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Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that mediate the effects of several
nutrients or drugs through transcriptional regulation of their target genes in obesogenic environments.This review consists of three
parts. First, we summarize current knowledge regarding the role of PPARs in governing the development of white and brown/beige
adipocytes from uncommitted progenitor cells. Next, we discuss the interactions of dietary bioactive molecules, such as fatty acids
and phytochemicals, with PPARs for the modulation of PPAR-dependent transcriptional activities and metabolic consequences.
Lastly, the effects of PPAR polymorphism on obesity and metabolic outcomes are discussed. In this review, we aim to highlight the
critical role of PPARs in the modulation of adiposity and subsequent metabolic adaptation in response to dietary challenges and
genetic modifications. Understanding the changes in obesogenic environments as a consequence of PPARs/nutrient interactions
may help expand the field of individualized nutrition to prevent obesity and obesity-associated metabolic comorbidities.

1. Introduction

In the past few decades, the prevalence of chronic diseases
has been shown to be linked to nutrition deficiencies and
overnutrition.Nutritional genomics/nutrigenomics, a unique
approach for investigation of the genome-wide effects of
nutrients at the molecular level, has contributed to the devel-
opment of nutritional science and applications in medici-
nal and pharmacological research. Peroxisome proliferator-
activated receptors (PPARs) are ligand-activated transcrip-
tion factors (TFs) that mediate the effects of several nutrients
or drugs through transcriptional regulation of their target
genes. PPAR isotypes of the NR1 family, such as PPAR𝛼
(nuclear receptor; NR1C1), PPAR𝛽/𝛿 (NR1C2), and PPAR𝛾
(NR1C3), can be distinguished based on their different
biological roles and are the most relevant subtypes in the
field of nutrition research. PPARs exert their biologically

distinct functions in an isotype- and tissue-specific manner;
however, the molecular details of tissue-dependent PPAR
function remain unclear. PPARs are also able to repress tran-
scription by interacting with other TFs and/or coactivators,
thereby interfering with other signaling pathways to control
physiology. Understanding the changes in the obesogenic
environment as a consequence of PPAR/nutrient interactions
may help expand the field of individualized nutrition to
prevent obesity and its associated metabolic comorbidities.

In this review, we summarized current knowledge regard-
ing (1) the role of PPARs in governing the development
of white and brown/beige adipocytes from uncommitted
progenitor cells, (2) interactions between dietary bioactive
molecules andPPARs for themodulation of PPAR-dependent
transcriptional activity and metabolic consequences, and (3)
the effects of PPAR polymorphisms on obesity andmetabolic
outcomes.
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2. Transcriptional Regulation of PPARs in
White, Brown, and Beige Adipose Tissue

2.1. Functions of PPARs in White Adipose Tissue

2.1.1. Regulation of Adipogenesis. The process of adipoge-
nesis is divided into two distinct stages: determination
and terminal differentiation. Each stage is governed by the
orchestrated regulation of TFs. TFs involved in the stage of
adipocyte determination include CCAAT/enhancer-binding
protein 𝛽 and 𝛿 (C/EBP𝛽 and C/EBP𝛿), glucocorticoid
receptor (GR), signal transducer and activator of transcrip-
tion 5A (STAT5A), and cAMP-response element-binding
protein (CREB) [22, 23].These TFs induce the transcriptional
activation of target genes responsible for the second stage
of adipogenesis. Regulators of early-stage adipogenesis, that
is, C/EBP𝛽 and C/EBP𝛿, directly induce the expression of
C/EBP𝛼 and PPAR𝛾, which transcriptionally activate their
own expression and the expression of other adipogenesis-
related genes, for example, PPAR𝛾 coactivator 1 alpha (PGC-
1𝛼) and fatty acid synthase (FAS) [24–26].

