
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Statistics Statistics, Department of

2006

CLOSED FORM EXPRESSIONS FOR
BAYESIAN SAMPLE SIZE
Bertrand S. Clarke
University of Nebraska-Lincoln, bclarke3@unl.edu

A. Yuan
Howard University, ayuan@howard.edu

Follow this and additional works at: http://digitalcommons.unl.edu/statisticsfacpub

Part of the Other Statistics and Probability Commons

This Article is brought to you for free and open access by the Statistics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has
been accepted for inclusion in Faculty Publications, Department of Statistics by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Clarke, Bertrand S. and Yuan, A., "CLOSED FORM EXPRESSIONS FOR BAYESIAN SAMPLE SIZE" (2006). Faculty Publications,
Department of Statistics. 69.
http://digitalcommons.unl.edu/statisticsfacpub/69

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/statisticsfacpub?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/statistics?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/statisticsfacpub?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/215?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/statisticsfacpub/69?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages


 The Annals of Statistics
 2006, Vol. 34, No. 3, 1293-1330
 DOI: 10.1214/009053606000000308
 ? Institute of Mathematical Statistics, 2006

 CLOSED FORM EXPRESSIONS FOR BAYESIAN SAMPLE SIZE

 By B. Clarke and Ao Yuan

 University of British Columbia and Howard University

 Sample size criteria are often expressed in terms of the concentration of
 the posterior density, as controlled by some sort of error bound. Since this is
 done pre-experimentally, one can regard the posterior density as a function
 of the data. Thus, when a sample size criterion is formalized in terms of a
 functional of the posterior, its value is a random variable. Generally, such
 functionals have means under the true distribution.

 We give asymptotic expressions for the expected value, under a fixed pa
 rameter, for certain types of functionals of the posterior density in a Bayesian

 analysis. The generality of our treatment permits us to choose functionals that
 encapsulate a variety of inference criteria and large ranges of error bounds.
 Consequently, we get simple inequalities which can be solved to give mini
 mal sample sizes needed for various estimation goals. In several parametric
 examples, we verify that our asymptotic bounds give good approximations to
 the expected values of the functionals they approximate. Also, our numerical
 computations suggest our treatment gives reasonable results.

 1. Introduction. Suppose Xn = (X\,..., Xn) is IID p(-\6), where the
 ^-dimensional parameter 0 ranging over 0 c Rd is equipped with a prior prob
 ability W(-) having density w(6) with respect to Lebesgue measure. Given an
 outcome xn = (x\,..., xn) of Xn, Bayesian inference is based on the posterior
 density w(6\xn) = w(6)p(xn\0)/m(xn), where m(xn) = f w(9)p(xn\9)d9 is the
 mixture density. Once a prior, likelihood and parametrization for 6 are specified,
 the main pre-experimental task is to choose the sample size n. The size of n will
 depend on the degree of accuracy desired and on the sense in which that accuracy
 is to be achieved.

 Sample size determination in the Bayesian setting is an important and practi
 cal problem. As yet there is no general and accepted asymptotically valid closed
 form expression, such as we give here, that can be readily used to give minimally
 necessary sample sizes to achieve pre-specified inference objectives, even in seem
 ingly simple cases. For instance, it has taken a series of papers (see [19] and the
 references therein) to provide a reasonable treatment for the difference of two pro
 portions with independent Beta densities under a variety of criteria.

 The lack of general expressions may be, in part, because the inferential criteria
 that have been used fall into three distinct classes. First, in the absence of a loss
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 function, one often looks at properties of credibility sets?average length of the
 highest posterior density regions for instance. While this is often reasonable, the
 downside is that criteria that look for the worst case scenario often require over
 large sample sizes; see [14]. One way to correct for this is to include the cost of
 sampling in the optimality criterion.

 Second, when a loss function is available, the decision theoretic approach orig
 inated by Raiffa and Schlaifer [20] can be used. One benefit of this approach is
 that it is easy to include the cost of sampling. The decision theoretic approach was
 developed in [18]. See also [1] and [16] for an information perspective; Pham-Gia
 and Turkkan ([19], Section 4) provided some general comments. Cheng, Su and
 Berry [3] established asymptotic expressions for sample size computation in the
 clinical trial context for dichotomous responses. A general discussion of the rela
 tive merits of decision theoretic approaches to sample size problems can be found
 in [14, 17, 18].

 A third class of treatments of the sample size problem is more "evidentiary":
 These techniques tend to be based on hypothesis testing criteria such as Bayes
 factors (see [6, 7, 15]) or robustness; see [8]. The predictive probability crite
 rion of [9], the distance between the posterior predictive density and the density
 updated on additional observations, and the direct evaluation of probabilities of
 events in the mixture distribution (see [4]) fall into this conceptual class as well.
 Since Bayesian testing can be framed as a decision problem, this third class can
 be regarded as a special case of the second class. However, the emphasis is differ
 ent. Decision theoretic approaches tend to emphasize risks and expectations, while
 evidentiary approaches tend to focus on conditional probabilities, often posterior
 probabilities of hypotheses.

 Because of this multiplicity of mathematically challenging criteria, it is not easy
 to parallel frequentist formulations. Nevertheless, many of these criteria can be
 represented as functional F, not in general linear, of the posterior distribution
 W(-\Xn). For such cases, we provide a unified framework, indicating how it can
 be adapted to various settings.

 Our overall goal is to give simple closed form asymptotic expressions in the
 form of inequalities that can be solved to give sample sizes. The reader interested
 primarily in these expressions can find four of them in Section 4, noted (APVC),
 (ACC), (ALC) and (ES), to indicate the criteria. [Expressions for similar cases
 are in Theorem 3.3 and in the Appendix; see (A.10), (A.ll) and (A.13).] Infor
 mally, our central strategy for obtaining these expressions is the standard tech
 nique of approximating the leading term in an expansion of the expectation of a

 functional. Recall that W(-\Xn) is asymptotically O^ (ni(6))-{ (') under po in an L1
 sense. Here, <1>m,q(0 is the distribution function for a Normal(/z, Q), with density

 denoted 0^,^(0, and 0 is the maximum likelihood estimator (MLE), with asymp
 totic variance at a value 6 given by the positive definite inverse Fisher informa
 tion matrix I(0)~l. If 9o is the data generating parameter, adding and subtracting



 BAYESIAN SAMPLE SIZE 1295

 V(^(?/(0o))-i(-)) gives
 (1.1) E0oF(W(-\Xn)) = E0oF(<t>?(nimr, ( )) + E0oRn(F),

 where Rn(F) = [E0oF(W(-\Xn)) - E0oF(<t>?{nI{0o)rl ( ))] is the remainder term
 and F is a functional on distributions, that is, for any distribution Q, F(Q) e E.
 Our hope is that the remainder term will be small enough compared to the differ
 ence of the other two terms that (1.1) will permit asymptotically valid closed form
 expressions for the sample size criterion encapsulated by F.

 1.1. An example of the techniques. Our verification that the remainder term
 in quantities like (1.1) is typically small rests on the foundational work of John
 son [10, 11], who developed Edgeworth style approximations for the posterior
 and certain posterior derived quantities such as percentiles and moments. Indeed,
 Edgeworth expansions and Johnson-style asymptotic expressions provide asymp
 totic control for the values of both terms on the right-hand side in (1.1), as n -> oo,
 for various choices of F.

 To see how these asymptotic expressions can be used to approximate the leading
 term of (1.1), and that the remainder term can be small compared to it, consider
 the following example. It is paradigmatic of our approach in its use of Johnson and
 Edgeworth expansions. The specific result can be obtained more readily by other
 techniques; however, our point is only to exemplify the reasoning informally.

 Set F(W(.\Xn)) = Fa(W(.\Xn)) = W(Dn\Xn), where Dn = (-oo,an(a))
 and an = an(a) = an(a, Xn) is the ofth quantile under the posterior distribution
 W(-\Xn). Next, set

 D'=(-oq, <i>-l(a) + Zn =(-oo,bn],
 in which Zn is an asymptotically standard normal random sequence of ran
 dom variables. It is seen that D'n is the region corresponding to Dn but under

 ?zn,(ni(90))-1 ( )? m which we have used Zn in place of 6 by asymptotic normal
 ity of the MLE. That is, D'n approximates Dn. In this case, the first term on the
 right-hand side of (1.1) is

 EO^ZnMKOo))-^Dn)

 (..2) ^/r''-*-^),-,!,,,--,,.^ \J-oo V27T /

 v 2tt J-oq

 The remainder term in (1.1) is

 (1-3) Eo0Rn = Ee0X(anAbn,anvbn)(') = EoQ\an - bn\.
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 Posterior normality suggests (1.3) -> 0, but we want a rate that is small relative
 to the rate of convergence of the left-hand side of (1.1) to (1.2) which we take to
 be o(l). We ignore details on this latter rate since it is not the point. Now, to get
 a rate for (1.3) ? 0, we use a modification of Johnson ([11], Theorem 5.1); it is
 justified below in Theorem 2.1. Thus, we have that quantiles such as an satisfy

 r J "i
 an = (nI(9o)rl/2\ d>-V) + ? Tj(a)n-J/2 + 0{n^J+X)'2) \+9n, L j=\ J

 where the r/s are polynomials with bounded coefficients that depend on the
 data Xn, and J > 1. Now, we can write

 i r J
 E0o\an-bn\ = Ee}n-x/2rlll(eo)\ d>"V) + Y,TM>~J'2

 + 0{n-(J+D/2)\+?n

 -(n-l/2rl/2(9o)<i>-l(a) + Zn)\

 = E0?\en-Zn\ + O(n-xl2)
 (1.4)

 < E6o\en - 90\ + E0o\Zn - 4)| + 0(n-1'2)

 = n-^2rl/2(9o){Eo0\V^Il/2(9o)(On-9o)\

 + Eo0\^Il/2(9o)(Zn-90)\)
 + 0(n~l/2).

