

determined at different levels of component physical granularity. For example, 

temperature sensor frozen, return air temperature sensor frozen, or economizer sensor 

frozen. Moreover, HVAC fault prevalence can be determined at the building level, or the 

equipment level. For example, average number of faults per building per month, or 

average number of faults per unit per month. 

In order to determine the HVAC fault prevalence metrics to be calculated in this study, 

several questions are established: 

• For each month of the year, how often is HVAC fault type ‘X’ observed to be 

present? 

• Which HVAC faults are most often observed to be present? 

• How many HVAC faults are observed to be present each month for a given 

building? 

 

1.3. Study Data 

The primary source of data for this study comes from commercial fault detection and 

diagnostics (FDD) software outputs. The reason is that commercial FDD software outputs 

can be obtained at relatively low cost, for a large number of buildings and HVAC 

systems. Since commercial FDD software outputs are subject to some level of error, i.e., 
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they could have false negatives and false positives, a field study will be conducted to 

verify the FDD software results. 

Although the study data includes the largest and most diverse dataset that can practically 

be obtained from commercial FDD providers, it is still not an ideal random sample 

representative of the population of United States commercial buildings as a whole. 

However, it is sufficient to calculate HVAC fault prevalence metrics with an acceptable 

degree of precision and confidence. Ideally, field studies can use random selection to 

control different sources of selection bias, such as sampling bias or volunteer bias. 

However, in this study, random selection is not a practical option. 

Data requested from commercial FDD providers includes essential and preferred 

requirements shown in Table 1. Essential data requirements directly relate to the 

reporting of HVAC faults in a format that can be translated into a standardized format, 

along with descriptions of building type, location, and HVAC systems. Since flexibility is 

allowed on received FDD data format, each FDD provider’s data will be translated into a 

standardized format for HVAC fault prevalence analysis. 

 

1.4. Verification 

Since the commercial FDD software results inherently contain a certain level of error, 

these results are complemented with a verification method based on direct field 

inspection of commercial buildings. 
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Table 1. Essential and preferred data required for study 

Essential data requirements 

Labeled HVAC faults with timestamps 

HVAC system description labels (e.g., AHU, ATU, or RTU) 

Total number of HVAC systems within the sample 

Geographical description of building (e.g., zip code or climate zone) 

Preferred data requirements 

HVAC System details (e.g., age, configuration, or manufacturer) 

Information about fault intensity and fault impact 

Raw building automation system (BAS) data 

Building characteristics (e.g., type or size) 

 

Commercial FDD tools are designed to work with a practical set of constraints. For 

example, they might be designed to avoid false positives, even at the cost of imposing 

false negatives, and to focus on HVAC faults that are most cost-effective to detect. 

One verification method employed in this study is to do manual analysis of building 

automation system (BAS) data to determine HVAC faults that were not detected by an 

FDD software. A subset of study data from a small number of commercial buildings is 

selected to check whether manual analysis of BAS data will provide additional insights. 

Another verification method is manual inspection of commercial buildings, i.e., field 

testing. This method provides the highest fidelity verification. However, it has the highest 

cost. Therefore, it is applied to a small subset of commercial buildings. For this purpose, 
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a set of buildings are selected from among the buildings that are customers of the FDD 

providers. 

HVAC field testing could be invasive and needs building owners to provide access to 

mechanical rooms, roof, and plenums above occupied zones, and to determine liability 

concerns. It would be more efficient to combine the site visit with an analysis of BAS 

data, and with short-term monitoring (e.g., two weeks) using dataloggers selected for this 

goal. 

One important advantage of direct verification is that this method will make the overall 

findings far more credible for many of the potential users of the findings, i.e., FDD 

researchers, building managers, HVAC standards officials, etc. 

Table 2 summarizes the strengths and weaknesses of the field verification. 

 

Table 2. Strengths and weaknesses of the field verification 

Strength Weakness 

It provides the true fault prevalence values It is expensive and time consuming 

It makes the results far more credible Recruiting buildings for study is challenging 

 

1.5. Data-Driven FDD for RTUs 

This study also proposes and demonstrates a data-driven fault detection and diagnostics 

(FDD) strategy for packaged rooftop units (RTUs) using statistical machine learning 
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classification methods. The fault detection and diagnostics task is formulated as a multi-

class classification problem. Seven typical rooftop unit faults are discriminated against 

one another as well as the normal condition. 

The performance of data-driven FDD is highly dependent on the quantity and quality of 

the available data. A persistent challenge has been the lack of reliable datasets to be used 

in the development of data-driven FDD methods (Granderson et al., 2020). Since 

experimental data for RTU systems is rare and expensive to obtain, we use a 

measurement data library with faulted and unfaulted systems at steady-state operation, 

generated with simulations based on Cheung & Braun (2013a, 2013b) to provide a rich 

training dataset for the classification models. The synthetic minority over-sampling 

technique is used to generate new artificial samples of the minority class in order to 

balance the dataset. We would like to emphasize that this data library is different than the 

FDD data we talked about in previous sections.  

Nine classification methods including logistic regression (LR), linear discriminant 

analysis (LDA), quadratic discriminant analysis (QDA), K-nearest neighbors (KNN), 

bagging (BA), random forests (RF), AdaBoost (AD), XGBoost (XGB), and support 

vector machine (SVM) are applied to our dataset, and their performance is compared. 

The performance of the classification methods for individual faults is also characterized 

using true positive rate and false positive rate statistical measures. The relative 

importance of input variables is also discussed. 
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1.6. Structure of the Thesis 

Chapter 2 gives an overview of the relevant research on the HVAC fault prevalence and 

FDD development for packaged rooftop units (RTUs). 

Chapter 3 describes the methodologies used for analysis of FDD records to determine the 

HVAC fault prevalence in commercial buildings, field study verification, and 

development of machine learning based FDD methods for RTUs. 

Chapter 4 presents the main results for the HVAC fault prevalence study using 

commercial FDD data and discusses the findings. 

Chapter 5 presents the results of the evaluation of the commercial FDD tools using our 

filed study. 

Chapter 6 discusses the performance of the various machine learning classification 

methods in detecting and diagnosing the typical faults in RTUs. 

Chapter 7 summarizes the main conclusions and discusses the recommendations for 

future research. 
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CHAPTER 2. Literature Review 

In this chapter, studies on HVAC fault prevalence and fault detection and diagnostics 

(FDD) methods for packaged rooftop units (RTUs) are discussed in separate sections. 

 

2.1. HVAC Fault Prevalence 

The goal of this literature review is to summarize studies which have characterized 

HVAC fault prevalence in commercial buildings. 

Commercial buildings consume approximately 18% of total energy and 37% of electrical 

energy in the United States (EIA, 2018). HVAC systems are one primary end use in these 

buildings. Unfortunately, these systems often operate far from their optimal efficiencies 

because of design, installation, and operational problems. HVAC faults, or deviation 

from the expected operating conditions of an HVAC system or component, can increase a 

building’s energy consumption and operational costs; may prevent the building from 

receiving needed services for HVAC; may negatively affect other interconnected energy 

systems; and could increase equipment maintenance or replacement costs 

(Ebrahimifakhar et al., 2020). 

Fault detection and diagnostics (FDD) tools use building automation system (BAS) data 

to detect the presence of HVAC faults and support diagnosis of their root causes. 

Applying FDD tools in commercial buildings and correction of the identified faults can 

save 9% of energy consumption (Kramer et al., 2020). Faults in the United States 

commercial buildings waste approximately 0.9–2.7 quads of energy annually (Frank et 
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al., 2019). However, this energy waste estimate is based on uncertain estimates of actual 

fault prevalence in the field. There is a lack of reliable data about which HVAC faults 

appear how frequently by building and system type. The purpose of this study is to fill 

the gap in the current state of knowledge about HVAC fault prevalence. 

Researchers and FDD providers have largely focused on evaluating FDD performance 

building by building, and quantifying costs or other impacts. They often propose 

approaches that purport to improve the accuracy of fault detection, but by necessity will 

limit their investigations to simulated data (Li and O’Neill, 2019), a single building, or a 

small collection of buildings. A study exploring the use of automated methods for 

identifying “non-routine events” (possible faults) found success in streamlining 

measurement and verification processes, but recommended further work analyzing a 

larger set of buildings, including data from multiple real-world buildings and projects 

(Touzani et al., 2019). However, no unified dataset has been published on the observed 

prevalence of faults that could inform future studies. An exploratory study (limited to 12 

buildings) that informed the current study was the first of its kind to attempt to harmonize 

FDD data from multiple buildings and identify the necessary steps and the barriers to 

doing so (Newman et al., 2020). One key challenge was the lack of a common taxonomy 

across individual studies. This was addressed by Chen et al. (2020, 2021) presenting a 

standardized taxonomy for HVAC faults related to air handling unit (AHU), air terminal 

unit (ATU), and rooftop unit (RTU) systems, which is described in chapter 3. 

Several studies have been conducted for finding the frequency of faults in refrigeration 

and air conditioning systems. These studies collected data from two main data sources: 
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service records and field measurements. Service record sources include reports from 

service companies, insurance companies, building maintenance records, and 

manufacturers. Field measurements are obtained by system monitoring or technician 

inspection. Table 3 shows a list of the sampling methods used in the literature. 

 

Table 3. Data sampling methods 

Service records 

Reports from service companies 

Reports from insurance companies 

Reports from building maintenance records 

Reports from manufacturers 

Field measurements 

System monitoring 

Technician inspection 

 

Stouppe and Lau (1989) examined 15,760 failure records occurring between 1980 and 

1987 on different air-conditioning (AC) and refrigeration systems in commercial 

buildings by analyzing insurance claims. They documented failures in compressors, fans, 

motors, and valves, and summarized major cause of failures for these elements. Based on 

different failures of service records, the percentage of failure among all failures can be 

inferred. However, failure prevalence at a certain point in time cannot be inferred because 

they do not mention the time when failures occurred. They found that in hermetic air 

conditioning systems 76.6% of faults were electrical, 18.9% of faults were mechanical, 
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and 4.5% of faults were attributed to a malfunction in the refrigerant circuit. The climate 

zone coverage of these service records is not given. 

Hewett et al. (1992) studied energy savings that could be obtained by efficiency tune-ups 

on small commercial cooling systems in New England in the United States. They 

conducted field measurements on 25 cooling systems in 9 different sites. The focus of 

study was on refrigerant charge, duct leakage, and airflow faults. They found that 18 out 

of 25 units had refrigerant leakage fault. The fault prevalence can be calculated by 

dividing the number of faulty units by the total number of units. 

Breuker and Braun (1998a) estimated the frequencies of occurrence and the service costs 

of different RTU faults by analysis of service records of a company from 1989 to 1995. 

About 6,000 service records were analyzed in order to determine the common faults in 

RTUs and estimate their energy impacts. The focus of study was on finding the 

percentage of a specific fault among all faults. They found that 60% of failures were 

electrical or control problems, while 40% of faults were mechanical. They also found that 

although compressor failures do not happen as frequently as other faults, they have the 

highest service costs in RTUs. The climate zone coverage of these service records is not 

also available. 

Felts and Bailey (2000) monitored and analyzed over 250 RTUs installed in small 

commercial buildings in northern California in various climate zones. The entire 

monitoring period was three months in the summer, and each unit was monitored for 

three to five days. The measurement points were outdoor air, return air, mixed air, and 

supply air temperatures, power, and power factor. This study showed that 40% of the 



14 

 

RTUs were more than 25% oversized, and 10% of the RTUs were more than 50% 

oversized. It was also shown that economizers generally did not operate correctly. While 

the purpose of the study was to represent the whole 450,000 RTU customers in northern 

California, the sample size was not statistically representative. 

Downey and Proctor (2002) collected and analyzed performance data on over 13,000 air 

conditioners in both residential and commercial buildings in California. Appropriate 

measurements were taken over 26 months, and the performance of the air conditioners 

against manufacturer’s recommended refrigerant charge and evaporator airflow is 

evaluated. Their analysis concluded that 57% of the units had improper refrigerant 

charge, and 21% of the units had low airflow rate through the indoor coil. 

Davis et al. (Davis, Baylon, et al. 2002; Davis, Francisco, et al. 2002) developed a field 

protocol to evaluate the performance of RTUs in small commercial buildings, and applied 

it to 30 RTUs in Oregon in the United State. The main focus of the protocol was on 

refrigerant charge, airflow, and economizer operation. Their field results showed that 

only 36% of the units had the correct amount of refrigerant charge. They also found that 

about 67% of the RTUs had evaporator airflow less than 350 SCFM/ton, and only less 

than 40% of economizers were fully functional. 