PPAR𝛾 is known for its role in the regulation of adi-
pogenic and lipogenic pathways [4, 27, 28]. Initial studies
examining the role of PPAR𝛾 in adipogenesis showed that
PPAR𝛾-knockout mice had little adipose tissue [29]. PPAR𝛾
cooperatively acts with early adipogenic TFs, such as C/EBPs
[30]. C/EBP𝛽 and C/EBP𝛿 induce PPAR𝛾 expression, and
C/EBP𝛼 and PPAR𝛾 commutatively induce the expression
of each other by facilitating chromatin binding [4, 31].
Some studies have suggested that the involvement of PPARs
in adipogenesis is limited to the effects of PPAR𝛾 during
later stages of adipogenesis and terminal differentiation of
adipocytes. However, evidence has shown that PPAR𝛾 also
plays a role in the early stages of adipogenesis. A subset of
adipocyte progenitors is present within theWATperivascular
region in which PPAR𝛾 is expressed, suggesting that this
proteinmay have a role in adipocyte self-renewal [32, 33].The
involvement of PPAR𝛾 in adipogenesis is more evident at the
later stages of adipogenesis inmature adipocytes. Because the
ablation of PPAR𝛾 is lethal, cell-specific knockout of PPAR𝛾
has been utilized inmaturemouse adipocytes by applying the
tamoxifen-dependent Cre-ER (T2) recombination system. A
few days after ablation of the PPAR𝛾 gene, mature adipocytes
and brown adipocytes died, and a subset of PPAR𝛾-positive
cells appeared [34], suggesting the involvement of PPAR𝛾 in
maintaining mature adipocytes.

2.1.2. PPARs and Adipokines. PPAR𝛾 controls the expres-
sion of adipokines, including adiponectin, leptin, fibrob-
last growth factor 1 (FGF1), FGF21, resistin, and tumor
necrosis factor-𝛼 (TNF-𝛼). Adiponectin is a main adipokine
that stimulates insulin sensitization by increasing glucose
uptake and decreasing gluconeogenesis. Between the two
adiponectin receptors (AdipoR1 and AdipoR2), AdipoR2
activates hepatic PPAR𝛼 [35]. Hepatic PPAR𝛼 activation
by AdipoR2 decreases lipid accumulation and lipid perox-
idation, contributing to improvements in hepatic steatosis
and nonalcoholic steatohepatitis [35]. Adipose PPAR𝛼 and
PPAR𝛾 activation increases adipocyte uptake of glucose and

free fatty acids and enhances insulin sensitivity by inducing
the expression of AdipoR1 and AdipoR2 [36]. In contrast
to adiponectin, PPAR𝛾 indirectly suppresses adipose leptin
expression by inhibiting the binding of C/EBP to the leptin
promoter region [37].

FGF1 is known to be selectively induced in adipose tissues
by consumption of a high-fat diet through PPAR𝛾, which acts
on adipose tissue remodeling [38]. The phenotypes of FGF1-
knockout mice depend on the conditions. FGF1-knockout
mice do not show abnormal phenotypes under normal
physiological conditions; however, the mice show disruption
of fat expansion and subsequent development of diabetes in
an obesogenic environment from high-fat feeding. FGF21 is
expressed in the adipose tissue and liver and exerts tissue-
specific effects. In adipose tissues, FGF21 increases energy
expenditure and prevents weight gain in diet-induced obese
and ob/obmice [39]. Moreover, FGF21 also sensitizes cells to
the effects of insulin by increasing adipose PPAR𝛾 activity
[40]. The PPAR𝛾 agonist rosiglitazone induces FGF21 in the
epididymalWAT of C57Bl/6 mice, and adipose FGF21 stimu-
lates PPAR𝛾, affecting adipogenesis and insulin sensitization.
In the livers of these mice, FGF21 is induced by the PPAR𝛼
agonist GW7647, and hepatic FGF21 acts as a hormone,
regulating carbohydrate and lipid metabolism [40]. FGF21-
knockout mice exhibited lipodystrophy with little adipose
tissue owing to the low expression levels of PPAR𝛾 and its
target genes.

Resistin is another adipokine that is upregulated in
patients with type 2 diabetes and inflammation-related dis-
eases [41]. Transcriptional regulation of resistin is governed
by cooperative regulation of PPAR𝛾 and C/EBP in murine
adipocytes, but not in human adipocytes. Additionally,
PPAR𝛾 reduces the expression of proinflammatory cytokines
in adipose tissue by acting on nuclear factor-kappa B (NF-
𝜅B) signaling. PPAR𝛾 inhibits NF-𝜅B activity and induces
its degradation by direct binding to NF-𝜅B [42], leading to
downregulation of the proinflammatory cytokines TNF-𝛼,
interleukin-6 (IL-6), and plasminogen activator inhibitor-1.
As a transrepressive effect of PPAR𝛾 and NF-𝜅B, NF-𝜅B also
inhibits PPAR𝛾 transcriptional activity by acting on histone
deacetylase 3 [43].