 Expression (1.4) can be controlled by using an Edgeworth expansion for the
 density of 9 under #o in the first term in parentheses, namely, Eo0^/nIl^2(9o) x
 (9n ? %) Using this approximation and recognizing limiting normal forms gives
 that, term by term, (1.4) is

 n-l/2rl/2(90)(j \z\<Kz)dz + J2n~k/2J \z\Pk(z)dz

 + o(n-K>2) f 1 + |^+2 dz + f \z\<Kz)dzj + 0(n-1'2).
 So, (1.3) is 0(l/y/n) and the left-hand side of (1.1) is

 (1.5) EeoFa(W(-\Xn)) =a + o(l) + 0(n~^2),

 that is, the expected Bayesian coverage probability is always a + o(l).
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 Improving (1.5) leads to inequalities that can be solved to give sample sizes.
 That is, careful use of the Edgeworth and Johnson expansions that we used to
 control (1.3) and (1.4) will give an error term of order o(\/^/n). So, we can find
 N = N(e) large enough that, for a specified range of parameter values 6, we would
 have \EoFa(W(-\Xn)) ? a\ < 8 forn > N. Details on this case are given below
 in Example 3 of Section 4. The "nicest" cases occur when the first term in (1.1)
 is independent of the value of 9 and the second term goes to zero. As suggested
 by the form of (1.2), when the first term in (1.1) depends on an estimator such as
 an or 9, we expect an asymptotically normal random variable Zn to appear in the
 limit. In these cases, we want the second term of (1.1) to go to zero at a fast enough
 rate. Thus, we want to give an expansion for it as a sum of powers of l/^/n times
 evaluations of expectations.

 1.2. Expected values of functionals of the posterior. Before proceeding with
 the mathematical formalities, we suggest that the formulation we have adopted
 here?representing sample size criteria as expectations of functionals of the
 posterior?is the right one, in the sense that it is general enough to encapsulate
 all the important cases, yet narrow enough to permit straightforward analysis and
 use.

 The three classes identified earlier?Bayes credibility, decision theoretic and
 evidentiary?suggest that many authors have, implicitly or explicitly, studied cri
 teria that amount to functionals of the posterior, if not expectations of them. Indeed,

 the pure Bayes and evidentiary approaches amount to studying functionals of the
 posterior and most of the decision theoretic optimality criteria can be written
 as functionals of the posterior; most often these are clearly expectations. More
 over, taking expectations over the sample space pre-experimentally is standard
 Bayesian practice for design problems. This is done in [23], for instance, an ap
 proach that motivated the present work. Wang and Gelfand proposed a simulation
 based technique for determining a sample size large enough to achieve various
 pre-experimentally specified criteria.

 All the criteria used in [23] are special cases of the form E(T(Y)) < ?, where
 T is a nonnegative function in which the data Y appears via conditioning; see [23],
 Section 2, equation (6). Their simulation technique has a broad scope of appli
 cation, and should be at least as accurate as approximations based on asymptotic
 expansions. The special cases of F we use here are taken from [23].
 We comment that some of the criteria used in Wang and Gelfand's simula

 tions, for instance, the average cover criterion, ACC, and average length criterion,
 ALC, have been studied mathematically. For instance, Joseph and Belisle [12] and
 Joseph, du Berger and Belisle [13] derived inequalities the sample size must sat
 isfy under certain prior specifications for normal and binomial models. Wang and
 Gelfand's work [23] is important because these special cases may not cover all the
 settings of interest.
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 Unfortunately, simulations may not always be easy to do. Moreover, the distinc
 tion between the sampling and fitting priors used in [23] may be a layer of conser
 vatism that is not necessary. Aside from computational ease, Sahu and Smith ([21],
 Section 2.3) argue that using sampling and fitting priors permits weaker assump
 tions for the validity of inference. However, one could use a single objective prior
 for both sampling and fitting purposes to achieve essentially the same inferential
 validity. In either case, there remains a role in Bayesian experimental design for a
 good closed form expression for sample sizes.

 Expression (1.1) suggests a different tack for obtaining the kind of closed
 form expressions we want. One could approximate EoF(W(-\Xn)) by EqF(N(9,
 (nl(9))~x)), where Af is a Laplace approximation to the posterior, instead of a
 Johnson style expansion. The two approaches?Johnson and Laplace?probably
 require similar hypotheses. Arguably, the Laplace expansion is conceptually eas
 ier. However, Johnson expansions give an approximation to F(W(-\Xn)) directly
 rather than separately approximating F and W(-\Xn). One could use more terms
 in the Laplace approximation, evaluate F on those terms, and then approximate F,
 but the complexity would likely exceed what we have done here. The Johnson ex
 pansions are readily available and more direct, although a confirmatory treatment
 using Laplace's method would be welcome.

 The structure of this paper is as follows. Section 2 gives the theoretical context
 of our work: We observe generalizations of key results in Johnson [11] and state
 the version of Edgeworth expansions we will need. Then, we give a simple result,
 Proposition 2.1, that formalizes the strategy implicit in (1.1). It seems that getting
 an asymptotic expression for general functionals F is a hard problem so, in Sec
 tion 3, we give asymptotic expressions for three kinds of terms that often arise in
 special cases of functionals of the posterior density. Two of these theorems are de
 rived from [11], and one is new. The most technical arguments from this section are
 relegated to the Appendix at the end. Section 4 uses our main results to show how
 four established criteria for sample size determination admit asymptotically valid
 closed form expressions. In Section 5 we compare the results of our asymptotic
 expressions to closed form expressions obtained from three exponential families
 equipped with conjugate priors. It is seen that our asymptotic expansions typically
 match the leading l/^/n terms in those cases. In addition, Section 5 presents nu
 merical results which confirm our approximations are reasonably accurate.

 2. Theoretical context. We consider the case that F is a functional on dis
 tributions such as the posterior W(-\Xn = xn) for a parameter. We assume F rep
 resents something about how distributions concentrate at a specific value in their
 support. Our interest here focuses on the class of F only in that we want to include
 the commonly occurring sample size criteria used in [23].
 We will need two assumptions to control the leading term in an expansion

 for E(F). The first is drawn from [11], Theorem 2.1: The expectation of the func
 tional of the posterior, EF(W(-\Xn)) minus its normal approximation [see (1.1)]
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 must have an expansion of the form established by Johnson [11]. The second as
 sumption is that the classical Edgeworth expansion can be used to approximate the
 sampling distribution of 9n when 9 is taken as true.

 To begin, we make Assumptions 1-9 in [11], modifying them only by permitting
 9 to range over a set Q C Rd. Together, these are the standard "expected local sup"
 conditions that ensure the consistency, asymptotic normality and efficiency of the

 MLE. Assumption 8, for instance, bounds the first two derivatives of logp(x\9)
 by an integrable function so that, when d?\,

 '& = ~{ E^Il?gP(W) "' -Eea^\ogp{X\6) = 1(6), i = \

 which generalizes directly to multivariate 9.
 To set up our first result, we need some notation. Let 9 be a random realiza

 tion of ?, (j>n = yfnll/2(9n)(9 ? 9n) and consider Johnson expanding the pos
 terior distribution function W(<j>\Xn) of 4>n. Johnson [11] obtained an expansion
 for W(<j>n\Xn) in terms of normal densities with polynomial factors when 9 is
 one-dimensional. The expansion uses (nl(9n))~l as the empirical variance of 9 ? 9
 and holds in an almost sure sense, for n > Nx, where Nx depends on the observed
 sample x = xn. This is almost the expansion we want. For our purpose, we set
 \jr = yffn = y/h~Il/2(9o)(9 ? 9n) for given 9n and denote the posterior distribution
 function of it by W0(-\Xn). Writing the distribution of the d-dimensional standard

 normal N(0, Id) as O(-), with density </>( ), we have <Z>(^/h~Il/2(9o)(9 - 9n)) =

 ^?n,i-HOo)/n^ and <t>(Vn~Il/2(90)(9 - 0n)) = \nI(90)rl/2(t>?nJ-im/n(9). Let
 w^r\9) be the rth (vector) derivative of the prior density w(9), when it exists,

 and write Ir(9) = ^ Y!!=\ %f log p(Xt \9) for a vector r = (r\,..., rd), where
 \r\ = k means rx + + rd = k, and for 9 = (9U ..., 9d), 9r means 0\x --0rdd.

 Examination of [11] gives the following.

 THEOREM 2.1. Suppose all derivatives of'log p(-\9) of order J + 3 or less
 exist and are continuous and that all the derivatives \(d^r^/d9r)logp(x\9)\, for
 \r\ < J + 3, are bounded in an open set containing 9o by a function G(x) with

 EG(X) finite. Suppose also that all derivatives of w up to order J + 1 exist and
 are continuous in a neighborhood of9o- Then, for given #o, there are a sequence of
 sets Sn with Pq0(S^) = o(\), and an integer N, so that, for xn e Sn, Theorems 2.1,

 3.1,4.1, 5.1 and 5.2 of [ll] continue to hold with W((p\Xn) replaced by W0(x//\Xn)
 when n > N. That is, we have:

 (A) For the posterior distribution:
 J

 W0(i/\Xn) - <D(^) - J2 n~j/2(l)(xlf)yj(xlf, Xn) < C/i"(/+1)/2,
 7 = 1

 (2.1)
 n>N,Xn eSn,
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 where C > 0 is a constant, and the YjtyYs are polynomials in \/r with bounded
 coefficients.

 (B) For posterior moments: For each integer i < K ? 1, there are a sequence
 of functions {Xtj(Xn)}, a constant C > 0 and an integer Nt so that

 I J I
 \Ew0(.\xn)(lsnIi/2(Oo)(9 - 9nY) - J2Xij(Xn)n-"2\ < Cn^J^'2,

 (2.2)
 n > Nt,

 on a set Sn(i) with Po0(Sn(i)c) ? 0, where Xij(Xn) = Ofor j odd, and for i even
 we have

 A,7(xn) = 2''/2r((/ + i)/2)/ra/2),

 while for i odd we have

 XiJ+l(Xn) = 2('+1)/2(2(* + l)/3?(0?)r((i +4)/2)

 + r((i + 2)/2)w{l\en)/w(dn))/r(\/2),

 all of which are bounded in Xn.
 (C) For inverse quantiles: Let 77(f) = <3>~x(W0(i;\Xn)) be the transformed

 quantile of W0(-\Xn). Then

 (2.3) L($) - $ - J2 n-j/2coj(!=)\ < Cn~{J+X)l2, n>N,Xne Sn, I j=\ I
 where C > 0 is a constant, for some functions a)j(%) = cdj(%, Xn) that are polyno
 mials in ? with coefficients bounded for large enough n.

 (D) For posterior quantiles: For a solution n = <J>_1 (W0(ij(r))\Xn)), we have
 the following:

 (i)
 I J I

 (2.4) kn(ri)-ri- 2>~yV2r;(??) < C?-(y+l)/2, n>N,XneSn,
 I y = l I

 where C > 0 is a constant and the functions Ty(-) are polynomials in n with
 bounded coefficients.