 Comstock et al. (2002) conducted a fault survey among four major American chiller 

manufacturers to determine the most common and expensive faults in chillers. Fault 

survey form included five categories: chiller type, service reason, fault type, corrective 

action, and service cost. A total of 509 service records were gathered for different types 

of chillers. The fault data were presented in forms of frequency of occurrence and repair 
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cost. They reported that most common faults happened in control box and starter 

sections. Refrigerant leakage was the second most commonly cited fault in chillers. 

Cowan (2004) investigated data from 503 RTUs at 181 commercial buildings sites across 

five states, i.e., Oregon, Washington, Idaho, Montana, and California, gathered in four 

field studies. It was found that 46% of the units had improper refrigerant charge, 64% of 

the units had economizer problems, 42% of the units had airflow problems, 58% of the 

units had thermostat problems, and 20% of the units had sensor problems. By reviewing 

these four field studies results, they concluded that properly working thermostats and 

economizers offer the highest potential for energy saving. 

Madani (2014) analyzed the fault reports provided to heat pump manufacturers and 

insurance companies in Sweden in both commercial and residential buildings. 8,659 fault 

reports from an insurance company, and about 37,000 fault reports from manufacturers 

were gathered. The results were presented in terms of the percentages of individual faults 

among all faults. This study showed that control and electronics faults are the most 

common and costliest faults in heat pump systems. 

Liu et al. (1995) performed an optimization study of the HVAC operation at a seven-

story building with a total of 123,000 ft2 conditioned floor area in Texas in the United 

States. Field test was done on 3 AHUs and 210 terminal units. They found that terminal 

reheat leakage and excessive air flow are the main faults in the building. These faults 

increased energy consumption and thermal comfort complaints. 
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Yoshida et al. (1996) conducted a survey among HVAC experts in Japan to identify the 

ten most important faults in variable air volume (VAV) air handling systems based on 

their experience. The faults were ranked not only on frequency of occurrence, but also 

other factors such as environmental impacts, energy impacts, difficulty of detection, 

causing physical damage, and repair costs. The survey suggested that faults that occur in 

outdoor air damper and VAV box sections are fairly common. 

Qin and Wang (2005) conducted a site survey in a large commercial building in Hong 

Kong with 1,251 pressure independent VAV terminal units over 14 days. Investigating 

the operation of the VAV terminal units showed that 261 VAV terminals (20.9%) were 

ineffective. Their investigation also showed that zone temperature sensor error and local 

direct digital control error are the most common faults in VAV terminals. In addition to 

presenting the percentage of the individual faults among all faults, the results showed that 

how many times each fault happened. 

Gunay et al. (2019) developed a text-mining algorithm to extract information about fault 

frequency of HVAC systems from computerized maintenance management systems 

databases in Canada. The text mining algorithm was demonstrated using 26,992 service 

records gathered over seven years for a cluster of 44 buildings, and two years of service 

records for a central heating and cooling plant with four boilers and five chillers in a 

university campus. Analyzing the central heating and cooling plant dataset showed that 

the average annual warning/failure rate was 4.5 for a chiller, while it was 6.5 for a boiler. 

From the building cluster dataset, they found that approximately 50% of the 

warning/failure events were related to room/zone/floor level systems. 
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Shoukas et al. (2020) analyzed the fault data collected from FDD tools provided by four 

companies, representing over 28,000 RTUs, to determine the frequency of the reported 

faults. The fault data covered five different building types and multiple climate zones in 

the United States. Since different companies use different formats, fault definitions, 

diagnostics, and reporting, they were not able to compare between FDD tools, and results 

were presented separately for each data provider. They concluded that the frequency of 

the faults depends on the fault definitions and the diagnostics methods. They found that 

RTU faults occurred most commonly on economizer dampers, sensors, communications, 

and cooling systems. 

Ebrahimifakhar et al. (2021) described a method to estimate the prevalence of HVAC 

faults in AHUs, ATUs, and RTUs. The study data collected from several fault detection 

and diagnostics (FDD) data providers, providing a large sample with a wide range of 

building types, geographical locations, and equipment types. They described how the data 

from different data providers can be processed and unified using a common taxonomy, 

and illustrated HVAC fault prevalence metrics that can provide insights using this type of 

data. They provided preliminary figures that illustrate their HVAC fault prevalence 

metrics. 

Kim et al. (2021) performed an extensive literature review to summarize studies which 

have characterized fault prevalence in commercial buildings. They focused on three fault 

occurrence metrics in their review: fault prevalence, fault incidence, and percentage of 

fault among all faults. Table 4 shows the technical definitions of each fault occurrence 

metric. The provided data in this review can be listed as follows: 
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• Equipment type 

• Fault type 

• Fault occurrence metrics 

• Fault impact 

• Sampling method 

• Building type 

• Climate zone 

 

Table 4. Fault occurrence metric definitions 

Metric Definition 

Fault prevalence 

Percentage of units with a given fault at a given severity 

at a single point in time. 

Fault incidence 

Frequency at which a fault occurs in a specific period of 

time. 

Percentage of fault among all faults 

Percentage of a specific fault as a subset of a greater 

collection of faults. 

 

Their literature review showed that most of the building types defined in CBECS (EIA, 

2002), and most of the climate zones are covered in the previous fault prevalence studies. 

They also found that fault occurrence metrics change significantly between different 

studies. For example, the prevalence of improper refrigerant charge fault was reported 

between 30% and 70% in different studies. An accurate comparison of fault prevalence 
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between different studies for this specific fault is challenging, since the fault intensity 

data is unknown and probably inconsistent. The review identified knowledge gaps in 

current literature on fault prevalence, and recommended a comprehensive study on 

HVAC fault prevalence in commercial buildings to fill these potential gaps: 

• Fault prevalence data for different equipment types, e.g., coils, or dampers 

• Fault prevalence data for different system types, e.g., AHUs, ATUs, or RTUs 

• Fault prevalence data for different fault types 

• Fault prevalence data for different building types 

• Fault prevalence data for different climate zones 

• Economic and energy impact data for different fault types 

Table 5 summarizes the previous studies on HVAC fault prevalence. Our literature 

review shows that more work is required to understand the HVAC fault prevalence in 

commercial buildings. The previous studies have two primary limitations: 

1. Small sample sizes: Most of the studies had small sample sizes, and focused on 

local regions and specific building types. These studies are not representative of 

the whole population of commercial buildings in the United States. 

2. Out of date studies: Most of the studies were conducted before the year of 2010, 

and they are out of date. Since HVAC technologies have advanced in the past few 

years, new studies on HVAC fault prevalence are needed. 
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Table 5. Summary of HVAC fault prevalence studies 

Study Data Source HVAC System Sample Size Coverage 

Stouppe and Lau 

(1989) 

Insurance 

company 

AC and 

refrigeration 

systems 

15,760 service 

records 

Unavailable 

Hewett et al. 

(1992) 

Field inspection 

Unitary cooling 

equipment 

25 AC systems in 

9 different sites 

New England 

Breuker and Braun 

(1998a) 

Service company RTUs 

Around 6,000 

service records 

Unavailable 

Felts and Bailey 

(2000) 

System monitoring RTUs 250 RTUs 

Northern 

California 

Downey and 

Proctor (2002) 

Field 

measurements 

AC systems 

13,258 AC 

systems 

California 

Davis, Baylon, et 

al. (2002); Davis, 

Francisco, et al. 

(2002) 

Field 

measurements 

RTUs 30 RTUs Oregon 

Comstock et al. 

(2002) 

Manufacturers Chillers 509 service records Unavailable 

Cowan (2004) 

Field 

measurements 

RTUs 

503 RTUs in 181 

commercial 

buildings 

Oregon, 

Washington, 

Idaho, Montana, 

and California 
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Madani (2014) 

Manufacturers and 

insurance company 

Heat pump 

systems 

45,659 fault 

reports 

Sweden 

Liu et al. (1995) 

Field 

measurements 

AHU systems 

3 AHUs and 210 

terminal units 

Texas 

Yoshida et al. 

(1996) 

HVAC expert 

survey 

AHU systems - Japan 

Qin and Wang 

(2005) 

Site survey VAV systems 

261 variable air 

volume terminals 

Hong Kong 

Gunay et al. (2019) 

Building 

maintenance 

records 

Central heating 

and cooling plant 

26,992 service 

records 

Canada 

Shoukas et al. 

(2020) 

FDD tools RTUs Over 28,000 RTUs 

Multiple US 

climate zones 

Ebrahimifakhar et 

al. (2021) 

FDD tools 

AHUs, ATUs, and 

RTUs 

964 AHUs, 18,896 

ATUs, and 8,017 

RTUs 

Multiple US 

climate zones 

 

2.2. RTU Fault Detection and Diagnostics 

The purpose of this literature review is to summarize the existing fault detection and 

diagnostics (FDD) methods for packaged rooftop units (RTUs). 

Packaged rooftop units are widely used in commercial buildings, serving approximately 

52% of the total commercial building floor space in the United States (EIA, 2012). RTUs 
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are typically deployed in small commercial buildings, which means that they often don’t 

have the high-level maintenance that chillers receive. They are believed to operate below 

their rated efficiencies because of faults introduced during installation or developed 

during operation (Feng et al., 2005). Therefore, significant energy is wasted annually 

because of the presence of operating faults in RTUs that go unnoticed by the owners or 

operators of the equipment. A solution to address this problem is to apply fault detection 

and diagnosis (FDD) tools to RTU systems so that important faults can be addressed 

promptly. FDD systems have the potential to reduce equipment downtime, energy costs, 

and maintenance costs, and improve occupant comfort and reliability (Braun, 1999; Li 

and Braun, 2007a, 2007b; Yuill and Braun, 2016, 2017). 

Several FDD methods for RTU systems have been developed by researchers. Rossi and 

Braun (1997) developed a statistical, rule-based FDD method for vapor compression air 

conditioners with single-stage compressors, fixed-speed fans, and fixed orifice expansion 

valves. Their method only requires low-cost temperature and humidity measurements for 

detecting and diagnosing five common faults in air conditioners: (1) refrigerant leakage, 

(2) compressor valve leakage, (3) liquid-line restriction, (4) condenser fouling, and (5) 

evaporator fouling. A set of residuals is generated from the differences between measured 

values and predicted values obtained from a steady-state model for normal operation in 

the absence of faults. These residuals are used as inputs for both fault detection and 

diagnostic classifiers. The fault detection classifier uses the magnitude of the residuals to 

determine whether the system is normal or faulty, while the fault diagnostic classifier 

uses the directional change (sign) of the residuals to determine the type of fault. 
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Breuker and Braun (1998b) evaluated the performance of the FDD method developed by 

Rossi and Braun (1997). Their results show that the method can successfully detect and 

diagnose several faults over a wide range of operating conditions. However, the 

sensitivity of the method is affected by those operating conditions. They also quantified 

the minimum fault level at which the faults can first be detected and diagnosed. 

Fault characteristics on RTU systems equipped with thermostatic expansion valves 

(TXVs) are different from those with fixed orifice expansion devices, and TXVs are used 

on most new systems. Therefore, Chen and Braun (2001) modified the original FDD 

approach proposed by Rossi and Braun (1997) to be applicable for RTU systems with 

TXVs. Their algorithm was designed to detect and diagnose seven typical faults in RTUs: 

(1) refrigerant leakage, (2) refrigerant overcharge, (3) compressor valve leakage, (4) 

liquid-line restriction, (5) condenser airflow reduction, (6) evaporator airflow reduction, 

and (7) non-condensable gas. To simplify the FDD approach, they proposed two easily 

implemented methods for isolating the faults: (1) sensitivity ratio method, and (2) simple 

rule-based method. Both methods required a smaller number of sensors and were 

successful in detecting and diagnosing faults at a range of operating conditions. However, 

neither method was able to distinguish between non-condensable and refrigerant 

overcharge faults. 

Armstrong et al. (2006) developed an electrical signal based FDD technique for RTU 

systems. Their method requires high frequency current and voltage measurements. The 

electrical signals are measured and analyzed by a non-intrusive load monitor (NILM). 

Changes in the power signatures of the compressors and fans are used to detect and 
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diagnose common faults in air conditioners. This FDD method is minimally intrusive and 

complements other FDD approaches that are based on the temperature and humidity 

measurements. 