2.1.3. Regulation of PPARs in Subcutaneous and VisceralWAT.
Three subtypes of PPAR, that is, PPAR𝛼, PPAR𝛽/𝛿, and
PPAR𝛾, have tissue-specific regulatory functions. The tissue-
specificity of each PPAR isoform is due to differences in
the tissue-specific expression and specific target genes of
each PPAR isoform. The tissue distribution, target genes,
and main functions of PPAR subtypes are summarized
in Table 1. Among the three PPAR subtypes, PPAR𝛾 is
highly expressed in adipose tissues and stimulates glucose
uptake and adipokine secretion [1]. Through its interactions
with adipokines, PPAR𝛾 is involved in adipogenesis, lipid
metabolism, glucose homeostasis, adipose remodeling, and
WAT browning in WAT [2]. PPAR𝛾 agonists have been used
as oral hypoglycemic agents by sensitizing cells to insulin
action; however, the application of these agents is often
limited because of their effects on increasing body fat content
[3]. The PPAR𝛾 agonist thiazolidinedione (TZD) selectively
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Table 1: Tissue distribution, target genes, and main functions of PPAR subtypes.

PPAR isoform PPAR𝛼 PPAR𝛽/𝛿 PPAR𝛾

Tissue distribution Liver, heart, BAT Many tissues (mainly in skeletal
muscle, liver, heart)

PPAR𝛾1: many tissues
PPAR𝛾2: WAT and BAT

Target genes
ACAA2, ACAD, CPT1A, CPT2, ETFA,
ETFDH, HADHA, HADHB,
SLC25A20, SLC22A5, TXNIP, apoA-1

ACOX1, CPT1, LCAD, UCP1, VLCAD,
CPT1

ACBP, ACS, aP2, CD36, C/EBP𝛼,
GLUT4, LPL, GyK, IRS-1, IRS-2,
PEPCK, PI3K, STAT1, STAT5A,
STAT5B

Physiological functions
Fatty acid oxidation, amino acid
catabolism, oxidative phosphorylation,
lipoprotein synthesis [1, 2]

Fatty acid oxidation, oxidative
phosphorylation, muscle type
determination [3]

Adipogenesis, lipid metabolism,
glucose homeostasis [2, 4]

ACAA2, acetyl-CoA acyltransferase 2; ACAD, acyl-coenzyme A dehydrogenase; ACBP, acyl-CoA-binding protein; ACOX1, acyl-coenzyme A oxidase 1;
ACS, acyl-CoA synthetase; aP2, fatty acid binding protein 2; BAT, brown adipose tissue, C/EBP𝛼, CCAAT/enhancer-binding protein 𝛼; CD36, cluster
of differentiation 36; CPT, carnitine palmitoyl transferase; ETFA, electron transfer flavoprotein alpha subunit; ETFDH, electron transfer flavoprotein
dehydrogenase; GLUT4, glucose transporter 4; GyK, glycerol kinase; HADHA, hydroxyacyl-CoA dehydrogenase, alpha subunit; IRS, insulin receptor
substrate; LCAD, long-chain acyl-CoA dehydrogenase; LPL, lipoprotein lipase; PEPCK, phosphoenolpyruvate carboxykinase; PI3K, phosphoinositide 3-
kinase; SLC25A20, solute carrier family 25 member 20; STAT, signal transducer and activator of transcription; TXNIP, thioredoxin-interacting protein;UCP1,
uncoupling protein 1; VLCAD, very long-chain acyl-CoA dehydrogenase.

induces the differentiation of immature preadipocytes in
subcutaneous fat. Newly differentiated adipocytes are small
and exhibit increased insulin sensitivity without altering the
total weight of the WAT [44]. Interestingly, the opposite
is true of visceral fat pads; TZD treatment decreases the
numbers of large adipocytes in visceral fat by increasing
apoptosis in large and relatively insulin-resistant visceral
adipocytes [45]. Fat deposition in subcutaneous adipose
tissue is relatively beneficial comparedwith increased visceral
fat contents in terms of the risk of metabolic syndrome and
cardiovascular diseases (CVDs). Lipoprotein lipase (LPL)
has been suggested to be involved in PPAR𝛾-dependent
fat redistribution from visceral to subcutaneous tissues in
PPAR𝛾 agonist-treated experimental models. The mass and
catalytic activities of LPL are increased in subcutaneous fat,
but not in visceral fat depots, accompanied by alterations
in factors involved in the regulation of LPL activity, fatty
acid transport, and lipogenesis [46, 47]. Nonetheless, in
addition to increased subcutaneous fat, other side effects,
including adverse cardiac outcomes, have been reported in
patients receiving rosiglitazone, resulting in withdrawal of
rosiglitazone from the market. Novel approaches have been
applied for the use of PPAR𝛾 agonist as antidiabetic drugs,
including development of new types of PPAR𝛾 agonists,
dual PPAR𝛼 and PPAR𝛾 agonists, and combination with
agents that can suppress adipocyte differentiation and fat
accumulation. In particular, dual PPAR𝛼 and PPAR𝛾 agonists
have been accepted to be promising for the treatment of type
2 diabeteswith dyslipidemia. Administration of lobeglitazone
and saroglitazar was effective in lowering HbA1c and in
improving glucose control and lipid profiles in subjects
of type 2 diabetes [48–51]. It does not mean that these
dual PPAR𝛼 and PPAR𝛾 agonists have no side effects. For
example, weight gain was still observed in lobeglitazone-
treated diabetic subjects [50]. Collectively, existing evidence
suggests that the usage of dual PPAR𝛼 and PPAR𝛾 agonists
was relatively well tolerated and acceptable considering the
balance between efficacy and side effects.