 (ii) If we set n ? ath percentile of<$>, then

 (2.5) \w0L + J2n~i/2*j(v)\Xn)-a < Cn-(y+1)/2, n>N,XneSn.
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 Remark. This collection of statements differs from Johnson's [11] results
 because we observe it for general J-dimensional parameters, a single choice of
 N independent of the data string, and have replaced the empirical Fisher infor
 mation by its population value in the standardization of the MLE. Replacing the
 Nice's in [11] by a single fixed N means we can only get a Johnson expansion
 valid for xn in a set Sn with probability increasing as Po0(Sn) = 1 ? o(\). To
 ensure Pq0(S^) = o(l), we will typically need laws of large numbers to hold for
 the /r's occurring in the expansion; we assume these as needed. Faster rates for
 Pe0(Sn\) -* 0, for instance, Po0(S^) < e~ny for y > 0, can be obtained by impos
 ing moment generating function assumptions to get a large deviations principle.

 Note that I(9o) is used in the standardization of the MLE, but the coefficients

 in the expansion remain empirical. That is, the coefficients in the polynomials of
 the expansions are functions of the data, usually estimates of population quantities
 of the form [11], equations (2.25) and (2.26). When it is important to replace these
 with differentiable quantities, as in the proof of Theorem 3.3, we will use approx

 imations such as 1(9) = I(9o) + op(l); the op(\) term in such approximations is
 what limits the accuracy of our expansions.

 Proof of Theorem 2.1. Proofs for (2.1)-(2.5) are all modifications of the
 techniques in [11]. To demonstrate the modifications, consider (2.1). It will be
 enough to check the proof of Theorem 2.1 in [11] line by line.

 First, the main difference due to the dimensionality is that occurrences of
 powers (9 ? 9n)r in the one-dimensional case must be replaced by the multi
 dimensional version, J2\r\=k(? ~ ?nY for a d-tuple nonnegative integer vector r.

 Johnson used bounds Nk,x,k = 1,...,5, in his proof. The first two, N\tX
 and A^,*, are used in his Lemmas 2.1 and 2.2, which are not needed in our case,

 since we are replacing I(9n) by I(9o) (Note that in the statement of Lemma 2.2
 in [11], f(xi,9) in the denominator should be f(xi,9n).) The next two, N^x
 and N^x, are from Lemmas 2.3 and 2.4. They arise from using the strong law of
 large numbers finitely many times to get inequalities. Denote the set on which the
 strong laws fail for a given n by S%. Then, the conclusions in Lemmas 2.3 and 2.4
 hold for all x e Sn, and P(S?) = o(\). This property of the strong law holds even

 when 1(9) is replaced by / (#o). Finally, N^,x > N^x is used to allow the finite term
 approximations (2.21) and (2.22) to be used in the expansions (2.19) and (2.20).
 The sets of xn's on which this fails have probability tending to zero. Thus, they
 can be put into S% too, and N can be chosen independent of xn.

 It is seen from (2.1) that, foxn>N and Xn e Sn,

 J

 W0(x/r\Xn) = <t>(x/f) + J2n~i/2<l>MYjW> Xn) + n-{J+l)l2yJ+x(f, Xn),
 7 = 1
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 for positive integers /, where the polynomials y, (VO in yjr have finite coefficients.

 Note that yj+i is not known to be of the form of the y/s when j < /; it is only
 known to be bounded. The other expansions (2.2)-(2.4) give analogous statements.

 We formalize this class of posterior approximations in the following definition.
 First, we say that Pw(xn) is a posterior derived object if and only of Pw(xn) is
 a function of the posterior distribution W(-\xn). Here, we have chosen W0(-\Xn)
 as the form of the posterior for our work. The class of P\y(xn) does not matter,
 but the use of W(-|jcn) does. We rule out the appearance of parameters or their
 estimates apart from I(9o). Thus, the posterior itself and a posterior quantile are
 both posterior derived objects.

 Assumption JE. A posterior derived object Pw0 (xn) is Johnson expandable
 of order J if and only if it has a Johnson expansion of the following form: There

 are an N and an Sn with Pe0(S?) = o(l) so that, for n > N, we have

 \Pw0(x )-l^?Wp^(7TTJ72' I j=Q U I
 for some C > 0, where the yy(jcn)'s are any quantities that depend only
 onW0(-\xn).

 We assume that all Assumption JE's are nontrivial, that is, the 7=0 term is
 notPWo(xn).

 Next, we turn to the other asymptotic expansion assumption we will need. For
 the MLE 0n of 9 based on p(Xn\9), let /?( ) = fn(9\9) be the density function
 of 9n when 9 is the true value, and let gn(-) = gn('\9) be the density of T = Tn =
 y/nlx^ (9o) (9n?9) given 9. (It is seen that T is a function of 9 for fixed 9, whereas
 an is a function of 9 for given 9.) Observe that

 fn(9) = \nI(9o)\x/2gn(Vn~IX/2(Oo)(9 -90)).

 So, to get an expansion for fn, it is enough to get one for gn. For later use, we
 record

 and

 06b,(?/(*))-^) = ^^
 The expansion for gn will depend on the form of the MLE. For many parametric

 families, 9n can be expressed as

 0n=sr-^h(Xi)\,
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 for some ?$ ( ) and h(>). Thus, as argued in [24], we often have

 K 1
 gn(0 = <t>d(t) + T.n~k,2p^+0^n~K'2\ + mK^

 where the error o(n~K/2) is uniform over 9 in a compact set and t = *JnIl/2(9) x
 (9n ? 9). The Pk(vYs are polynomials given by

 K'wilh E E T^f 3=1 **' h+-..+lq=k, \rm\=lm+2,(\<m<q) [' <*'

 x(_l)lnl+-+k,lDr1+...+r,^(u)
 in which Xr, for a vector r, is the rth cumulant; see [2].

 Assumption EE. The Edgeworth expansion of order K for /?( ) induced
 fromg?()is

 K

 fn(0) = ^.(n/(6b))-i (*> + ? ^-"/2^(v^/1/2(^0)(^ " M^0,(?/(,0))-l (*)
 ik=l

 , , -K/2, \nI(9o)\^2
 ^?{n }i + \\yfiiVHme-eo)\\K+2'

 when it exists, where 9 is a dummy variable varying over values of 9 and the error
 o(n~^K~~2^2) is uniform for 9 in a compact set.

 We comment that Yuan and Clarke [24] do not prove Assumption EE in full
 generality. They only establish uniformity for the density of the mean and for a
 certain restricted class of functions of the mean. However, the discussion in [24]
 suggests that Assumption EE holds in much greater generality even though a for

 mal proof does not yet exist. Indeed, when it fails, it seems to do so only on sets
 of very small probability which are enough to prevent the supremum from going
 to zero. Consequently, we suggest Assumption EE is an acceptable hypothesis in
 a design setting where we are primarily interested in average behavior rather than
 worst case behavior.

 Note that Assumption EE permits us to take expectations over the parameter
 space and the sample space because the approximation is uniformly good over
 both 9 and Xn. Indeed, Assumption EE immediately gives an expression for the
 mean of 9 because

 f 9fn(9)d9 = j \nI(90)\l/29ct>d(^Il/2(Oo)(9 -90))d9
 k

 (2.6) + J2n~k/2 / \nI(9o)\l/29Pk(V^Il/2(9o)(9 -90)) k=\ J
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 x(t>d(^il/2(Oo)(e-e0))de
 j_ ( -k/2, f \ni(d0)\l/2e
 +oin /)Ji + w2m(e-m'd9

 = 00+1 u<t>d{u)du

 J f
 + Y,n~k/2 / (Oo + u/(J?i\I(Oo)\1/2))Pk(u)4>d(u)du

 , , -K/2, f 80 + U + o(n ' ) I -Trdu.
 J i + IMI*

 j

 = 90 + J2n'k/2%Pk(cr)
 k=\

 + ?n-^2\I(e0)\-V2Phk(<r) + o(n-V\ k=\

 where Pk(<?) and P\^(cr) are the expectations of Pk(u) and uPk(u). The argument
 a signifies that powers um are replaced by crm's, the mth moments of N(0,1). To
 see this, suppose Z = (Z\,..., Zd) ~ N(0, Id) and that the /th term in Pk(u) has

 the form atu\ '-ul$. Then the term in its expectation is at Ju(u\ ul^)(f)d(u) du,

 which equals aiE(Z\l+XZ% ZlJ,..., Z\l Z^/+1) = ai(oix+\oi2 -aid,...,
 G[x orjd+i), a vector with entries in which the powers of w; correspond to stan
 dard normal moments.

 Recall, our goal is to derive asymptotically, for pre-specified e > 0 and F, the
 minimal sample size n to achieve

 (2.7) E0oF(W(.\Xn))<s,

 where the expectation is with respect to the density p(xn\9o). Our main approach
 to (2.7) rests on the following general procedure for the computation of the asymp
 totic expected behavior of functionals of the posterior distribution. As indicated in
 the Introduction, let

 (2.8) Rn = F(W(.\X")) - F(<t>?n{nnm_d-)),

 where, under 9o, 0n is distributed as in Assumption EE, and we have done the
 standardization in the limiting normal rather than in the nonstandardized posterior
 W(-\Xn)for9.

 PROPOSITION 2.1. Functionals of the posterior distribution function
 W(-\Xn) satisfy the following:
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 (i) If F(<$>z (?/(0b))-i (9)) is independent of z, then if Assumption JE holds for
 some J >l,we have

 (2.9) E9oF(W(0\Xn)) = F(<D0,(?/(flb))-. (0)) + E0OR?.

 (ii) If Assumption EE holds for some K >\,we have that

 EeoF(W(6\Xn)) = E9oF(t>{Z + ^tl[/2(9Q)(e - 90)))
 K

 (2.10) + ?>-*/2Ee0F(c?>(Z + V^/1/2(^0)(^ - ft>)))/?*(Z)
 k=]

 + o(n-K/2)h(n) + E9oRn,

 where the first expectation on the right-hand side is with respect to Z ~ Af(0, /</),
 and

 ,,^ rF^ + VH/'/2^-^)) m = J-fT^F-dz
 Remark 1. In settings where our theorems for special cases do not apply, we

 can often obtain results by use of (2.10). This will be seen in Section 4. Moreover,
 it is seen that h is integrable when F(<$>(Z + ^/nIl/2(9o)(9 - Oo))) is.