Multiple simultaneous faults are probably common in packaged air conditioners, but none 

of the previous FDD approaches can deal with multiple faults that happen 

simultaneously. Li and Braun (2007a, 2007c, 2009a, 2009b, 2009c) developed a 

decoupling-based FDD method for multiple simultaneous faults in packaged air 

conditioners. The key to handling multiple simultaneous faults is to identify decoupled 

features that uniquely are affected by individual faults. However, direct measurement of 

some decoupling features is too expensive or otherwise problematic. Therefore, they 

developed virtual sensors that use simple models to estimate decoupling features from 

indirect low-cost measurements, such as temperature measurements of saturated fluids to 

estimate pressure. 

Kim and Braun (2020) developed an FDD system for RTUs which incorporates virtual 

sensors and fault impact models for supporting the service decision making. The FDD 

system could detect the cause of the faults, and diagnose the fault intensities. Optimal 

fault detection thresholds were determined in such a way that maximize fault detection 

sensitivity and minimize false alarm rate. The decision for performing the RTU service 

could be based on assessing the capacity and COP degradation compared to the normal 

operation. 

Ebrahimifakhar et al. (2020, 2021) proposed a data-driven strategy for fault detection and 

diagnostics in rooftop air conditioning units, based on machine learning classification 
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methods. Their strategy formulates the fault detection and diagnostics task as a multi-

class classification problem. The focus of their study was on detecting and diagnosing the 

following common rooftop unit faults: refrigerant undercharge, refrigerant overcharge, 

compressor valve leakage, liquid-line restriction, condenser fouling, evaporator fouling, 

and non-condensable gas in the refrigerant. Ten-fold cross-validation technique was used 

to select tuning parameters for different classification methods. Their results demonstrate 

the potential of data-driven strategies to detect and diagnose common rooftop unit faults. 

Bode et al. (2020) investigated whether machine learning FDD algorithms trained on an 

experimental dataset could be transferred to a real-world building dataset. They used 

experimental dataset of a unitary split system heat pump provided by the National 

Institute of Standards and Technology (NIST) to train their FDD algorithms. Their results 

showed that the trained FDD algorithms perform satisfactorily on the experimental 

dataset, but poorly on the real-world building dataset. 

Most existing FDD approaches developed for packaged air conditioners use a rule-based 

approach. However, there is a large body of literature for data-driven FDD methods 

applied to other heating, ventilation, and air conditioning (HVAC) systems, especially 

chillers. Han et al. (2011a, 2011b) proposed a hybrid model that combines support vector 

machine (SVM) and genetic algorithm (GA) to detect and diagnose chiller faults. They 

adopted multi-class SVM as the FDD tool and selected GA for identifying the important 

sensors using a feature selection technique. Their FDD strategy was validated using 

experimental data from ASHRAE project 1043-RP (Comstock and Braun, 1999). 
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Zhao et al. (2013, 2014) proposed a pattern recognition-based method for detecting and 

diagnosing faults in chiller operations using support vector data description (SVDD), 

which is a novel one-class classification technique. Their results showed that the SVDD 

based FDD methods outperformed the principal component analysis (PCA) based FDD 

methods. 

Li et al. (2016) developed a two-stage data-driven FDD approach to detect and diagnose 

chiller faults using linear discriminant analysis (LDA) method. The FDD task was 

transformed into a multi-class classification problem. At the first stage, a fault was 

detected and diagnosed, and at the second stage, its corresponding severity level was 

identified. 

In summary, the majority of FDD methods developed and reviewed in this literature for 

RTUs are rule-based, and therefore, that is a need for developing “machine learning 

based” FDD for RTUs. Currently, there are only "two" research studies in this field: 

Ebrahimifakhar et al. (2020, 2021) and Bode et al. (2020) that both are reviewed in this 

section. We would like to mention that there are hundreds of machine learning based 

FDD studies but those are related to other HVAC systems like chillers, AHUs, ATUs, 

etc. 
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CHAPTER 3. Methodology 

3.1. Analysis of FDD Records as an Indicator of HVAC Fault Prevalence 

The primary source of data for this study comes from commercial fault detection and 

diagnostics (FDD) software tools. This is because commercial FDD software outputs can 

be obtained for a large number of buildings and HVAC systems at a relatively low cost. 

Since FDD software outputs are subject to error, i.e., they might have some level of false 

negative, false positive, and misdiagnosis rates, some of the FDD software outputs will 

be verified using manual inspection of buildings which will be explained in section 3.2. 

 

3.1.1. Data Overview 

The fault data received for this study is sourced from three commercial FDD software 

tools. The study dataset includes at least twelve months of data for each building. The 

study includes three classes of system: air handling unit (AHU), air terminal unit (ATU) 

and packaged rooftop unit (RTU), and includes analysis of components of these systems, 

such as a supply air temperature sensor for an AHU, or an economizer for an RTU. 

Table 6 shows the number of buildings, HVAC systems, and daily fault records for each 

of the data providers. A “daily fault record” constitutes the presence of a specific fault on 

a unique piece of equipment on a single day. A fault flagged multiple times in a single 

day constitutes one daily fault. For example, an RTU flagged with a stuck economizer 

damper fault every hour in 2019 would generate 365 daily fault records in the study 
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dataset. During that same time period the same RTU could generate other daily fault 

records relating to other fault types. 

 

Table 6. FDD data sources 

Data Source 
# of 

Buildings 
# of AHUs # of ATUs # of RTUs 

# of Daily 

Fault 

Records 

Provider A 131 964 18,896 0 4,473,881 

Provider B 29 709 13,812 13 4,352,792 

Provider C 131 0 0 2,162 2,861,910 

 

Tables 7 and 8 show that the sample space of data obtained from these three providers 

represents multiple building types and climate zones. 

 

Table 7. Number of buildings by building type 

Building Type 

Health 

Care 

Other Office Education Mercantile 

# of 

Buildings 

Provider A 77 33 20 1 0 

Provider B 29 0 0 0 0 

Provider C 0 0 0 0 131 
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Table 8. Number of buildings by Building America climate zone 

Climate Zone Marine Hot-Dry Cold 

Hot-

Humid 

Mixed-

Humid 

Mixed-

Dry 

# of 

Buildings 

Provider A 60 56 8 5 2 0 

Provider B 0 21 7 0 0 1 

Provider C 12 18 26 37 37 1 

 

3.1.2. Data Preparation 

Curating and analyzing data from a number of different sources is complicated by the 

diversity of data formats, fault naming conventions, and metadata and file structures that 

the FDD software tools employ. The first, and most intensive, step is to prepare the data 

by cleaning and normalizing it by mapping it to a common fault taxonomy. Data 

preparation includes the following steps: 

• Cleaning data to identify and resolve missing, mislabeled, empty fields, erroneous 

data, etc. 

• Anonymizing data to ensure that any sensitive information that may identify 

buildings or data partners is removed. 

• Normalizing data to a standard format using a common fault taxonomy. 

 

Since data preparation and cleaning steps might change by FDD data provider, there is 

likely partner-specific customization that will be required at this step. However, once this 
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step is done, it is expected that all next steps will operate using a common analysis 

process. 

Fault data from each partner are converted to a standard format, which is called binary 

daily fault (BDF) data. Table 9 shows a sample of BDF data. HVAC fault prevalence 

metrics are calculated from the BDF data. 

 

Table 9. Standard binary daily fault (BDF) data 

Fault 

Record 

Building ID 

Equipment 

ID 

Equipment 

Type 

Date 

Fault Name 

Mapped 

1 A1 A-AHU1 AHU 20190101 

AHU-Heating-

Coil_valve-Leakage 

2 A15 A-AHU5 AHU 20190101 

AHU-Cooling-

Coil_valve-Stuck 

3 B2 B-ATU17 ATU 20190102 

ATU-Discharge_air-

Damper-Stuck 

4 B21 B-ATU24 ATU 20190102 

ATU-Discharge_air-

Airflow-Abnormal 

5 C32 C-RTU3 RTU 20190103 

RTU-Outdoor_air-

Airflow-Abnormal 

6 C114 C-RTU6 RTU 20190104 

RTU-Mixed_air-

Temperature_sensor-

Frozen 

 



31 

 

3.1.3. Standardized Taxonomy for HVAC Faults 

Each fault detection and diagnostics (FDD) tool uses different fault names to refer to the 

same fault in an HVAC system. For example, in one commercial FDD tool, an 

“economizer damper hunting” fault is reported to show a malfunctioning damper control, 

but in another tool, this fault may be reported as an “economizer damper short cycling” 

fault or an “unstable economizer damper” fault. Therefore, a unifying taxonomy for 

HVAC faults in AHUs, ATUs, and RTUs in commercial buildings was developed (Chen 

et al., 2020, 2021). The developed fault taxonomy contains 123, 44, and 107 unique fault 

names for AHUs, ATUs, and RTUs, respectively. Mapping functions were created for 

each FDD tool to convert their fault reports to this unifying taxonomy. Tables 10, 11, and 

12 shows a selection of some of the HVAC faults in the taxonomy for AHUs, ATUs, and 

RTUs, respectively. 

 

Table 10. Example list of the AHU faults in the developed taxonomy 

Equipment Component Fault Name Fault ID Fault Type* 

AHU 

Air economizer 

Outdoor air 

damper hunting 

AHU-Outdoor_air-

Damper-Hunting 

BB 

Cooling coil 

valve 

Cooling coil 

valve stuck 

AHU-Cooling-

Coil_valve-Stuck 

CB 

Outdoor air 

temperature 

sensor 

Outdoor air 

temperature 

sensor bias 

AHU-Outdoor_air-

Temperature_sensor-

Bias 

CB 

*BB=Behavior-based, CC=Condition-based 



32 

 
Table 11. Example list of the ATU faults in the developed taxonomy 

Equipment Component Fault Name Fault ID Fault Type 

ATU 

Reheat coil 

valve 

Reheat coil 

valve leakage 

ATU-Reheat-

Coil_valve-Leakage 

CB 

Discharge air 

damper 

Discharge air 

damper hunting 

ATU-Discharge_air-

Damper-Hunting 

BB 

Discharge air 

temperature 

sensor 

Discharge air 

temperature 

sensor drift 

ATU-Discharge_air-

Temperature_sensor-

Drift 

CB 

 

 

Table 12. Example list of the RTU faults in the developed taxonomy 

Equipment Component Fault Name Fault ID Fault Type 

RTU 

Air economizer 

Economizer 

damper stuck 

RTU-Economizer-

Damper-Stuck 

CB 

Supply air 

temperature 

sensor 

Supply air 

temperature 

sensor frozen 

RTU-Supply_air-

Temperature_sensor-

Frozen 

CB 

Compressor 

Compressor 

short cycling 

RTU-

Refrigerant_circuit-

Compressor-

Short_cycling 

BB 
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There are three different fault categories based on how the faults are presented: 

condition-based, behavior-based, and outcome-based (Frank et al., 2019). Condition-

based faults are improper or undesired physical conditions in HVAC systems such as 

stuck dampers, leaky valves, and biased sensors. Behavior-based faults present improper 

or undesired behavior during the operation of HVAC systems. Examples of behavior-

based faults are economizer damper hunting, and simultaneous heating and cooling. 

Outcome-based faults are states in which an outcome or performance of the HVAC 

systems deviates from expected values, such as excessive energy consumption or 

insufficient ventilation rate. The HVAC fault taxonomy applied in the current project 

mainly includes condition-based and behavior-based faults, since they are most 

commonly used in FDD software tools. 

An important feature of the taxonomy is that it supports flexible analysis based upon 

multiple levels of equipment class. For example, prevalence can be calculated for specific 

faults related to RTU supply air temperature sensors, supply air temperature sensors in 

general, temperature sensors in general, or sensors in general. Similarly, prevalence could 

be calculated for all heating faults, all damper faults, all stuck damper faults, and so on. 

 

3.1.4. Metric Definitions 

There are many different ways to express fault prevalence. To determine the priority 

HVAC fault prevalence metrics to be calculated in this study, we identified several 

questions that we expect to be of most interest to the study’s target audience of FDD 

providers, users, regulators, and researchers. These questions include: 
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• What percentage of units are observed to be faulted at any given point in time? 

• Which faults are most often observed to be present? 

• How many faults are observed to be present each month for a given building? 

To quantitatively characterize the HVAC fault prevalence, the following metrics are 

defined. 