2.2. Regulation of PPARs in BAT

2.2.1. Cellular Origin of Brown and Beige Adipocytes. At least
two metabolically distinct brown adipocytes are found in
humans: “classical brown” and “beige” adipocytes [52–54].
Classical brown adipocytes possessmolecular attributes simi-
lar to interscapular BAT (iBAT) of rodents based on constitu-
tive uncoupling protein-1 (UCP1) expression, homogeneous
multilocular morphology, and a myogenic origin (Myf5+)
[55, 56]. Conversely, beige adipocytes are differentiated from
nonmyogenic lineage progenitors (Myf5−) and possess low
levels of UCP1 expression under unstimulated conditions.
Although there is still some controversy regarding the cellular
identity, anatomical location, and recruitment versus trans-
differentiation of beige adipocytes [57, 58], the metabolic
relevance of beige adipocytes in terms of energy expenditure
[52, 59] has well been established in response to environmen-
tal stimuli, such as low temperature [60, 61], and to physical
activity [62]. Because BAT activity is negatively associated
with adiposity, insulin resistance (IR), and aging, therapeu-
tics targeting BAT recruitment and activity have attracted
attention as a potential novel treatment strategy. PPAR𝛾
regulates the general differentiation program and metabolic
function of brown adipocytes as well as white adipocytes.
Given the metabolic relevance of BAT in metabolism, we will
summarize the role of the PPARs in regulating brown and
beige fat development in this section. We also propose that
reduced PPAR𝛾 activity may explain the compromised BAT
activities in obesity and metabolic syndrome.

2.2.2. Transcriptional Regulation of PPAR𝛾 in Brown andBeige
Adipocytes. PPAR𝛾 is the single most important TF that
governs white adipocyte differentiation. However, PPAR𝛾
alone is insufficient to drive the entire brown adipogenic
transcriptional program, and its transcriptional partner, PR
domain-containing protein 16 (PRDM16), is also required.
Nonetheless, PPAR𝛾 activity is essential for the development
of both classical brown and beige adipocytes. Using a brown
preadipocyte cell line, researchers have shown that PPAR𝛾
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binding to the PPAR response element of UCP1 is required
for the transcriptional activity of UCP1 [63]. Inhibition
of PPAR𝛾 activity using a dominant-negative mutant pro-
motes the whitening of interscapular brown fat [64]. In
addition, genome-wide binding analyses have demonstrated
that PPAR𝛾 binds to many other genes unique to brown
adipocytes, suggesting that PPAR𝛾 binding to PPRE response
elements in brown target genes confers lineage specificity
during brown fat differentiation [65, 66]. In addition to
promoting classical brown adipocyte differentiation, PPAR𝛾
has also been implicated in white-to-beige conversion. Lack
of functional PPAR𝛾 activity leads to defective beige fat
recruitment, suggesting that beige fat development is depen-
dent on PPAR𝛾 function [64]. Conversely, synthetic PPAR𝛾
ligands, particularly those in the TZD class, are potent
regulators of mitochondrial biogenesis and cause significant
increases in brown-specific phenotypes in white adipocytes,
includingUCP1 upregulation and uncoupled respiration [67–
73]. In later studies, Ohno et al. showed that the white-to-
beige conversion by PPAR𝛾 agonism could be explained by
stabilization of PRDM16 protein, the master transcriptional
regulator of brown adipocytes [74]. Interestingly, energy
expenditure is not increased in TZD-treated animals. This
could be due to the observation that TZD-mediated sys-
temic lipogenesis overshadows the improved mitochondrial
function and suppresses 𝛽3-adrenergic receptor- (ADRB3-
) mediated activation in vivo [75–77]. Another important
mechanism through which PPAR𝛾 agonism enhances BAT
activity involves the activation of SIRT1, a Sir2 homolog and
NAD-dependent deacetylase [78]. Moreover, activation of
SIRT1 and deacetylation of PPAR𝛾 by resveratrol increase
the recruitment of PRDM16, resulting in implementation
of the transcriptional cascade for brown signature genes
[74]. In addition to PPAR𝛾, PPAR𝛼 plays a role in brown
adipocyte formation. Because PPAR𝛼 is a primary regulator
of mitochondrial 𝛽-oxidation, it is not surprising that PPAR𝛼
expression levels are higher in brown adipocytes than inwhite
adipocytes. Although PPAR𝛼 expression is often regarded
as a downstream brown marker gene, other studies have
demonstrated that PPAR𝛼 functions simultaneously with
PPAR𝛾 to increase the brown-specific expression of PRDM16,
PGC1𝛼, and UCP1 [79, 80]. PPAR𝛽/𝛿 is ubiquitous, showing
highest expression in the gut, but is now thought to be
important in exercise-inducedwhite-to-beige conversion and
thermogenesis [81]. In conclusion, the plasticity of adipocytes
in response to different environmental stimuli is likely
regulated by the dynamic associations among TFs (e.g.,
PPARs and PRDM16) and their coregulators (e.g., PGC1𝛼
and SIRT1). These interactions between environmental and
transcriptional regulators determine the lineage commitment
of adipogenic progenitor cells, that is, white, brown, and beige
adipocytes, and themetabolic fate of existing adipocytes, that
is, browning or its reversal, whitening.