 Proof of Proposition 2.1. Assumption JE gives that W0(-\Xn) is approx

 imated by <$>ojd(-), or W(-\Xn) is approximated by <&^ (/i/(0 ))-i(0- Thus, the
 functional can be written as

 F(W(e\x")) = F(^ninimrl(0)) + Rn.
 Taking expectations in #o and using Assumption EE gives

 E$0F(W(e\Xn))

 = j*"(*?.(,,/(*,))-'(*))

 K

 + YJn-kl2Pk{^ii{,2(eQ){u-eQ))cj>eoMim)^(u) k=\

 jl < -*^ \nK0o)\l/2 \ J _ _
 + ?in /)l + B>/^(6b)(-6b)ll'jl'" + ^^

 = J F(<f>(z + Vn71/2(0O)(0 - Oo)))<fid(z)dz
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 K f
 + T,n~k/2 / F(^(z + s/n~I1/2(OoW -d0)))Pk(z)<t>d(z)dz k=i J

 + o(n >)J -j-j-^-dz + E9oR?. n
 In examples we will see that o(n~Kl2)h(n) is often of lower order than

 EF(<&(Z + *JnIx/2(9o)(9 ? do))). Also, we observe the heuristic approximation

 ?[F(d>(Z + ^Ix/2(9o)(9 - 9o)))Pk(Z)}

 - E[F(*(Z + Vn~Ix/2(90)(9 - 90)))]E[Pk(Z)]

 = ?[F(4>(Z + V^IX/2(Oo)(9 - 90)))]Pk(cr),

 where Z is a N(0, Id) random vector, and Pk(<j) is the expectation of Pk(z) with
 powers zl replaced by a/, the /th moment of N(0, Id). Taken together, these heuris
 tics suggest that in many cases (2.10) gives

 K

 E0oF(W(9\Xn)) = EF(d>(Z + ^Ix'2(9o)(9 - 90))) + ? 0(n~k^2) + o(l).

 3. Asymptotics for expected values of functionals. Proposition 2.1 was of
 general applicability. However, there are commonly occurring functionals that are
 worth examining in detail. When they depend on Johnson expandable quantities
 such as those in Theorem 2.1, we have a A'-term expansion in powers of n~^2
 on the "good" sets Sn. However, the coefficients depend on Xn. This is a problem
 because we want to take the expectation over the sample space for a functional
 of the posterior distribution. To get a closed form for these expectations, we must
 replace the empirical quantities in the coefficients in the expansion by their the
 oretical ones. Unfortunately, as noted in the remark after Theorem 2.1, such ap
 proximations are only accurate to order op(l) unless more stringent hypotheses
 are proposed. Such hypotheses are hard to determine in part because the forms of
 the coefficients are generally unknown. Moreover, a posterior quantity must de
 pend on the data, so replacing all the estimates with population values, if it could
 be done, defeats the purpose of using them. This is especially problematic when
 our goal is to obtain sample sizes. A final caveat is that we have tacitly been as
 suming that the expectation over the "bad" set S? will typically be small compared
 to that over the "good" set Sn, as noted in the Remark after Theorem 2.1, but we
 do not have a general closed form expression for it.
 Taken together, these considerations mean we will only get a two-term expan

 sion for the expectation, plus a remainder term

 Rfn = E0o{F(W(-\Xn)IScn),
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 which we have argued is asymptotically small enough, relative to the main approx
 imation, that we can neglect it.

 Theorems 3.1 and 3.2 below are extensions of results in [11], in which we have
 left the dimension of the parameter d = 1; cases with d > 2 are similar. Theo
 rem 3.3 is more novel.

 Let 9 be the posterior mean which often has the form 9 = s((l/n)Y,h(Xi)) +
 op(\/n). We use this in the first theorem because it is the right centering for pos
 terior moments and is very close to the MLE. Note that in general we need to
 specify an estimator for planning purposes and that consistency of the MLE gen
 erally ensures that Bayes estimators are consistent; see [22]. Our first result is the
 following.

 THEOREM 3.1. Make all the assumptions in Section 2, in particular, those
 for Theorem 2.1. Also, assume Assumption EE for 9 in place of 9. Suppose
 f \9\rw(9)d9 < oc and choose K, J >r. Then,

 (3.1) E^Ew^x^KO - 9n)r] = rrf2(9o)Krn-r/1 + o(n~^2) + Rfn,
 where Xrr = 2r/2T((r + l)/2)/ T(l/2).

 Remark. In this case, the concern about using an approximation like
 p/2(?n) = Ii/2(90)(l + o(l)) for i = 1,..., r is built into Theorem 2.1: The scal
 ing in the posterior by / (#o) and the laws of large number that are invoked to get
 Po0(Sn) ? 0 are enough for the expansions of posterior moments and percentiles.

 Proof of Theorem 3.1. Let Vn = ^/nIl/2(9o)(9n - %). By Assump
 tion EE for Vn, its density is

 K 1
 gn(v) = <t>d(v) + Y,n~~k'2pk(v)<i>d(v) + o(n-Kl2) ^ ~ l + ||v||*+2

 So we have

 r K
 EK= / vrgn(v)dv = ar + Y.n~k/2prM?) + o(n-K/2), J k=\

 where a is the vector of central moments from a N(0, Id) as in (2.6) and the
 o(n~K/2) comes from o(n~K/2) f vr/(I + \\v\\(KJr2))dv. The integration is finite
 since K >r.

 By using Assumption EE for both 9n and 9n, we have

 Eo0(On - On) = rl/2(9o)n-l/2E0o(an - Vn)

 = r"2(9o)n-"2 E(PU(a) - Kk(?))n-V2 + o{n-K,2)
 k=\

 = 0(n-1),
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 where an = jnlx,2(9 -9o), the Pi^(a)'s are defined after (2.6), and the Pi,*(a)'s
 are their counterparts in the expansion for fyn ( ). In general, for m = 1,..., r, we
 have

 (3.2) E00(9n-9n)m = O(n-(m+x?2).

 Note EeoEw^xn^e - 9n)r = EOQEWo(.lXn)(Isn(0 - 9n)r) + Rfn, and we only
 need to deal with the first of these terms. We omit the indicator Isn for simplicity.

 Assumption JE is satisfied by use of expression (2.2) in Theorem 2.1. Thus, for
 / = 1,..., r we have

 j

 (3.3) EWo(.lXn)(Ii/2(90)(9 - 0ny) = YJXij(Xn)n-j/2 + 0(n^J^2),
 j=i

 on ri/=i Sn(i) for N > max[=1 N(, where the O(-) is independent of Xn.

 Now we can deal with the expectations Eo0Ew0(-\xn)I^2(Oo)(0 ? 9n)1, for i =
 1,..., r. Let C(r, i) be the combination number of subsets of size / from a set of
 size r. By (3.2) and (3.3), we have

 Ee0Ewo(-\xn)(0 ? 9n)r

 = EeoEw^x^e ~ 0n) + (9n - 0n)Y

 = (I(9o))-r/2Eo0EWo(.lXn)(Ir/2(9n)(9 - 9n)r)
 r

 + ?C(r,/)/-'-/2(0o)
 (=1

 x Eeo[i{r-i)l2(eo){6n -dnY-'EwMx^ir'HooKe -e?y)]

 = rrl2{dQ)Krn-rl2 + 0{n^r+?l2)
 r

 + YJC{r,i)rr,2{e0)O{n-(r-i+X)l2)
 1=1

 x(J2Xij(00)n-J/2 + O(n-<J+i?2)\ \j=i I
 = rrl2(9o)Krn-rl2 + o(n-rl2). D

 Now that we have an asymptotic form for functionals based on posterior mo
 ments, we turn to percentiles. Our result is the following.

 THEOREM 3.2. Make all the assumptions of Theorem 2.1 for some J > 1,
 and assume Assumption EE for some K > 1. Let W~x(a\Xn) be the otth quantile
 of W(-\Xn). Then we have

 (3.4) E0o W~x (a\Xn) = 90 + n~x/2rx/2(9o)^-X(a) + o(n~x/2) + R'(n).
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 PROOF. Let ija be the ath quantile of f = ^fh~Il/2(9o)(9 -9n). That is,

 a = W0(^ < k|X") = W(9 < /i"1/2/-1/2(*)?a + 4|X").
 So, we get

 W-l(a\Xn) = n-]/2r]/2(90)t;a+en

 = /r,/2/-1/2(ft))k + #0 + n"1/2/"1/2^)^,

 where t/? = V^/1/2(#o)(4 - #o).
 There is a function ? = ?(77) which for any 77 is a solution to 4>(^) =

 W0(i;(r})\Xn). So, given ?a, we can backform to an na by defining the function ?( )
 to satisfy ^(r]a) = ??. Using this in (2.4) from Theorem 2.1, we get that %n(a) sat
 isfies Assumption JE, which we write as

 J+\

 Hiria) = rja + J2 rj(^)n~j/2, n>N,Xn e Sn,
 7 = 1

 where xj+\ (ot) is the 0(rc-(y+1)/2) remainder term, which is bounded in absolute
 value (a.s.). Using this in (3.5), we get

 W~\a\Xn) = *-1/2/-1/2(fy)L, + Y *j(*la)n-j/2)
 (3.6) J~

 + 9o + n-l/2rl/2(90)Un,

 forn> N mdXn eSn.
 By Assumption EE, we have

 K

 (3.7) E0oUn =<Ji + Y n~k/2Phk(?) + o(n~K/2),
 k=\

 in which we see o\ is the first moment of N(0, 1) and so is 0. Also, we have

 $>(ria) = W0($(ria)\Xn) = WG(Ha\Xn) = a,

 so <&~l(a) = na.
 Finally, since E0oW-{(a\Xn) = ?^7^ ^(alX") + /?;, we can take the ex

 pectation in (3.6), use (3.7), note that the tj(naYs are bounded in Xn, collect terms
 and substitute for na to obtain

 E9oW-l(a\Xn) = 9o + n-l/2r^2(9o)^-l(a) + o(n-l/2) + Rfn. D

 Next, we turn to derivatives of the posterior and more general posterior expec
 tations. Denote the r = (r\,..., r^)th derivative of W(9\Xn) at 9 by

 gkl
 W{r)(9\Xn) = ?A- W(9\Xn).
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 To express the first terms in the expansion for the expectation of a derivative
 of a posterior distribution, we need to define two sets of polynomials that arise
 when we differentiate expressions involving the normal density. The first is the set
 of Hermite polynomials: For a vector i of length d, let //,-( ) be the /th Hermite
 polynomial defined by Hq(v) = 1 when i = 0 and by

 D(i)<P(Ix/2(90)v) = Hi(v)(t>(Ixl2(9o)v),

 when / ^ 0. The second set of polynomials is particular to the use of Assump
 tion JE for the posterior distribution. We define m ( ) to be the polynomial given
 by

 D^r\ct>(Ix'2(9o)v)Yj(IX/2(9o)v)} = n{p(v)<t>(Ix/2(9o)v).
 When we need to take expectations in the standard normal of products of polyno
 mials P(u) and Q(u), we denote the polynomial of the normal moments by P o Q.
 That is, EP(u)Q(u) / P(a)Q(a), but EP(u)Q(u) is a polynomial in a which
 we denote P o Q. In this notation, we have the following.