 

3.1.4.1. Monthly Fault Presence (Metric 1) 

This metric gives the percentage of equipment that experiences the presence of fault type 

‘x’ on one or more days, for each month of the year, and is expressed as a percentage of 

all equipment. For a given piece of equipment, if fault ‘x’ is present for at least one day in 

a given month, that month is denoted as a “1” binary value, and considered one 

“fault_month”. If the fault is observed to be present in multiple years for a given piece of 

equipment (e.g., present in February 2018 and in February 2019), each case will be 

considered a distinct value for this metric (e.g., February 2018 = 1, and February 2019 

=1, a total of two “fault_months” for February). 

This metric is calculated by: 

 
(1) 

where fault_months is the accumulated number of monthly fault occurrences for one type 

of fault in a calendar month across different years, and equipment_months is the number 

of monitored pieces of a specific type of equipment in one calendar month, or in a 
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calendar month over a range of years. For example, if 100 dampers are monitored for two 

full years, the damper equipment_months count for June would be 200. 

The fault_months is calculated by: 

 

(2) 

where  is the monthly fault occurrence. If there is at least one fault record 

in the FDD report within the month, then . The num_calender_year 

is the number of all years that may cover the time range of interest (e.g., the month of 

January appears in our dataset for a piece of equipment across two years, hence 

num_calender_year would equal 2). 

Figure 1 illustrates the calculation of  and fault_months under a selected 

time period. There are three AHUs, each monitored for two years. In January three out of 

six pieces of equipment had a fault flagged at least once during the month (so that 

 for these three), hence there is a total of three fault_months for 

January of six possible. This represents a monthly fault presence of 50 percent for 

January. 
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Figure 1. Graphical depiction of monthly fault presence (Metric 1) 

 

3.1.4.2. Average Monthly Fault Presence (Metric 2) 

Metric 2 is closely related to metric 1, and shows the percentage of equipment that 

experiences the presence of a given fault type on one or more days in a month, averaged 

across all months (whereas metric 1 presents a different fault presence value for each 

month). This metric shows which fault types are most often present in the data. 

 

3.1.4.3. Mean Number of Faults per Building per Month (Metric 3) 

This metric shows how many faults are observed to be present (at the building level) each 

month, among the set of faults considered in this study. The calculation steps of this 

metric are: 
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1) Establish total unique faults for each month, for one building. 

2) Calculate mean value across all months for that building. 

3) Repeat for all buildings. 

4) Calculate mean of all building-specific mean values. 

 

3.2. Field Study Verification 

Since FDD software results inherently have a certain degree of error, these results are 

complemented with a verification process. The verification is based on a direct field 

inspection of buildings, and will determine the typical rates of correct and incorrect fault 

classification (false negatives and false positives). 

Two buildings from among the buildings of the FDD provider C are selected for the field 

testing. These buildings have a total of 49 RTUs. Details of the site and equipment 

descriptions are shown in Table 13. 

 

Table 13. Field study site and equipment descriptions 

Building ID 

Building 

Type 

Building 

Age 

# of RTUs 

Capacity 

(Tons) 

Make 

C1 Mercantile 18 27 2-13 AAON 

C2 Mercantile 11 22 7.5-17.5 LENNOX 
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Field testing involves four types of data gathering:  

• Collecting trend data from the BAS system of the subject buildings. 

• Site visit measurements and observations (single point in time). 

• Short term data logging. 

• Proactive diagnostics (e.g., commanding a damper open to see if it moves). 

The selected buildings have a BAS that monitors and controls their operation. There are 

15 measurement points in the BAS, which are sampled every 1 minute. These 

measurements are shown in Table 14. 

A monitoring plan is developed for site visits to collect data for RTUs which includes: 

• Measurement points 

• Measurement period for each point (about two weeks) 

• Time interval measurement (1 minute) 

• Measurement units 

Table 15 shows the measurement points and their corresponding units in the monitoring 

plan. 
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Table 14. BAS measurements 

Data Point Measurement Unit 

Outdoor air temperature °F 

Outdoor air relative humidity  

Return air temperature °F 

Mixed air temperature °F 

Supply air temperature °F 

Zone air temperature °F 

Zone air relative humidity  

Cooling setpoint °F 

Heating setpoint °F 

Occupancy  

Cooling command  

Heating command  

Economizer command  

Supply air fan command  

CO2 ppm 
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Table 15. RTU site visit data 

Data Point Measurement Unit 

Outdoor air temperature °F 

Outdoor air relative humidity  

Return air temperature °F 

Mixed air temperature °F 

Supply air temperature °F 

Zone air temperature °F 

Zone air relative humidity  

Outdoor air damper position  

Compressor discharge pressure psig 

Compressor status  

Condenser temperature °F 

Supply fan current Amps 

Supply fan belt tension Lbs 

 

In this field study, we focused on detecting the following faults: 

• Sensor faults 

• Economizer damper stuck 

• Non-condensable gas 

• Abnormal supply fan belt tension 

• No unoccupied temperature setback 
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In the following sections, the methods for detecting these faults are explained. Our goal is 

to compare our field study findings with the reports of FDD software tool already 

installed in the buildings. 

Our literature review presented in section 2.2 showed that several methods have been 

developed for diagnosing the RTU faults during the past years. Most of these methods are 

rule-based and some of them are data-driven. There is still more work required to develop 

FDD methods that can be easily used in field studies. The faults selected for our field 

study are those that we find an easy and straightforward method for diagnosing them in 

our site visits from the literature. Since the purpose of our field study was for commercial 

FDD tools verification, it was important to us to select FDD methods that can correctly 

identify the presence or absence of these RTU faults. 

 

3.2.1. Sensor Faults 

Reliable measurement is a key factor to ensure good performance of the RTUs. The RTU 

control depends on the sensor measurements. Unfortunately, sensor faults (bias, drift, 

frozen) are usually inevitable after the RTUs work for a while. Inaccurate measurements 

might lead to increase the system energy consumption or decrease the indoor air quality, 

although there are appropriate control algorithms. Therefore, detecting and diagnosing 

the RTU sensor faults is a significant task. In order to detect and diagnose the sensor 

faults, values in the time series of measurements from the building BAS data are 

compared to values in a corresponding time series of measurements from our data loggers 

(considered as real values). If the difference between the values is nearly constant over 



42 

 

time, the fault is categorized as a sensor bias. If the difference between the values is not 

nearly constant over time, the fault is categorized as a sensor drift. If BAS value is 

constant over time but real value changes, the fault is categorized as a sensor frozen. 

Supply air, mixed air, return air, and zone temperature sensors are checked in this study. 

Figure 2 shows our installed sensor beside the zone temperature and relative humidity 

sensor. 

 

 

Figure 2. Our installed sensor beside the zone temperature and relative humidity sensor 

 

3.2.2. Economizer Damper Stuck 

RTU economizer includes duct/damper arrangement along with automatic control that 

allows to use outdoor air to decrease or eliminate the mechanical cooling. When there is a 
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cooling demand, and if the outdoor air condition is appropriate for economizing, 

unconditioned outdoor air will be introduced into the building to provide all of the 

cooling demand or supplement the mechanical cooling. 

A key factor of the RTU economizers is the high limit switch that determines whether the 

outdoor air condition is favorable for economizing and enables or disables the 

economizer based on that. These are the most common high limit economizer controls: 

• Fixed dry-bulb temperature 

• Differential dry-bulb temperature 

• Fixed enthalpy 

• Differential enthalpy 

RTU economizers often times fail to function properly because of damper, sensor, and 

other faults in the unit. Economizer faults might go completely unnoticed for long 

periods. If this happens, it can increase the system energy consumption. In this study, 

economizer damper stuck fault is detected by commanding the damper to open and close 

from the unit control, and visually check the damper operation. Figure 3 shows the 

economizer section of the one of the RTUs in the field. 
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Figure 3. Economizer section of the one of the RTUs in the field 

 

3.2.3. Non-Condensable Gas 

Non-condensable gases, such as air and nitrogen, might enter a packaged rooftop unit 

(RTU) refrigeration cycle during installation or servicing if the refrigerant circuit is not 

fully evacuated prior to refrigerant charging. When the RTU is turned off, the non-

condensable gas tends to accumulate in the unit’s condenser (Li and Braun, 2007c). Since 

these gases do not condense, they can decrease the system efficiency. When non-

condensable gas mixes with a two-phase refrigerant, it exerts an additional partial 

pressure. Therefore, the relationship between the refrigerant saturation temperature and 

pressure changes. 
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In this study, when the RTU is off and two-phase refrigerant exists within the unit’s 

condenser, the difference between the measured condensing temperature and saturation 

temperature calculated from the measured compressor discharge pressure is used for 

detecting the presence of non-condensable gas. 

 

3.2.4. Abnormal Supply Fan Belt Tension 

Reduced tension in an RTU supply fan belt can lead the belt to slip and transfer less 

mechanical energy from the motor to the fan. Therefore, for a given motor speed, the 

airflow rate will be lower. Over tensioning decrease the belt and bearing life. 

A belt tension checker is used for detecting and diagnosing this fault, and the following 

data is collected in the field: 

• Belt cross section (e.g., BX) 

• Belt Span 

• Smallest sheave diameter 

• Belt deflection force 

 

3.2.5. No Unoccupied Temperature Setback 

If the RTU systems are properly controlled during the unoccupied mode, it can 

significantly reduce the energy costs in commercial buildings. In order to detect and 

diagnose the deficiencies in occupancy scheduling, unoccupied temperature setback, the 

zone cooling and heating setpoints are checked using the building automation system 
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(BAS) data. During unoccupied hours, the zone cooling setpoint should be increased, and 

the zone heating setpoint should be decreased to achieve saving opportunities. 

 

3.3. Machine Learning based FDD for RTUs 

Faults in RTU systems can be divided into two classes: (1) hard failures, and (2) soft 

faults. Hard failures happen abruptly and cause the RTU to stop functioning. Soft faults 

degrade the system performance, but permit continued operation of the system. Hard 

failures such as compressor failure frequently occur in RTU systems and are expensive to 

repair. However, they can be easily detected and diagnosed by inexpensive sensors. For 

example, a compressor failure can be easily detected and diagnosed by checking the inlet 

and outlet temperatures of the compressor. Hard failures are typically caused by extended 

periods of operation with a soft fault. Detecting and diagnosing soft faults, such as 

refrigerant leakage or heat exchanger fouling, is more challenging. These faults not only 

cause premature failure of components, but also reduce the operating efficiency or 

capacity of the system (Braun, 2003; Breuker and Braun, 1998a). 

The focus of this study is on detecting and diagnosing the following soft faults: 

• Refrigerant undercharge (UC) 

• Refrigerant overcharge (OC) 

• Compressor valve leakage (VL) 

• Liquid-line restriction (LL) 

• Condenser airflow reduction (CA) 
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• Evaporator airflow reduction (EA) 

• Non-condensable gas (NC) 

Fault detection means determining whether faults have happened in the system 

(Isermann, 2006; Katipamula and Brambley, 2005). An early detection of faults may 

provide valuable warning on arising problems in the system, and can be used to signal 

required attention by a technician. Fault diagnosis means determining the type, 

magnitude and location of the fault (Isermann, 2006; Katipamula and Brambley, 2005). 

Fault diagnosis is essential for eliminating or counteracting the faults. In some 

applications, fault diagnosis follows the fault detection, while in other applications, fault 

detection and diagnosis are performed in a single step (Katipamula and Brambley, 2005). 

In this study, we present a data-driven FDD approach that simultaneously detects and 

diagnoses faults in a single step using machine learning classification methods. Different 

fault types are discriminated against one another as well as the normal condition. 

Over the past few decades, many classification methods have been developed and widely 

used in FDD for a wide range of engineering applications (Bishop, 2006; Fernández-

Delgado et al., 2014; James et al., 2013). We used the following classic and state-of-the-

art classifiers in this study: 

• Logistic regression (LR) 

• Linear discriminant analysis (LDA) 

• Quadratic discriminant analysis (QDA) 

• K-nearest neighbors (KNN) 
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• Bagging (BA) 

• Random forests (RF) 

• AdaBoost (AD) 

• XGBoost (XGB) 

• Support vector machine (SVM) 

Data-driven FDD methods require a large and comprehensive database of training data 

that contain both normal and faulted conditions. However, experimental data for air 

conditioners is rare and difficult to obtain. This problem limits the size of the database 

available for a data-driven FDD approach. Therefore, a simulated database of model 

faults at steady state operation generated by Cheung and Braun (2013a, 2013b) is used to 

provide a rich training data for the machine learning classifiers. They used inverse 

modeling to generate a database of system performance under both faulted and normal 

conditions for vapor compression systems. Their simulation results have been validated 

against experimental data from previous research projects and found to perform well 

(Yuill et al., 2014). 