2.2.3. Compromised Activities of PPARs in Obese andMetabol-
ically Unhealthy BAT. Chronic activation of ADRB3 is a
key signaling event enhancing BAT activity and/or mass. In
healthy humans, at least three distinct metabolic responses
occur concurrently in response to ADRB3 signaling: (1)

an increase in BAT activity in preexisting classical brown
adipocytes, (2) metabolic switch of some, if not all, existing
white adipocytes to beige adipocytes in subcutaneous fat,
and (3) new beige adipocyte formation from adipogenic
progenitor cells [82, 83]. Emerging evidence has revealed that
these metabolic adaptations of BAT are preceded by cellular
remodeling of WAT via type 2 innate immune responses,
that is, IL-4 and IL-13 secretion [84, 85], M2 macrophage
polarization [86], and local catecholamine production from
macrophages and eosinophils [86, 87]. Unfortunately, BAT
activity in humans is inversely correlated with body fat
mass [88, 89], age, and blood glucose levels [90, 91].
Compromised BAT activation in conditions of obesity and
metabolic vulnerability is associated with impairment of
immunological remodeling in WAT upon ADRB3 activa-
tion. Given the critical role of PPARs in BAT regulation,
the molecular mechanisms through which these defective
immune responses affect the transcriptional regulation of
PPARs/PRDM16 and the recruitment of these proteins to
brown-specific target genes need to be defined. One of the
most plausible and reasonable mechanisms for defective
BAT activation in obesity involves the inverse regulation
of NF-𝜅B and PPAR𝛾 transactivation [92–95]. Toll-like
receptor 4- (TLR4-) mediated NF-𝜅B activation in obesity
severely impairs cold-induced type 2 immune responses
[85], downregulates PPAR𝛾 and PPAR𝛼 expression, and
markedly reduces beige fat development [96]. Similarly, Goto
et al. showed that IL-1𝛽, which causes systemic IR, strongly
reduces PPAR𝛾 expression and blocks BAT development
upon cold exposure [97]. Hence, pharmaceutical or nutri-
tional strategies to restore PPAR activities by NF-𝜅B suppres-
sion should be revisited as a new approach to reinstate type 2
immune responses and PPAR/PRDM16 recruitment for beige
fat development.