 THEOREM 3.3. Assume Assumptions JE and EE for some J = K > 1, and
 that W(9\Xn) has r = (r\,..., rd)th derivative at 9o with min; r/ > 1. Then

 Ed?W (9olX )= {An)*I2 MvlJ
 (3'8) +Axn^-^2 + o(n^^l2) + R'n,

 where r ? 1 = (r\ ? 1,..., rj ? 1), Hr-\(-j=) is the expectation of Hr-\(v) with

 powers vs = v\l vsJ* replaced by a5/(V2)'51 and

 Proof. See the Appendix.

 If we set r = (1,..., 1) in Theorem 3.3, we get the posterior density. In
 fact, we can get the result for any partial derivative without the restriction
 min{ri,..., r</} > 1, by a similar technique. However, the computation of the coef
 ficients becomes more involved. Also, in the Appendix we develop an asymptotic
 expansion for

 EeJfh(9)w(9\Xn)d9\
 where h is a specified differentiable function; see (A.13). Such expansions may be
 helpful in sample size criteria derived from hypothesis testing optimality.
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 4. Special cases. Here, we examine four functionals encapsulating different
 sample size criteria taken from [23]. It will be seen that Proposition 2.1 and the
 results from Section 3 can be used to obtain closed form expressions for Bayesian
 sample sizes. To avoid repetition, we assume all the required conditions on the

 models are satisfied and just derive the corresponding formulae.

 Example 1. For the criterion APVC in [23], set

 F(W(-\Xn)) = VaLr(@\Xn)

 = I9'9W(d9\Xn)-(i9W(d9\Xn)\ (f 9W(d9\Xn)\
 By Theorem 3.1,

 EeQF(W(-\Xn)) = rl(9o)X22n-1 +o(n~l) + R'n,

 in which X22 = 2T(l + 1/2)/ T(l/2) = 1, since T(l + 1/2) = l/2r(l/2). Typ
 ically, R'n will be of smaller order than the main term, so for 9 e A with
 info^A \I(0)\ > 0, and prespecified s > 0, the smallest sample size to achieve

 \E0oVM(?\Xn)\<s

 is approximately given by

 (APVC) n> . l
 8 inf0ga 1(0)

 A direct approach to this result by evaluating the terms in Proposition 2.1 can
 be done but seems to be quite involved.

 Example 2. For the criterion ACC in [23], set F(W(<\Xn)) = fDn W(d9\
 Xn), in which Dn is the HPD interval with length / under the posterior distri
 bution W(9\Xn) and suppose 9 is unidimensional. Unfortunately, our results in
 Section 3 do not apply, because, like the quantile example in the Introduction, the
 functional F would have to depend on more than just the posterior.
 However, we can still evaluate the terms in Proposition 2.1. The first term on

 the right-hand side of (2.6) is

 EF(d>(Z + Vn~I[/2(Oo)(--Oo)))

 (4>2) = v^/1/ (^o) E [ ^-d/^CZ+V^/172^)^-^))2^ V2jt JD'n

 = ^/17 ^0)? f e-0/2)nI(00)(0-00+Z/^h~T(Oo))2de^
 s[2jz JD'n

 From this, we see that Dn is of the form

 K = [Oo - n-x'2rx/2(Oo)Z - 1/2, Oo - n-l'2rl'2(Oo)Z +1/2],
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 which is the HPD interval for 9 under 0(Z + ^/nIx/2(90)(- - 90)) of length /. Let

 rj = ^/nT^(9-90+z/Vnlj9o)). Then n - N(0, 1) and D'n = [-JnI(90)l/2 <
 n < y/nI(9o)l/2], so the right-hand side of (4.2) is

 ^l (fl?> f f e-nI(00)/2(0-00+z/V^TTOo))2 de e~(l/2)z2 dz 2n J JD'n

 = V^1/2(*0) f f e^2drje-^2dz
 = (24>(JnT(9o)l/2) - 1)-L f e^l2^ dz V 27T J

 = 2<&(y/nJ(9o)l/2)-l.

 As n -> oo this term tends to 1.

 For large n, Dn is of the form [9n ? 1/2], where 9n is the posterior mean, and
 9n - #o in Po0 probability. Also, we see that F(<t>(Z + y/nIx/2(9o)(- - 90)) is in
 fact independent of Z. Now, we have that

 W([9n?l/2]\Xn)^l
 and

 F{<!>(Z + ^iIx'2(9o)(' - %))) = *o,(nneo))-1 ^[?//2]> "> *

 also in P#0 probability. So, by the dominated convergence theorem, we have

 Ee0Rn = Eeo(W([9n ? l/2]\Xn) - *Zf(n/(flb))-i ([Z ? //2])) -* 0.

 In the decomposition from Proposition 2.1(i), we see that (4.2) is the leading
 term and the other terms tend to zero. So, for given 0 < a < 1, the minimal n to
 achieve

 E0oF(W(-\Xn)) = E0o f W(d9\Xn)>l-a JDn

 is approximately given by

 2<S>(JnI(9o)l/2)-l>l-a.

 Equivalently, for 9 e A with inf^A 1(9) > 0, we have

 <ACC> ^/^TTwH'-ff'
 where 4>() is the distribution function of N(0, 1) and 3>_1() its inverse.
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 Example 3. For the criterion ALC in [23], take F(W(-\X")) = W~x?(\ -

 a/2) ? WZX? (a/2), that is, suppose we require that the symmetric posterior quan
 tiles be less than / apart.

 By Theorem 3.2,

 EeoF(W(-\Xn)) = rl7?{^-\\-a/2) - <J>-'(a/2)) +o(?"'/2).
 So, for 8 A with infoeA 1(0) > 0, and given length /, the minimal n to achieve

 Ee0(W^x?(l - a/2) - W^x?(a/2)) < /
 is approximately given by

 1
 (ALC) n > -^-i-:-~.

 - l2mfe A 7(0)(<&-i(l -a/2) - $-'(a/2))2
 Again, for completeness, we evaluate the terms in Proposition 2.1 directly. Let

 ^z.Cn/^o))-' (') ^e me distribution function of </>z (n/(^o))-i ( ) for given Z and sup
 pose 9 is unidimensional. It is straightforward to see that

 ?y\ ?a?-i(t*/2) = Z+ . =<D~1(tt/2). z Am (0o)) VnTW)
 So, the first term in (2.10) is

 ^0f(o(z + ^il/2(00)(e - do)))
 = E0oF(<t>Z{nimri(-))

 = ^o(<J>z,U*o?-<(1 -a'2) - *i!(?/(*))-'(?/2))

 = ^((z+7^^1(1-a/20-(z+vTO^IW2)))
 = 7n7W){^(l-a/2)-<"'l(a/2)l

 as obtained above from Theorem 3.2.

 Next, we deal with the remainder term in (2.6). In fact, it is enough to use (1.1),
 the two-term version of (2.6) avoiding nontrivial expansions entirely. Since we
 have

 W(^I^2(00)(0 - 0n)\Xn) -i JV(0, Id),
 we must have

 VO < a < 1. Equivalently,

 W-0\xn){a)^On + -j^=^-\a) + op(n-xl2).
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 So, we obtain

 W^XH)(a) - *z\nl{M)-x (a) = 9n-Z + op(n~xl2).
 Since E(Z) = 9o, we can use Assumption EE to get

 Eo0(On) = 00 + n-x^2r^2(9o)Eeo(^IX/2(9n - 90))

 = 9o + n-xl2rx'2(9o)

 x ( / v(/>d(v)dv

 + ? nk'2 j vPk{v)4>d{v)dv + o(nK+2) j t + J||jr+2 dv)
 = 9o + 0(n~l).

 Hence, with mild abuse of notation,

 E9oRn = E0o(F(W(-\Xn)) - F(4>z>(ll/(flb))-,(.)))

 = Eg0(op(n-l'2)) = o(n-1'2).

 Example 4. For the effect size problem in [23], take F(W(-\Xn)) =
 fe? W(d0\X"). Here 9\ < 9q and 9\ < 9n for large n. Our theorems do not ap
 ply, so we use Proposition 2.1. This gives

 EF(H>(Z + Vn~Il?2(90)(- - Oo)))

 = E(VnTm [??e-(\/2KZ+VtTWK0-9o))2de) V V2jt J9x J

 (4 2) = n/w/^ f f?? e-(nI(0o)/4Ke-eo)2 d$ e-(z+(^/2)Il/2(0oK9-9o))2 dz
 (V2^)2 J hx

 _ y/nI(Oo) j"00 e-(i/2)(nI(0o)/2)(0-do)2 de

 We see that (4.3) goes to 1 as n increases (since 9\ < 9o). We show that the other

 terms are 0(n~~1/2), so that (4.3) is the leading term.
 In fact, since

 FMZ + V^/1/2(0o)(- - fib))) = ^M j" e-W2)(z+SXW)(9-0o))2 de V27T J9\

 = 1 - <J>(Z + VnJ(9o)(Oi ~ Oo)),
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 which is bounded, for / > 1 we have that
 j

 Y n-j/2E[F(<t>(Z + v^/1/2(#o)G - 00)))Pj(Z)] + o(n~V2)h(n)
 7 = 1

 J

 = Y n~j/20(\)EPj(Z) + o(n~l/2)h(n) = 0(n~l/2),
 7 = 1

 since the EPj(Z)s are finite and h(n) = o(l) by a similar evaluation as in (4.3).
 For the remainder term, as in the proofs of the theorems, we only consider the

 "good" sets, omitting indicators on them. We have
 poo

 E0oRn = E0o d(W(0\X") - <\,(#l/((SW)-,(0))

 =Eeor(i:n-^n^\i^(oo)\

 (4.4) x 4>d(V^il/2(o0)(0 - en))9j(^il/2(e0)(e - ??))

 + n_(y_,+ 1)/2|/1/2(^)|y(l)i(^/l/2^o)^_^))\^

 = Ee0f?? in . (i^n-Jl2<t>Av)Yj(v) + n-{K+X)l\?lx(v)\dv.
 Since each term in (4.4) is integrable, expression (4.4) is bounded in absolute

 value by

 /(E n-j/2</>d(v)\Vj\(v) + ?-(*+1)/2|rfji 100 J dv = 0(?-1/2),
 where, for a polynomial P(-), \P\(v) is P(u) with the coefficients and powers
 replaced by their absolute values.