In this study, a nominal three-ton RTU is used to test the proposed data-driven FDD 

strategy. The specifications of the RTU are shown in Table 16. The thermodynamic state 

of the system under normal or faulted conditions is characterized by the following 

comprehensive set of variables (features): 

• Return air (evaporator inlet) dry bulb temperature (TRA) 

• Return air (evaporator inlet) wet bulb temperature (WBRA) 
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• Supply air (evaporator outlet) dry bulb temperature (TSA) 

• Supply air (evaporator outlet) wet bulb temperature (WBSA) 

• Ambient air dry bulb temperature (Tamb) 

• Liquid-line pressure (PLL) 

• Liquid-line temperature (TLL) 

• Suction pressure (Psuc) 

• Suction temperature (Tsuc) 

• Compressor discharge pressure (Pdischg) 

• Compressor discharge temperature (Tdischg) 

• Condenser exiting air temperature (Tair,ce) 

• Refrigerant saturation temperature in the evaporator (Tsat,e) 

• Refrigerant saturation temperature in the condenser (Tsat,c) 

• Compressor power (Powercomp) 

 

Table 16. Specifications of the RTU system 

System 

Type 

Nominal 

Capacity 

[kW] 

Refrigerant 
Expansion 

Device 

Condenser 

Type 

Compressor 

Type 

Operating 

Mode 

RTU 10.6 R410A 

Fixed 

Orifice 

(FXO) 

Fin-tube Scroll Cooling 

 

A schematic of a typical vapor compression refrigeration cycle with the selected state 

variables is shown in Figure 4. 
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Figure 4. Schematic of a typical vapor compression refrigeration cycle 

 

Classification involves building a statistical model for predicting a qualitative 

(categorical) output variable based on the input variables (features) (James et al., 2013). 

Our full dataset consists of fifteen input variables (such as TRA, WBRA, and more) for 

2851 observations (samples), and the output variable takes on eight possible categorical 

values: (1) UC, (2) OC, (3) VL, (4) LL, (5) CA, (6) EA, (7) NC, and (8) NF (no fault). 

This input variable set is comprehensive, containing a larger number of measured 

variables than is typically practical for an FDD application. However, the current work is 

intended to explore the overall feasibility of machine learning based fault classification 

for RTUs. Further work is required to examine the importance of the variables for 

classification to determine the most cost-effective reduced set. 
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Some statistical descriptors of the input variables of the total data set (the 2851 

observations that contain both normal and faulted conditions) are shown in Table 17. 

Input variables often need to be scaled to avoid particular variables dominating the 

classification algorithm (Chiang et al., 2001). Therefore, we standardized the input 

variables so that each of them has a mean of zero and a standard deviation of one. This 

standardization ensures that each input variable is given equal weight before the 

application of the classification algorithm. 

An examination of the minima and maxima in Table 17 shows that there appear to be 

outliers in the dataset. For example, the liquid line temperature extremes could not exist 

because they are outside the bounds of the ambient temperature. Although the original 

modeling effort included removal of many of the outliers that could be justified based 

upon physics or numerical solver troubles, the data set still contains errors. A desirable 

capability of the classifier in this particular application is robustness in the presence of 

unreliable data sets, since perfectly reliable modeling of fault impacts on measurable 

variables in these systems is not currently attainable.  

By applying several different classification methods to our dataset, we intend to answer 

two important questions: which classification method is most effective for this task; and 

what is the potential of data-driven methods, generally for detection and diagnosis of 

faults. We randomly divided the 2851 observations into two parts, a training set 

containing 2/3 of the data points (1901 observations), and a test set containing the 

remaining 950 observations. Then we fitted a classification model using the training set, 

and evaluated its performance on the test set. In general, the accuracy of the classifier’s 
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predictions applied to the training set is not important. We instead are concerned with 

how well the classifier predicts on the test set. A good classifier is one for which the test 

accuracy is largest. The main characteristics of the datasets are summarized in Table 18, 

which shows the name of the dataset, number of observations, and number within each 

class in the dataset. 

 

Table 17. The statistics of the input variables of the total data set 

Input 

Variable 
Unit Mean 

Standard 

Deviation 
Minimum Maximum 

TRA °C 25.0 2.9 21.1 28.9 

WBRA °C 17.6 4.3 12.8 23.9 

TSA °C 14.9 3.7 1.0 27.4 

WBSA °C 12.2 4.7 0.1 23.3 

Tamb °C 32.4 9.0 18.3 46.1 

PLL kPa 2748.2 619.1 1603.0 4654.6 

TLL °C 38.4 10.4 11.8 68.9 

Psuc kPa 1031.0 129.2 226.8 1368.6 

Tsuc °C 13.2 6.1 -3.8 33.0 

Pdischg kPa 2842.7 613.2 1658.2 4767.7 

Tdischg °C 71.6 16.6 27.7 117.6 

Tair,ce °C 42.8 9.4 23.8 70.5 

Tsat,e °C 8.1 4.6 -34.1 18.1 

Tsat,c °C 44.5 9.6 23.9 68.9 

Powercomp W 2537.3 618.2 869.0 5021.1 
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Table 18. Fault class scenarios of the datasets 

Dataset 
# 

Observations 
# UC # OC # VL # LL # CA # EA # NC # NF 

Training 

Data 
1901 252 353 367 233 263 239 163 31 

Test 

Data 
950 146 159 166 103 143 127 89 17 

Total 

Data 
2851 398 512 533 336 406 366 252 48 

 

Each classification method may have several tuning parameters. Proper tuning parameter 

selection is an important issue for good predictive performance. Tuning parameters are 

usually selected with the k-fold cross-validation (CV) technique (Bishop, 2006; James et 

al., 2013). It involves randomly splitting the available training data into k folds of 

approximately equal size. The first fold is used for the validation set (hold-out set), and 

the remaining k-1 folds are used for fitting the model. The accuracy of the fitted model is 

then calculated on the validation set. This process is repeated for all k possible choices 

for the validation set. The accuracy values from the k runs are then averaged to calculate 

the k-fold CV accuracy. k-fold CV accuracy provides an estimate of the test accuracy 

associated with a given classification model. 

We used 10-fold CV technique to find optimal tuning parameters for each classification 

method. We selected a grid of tuning parameter values, and calculated the 10-fold CV 

accuracy for each set of values, as described earlier. We then selected the tuning 

parameter values for which the 10-fold CV accuracy is largest. After the optimal tuning 

parameters values were found, we refitted the model on the full training dataset to 

generate the final classifier (James et al., 2013). For bagging (BA) and random forests 
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(RF) classification methods, we used out-of-bag (OOB) accuracy (James et al., 2013) to 

find optimal values for tuning parameters. This is a technique to estimate the test 

accuracy of a classification model, without the need to do k-fold CV. 

To evaluate the performance of classification models in detecting and diagnosing faults, 

the prediction results can be shown as a two-dimensional confusion matrix (Witten and 

Frank, 2005), which compares the actual and predicted classifications. Each matrix 

element indicates the number of test observations, with the actual (true) class in rows and 

the predicted class in columns. The diagonal elements of a confusion matrix show the 

correct predictions, while the off-diagonal elements show the incorrect predictions and 

how they were misclassified. 

Table 19 shows the confusion matrix for a three-class classifier (as an example), where 

TP (true positive) denotes the number of the cases for which a specific class actually 

happened and the classifier predicted that, TN (true negative) denotes the number of the 

cases for which a specific class did not happen and the classifier did not predict that, FP 

(false positive) denotes the number of the cases for which a specific class did not happen 

but the classifier predicted that, and FN (false negative) denotes the number of the cases 

for which a specific class actually happened but the classifier did not predict that. 

 

Table 19. An illustrative confusion matrix with three classes 

 
Predicted Class 

Class 1 Class 2 Class 3 

Actual (True) 

Class 

Class 1 a11 (TN)* a12 (FP) a13 (TN) 

Class 2 a21 (FN) a22 (TP) a23 (FN) 

Class 3 a31 (TN) a32 (FP) a33 (TN) 
* Those in () are for class 2 (as an example) 
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The overall accuracy rate (OAR) is typically used as a simple measure for assessing the 

overall performance of a classifier. It is the number of correct predictions (the diagonal 

elements of the confusion matrix) divided by the total number of observations. However, 

class-specific performance is also important in fault detection and diagnosis, where the 

terms true positive rate (TPR) and false positive rate (FPR) characterize the performance 

of a classifier for individual classes. For a given class, TPR is the percentage of the 

happened observations that are correctly predicted, and FPR is the percentage of the non-

happened observations that are predicted as happened. TPR and FPR can be calculated as 

follows: 

 
(3) 

 
(4) 
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CHAPTER 4. HVAC Fault Prevalence Results & Discussion 

A total of 11,688,583 daily fault records of AHUs, ATUs, and RTUs were analyzed from 

the three FDD providers. Values for metrics 1 to 3 have been generated. 

 

4.1. Monthly Fault Presence (Metric 1) Results 

As we explained earlier, metric 1 gives the percentage of equipment that experiences the 

presence of fault type ‘x’ on one or more days, for each month of the year, and is 

expressed as a percentage of all equipment. The metric 1 results for AHUs, ATUs, and 

RTUs are presented in the following. 

 

4.1.1. AHU Results 

FDD provider A has 964 AHUs, and 46 unique AHU faults are successfully mapped to 

our fault taxonomy. FDD provider B has 709 AHUs, and 28 unique AHU faults are 

mapped. 

Figure 5 shows the monthly fault presence (metric 1) for “AHU simultaneous heating and 

cooling” which is a behavior-based fault for FDD provider A. The prevalence rate has a 

range between 4% and 8%. This fault has lower overall rate in summer, and is likely to 

be correlated to season. 
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Figure 5. Monthly fault presence (metric 1) for AHU simultaneous heating and cooling for FDD provider A 

 

Figure 6 shows the monthly fault presence for “AHU mixed air temperature abnormal” 

for FDD provider A. This fault is also behavior-based. The prevalence rate has a range 

between 18% and 26%. There is no obvious seasonal trend for this fault. 

 

Figure 6. Monthly fault presence (metric 1) for AHU mixed air temperature abnormal for FDD provider A 
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Figure 7 shows the monthly fault presence for “AHU heating coil valve leakage” which is 

a condition-based fault for FDD provider B. The prevalence rate has a range between 1% 

and 4%. This fault has lower overall rate in summer, and this could be because of reduced 

usage of heating systems in summer. 

Figure 8 shows the monthly fault presence for “AHU heating coil valve hunting” for 

FDD provider B. This is a behavior-based fault. The prevalence rate has a range between 

1% and 10%. There is also a seasonal trend for this fault. 

More examples of AHU faults for FDD providers A and B are given in appendix A. 

 

 

 

Figure 7. Monthly fault presence (metric 1) for AHU heating coil valve leakage for FDD provider B 
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Figure 8. Monthly fault presence (metric 1) for AHU heating coil valve hunting for FDD provider B 

 

4.1.2. ATU Results 

FDD provider A has 18,896 ATUs, and 17 unique ATU faults are successfully mapped to 

our fault taxonomy. FDD provider B has 13,812 ATUs, and 13 unique ATU faults are 

mapped. 

Monthly fault presence (metric 1) for “ATU reheat coil valve stuck” for FDD provider A 

is shown in Figure 9. This is a condition-based fault. The prevalence rate has a range 

between 6% and 8%. This fault does not show a seasonal trend. 

Monthly fault presence for “ATU discharge airflow abnormal” for FDD provider A is 

shown in Figure 10. This is a behavior-based fault. The prevalence rate has a range 

between 10% and 13%. This fault also does not show a seasonal trend. 
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Figure 9. Monthly fault presence (metric 1) for ATU reheat coil valve stuck for FDD provider A 

 

 

 

 

Figure 10. Monthly fault presence (metric 1) for ATU discharge airflow abnormal for FDD provider A 
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Monthly fault presence for “ATU discharge air damper stuck” for FDD provider B is 

shown in Figure 11. This is a condition-based fault. The prevalence rate has a range 

between 7% and 13%. This fault shows an apparent seasonal trend. 

Monthly fault presence for “ATU reheat coil valve hunting” for FDD provider B is 

shown in Figure 12. This is a behavior-based fault. The prevalence rate has a range 

between 12% and 19%. This fault shows a clear seasonal trend. 