 So, for (4.3), for 0 e A = [a, b] with MgeA I (0) > 0, and given 0 < a < 1, the
 minimal n achieving

 / OO

 E$0 W(dO\Xn)>l-a
 J0\

 is approximated by

 which gives

 m*\ ^ 2(<f>-'(q))2 (ES) n >-r-.
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 5. Comparisons with exact results and numerical evaluations. In this sec
 tion we present some closed form expressions for the sample size criteria we have
 evaluated asymptotically. Then we turn to some numerical work. Both types of
 material suggest our asymptotic approximations are reasonable.

 5.1. Exact results. In the case of the normal density with a conjugate normal
 prior we can obtain exact expressions from direct calculation for all four criteria
 we studied in Section 4. It is seen that our asymptotic expressions match these
 up to the stated error terms. More generally, only the (APVC) criterion, arguably
 the most popular of the four we have examined, can be calculated explicitly. We
 present two more examples, the Poisson(#) with a Gamma(fl,fc) prior and the
 Binomial(#) with a Uniform([0,1]) prior. Again, it is seen that our asymptotic
 expressions match the direct calculation expressions up to the stated order of error.

 To begin the normal case, we record that, for X\9 ~ N(9, o^) and 9 ^ N(/jio,
 t2), we get I(90) = cr~2 and W(9\Xn) = N(9n, a2) with

 6n = X + a2?o/(nT2) ^ a2=<?_ l+o?/(/ir?) nx^ + a0z
 Next we go through the four criteria in turn.

 For the (APVC), the exact quantity is

 E0o(Vzr(9\Xn)) = Vn(9\Xn) = ? = -2- - Q/2? n + afi/rfi n n(n+afi/zfi)
 If we choose r = 2, we have k22 = 2r(l + 1/2)/ T(l/2) = 1, so by Theorem 3.1,
 we get

 2

 E$0(Var(9\X")) = ^- +o(n~l) + R'n, n

 which matches up to the stated error.
 For the (ALC), let Zn - N(9n, a2). Then

 a = piz. < w-'(?ix-)ix-) = p(hz? < ""'W-'-Sr),
 so

 a-x(W-x(a\Xn)-9n) = <t>-x(a) or W~x(a\Xn) =9n +an<D"1(a).

 Since X ~ N(9, cr^/n), we have

 EeoW-\a\Xn) = ? ? \^ + \ <S>~\a)
 \+o2/{nz2) yn + a2/r2

 = 00 + ^=<t>~l(a) + o(n-1/2).
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 By Theorem 3.2, we have

 E9o W~l (a\Xn) = 90 + ^<t>~1 (a) + o(n~xl2) + R'n,

 matching up to the stated error.
 For the (ACC), we have Dn = [0? -1/2,6n +1/2], and

 EeoW([0n?l/2]\X") = E% f ?^e-W&tme-On)2d9
 J[en-i/2,en+i/2] hnal

 = [ ?L=e-o/(2?2))>*2 da
 J[-l/2,l/2] pna2

 /7?(l+Or2)/(nT02)/\ = 24>(<tm//2) -1=2$ 1-?-?-- - 1 V (to 2/

 = 2*(^)-l+*<!). V cr0 2)

 From Example 3, we have

 E6J W(dO\Xn)d = 2?(^l-)-\+o(l), JDn \ <To 2/

 matching up to the stated error.
 For the effect size criterion, let 0\ < #o- So, for large n, 9n ? 9\ > s > 0 (a.s.),

 o~x = 0(nx'2) and 9n -X = 0(n~l), giving G~x(9n -X) = 0(n~x'2). Using
 this in the functional gives

 / OO

 E6o / W(d0\Xn)

 = Eeor?!^e-(o-en)2/(2oZ)de J0\ \j2izon

 = E0o / -7=e~a /2da Ja-x{ex-en) V2tt

 = E0o , _-=e-?'2da + Ee, \ ] _ -^e^^dal Jan\0\-X) y/27Z \Jon\0\-X) *J2tZ I

 = E%I _ -=^/^a +0(^-1/2). Jon\0\-X) V2tt
 Since

 "?-' - ? =-, 1-= 0(n^2),
 ffo ^(^r2 + a02/(a0r0) + y/n/a0)
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 so a~x(9\ - X) - Jn/oo(9\ -X) = 0(n~x>2) (a.s.), the last expression for the
 functional is

 r?? 1 9

 J^i/Go(0i-X) V27T

 + Ee,\ ] __ -f=e'a /2da\ + 0(n~x'2)

 = E0O / _ -L.-B/2d? + 0(n-1'2) + O^"1/2)

 =r r4=?e-n(e'x)2/(2a^^=?e-n(x-(>o)2/(2<T^d9dx J-oo Jex V27T CFQ V27T o"0
 + 0{n-1'2)

 = f?? ^_^_e-n{e-0o)2/Aa2 f?? _L^.e-n(x-(0+0o)/2)2/a2 dxdg

 + 0(n~x/2)

 = f?? l^Le-n^o)2/^2)^ + 0(n-l/2} J0\ J Ait <?o

 =r -?=e-2/2da+0(n-i/2) J(Ji/(-j2a0))(e\-eo) V2jt

 _,_^?lZ*) + O0l-.fl). \V 2 a0 /
 From Example 4, we have that

 EeorW(d9\X?) = l-*(^el^)+o(l), J0\ W 2 ao )
 again matching up to the stated error. In this case, the exact expression gave slightly
 stronger control of the error.
 Next, we turn to two other examples for the (APVC). Of the four criteria, only

 the (APVC) is simple enough that it can be obtained in closed form in some cases.
 Let X\9 ~ Poisson(9), and suppose 9 ~ G(a, b), the Gamma distribution with

 a, b known. Let Sn = Y!t=\ ^i- Then, by standard results, 9\Xn ~ G(a + n,b +
 Sn), with E(9\Xn) = (b + Sn)/(a + n), Vv(9\Xn) = (b + Sn)/(a + n)2, I(90) =
 l/9o,andE0o(Sn) = n9o.
 So, the expected posterior variance is

 b + n9o 9o b ? 9o a
 Ee0(Vzr(9\Xn)) = ??? = -^ + ??^ - (a + n)z n (n + a)z n(n + a)

 and by Theorem 3.1, the approximation is

 Ee0(Var(9\Xn)) = ^-+o(n-1) + R'n. n
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 As in the normal case, the two match up to the stated error.

 Now, let X\9 ~ Binomial(6>) with 0 ~ ?/(0,1). Setting Sn = E"=i X" standard
 results give that 6\Xn ~ Beta(S? + \,n + 1 - Sn), with E(9\Xn) = (Sn + 1)/
 (n + 2),Var(O\Xn) = (nSn-S2+n + l)/[(n + 2)2(n + 3)],I(Oo) = l/[0o()-9o)],
 Edo(Sn) = n9Q and E0O(S2) = n90(\ - 90) + n292.

 The expected posterior variance is

 E9o(Var(0\Xn))

 _ n290 - n00 - n(n - 1)6$ + n + 1
 ~ (n + 2)2(n + 3)
 ^ft(l-ft)) Wq(\-0q) l-gpO-flo) 29q(\-9q) + \

 n n(n + 3) (n + 2)(n + 3) (n + 2)2(n + 3)'
 By Theorem 3.1 our approximation is

 ^(VarW)) = e?(1~flD)+o(w"1) + <.
 As before, the two agree.

 The agreement between the asymptotics and the closed form expressions sug
 gests that in the other examples the discrepancy between the two will be small.
 Indeed, all of the criteria are derived from posteriors and posterior objects which
 can be approximated as well as desired by taking enough terms in the expansions.
 That is, optimizing the asymptotic expression obtained by using more terms will
 give any desired degree of accuracy. We suggest this will only be needed in ex
 treme cases when the coefficients in the neglected higher-order terms are so large,
 possibly because of the range of the set in the parameter space, that they over
 whelm the lower-order terms.

 5.2. Numerical evaluations. Fundamentally, the class of quantities we want
 to evaluate is of the form G = EeFs(W(-\Xn)), where F represents the inference
 objective and s summarizes how well it must be met. To begin, we present com
 putations for two simple cases in which G can be obtained from the closed form
 expressions in Section 5.1. We compare selected values of G with the correspond
 ing approximations G* from our asymptotic formulae. We look at expected values
 of functionals, rather than fix e's and find optimal sample sizes, to make it easy to
 compare these first two simple cases with a more complicated third case.

 Table 1 gives the exact G and approximate G* (in brackets) numerical re
 sults for the normal likelihood and normal prior example given in Section 5.1.

 We have set rj = (0O, M0, <x02, xfi) and chosen rn = (0.5, 0.25, 0.20, 0.30), ri2 =
 (5.0, 3.5, 2.5, 3.0) and r]3 = (25, 20, 18, 15); the values of n are as indicated. The
 confidence level for (ALC) is a = 0.05; for (ACC), we set / = Oo/lO. (We omitted
 results for the effect size problem because the exact and the approximate quantities
 have the same first-order term and the higher-order terms are hard to get explicitly.)
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 Table 1
 Exact vs. asymptotic: Normal-Normal

 Parameter n (APVC): G, G* (ALC): G, G* (ACC): G, G*

 rji 10 0.0187(0.0200) 0.2591(0.2674) 0.1449(0.1403)
 30 0.0065(0.0067) 0.3617(0.3657) 0.2431(0.2405)
 50 0.0039(0.0040) 0.3934(0.3960) 0.3093(0.3074)
 100 0.0020(0.0020) 0.4250(0.4264) 0.4251(0.4238)

 T]2 10 0.2308(0.2500) 4.0944(4.1776) 0.3972(0.3829)
 30 0.0811 (0.0833) 4.4911 (4.5252) 0.6200 (0.6135)
 50 0.0492(0.0500) 4.6106(4.6322) 0.74040(0.7364)
 100 0.0248(0.0250) 4.7286(4.7399) 0.8877(0.8862)
 m 10 1.6071(1.8000) 22.3791(22.7932) 0.6759(0.6485)
 30 0.5769(0.6000) 23.5583(23.7259) 0.9002(0.8934)
 50 0.3516(0.3600) 23.9075(24.0131) 0.9650(0.9628)
 100 0.1779(0.1800) 24.2470(24.3022) 0.9970(0.9968)

 It is seen that as n increases the values of the (APVC) functional decrease, while
 the values for (ALC) and (ACC) increase. This is expected from the interpretation
 of the functionals. For each choice of ri and criterion, it is seen that the error de

 creases as n increases; that is, the difference between G and G* gets smaller as n
 gets larger. It is important to note that, as the numerical value of G changes, it is
 closely tracked by our approximation.

 Less routine examples are the Poisson(#) likelihood with a Gamma(a, b) prior
 and a binomial (9) likelihood with a Uniform[0,1] prior. For the Poisson-Gamma,
 we set x] = (9o, a, b) and for the Binomial-Uniform we set r] = 9o

 Table 2 shows the values for (APVC) from G and G* for n\ = (0.5, 2.5, 3.5),
 t]2 = (1.6, 8, 7.5) and r/3 = (1.5, 10, 12). For the Binomial-Uniform, we set r]\ =
 0.20, rj2 = 0.5 and 773 = 0.75.

 Table 2
 Exact vs. asymptotic: Non-Normal

 ^\" 10 30 50 100
 Poisson-Gamma

 rji 0.0544 (0.0500) 0.0175 (0.0167) 0.0103 (0.0100) 0.0051 (0.0050)
 r)2 0.0725(0.1600) 0.0384(0.0533) 0.0260(0.0320) 0.0144(0.0160)
 rj3 0.0675(0.1500) 0.0356(0.0500) 0.0242(0.0300) 0.0134(0.0150)

 Binomial-Uniform
 til 0.0136(0.0160) 0.0050(0.0053) 0.0031(0.0032) 0.0016(0.0016)
 t]2 0.0179(0.0250) 0.0073(0.0083) 0.0046(0.0050) 0.0024(0.0025)
 773 0.0149(0.0188) 0.0057(0.0063) 0.0036(0.0038) 0.0018(0.0019)
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 As in Table 1, both the error of approximation and the numerical values decrease
 as n increases for both prior likelihood pairs. For the Poisson-Gamma case, it is
 seen that the values for rj2 and 773 are close because their 0's are close. The prior
 has a smaller effect. For the Binomial-Uniform with constant prior, it is seen that
 the symmetry of the Binomial makes the values for n\ and r]2 close.

 Next, we turn to an example in which a closed form for G does not exist. We
 will approximate G by G obtained from simulations and compare this to G* again
 obtained from our asymptotic expressions. To clarify the comparison in Table 3,
 observe that, in a world of infinite resources, we would generate m IID Xn's
 from po, find W(-|X" = xn) for each of the jc"'s, evaluate G(9,e, W,n,m) =

 (l/m) J2J=i F?(W(-\Xn = xp) and report 6 = 6(9, s, W, n, m) as an approxi
 mation to G = G(9, s, W, n). Ideally, we would use a large enough m that depen
 dence on it could be neglected and W would be replaced by the hyperparameters,
 say, a, that specify it. That is, we will have

 (5.1) 6(9, s, a, n, m) % G(9, s, a, n),

 so we can obtain minimizing values of n = n(9, s, a) from G. In fact, we want a
 maximin solution

 (5.2) nMm( )= max n(9,s,a), 6eK,aeA

 in which K and A are compact sets. However, direct evaluation of nMm(s) is
 computationally demanding: It requires, for each specified s, 9 and a, evaluating
 EoF?(W(-\Xn)) for many values of n so one can select the smallest n that satisfies
 the criterion.

 As in the first two cases, rather than evaluating (5.2), we compute, for some
 choices of n, the empirical posterior functional G(9,s,a,n,m), which can be

 Table 3
 Empirical vs. asymptotic: Non-Normal

 0O n Eeo(Yar(0\Xn)) E$0(HPD) E$0(ALC)
 0.25 10 0.0116 (0.0062) [0.1475,0.5388] ([0.1633,0.4732]) 0.3912 (0.3099)

 30 0.0031 (0.0021) [0.1742,0.3826] ([0.1803,0.3592]) 0.2084 (0.1789)
 50 0.0018(0.0012) [0.1884,0.3483] ([0.1939,0.3325]) 0.1599(0.1386)
 100 0.0008 (0.0006) [0.2017,0.3123] ([0.2055,03035]) 0.1106 (0.0980)

 0.50 10 0.0238 (0.0250) [0.2703,0.8399] ([0.2320,0.8518]) 0.5696 (0.6198)
 30 0.0107 (0.0083) [0.3387,0.7273] ([0.3409,0.6988]) 0.3886 (0.3578)
 50 0.0068 (0.0050) [0.3727,0.6832] ([0.3798,0.6570]) 0.3105 (0.2772)
 100 0.0034 (0.0025) [0.4020,0.6208] ([0.4084,0.6044]) 0.2188 (0.1960)

 0.75 10 0.0348(0.0562) [0.3738,0.9467] ([0.2135,1.1432]) 0.5729(0.9297)
 30 0.0140 (0.0187) [0.4986,0.9368] ([0.4556,0.9923]) 0.4382 (0.5368)
 50 0.0102(0.0112) [0.5511,0.9282] ([0.5349,0.9506]) 0.3771 (0.4158)
 100 0.0059 (0.0056) [0.5988,0.8988] ([0.5997,0.8937]) 0.3000 (0.2940)
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 regarded as a good enough approximation to G(9, e, a, n) for large ra. We also
 compute our asymptotic approximation, G*. In effect, we have assumed (5.1) by
 choosing ra large enough and then compared G(9,s, a, n) to G*(9, s, ot, n). Thus,
 Table 3 gives G* and G for several choices of 9, s, a and n, for various function
 als F.

 Our argument is that the approximations G* are close to the corresponding G's
 for a variety of points (9,e,a,n) and, therefore, it is reasonable to use sample sizes
 obtained from G* as approximations to the sample sizes one would get from opti
 mizing G directly. The values given for the G and G* given in the tables support
 this contention.

 Thus, we evaluated a nonconjugate, nonclosed form example. In this case, the
 G could not be found as in Section 5.1; we are forced to use G. To provide a real
 test of the asymptotics, take the likelihood to be Exponential(x\9) = 9e~6x with
 a Beta(3/2, 3/2) prior having density ?(6>|3/2, 3/2) oc ^9(1-9) on [0, 1]. It is
 seen that this example is far from the normal prior, normal likelihood setting, so
 its relation to the asymptotic normality used to derive our expressions is not close.

 Since G is an expected value of a functional of the posterior, we generate
 m = 1000 IID data sets of size n for several values of n, Xf,..., X^, from an
 Exponential(jt|#). For each Xn-, j = 1,..., ra, we draw outcomes from W(-\Xnj)
 by Markov chain Monte Carlo, compute F(W(-\Xn.)) from the empirical posterior

 distribution, and approximate EeF(W(-\Xn)) by (1/ra) ??=1 F(W(|Xp).
 For several values of 9 taken as true, n as a potential sample size, and each

 of three criteria, we give the empirical value, G, and its asymptotic approxima
 tion using our technique G* in brackets in Table 3. The expected HPD is a proxy
 for (ACC): In the average coverage criterion, we fix I and find the n making the
 coverage probability of the HPD set of length less than ? at least I ? a. Here,
 the E(HPD) represents the ? for coverage 0.95 for the approximate HPD interval
 centered at the posterior mean.

 It is seen that the expected (APVC) and (ALC) decreases as n increases, as does
 the error of approximation. Likewise, the expected HPD length decreases, as does
 the error of approximation as n increases. When n = 10, the approximation can
 be poor with errors often over 25% of the true value; this may be due to the ra
 or n being too small or due to convergence problems in the Markov chain Monte
 Carlo. At the other end, n = 100 gives good approximation in absolute and relative
 senses, suggesting the size of ra is not the problem. Overall, in highly nonnormal
 and nonconjugate settings, our approximation may not give satisfactory results
 unless n is moderate, say, over 30.

 We comment that the effect size criterion involves the mean posterior quantiles,

 so we expect our formulae to give results similar to those for Eq0 (HPD), for which
 reason we omitted its presentation here.

 6. Final remarks. Overall, we have argued that simple, asymptotically valid
 inequalities can be derived so that Bayesian sample sizes can be readily determined
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 essentially as easily as in the frequentist case. We have done this for four sample
 size criteria taken from the established literature.

 Apart from this contribution, we have several observations.
 First, integrating our approximations for (1.1) over #o gives expressions for

 use in pre-posterior Bayesian calculations where the expectations are taken
 with respect to the mixture density. That is, because F(W(-\Xn)) does not de
 pend on the parameter explicitly, the expectation with respect to the mixture is

 EmF(W('\Xn)) = f@E0F(W(-\Xn))w(9)d9, and our asymptotic expressions
 will apply to the argument of the integral. Our results are slightly stronger than
 necessary for evaluating marginal probabilities.

 Second, although we have not done it here, we suggest that, as ever, sensitivity
 analyses should be used to ensure the sample sizes obtained from any one method
 are robust against deviations of the prior, likelihood and loss function (if one ex
 ists) from the nominal choices used to obtain the sample sizes. Robustness against
 similar choices of sample size criterion would also be desirable.

 Finally, we anticipate that examining functionals of posteriors may be a step to
 ward unifying the three cases described in the Introduction. Decision theoretic pro
 cedures implicitly rest on the posterior risk which can be regarded as a functional
 of the posterior. Evidentiary procedures usually devolve to posterior probabilities
 which can likewise be regarded as functionals of the posterior?we suggest for
 mulae for these at the end of the Appendix. And, finally, purely Bayes criteria that
 focus on credibility sets also express properties of credibility sets in terms of the
 posterior. It may be that a suitably general treatment of functionals of the posterior
 will include all these as special cases of one unified formalism.

 APPENDIX

 Here, we prove Theorem 3.3 and compare it with the expansions for two func
 tionals in [5]. As a final point, we note how to use our techniques to get an as
 ymptotic expansion for a functional that is the expectation of a posterior mean of
 a function of the parameter.

 Proof of Theorem 3.3. We need to approximate E0o(ISnW{r) (90\Xn)); for
 simplicity of notation, we omit the Isn.