More examples of ATU faults for FDD providers A and B are given in appendix B. 

 

 

 

Figure 11. Monthly fault presence (metric 1) for ATU discharge air damper stuck for FDD provider B 
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Figure 12. Monthly fault presence (metric 1) for ATU reheat coil valve hunting for FDD provider B 

 

4.1.3. RTU Results 

FDD provider B has only 13 RTUs, and 3 unique RTU faults are successfully mapped to 

our fault taxonomy. FDD provider C has 2,162 RTUs, and 38 unique RTU faults are 

mapped. 

Figure 13 shows the monthly fault presence (metric 1) for “RTU cooling failure” for 

FDD provider C. This is an outcome-based fault. The prevalence rate has a range 

between 4% and 19%. This fault shows a genuine seasonal trend. 
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Figure 13. Monthly fault presence (metric 1) for RTU cooling failure for FDD provider C 

 

Figure 14 shows the monthly fault presence for “RTU heating failure” for FDD provider 

C. This is an outcome-based fault. The prevalence rate has a range between 0% and 12%. 

This fault also shows a genuine seasonal trend. 

 

Figure 14. Monthly fault presence (metric 1) for RTU heating failure for FDD provider C 
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4.2. Average Monthly Fault Presence (Metric 2) Results 

As we explained earlier, metric 2 is closely related to metric 1, and shows the percentage 

of equipment that experiences the presence of a given fault type on one or more days in a 

month, averaged across all months. This metric is a useful way to sort the relative 

prevalence of all individual fault types, and can also help in understanding the most 

problematic system components (e.g., dampers, sensors) or functional elements (e.g., 

cooling, heating). The metric 2 results for AHUs, ATUs, and RTUs are presented in the 

following. 

 

4.2.1. AHU Results 

Figure 15 shows the average monthly fault presence (metric 2) for AHU faults for FDD 

provider A. There are 46 unique AHU faults in total. “Missed control optimization 

opportunity”, “sensor frozen”, and “mismatch between supply air temperature and its 

setpoint” are the most common faults from the FDD provider A representing faults in 

28%, 27%, and 26% of the AHUs, respectively. “Missed control optimization 

opportunity” is not strictly a fault, and relates to missing the following opportunities: 

• Supply air temperature reset 

• Static pressure reset 

• Setback schedule 

Figure 16 shows the average monthly fault presence for AHU faults for FDD provider B.  

There are 28 unique AHU faults in total. “Missed control optimization opportunity”, 
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“mismatch between supply air temperature and its setpoint”, and “mixed air temperature 

sensor fault” are the most common faults from the FDD provider B representing faults in 

58%, 40%, and 35% of the AHUs, respectively. As can be seen, FDD provider A and B 

have two common faults between their three most prevalent faults. “Missed control 

optimization opportunity” relates to missing the following opportunities: 

• Supply air temperature reset 

• Supply air pressure reset 

• Minimum outdoor airflow reset 
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Figure 15. Average monthly fault presence (metric 2) for AHU faults from FDD provider A 
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Figure 16. Average monthly fault presence (metric 2) for AHU faults from FDD provider B 

 

Figure 17 shows the comparison of average monthly fault presence for AHU faults 

between FDD providers A and B. While for each fault there is a wide range provider to 

provider, this varied fault to fault. FDD provider A has systematically lower prevalence 

rates. Difference in scale could be due to FDD thresholding or maintenance vigor. Also, 

there are several potential fault prevalence drivers such as building type and climate zone 
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that are not the same between the FDD providers. As we explained in chapter 2, since 

different companies use different formats, fault definitions, diagnostics, and reporting, 

shoukas et al. (2020) were not able to compare between FDD tools, and they presented 

their results for RTU fault prevalence separately for each data provider. Standard fault 

definitions like what we used in this study can help to overcome this barrier. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Comparison of average monthly fault presence for AHU faults between FDD providers A and B 
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4.2.2. ATU Results 

Average monthly fault presence (metric 2) for ATU faults for FDD provider A is shown 

in Figure 18. There are 17 unique ATU faults. “Zone temperature abnormal”, “sensor 

frozen”, and “discharge air temperature abnormal” are the most common faults from the 

FDD provider A representing faults in 23%, 14%, and 14% of the ATUs, respectively. 

 

 

Figure 18. Average monthly fault presence (metric 2) for ATU faults from FDD provider A 

 

Average monthly fault presence (metric 2) for ATU faults for FDD provider B is shown 

in Figure 19. There are 13 unique ATU faults. “Zone temperature abnormal”, “control 

sequence setting fault”, and “discharge airflow abnormal” are the most common faults 
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from the FDD provider B representing faults in 50%, 29%, and 23% of the ATUs, 

respectively. As can be seen, “zone temperature abnormal” is the most common ATU 

fault for both FDD providers A and B, although the prevalence rate is different. 

 

 

Figure 19. Average monthly fault presence (metric 2) for ATU faults from FDD provider B 

 

Figure 20 shows the comparison of average monthly fault presence for ATU faults 

between FDD providers A and B. For most of the faults, FDD provider A has lower 

prevalence rates. As we explained for AHU faults, this scale variation is not surprising to 

us. Adding more FDD data providers to the study would help to have a better 

understanding of the fault prevalence values. 
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Figure 20. Comparison of average monthly fault presence for ATU faults between FDD providers A and B 

 

4.2.3. RTU Results 

Figure 21 shows the average monthly fault presence (metric 2) for RTU faults for FDD 

provider C. There are 38 unique RTU faults. “Zone relative humidity sensor frozen”, 

“outdoor air temperature sensor frozen”, and “zone temperature sensor frozen” are the 

most common faults from the FDD provider C representing faults in 55%, 52%, and 47% 

of the RTUs, respectively. As can be seen, 9 faults among the 10 most common faults are 

either sensor frozen or abnormal readings. All of these faults have high prevalence rates. 

Our field study verification revealed that these are not real faults, and most of them are 

false positives of the FDD tool. This topic is explained in more detail in chapter 5. 
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Figure 21. Average monthly fault presence (metric 2) for RTU faults from FDD provider C 
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Figure 22 shows the average monthly fault presence for RTU faults for FDD provider B. 

There are only 3 unique RTU faults. Since FDD provider B has only 13 RTUs, it is 

expected these fault prevalence values cannot be generalized. 

 

 

Figure 22. Average monthly fault presence (metric 2) for RTU faults from FDD provider B 

 

4.3. Mean Number of Faults per Building per Month (Metric 3) Results 

Metric 3 indicates how many faults are observed to be present (at the building level) each 

month, among the set of faults considered in this study. The metric 3 results for the three 

FDD providers are presented in the following. 
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4.3.1. FDD provider A Results 

Figure 23 shows the distribution of the mean number of faults per building per month for 

FDD provider A. As can be seen, 48% of the buildings were in the range of 0-100 faults 

per month, 18% were in the range of 100-200, 15% were in the range of 200-300, 7% 

were in the range of 300-400, and 12% had higher than 400 faults per month. It should be 

noted that the number of faults in each building includes all the AHU and ATU faults. As 

we expected, buildings with higher quantities of equipment had higher quantities of 

faults. One health care building in a hot-dry climate zone with 38 AHUs and 834 ATUs 

had 1,043 faults per month which was the highest number among all the buildings. The 

average and median values are 176 and 102 faults per building per month, respectively. 

This is an example of a metric where it could make more sense to normalize. 

Figure 24 shows the distribution of the mean number of faults per building per equipment 

per month for FDD provider A. The average and median values are 1.5 and 1.4 faults per 

building per equipment per month, respectively. One health care building in a hot-dry 

climate zone with 10 AHUs had 5.5 faults per equipment per month which was the 

highest number among all the buildings. 
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Figure 23. Mean number of faults per building per month distribution for FDD provider A 

 

 

Figure 24. Mean number of faults per building per equipment per month distribution for FDD provider A 
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4.3.2. FDD provider B Results 

Figure 25 shows the distribution of the mean number of faults per building per month for 

FDD provider B. As can be seen, 34% of the buildings were in the range of 0-300 faults 

per month, 17% were in the range of 300-600, 14% were in the range of 600-900, 3% 

were in the range of 900-1200, and 32% had higher than 1200 faults per month. The 

number of faults in each building includes all the AHU, ATU and RTU faults. One health 

care building in a hot-dry climate zone with 58 AHUs and 1,720 ATUs had 3,559 faults 

per month which was the highest number among all the buildings. The average and 

median values are 922 and 589 faults per building per month, respectively. 

Figure 26 shows the distribution of the mean number of faults per building per equipment 

per month for FDD provider B. The average and median values are 2.1 and 2.1 faults per 

building per equipment per month, respectively. One health care building in a hot-dry 

climate zone with 30 AHUs and 445 ATUs had 3.6 faults per equipment per month which 

was the highest number among all the buildings. 
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Figure 25. Mean number of faults per building per month distribution for FDD provider B 

 

 

Figure 26. Mean number of faults per building per equipment per month distribution for FDD provider B 
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4.3.3. FDD provider C Results 

Figure 27 shows the distribution of the mean number of faults per building per month for 

FDD provider C. 13% of the buildings were in the range of 0-50 faults per month, 52% 

were in the range of 50-100, 29% were in the range of 100-150, and 6% were in the range 

of 150-200. The number of faults in each building includes all the RTU faults. One 

mercantile building in a cold climate zone with 29 RTUs had 191 faults per month which 

was the highest number among all the buildings. The average and median values are 90 

and 83 faults per building per month, respectively. 

Figure 28 shows the distribution of the mean number of faults per building per equipment 

per month for FDD provider C. The average and median values are 5.5 and 5.7 faults per 

building per equipment per month, respectively. These values are higher than the 

corresponding values of the other two FDD providers and could be related to the false 

positives of this FDD tool we found in our field study. One mercantile building in a hot-

humid climate zone with 14 RTUs had 8.8 faults per equipment per month which was the 

highest number among all the buildings. 
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Figure 27. Mean number of faults per building per month distribution for FDD provider C 

 

 

Figure 28. Mean number of faults per building per equipment per month distribution for FDD provider C 
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CHAPTER 5. Field Study Results & Discussion 

As we mentioned earlier, since the commercial FDD software results inherently contain a 

certain level of error, these results are complemented with a field verification to evaluate 

the performance of the FDD software tools. For this purpose, two buildings from among 

the buildings of the FDD provider C are selected. RTUs of these two buildings are 

monitored for about two weeks using our installed data loggers. Using the fault detection 

and diagnostics methods explained in section 3.2, the actual RTU faults in these buildings 

are identified. The results of our field study are compared with the FDD provider C fault 

reports to find the false negatives and false positives. 

 

5.1. First Building Results 

The first building has a total of 27 RTUs. The RTUs are monitored from March 4, 2021 

to March 12, 2021. Table 20 shows the FDD provider C fault report for the same period. 

As cab be seen, the fault prevalence rates are very high. We took a closer look at the BAS 

data to find the reason. We noticed that there are a couple of columns with zero values in 

the BAS data. This shows that sensor values are not correctly communicated to BAS. 

FDD provider C software considers these zero values as sensor frozen faults. These faults 

are false alarms (false positives) of the FDD software, since a fault is identified while no 

fault is present. This is the reason why we mentioned in chapter 4 that the sensor fault 

prevalence results from the FDD provider C are not reliable. 
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Table 20. FDD provider C fault report for the first building 

Fault Name Number of RTUs 

Number of Faulted 

RTUs 

Fault Prevalence 

(%) 

Mixed air temperature 

sensor frozen 

27 27 100 

Return air temperature 

sensor frozen 

27 27 100 

Return air CO2 sensor 

frozen 

27 27 100 

Zone relative 

humidity sensor 

frozen 

27 21 78 

 

Table 21 shows the actual faults identified using the collected data in our field visit and 

FDD methods explained in section 3.2. 

These are the actual faults that our field verification identified in the first building. None 

of these faults were detected by the provider C FDD software, and these are missed 

detections (false negatives) of the software. It should be noted that the FDD software was 

not designed to diagnose the non-condensable gas and abnormal supply fan belt tension 

faults. 
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Table 21. Actual faults identified for the first building 

Fault Name 

Number of RTUs 

Checked 

Number of Faulted 

RTUs 

Fault Prevalence 

(%) 

Zone air temperature 

sensor bias 

11 3 27 

Economizer damper 

stuck 

10 2 20 

Non-condensable gas 19 1 5 

Abnormal supply fan 

belt tension 

10 7 70 

 

Figure 29 shows an example of both healthy and faulted zone air temperature sensors. To 

detect and diagnose the zone air temperature sensor bias, values in the time series of 

measurements from the building BAS data are compared to values in a corresponding 

time series of measurements from our data loggers (considered as real values). If the 

difference between the values is higher than 2 °F (detection threshold) and nearly 

constant over time, the fault is categorized as a sensor bias. 

 

 

 

 



83 

 

 

 

Figure 29. Normal and faulted zone air temperature sensors 

 

Table 22 shows some examples of the RTUs with and without non-condensable gas 

inside their refrigerant circuits. When the unit is off and two-phase refrigerant exists 

within the condenser, the difference between the measured condensing temperature and 
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saturation temperature calculated from the measured compressor discharge pressure is 

used for detecting the non-condensable gas fault (Li and Braun, 2007c). The detection 

threshold is selected to be 3 °F. All RTUs have R410A as refrigerant. 

 

Table 22. RTUs with and without non-condensable gas 

Unit 

Refrigerant 

Pressure 

(psig) 

Saturation 

Temperature 

(°F) 

Condenser 

Temperature 

(°F) 

ΔT (°F) Diagnostics 

RTU 09 111.6 65.2 59.6 5.6 Faulted 

RTU 13 102.2 60.3 59.5 0.8 Normal 

 

Table 23 shows some examples of RTUs with normal and abnormal supply fan belt 

tension. A belt tension checker is used for detecting and diagnosing this fault. 

 

Table 23. RTUs with normal and abnormal supply fan belt tension 

Unit 

Belt Cross 

Section 

Smallest 

Sheave 

Diameter 

(Inches) 

Rpm 

Actual 

Belt 

Deflection 

Force (lbs) 

Normal 

Belt 

Deflection 

Force (lbs) 

Diagnostics 

RTU 06 BX 4.2 1735 3.5 4.9-7.2 

Under 

Tension 

RTU 09 BX 4.2 1735 6.2 4.9-7.2 Normal 
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Figure 30 shows an example of inclusion of temperature setbacks in the building during 

unoccupied periods. Using temperature setbacks during unoccupied times can result in 

reducing building energy consumption. Temperature setbacks were implemented in all 

the RTUs in this building. 

 

 

Figure 30. Unoccupied temperature setback 

 

5.2. Second Building Results 

The second building has 22 RTUs. Monitoring time is from March 26, 2021 to April 13, 

2021. Table 24 shows the FDD provider C fault report for this time period. 

 

 



86 

 
Table 24. FDD provider C fault report for the second building 

Fault Name Number of RTUs 

Number of Faulted 

RTUs 

Fault Prevalence 

(%) 

Supply air 

temperature sensor 

frozen 

22 14 64 

Return air temperature 

sensor frozen 

22 11 50 

Return air CO2 sensor 

frozen 

22 22 100 

Zone dewpoint sensor 

frozen 

22 15 68 

Economizer damper 

stuck 

22 3 14 

 

Similar to first building, the fault prevalence rates are very high. As we explained earlier, 

the reason is the presence of a couple of columns with zero values in the BAS data. FDD 

tool identifies the zero values as sensor frozen faults. 

Table 25 shows the results of our field study in the second building. Most RTUs have 

several refrigerant circuits. For the non-condensable gas fault, all refrigerant circuits are 

checked. That is why there are 30 units (> 22 units) in the table. None of these faults 

except three economizer damper stuck faults were detected by the provider C FDD tool. 
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Table 25. Field study results for the second building 

Fault Name 

Number of RTUs 

Checked 

Number of Faulted 

RTUs 

Fault Prevalence 

(%) 

Zone air temperature 

sensor bias 

11 0 0 

Economizer damper 

stuck 

22 6 27 

Non-condensable gas 30 0 0 

Abnormal supply fan 

belt tension 

18 10 56 

 

5.3. Confidence Interval for Fault Prevalence 

One interesting goal of this field study could be finding the prevalence of the specific 

faults in the whole population of RTUs in the US commercial buildings. There is a 

discrete distribution in the population which means θ percent of RTUs have a specific 

fault and 1-θ percent of RTUs do not have that specific fault. We are looking for to find 

the θ which is a constant unknown. If θ = 0.4, it means that 40% of RTUs are faulted. 

In order to find the θ, we need to select a random sample from the whole population of 

RTUs. It should be noted that our sample which includes 49 RTUs is not completely 

random, and therefore we have some biases. An estimate of the θ is which is the fault 

prevalence based on the sample selected. Unlike θ, has a distribution, since if we repeat 
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the sampling several times, we get a new value for each time. It can be shown that the 

has a variance of θ (1- θ)/n, where n is the sample size. Therefore, the standard error of 

is { (1- )/n}1/2. It also can be shown that ( -θ)/{ (1- )/n}1/2 converges to a standard 

normal variable (Davison, 2003), and therefore a (1-2α) confidence interval for θ has the 

endpoints -z1-α{ (1- )/n}1/2 and -zα{ (1- )/n}1/2. If we want a 95% confidence 

interval for θ, then z0.975 = -z0.025 =1.96. Table 26 shows the 95% confidence interval for 

the prevalence of the RTU faults considered in our field study. As can be seen, since our 

sample size is small, we have a wide 95% confidence interval. 

 

Table 26. 95% confidence interval for the prevalence of RTU faults 

Fault Name 

Number of RTUs 

Checked 

Number of 

Faulted RTUs 

Fault 

Prevalence (%) 

95% 

Confidence 

Interval (%) 

Zone air 

temperature sensor 

bias 

22 3 14 (0,28) 

Economizer 

damper stuck 

32 8 25 (10,40) 

Non-condensable 

gas 

49 1 2 (0,6) 

Abnormal supply 

fan belt tension 

28 17 61 (43,79) 
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CHAPTER 6. Data-Driven FDD for RTUs Results & Discussion 

To explore the performance of the various machine learning classification methods in 

detecting and diagnosing the normal and seven fault modes of operation in RTUs, we 

applied each classification method to our simulation data library. This data library is 

generated with simulations based on Cheung & Braun (2013a, 2013b) to provide a rich 

training dataset for the classifiers. We would like to emphasize that this data library is 

different than the FDD data we talked about in chapters 4 and 5. All statistical models 

were implemented using R, a statistical software environment (R Core Team, 2019). A 

list of R packages and functions used for each classification method is shown in Table 27. 

As discussed in chapter 3, optimal tuning parameters for each classification method are 

selected using either CV or OOB techniques. 

 

Table 27. A full list of R packages and functions used 

Classification Method Function Package 

LR multinom () nnet 

LDA lda () MASS 

QDA qda () MASS 

KNN knn () class 

BA randomForest () randomForest 

RF randomForest () randomForest 

AD boosting () adabag 

XGB xgboost () xgboost 

SVM svm () e1071 

 

Figure 31 shows the 10-fold CV accuracy (or OOB accuracy) and test accuracy for nine 

classifiers. The 10-fold CV accuracy (or OOB accuracy) provides a reasonable 

approximation to the true test accuracy. For LDA, RF, AD, BA, XGB, LR, and SVM 
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classifiers, it overestimates the true test accuracy, while for KNN and QDA classifiers, it 

underestimates the true test accuracy. Based on the true test accuracy, which is the real 

quantity of interest, SVM and LR are the best classifiers, with overall accuracy rates of 

96.2% and 93.6% respectively, and KNN and LDA are the weakest classifiers, with 

overall accuracy rates of 83.6% and 76.2%, respectively. Confusion matrices for these 

four classifiers on the test data are shown in Figure 32. 

 

 

Figure 31. Estimated and true test accuracy for different classification methods 

 

The SVM classification method has two tuning parameters: cost and gamma (James et 

al., 2013). The cost parameter determines the cost of a violation to the margin. For large 

values of cost, the margin will be small, and few support vectors will be on the margin or 

will violate the margin. The gamma parameter shows how far the influence of a single 

training sample reaches. If gamma parameter is very small, the region of influence of any 
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support vector includes the whole training set. If gamma parameter is too large, the 

region of influence of the support vectors only includes the support vector itself. 10-fold 

CV was performed to select the best values for these parameters, with results as shown in 

Figure 33. Using values of cost=107, and gamma=10-4 resulted in the highest 10-fold CV 

accuracy rate. The optimal tuning parameter values for each of the classification methods 

are shown in Table 28. 

 

Figure 32. Confusion matrices for four classification methods: (a) SVM, (b) LR, (c) KNN, (d) LDA 
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Figure 33. SVM 10-fold CV accuracy rates as a function of gamma values while cost=107 

 

Table 28. The list of tuning parameters for each of the classification methods 

Classification Method Tuning Parameters Range of Values Optimal Values 

LR - - - 

LDA - - - 

QDA - - - 

KNN 
Number of nearest 

neighbors, K 
[1, 2, 3, …, 30] 1 

BA Number of trees, ntree 
[50, 100, 150, …, 

1000] 
500 

RF 

Number of variables 

randomly sampled as 

candidates at each split, 

mtry 

[1, 2, 3, …, 14] 2 

Number of trees, ntree 
[50, 100, 150, …, 

1000] 
550 

AD 

Maximum depth of each 

tree, maxdepth 
[1, 2, 3, …, 8] 8 

Number of trees, mfinal 
[100, 200, 300, …, 

1000] 
900 

XGB 

Learning rate, eta 
[0.001, 0.005, 0.01, 

0.05, 0.1, 0.5, 0.9] 
0.5 

Maximum depth of each 

tree, max_depth 
[1, 2, 3, …, 10] 5 

Number of trees, 

nrounds 

[100, 200, 300, …, 

1000] 
300 

SVM 

Cost of constraints 

violation, cost 
[100, 101, 102, …, 108] 107 

Parameter needed for 

radial kernel, gamma 

[10-7, 10-6, 10-5, …, 

100] 
10-4 
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Figure 34 shows the TPR of each class for all the classification methods. A TPR of 100% 

means that all the samples of that class are correctly classified. None of the classifiers, 

except QDA, could correctly predict the unfaulted (NF) class samples (TPR of 0%). Even 

QDA can only correctly classify 58.8% of the NF samples. This is an unfortunate result, 

because in practical application the most important task of FDD is to avoid “false alarms” 

(Yuill and Braun, 2017). 

The reason for this low performance is that our dataset is highly imbalanced, and only 48 

samples out of the total 2851 samples belong to the NF class. This problem clearly shows 

the effect of class distribution on classifier learning (Weiss and Provost, 2001). The 

imbalance is caused by the fact that the simulation matrix contains simulations at each 

combination of operating conditions for several fault intensities, but for the NF class, 

there can only be one intensity. We address the issue of class imbalance later in this 

study. The SVM classification method has a very high TPR for all the classes except the 

NF class. In this method, the TPR of UC, OC, VL, LL, CA, EA, NC, and NF classes are 

100%, 97.5%, 97.6%, 99.0%, 99.3%, 96.9%, 94.4%, and 0.0%, respectively. 