 First, for 1 < j < J, the yj(^/nIl/2(9o)(9 -9n),XnYs are polynomials and,
 hence, differentiable. As in Assumption JE, the remainder term is

 yj+l(V^Il/2(e0)(9o-9n),X")n-{J+])/2

 = W(9o\X")-4>dnMm/n(9o)
 J

 - ?n-J'2<pd(Vn~Il/2(Oo)(eo - en))yj(Vn~Il/2(90)(9o - 0n), Xn),
 7 = 1

 n> N,Xn e Sn.
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 So yk+i(-> Xn) has rth derivative whenever W(-\Xn) does.
 To control the expectation of W{r)(9\Xn), we replace the )//( , Xn)'s by

 the Yj(-)9s. That is, by the boundedness of the yy(-, Xn)'s, and the a.s. conver
 gence of 9n and the Ir(9nYs to 9o and the Ir(9oYs, we have

 Yj(;Xn) = yj(-)(l+op(l))9
 for j = 1,..., J + 1, where the op(l) may depend on j, but is independent of 9.
 So we have

 W(Oo\X") = <P?nJ^eo)/n(9o)
 j

 + Y/n~i/2<t}d(^Il/2(Oo)(90 - 9n))
 7 = 1

 (A.l)
 X yy(v^/1/2(^0)(^0 -4))(1 +Op(l))

 + n-(-/+1>/2Ky+1(V77/1/2(^0)(^o-^))(l+op(l)).
 Next, we convert (A.l) into a form to which Assumption EE can be applied. We

 begin to deal with derivatives of the first term by noting

 8%--(w^| _9k~X./-W*>| d9r L?0 3^"! |e=flb"
 Next, let l}/2(90) be the ith column of Il/2(90), and 1,- = (0,.... 0, 1,0,..., 0) be
 the rf-vector with the ith component 1 and all other components zero. For the first
 derivative with respect to the ith component of 9 we have

 a^,/-'(6b)/*?^>
 30,

 = |n/(6b)|/ -^
 = (\nim\^m^lH90)(9-9n)W?

 = ii(rf+1)/2|/(0o)l1/2///2(eo)(V^/1/2(^o)(^-4))</>(V^/1/2(^o)(e-4))

 = /iw+1>/V(^)l1/2tfi,(V?/,/2(W -4))<MV^/1/2(#o)(0 -<??)).
 So, by an induction argument we have

 a|r-X./-W^[ d0r~x \e=0o
 (A.2) =nW2\I(Oo)\l/2Hr-i(>/iil1/H8oK0o-9n))

 x <p(V^11/2(90)(9o-??)),
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 in which we have simplified by using (d + \r ? l|)/2 = \r\/2.
 (r)

 Using (A.2) in the first term, and recalling the definition of the n- in the second
 term, the rth derivative of (A. 1) becomes

 WlrHOo\Xn)

 = nW2\I(9o)\l/2Hr^(Vn~Il/2(9o)(90-9n))
 (A.3)

 x</>(Jh~I{/2(90)(9-9n))

 + ? fT^n^nf (^Il/2(0oWo - ?,))
 y'=i

 (A.4)
 x (l+O/,(l))</>(^/1/2(0oK#o-4))

 (A.5) +n-^+1>/2nl"'/2KJri(Vn/1/2(flb)(flb-ftl))(l+o/,(l)).

 Here, yj+^V^'^C^oX^o ? 9n)) is generated by applying the chain rule to the
 last term on the right-hand side in (A. 1). Note that we differentiate with respect to

 9 and then evaluate at 9q. Expressions (A.3) and (A.4) will give the two leading
 terms in (3.8), respectively.

 Next we use Assumption EE to observe an identity: We can take expectations
 over 9n when it occurs in the argument of a polynomial Q(-) by the relationship

 EOo(Q(V^Il/2(0oKOo - 9n))(P{^Il/2(9o)(9o - 9n)))

 = / Q(v)<P(v)L(v) + J2"~k/2pk(v)<P(v) + ?^ K\A dv
 (A.6)

 where Q o Pk(-) is the polynomial obtained by their product in which, as before, we
 have taken expectations and replaced powers. [The factor l/(Arc)d^2 appears when
 we multiply two standard normal densities and observe the change of variables in
 the exponent.]
 We use (A.6) in (A.3), (A.4) and (A.5) to get (3.8).
 Since the integrability of W(r)(-\Xn) and //r_i( )#( ) implies that of yJ+\(-),

 we can apply (A.6) to see that the expectation of the error term (A.5) is

 ?,o(?-(y+l)/2?l''l/2^1(v^/l/2(0o)^o-4))(l+op(l)))
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 (A.7) V -

 = 0(n<l'i-J-1>/2).

 In (A.7) we used the fact that the integral over Yj+\(v)4>(v) gives an 0(1) term.
 The integral over the summands in the summation gives terms of order 0(l)nk/2,
 for k = 1,..., K. So, the initial term gives the order in n as indicated in (A.7).

 Similarly, using (A.6), the expectation of (A.4) is

 + 0(nQr\-K-l),2)\
 (A.S)

 _ y n(in-7)/21+?(1) (d( o- \ ";ti W^ VV2/

 The leading term in (A.8) gives the second term in A\ in (3.8).
 Finally, using (A.6), the expectation of (A.3) is

 (4n)d/2 \ l\^2/
 (A.9) j

 + fn-^//r_1oP,(-^))+0(^l-^),
 which gives the leading term in (3.8) and the first term in A\. That is, by collecting
 terms in (A.7)-(A.9), the proof is completed.

 To exemplify Theorem 3.3, we examine the average behavior of the posterior
 density at #o- Straightforward extensions give similar results at other values of 9.

 Consider the functional F(W(-\Xn)) = w(90\Xn) = a'r|yw)]\e=% with r =
 (1,..., 1). Since //r_i() = Hq(-) = 1, Theorem 3.3 gives

 E0o(w(9o\Xn))

 <A',0) -^+ ,+* >+<.
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 When d = 1, we can verify that A\ = 0. This is easy because the expressions for
 the yj(')9s are available from [11] in this case. Indeed, we have

 r)i(v) = I(9o)c^(c\ov3 -\-co\v)
 and

 A _\I(Oo)\l/2D( * \ , 1 (r)(o \

 in which P\(v) = X3*V3!. The expectations of P\(v) and n\(v) when t> is

 Normal(0, 1) are obviously zero. So, P\(-j%) = ^(75) = ? and> thus> A\ = ?
 This means that the two biggest terms in (A. 10) are of order nd/2 and n^d~2^2.
 We have not carried out the analysis far enough to identify the coefficient of the
 second-order term.

 It is seen that (A. 10) is the same as the result in [5]. We remark that if one
 chooses F(W(-\Xn)) = w2(9o\Xn), the techniques above give

 (A.ll) E0o(w2(9o\Xn)) ~ EdQ(nd\I(9o)\(t>2(Z)) = ^ '(^'
 the same as in [5].

 For completeness, we next show how to use the general procedure Proposi
 tion 2.1 to get (A. 10). There are four types of terms in (2.10); we go through them
 in turn.

 The first term on the right-hand side of (2.10) is

 ?F(d>(Z + v^/1/2(^o)(--M)

 _^2\ix'2(9o)\ r i (l/2),z (l/Mz
 (2n)d/2 J (2n)d/2 Z

 ^ndl2\Ixl2(9p)\ f 1 _, _nd'2\Il'2(%)\
 (2n)dl2 J (2n)d/2e Z~ (4n)d/2 '

 Next, for J > 1, the terms in the summation in (2.10) are of the form

 ./2.'/2|/'/2(0o)l r _J_e-(Wzp,z)e-?/z>z>Zdz (2n)"/2 J (2n)^e Fj(Z)e dZ
 = /2n^\I^(90)\ fe-{Wzp.(A\dz (4n)?/2 J" Pj\V2)Z
 _n-inndl2\ixl2m\ (o\

 (AnYl2 J\V2),

 where Pj(-j^) is the expectation of Pj(-js) with the z''s replaced by ct/'s, the /th
 moments of N(0, /</).
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 Next, for h(n), we observe that

 4>(z + V^1/2(0o)(0-0o))

 (2n)d/2 J-oo

 = |w/1/2(6>p)|1/2 r* g_(i/2)(V?/,/2(flb)(i'-*)+z)'(^/,/2(flb)(?-flb)+z)rfi;
 (27T)rf/2 J-oo

 This gives

 ?"*fe+^ffl.)(?-ft))i _^|/W(8b)im
 and we have

 ,, ^ f F(<t>(z + >/1/2(^0)(- - 6o))) , hin) = J-YTuF-dz
 = f ndl2\lxl2(9o)\(l>(z) I i + lklK Z
 _nd'2\l"2(9Q)\ re-"'2**
 ~ (2n)dl2 I l + ||z|K

 which is smaller than the leading term when multiplied by o(nJ^2) for any / > 1.
 It remains to evaluate the expectation of the remainder term. As assumed in the

 proofs of the theorems, we only need to evaluate it over the "good" sets, and we
 omit the indicators for them. Write

 R? = ^(E"-J'/2<^/1/2(0o)(0 -&?
 x yj(^r1/2(9o)(9 -4))(1 +0(1))

 + n-(J+l)l2Yj+\ (Vn~r1/2(90)(9 - 0?))(1 + o(l))) } \e=e0
 j

 = J2n'j/2nd/2<P(V^I]/2(Oo)(0-9n))r1f\^rl/2(Oo)(Oo-On))(l+o(\))

 + n-^+iy2n^2\l^2(90)\yilU^I-l/2(Oo)(e -9n))(l +o(l)).
 So, by Assumption EE and (A.6), we get

 J ?(d-j)/2

 E*oRn = ? T^m^j'V/V2)(i+?w)+o(n?-J)/2), 7 = 1
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 which has lower order than the leading term for / > 1. Thus, by Proposition 2.1,
 we get the same result as from Theorem 3.3.

 Our final point is that our techniques can be used to approximate the expected
 value of posterior expectations. Indeed, from (A.l), note that

 w(9\X") = <P?n!.i(0o)/n(9)

 + f2n-j/2nd/2\I{/2(9o)\4>(^ili/2(9o)(9-9n))
 (A.12)

 xr,{jl\^il]/2(9o)(9-9n)){l+o(\))

 + ?-(y+l)/2Mrf/2|/l/2(6b)|yjni(v^/l/2(flb)(^ _ ^))(1 +o(1)).
 (r)

 The Yj(-, XnYs are from Assumption JE and are differentiable, as are the rj\ ()'s.

 Now, suppose h = h(9) has all rth partial derivatives, for \r\ < J, on a neighbor
 hood of #o and that h(9)w(9\Xn) and its partial derivatives are integrable with
 respect to w(-\Xn).

 Then, Taylor expanding h at ^Justifying a use of Assumption EE and gathering
 terms suggests that

 EeSih(9)w(9\Xn)d9)=h(9o)+n-xl2rx'2(9o) ? h(r)(90)ar
 (A.13)

 + Axn~x + o(n~x) + Rfn,
 where

 (A.14) Ai = rX/2(90) X] ri\r\cr)h(r)(9o) + \rX(9o) J2 ^^o)
 |r| = l |r|=2

 (r)
 and the ny. ()'s are as in Theorem 3.3. An extension of this argument gives similar
 expressions for higher-order terms.
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