Interestingly, all of the UC faults are correctly predicted. As can be seen from the 

confusion matrix shown in Figure 32(a), all 17 NF samples in the test data are 

misclassified as LL. For the LDA classifier, the TPR of UC, OC, VL, LL, CA, EA, NC, 

and NF classes are 84.2%, 88.1%, 77.1%, 89.3%, 63.6%, 70.9%, 67.4%, and 0.0%, 

respectively. The confusion matrix in Figure 32(d) shows that 13 NF samples were 

misclassified as LL and 4 NF samples are misclassified as OC. 
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Figure 34. TPR values for each class for all nine classification methods 

 

The FPR of each class for all classification methods is shown in Figure 35. A FPR of 0% 

means that none of the other classes is classified into that class. The figure shows that LL 

and OC have high FPR values, while UC has the lowest FPR value. The SVM classifier 

has a very low FPR for all classes. For this classifier, the FPR of UC, OC, VL, LL, CA, 

EA, NC, and NF classes are 0.0%, 0.9%, 0.1%, 2.6%, 0.0%, 0.2%, 0.2%, and 0.2%, 

respectively. For the LDA classification method, the FPR of UC, OC, VL, LL, CA, EA, 

NC, and NF classes are 0.0%, 8.0%, 0.1%, 17.9%, 0.0%, 0.9%, 0.3%, and 0.0%, 

respectively. Of all fault types, LL has the highest FPR value for this classifier. The 

confusion matrix in Figure 32(d) shows that 23 UC samples, 14 OC samples, 21 VL 

samples, 32 CA samples, 26 EA samples, 23 NC samples, and 13 NF samples are 

misclassified as members of class LL. 
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Figure 35. FPR values for each class for all nine classification methods 

 

For classification methods BA, RF, AD, and XGB, we can compute the total decrease in 

Gini index (James et al., 2013) from splitting over a given predictor variable, averaged 

over all trees. A large value shows an important predictor variable. Gini index is a 

measure of node impurity; a small value indicates that a node mostly contains samples 

from a single class. Figure 36 shows a graphical representation of the importance of each 

predictor variable in the classification task. Based on the results obtained from these four 

classification methods, TLL and Tdischg are the most important predictor variables in the 

fault detection and diagnosis process. However, there is no clear drop off in importance 

to divide essential predictors from non-essential predictors. For example, at least five 

predictors score above 50% importance for each of the classifiers shown in the figure. 
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Figure 36. Variable importance plots for different classification methods: (a) BA, (b) RF, (c) AD, (d) XGB 
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In order to alleviate the problem of class imbalance in our original dataset, we used the 

synthetic minority over-sampling technique (SMOTE) (Chawla et al., 2002) to balance 

the classes. In this oversampling (Japkowicz, 2000) approach, new samples of the 

minority class (NF class, as discussed above) are artificially generated using the K 

nearest neighbors of each minority class (NF) sample. The SMOTE function with K=5 

from the R package DMwR was used to oversample the minority (NF) class. As can be 

seen from Table 18, the original training data has 31 NF samples. 155 new synthetic NF 

samples (500% of original size) were generated using the oversampling technique. After 

applying the oversampling, the test accuracy of the SVM method slightly decreases from 

96.2% to 95.5%. The test accuracy of the LR method also slightly decreases from 93.6% 

to 92.6%. However, there is a significant reduction in false negative rate (FNR=1-TPR) 

for the NF class. Updated confusion matrices for these two classifiers on the test data are 

shown in Figure 37.  

 

 

Figure 37. Confusion matrices for two classification methods after applying oversampling: (a) SVM, (b) 

LR 
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Figure 38 shows the TPR of each class before and after applying the oversampling 

method for the SVM and LR classification methods. Before applying the oversampling 

method, the SVM classifier could not correctly predict any of the 17 NF samples (TPR of 

0%). After applying the oversampling method, the SVM classification method correctly 

predicted 5 NF samples out of 17 NF samples (TPR of 29.4%). The TPR of other classes 

also changed very slightly for SVM. For the LR classifier, the TPR of the NF class 

increased from 0% to 76.5% (it correctly predicted 13 of 17 NF samples). However, the 

TPR of the LL class decreased from 99.0% to 78.6%, and the TPR of other classes also 

changed very slightly. These results show that the oversampling approach improves the 

performance on the minority class (NF class) for the LR classifier more than it does for 

the SVM classifier. 

 

 

Figure 38. TPR values for each fault class before and after applying the oversampling: (a) SVM, (b) LR 
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The FPR of each class before and after applying the oversampling method for the SVM 

and LR classification methods is shown in Figure 39. For the SVM method, the FPR of 

the minority class (NF) increases from 0.2% to 1.0% after applying the oversampling 

method. For LR classifier, the FPR of the minority class (NF class) increases from 0.3% 

to 3.5%. The results show that the oversampling approach improves the performance on 

the minority class (NF class) in the expense of increasing the FPR value. However, as 

noted above, in practical application, the cost of the FPR for the NF class is low 

compared to the cost of the FNR. 

 

 

Figure 39. FPR values for each fault class before and after applying the oversampling: (a) SVM, (b) LR 
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CHAPTER 7. Conclusions and Recommendations for Future Research 

In this chapter, the conclusions and recommendations for future research are summarized. 

 

7.1. HVAC Fault Prevalence Summary 

In this study, a multi-year dataset including a total of 11,688,583 daily fault records of 

AHUs, ATUs, and RTUs in commercial buildings is analyzed to determine a range of 

HVAC fault prevalence metrics. The fault data received for this study is sourced from 

three commercial FDD providers. Fault data from each provider are converted to a 

standard format, which is called binary daily fault (BDF) data. Since each FDD provider 

uses different fault names to refer to the same fault in an HVAC system, a unifying 

taxonomy for HVAC faults is used. Mapping functions were created for each FDD 

provider to convert their fault reports to this unifying taxonomy. To quantitatively 

characterize the HVAC fault prevalence, the following metrics are defined: monthly fault 

presence (metric 1), average monthly fault presence (metric 2), and mean number of 

faults per building per month (metric 3). Based on our results, the following conclusions 

can be drawn: 

(1) While some faults (e.g., “RTU cooling failure” from FDD provider C) shows a 

genuine seasonal trend, others (e.g., “ATU discharge airflow abnormal” from 

FDD provider A) do not have an obvious seasonal trend. 

(2) “Missed control optimization opportunity”, “sensor frozen”, and “mismatch 

between supply air temperature and its setpoint” with 28%, 27%, and 26% 
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prevalence rate, respectively, are the most common AHU faults from the FDD 

provider A. 

(3) “Missed control optimization opportunity”, “mismatch between supply air 

temperature and its setpoint”, and “mixed air temperature sensor fault” with 58%, 

40%, and 35% prevalence rate, respectively, are the most common AHU faults 

from the FDD provider B. 

(4) FDD provider A and B have two common AHU faults between their three most 

prevalent AHU faults. FDD provider A has systematically lower prevalence rates 

for AHU faults. 

(5) “Zone temperature abnormal”, “sensor frozen”, and “discharge air temperature 

abnormal” with 23%, 14%, and 14% prevalence rate, respectively, are the most 

common ATU faults from the FDD provider A. 

(6) “Zone temperature abnormal”, “control sequence setting fault”, and “discharge 

airflow abnormal” with 50%, 29%, and 23% prevalence rate, respectively, are the 

most common ATU faults from the FDD provider B. 

(7) “Zone temperature abnormal” is the most common ATU fault for both FDD 

providers A and B, although the prevalence rate is different. 

(8) FDD provider C has high prevalence rates for RTU faults. Our field study showed 

that this is because of the false positives of the FDD tool. 

(9) The average number of faults per building per equipment per month is 1.5, 2.1, 

and 5.5 for FDD providers A, B, and C, respectively. 
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The following recommendations for future research are made: 

(1) Collecting fault data from more FDD providers. 

(2) Evaluating how the HVAC fault prevalence metrics change with potential drivers 

such as building type and climate zone. 

(3) Implementing additional HVAC fault prevalence metrics that can provide new 

insights about the data. 

(4) Collecting fault data for other HVAC systems, e.g., chillers, boilers, cooling 

towers, etc. 

 

7.2. Field Study Summary 

Since the commercial FDD software outputs inherently contain a certain degree of error, 

these results are complemented with a field verification to evaluate the performance of 

the commercial FDD software tools. Two buildings from among the buildings of the 

FDD provider C are selected. RTUs of these two buildings are monitored for about two 

weeks using our data loggers. Using our fault detection and diagnostics methods, the 

actual RTU faults in these buildings are identified. The results of our field study are 

compared with the FDD provider C fault reports to find the false negatives and false 

positives. The following conclusions are made: 

(1) In the first building, we found that “zone air temperature sensor bias”, 

“economizer damper stuck”, “non-condensable gas”, and “abnormal supply fan 

belt tension” faults have 27%, 20%, 5%, and 70% prevalence rate, respectively. 
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(2) In the second building, we found that “zone air temperature sensor bias”, 

“economizer damper stuck”, “non-condensable gas”, and “abnormal supply fan 

belt tension” faults have 0.0%, 27%, 0.0%, and 56% prevalence rate, respectively. 

(3) FDD provider C fault report shows high prevalence rates for RTU sensor frozen 

faults. Our investigation showed that these are the false alarms (false positives) of 

the FDD tool. 

The following recommendations for future research are made: 

(1) Monitoring more buildings from FDD provider C from different climate zones. 

(2) Conducting field study for other FDD providers, and check other HVAC systems, 

e.g., AHUs and ATUs. 

 

7.3. Data-Driven FDD for RTUs Summary 

A data-driven RTU fault detection and diagnostics strategy was presented in this study. 

The proposed strategy formulates the FDD task as a multi-class classification problem. 

Several statistical machine learning classification methods are applied to our dataset in 

order to detect and diagnose the seven typical faults in RTU systems using fifteen input 

variables. This approach is validated using a fault data library of simulated measurements 

from faulted and unfaulted RTU generated based upon the methods of Cheung and Braun 

(2013a, 2013b). The results show that the classification algorithms can detect and 

diagnose the seven typical faults in RTU systems with varying but generally acceptable 

levels of success. Based on our results, the following conclusions can be drawn: 
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(1) The SVM classification method has the highest overall accuracy rate of 

96.2%, and LDA classification method has the lowest overall accuracy rate of 

76.2%. 

(2) None of the classification methods, except QDA, could correctly predict the 

NF class samples (TPR of 0%). Even the QDA method only correctly predicted 

58.8% of the NF samples. This is because our original dataset is highly 

imbalanced, and only 48 samples out of the total 2851 samples belong to the NF 

class (minority class). 

(3) The results obtained from the BA, RF, AD, and XGB classification methods 

show that TLL and Tdischg are the most important predictor variables in the RTU 

fault detection and diagnostics process. However, several additional predictors are 

necessary. 

(4) Using the synthetic minority over-sampling technique (SMOTE) (Chawla et 

al., 2002) can alleviate the problem of class imbalance in our original dataset. 

After applying the oversampling, the overall accuracy of the SVM and LR 

methods slightly decreases, but their performance for predicting the minority class 

(NF class) improves significantly. 

Overall, machine learning based FDD shows sufficient potential for further investigation. 

Future work to build upon these results should include: 

(1) Application to data sets from additional RTU, to test how generalizable the 

resulting classifications are. 
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(2) Study of the tradeoffs between the number of types of input (temperatures, 

pressures, etc.), and the effectiveness of the classifier. 

(3) Consideration of multiple simultaneous faults in the dataset as additional 

categories. Many FDD tools struggle with accurate diagnosis when multiple faults 

are present, so it would be beneficial to know whether machine learning based 

FDD has the potential to be more effective than status quo methods. Newly 

available data from tests with multiple simultaneous faults (Hu and Yuill, 2021; 

Hu et al., 2021) may facilitate development in this area. 

(4) Changes or tuning of fault intensity thresholds. Some of the fault levels in the 

training data set may not be severe enough to warrant the cost of repairing. These 

cases could be removed or reclassified as unfaulted for training purposes. This 

step could potentially help to address a shortcoming of the proposed 

classification-based FDD method, which is that it does not provide a fault severity 

assessment. 

(5) Repeat this work for split systems, which are even more common than RTU 

and have similar behaviors with respect to fault effects. 
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APPENDIX A - Monthly Fault Presence (Metric 1) for AHU Faults 

 

 

Figure A-1: Monthly fault presence (metric 1) for AHU damper stuck for FDD provider A 

 

 

Figure A-2: Monthly fault presence (metric 1) for AHU supply air static pressure sensor drift for FDD 

provider A 
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Figure A-3: Monthly fault presence (metric 1) for AHU heating coil valve leakage for FDD provider A 

 

 

 

Figure A-4: Monthly fault presence (metric 1) for AHU fan hunting for FDD provider A 
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Figure A-5: Monthly fault presence (metric 1) for AHU supply air temperature abnormal for FDD provider 

A 

 

 

 

Figure A-6: Monthly fault presence (metric 1) for AHU coil valve hunting for FDD provider A 
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APPENDIX B - Monthly Fault Presence (Metric 1) for ATU Faults 

 

 

Figure B-1: Monthly fault presence (metric 1) for ATU discharge air damper stuck for FDD provider A 

 

 

Figure B-2: Monthly fault presence (metric 1) for ATU zone temperature abnormal for FDD provider A 
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Figure B-3: Monthly fault presence (metric 1) for ATU reheat coil valve hunting for FDD provider A 

 

 

 

Figure B-4: Monthly fault presence (metric 1) for ATU discharge air temperature abnormal for FDD 

provider A 


	Investigation of the Prevalence of Faults in the Heating, Ventilation, and Air-Conditioning Systems of Commercial Buildings
	

	tmp.1638552447.pdf.Dn6y9