3. Effects of Nutrition on the
Modulation of PPARs

3.1. Fatty Acids (FAs) and Their Derivatives. Food com-
ponents that act as ligands for PPARs can show multi-
ple effects, including antidiabetic, antiadipogenic, and anti-
inflammatory effects [98–100]. A wide range of PPAR ago-
nists have been identified; synthetic PPAR agonists, such
as fibrates and TZD, as well as natural PPAR ligands, such
as dietary FAs and their derivatives, have been shown to
bind to and activate PPARs [101–103]. Indeed, fibrates and
TZD are already used to treat hyperlipidemia and diabetes
mellitus, respectively. Ligand-activated PPARs play a critical
role in regulating metabolic activities associated with lipid
metabolism, glucose metabolism, and the inflammatory state
[99]. As shown in various ligand-binding assays, PPARs
generally prefer to bind to polyunsaturated FAs, whereas
saturated FAs are poor PPAR ligands. Thus, the activity of
PPARs can be modulated by FAs derived from the diet;
however, the capacity of FAs to activate PPAR-dependent
gene transcription varies according to the type of FA [101,
104]. A variety of FAs and their derivatives as PPAR ligands
are shown in Table 2.
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Table 2: FAs and their derivatives as PPARs ligands.

Receptor PPAR𝛼 PPAR𝛽/𝛿 PPAR𝛾

Ligands

Saturated FAs (weaker) Unsaturated FAs Unsaturated FAs (LA, LNA, CLA, DHA,
EPA)

Unsaturated FAs (LA, LNA, PUFAs, including
AA, EPA, phytanic acid)

Saturated FAs (much weaker)
Prostacyclin

15-d-PGJ2
15-HETE

Leukotriene B4 4-HNE 9-HODE
8-HETE 4-HDDE 13-HODE
8,9-Epoxyeicosatrienoic acids
11,12-Epoxyeicosatrienoic acids
OEA
PEA

AA, arachidonic acid; CLA, conjugated linoleic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; 15-d-PGJ2, 15-deoxy-Δ12,14 prostaglandin
J2; LA, linoleic acid; LNA, 𝛼-linolenic acid; OEA, oleoylethanolamide; PEA, palmitoylethanolamide; 4-HDDE, 4-hydroxydodeca-(2E,6Z)-dienal; 4-HNE, 4-
hydroxy-2-nonenal; 15-HETE, 15(S)-hydroxyeicosatetraenoic acid; HODE, hydroxyoctadecadienoic acid.

FAs are ubiquitous biological molecules that act as
metabolic fuels and essential components of cellular func-
tions [101]. AlthoughFAs are essential biological components,
elevated levels of circulating FAs are closely related to most
common metabolic disorders, such as CVD, hyperlipidemia,
obesity, and IR [105]. Not all fats are created equal; high
consumption of foods enriched in saturated FAs has been
shown to be associated with the development of common
diseases, such as coronary artery disease, obesity, diabetes,
and cancer, whereas consumption of a diet high in polyun-
saturated FAs (PUFAs), such as fish oil, appears to have
protective effects against atherosclerosis and heart disease
[106, 107]. As FA sensors, PPARs should also be considered
when evaluating the distinctly different physiological effects
of different FAs owing to small structural variations in FAs
and their derivatives [99, 108].

PUFAs are classified as n-3 and n-6 FAs that have
opposing effects in the modulation of receptor signaling and
gene expression; n-6 (i.e., arachidonic acid [AA])-derived
eicosanoids are mostly proactive, whereas n-3 (i.e., eicos-
apentaenoic acid [EPA])-derived eicosanoids are inhibitory
[109]. After the essential FAs linoleic acid (LA, n-6) and 𝛼-
linolenic acid (LNA, n-3) are consumed, they are further
metabolized by various desaturases and elongases to generate
long-chain FAs including AA, EPA, and docosahexaenoic
acid (DHA; n-3) [110]. AA, EPA, and DHA are then fur-
ther metabolized by cyclooxygenases, lipoxygenases, and/or
epoxygenases to various FA-derived eicosanoids, some of
which are listed in Table 2 as PPAR ligands [111]. FAs
bind directly to PPAR𝛼 at physiologically relevant levels
and induce transcriptional activation. In fact, unsaturated
FAs and PUFAs bind to PPAR𝛼 in the 𝜇M range, which
can be achieved by dietary intake [108]. With regard to
activation potency, the n-3 FAs EPA and DHA are more
potent as in vivo activators of PPAR𝛼 than n-6 FAs [112–
114]. Moreover, various eicosanoids can activate PPAR𝛼 with
a stronger affinity than their PUFA precursors [103, 115, 116].
Recent findings have shown that acylethanolamides (AEs),
such as anandamide (AEA), palmitoylethanolamide (PEA),
and oleoylethanolamide (OEA), which are biosynthesized in

the gastrointestinal tract, also act as PPAR𝛼 activators [117].
PPAR𝛼 activation by OEA results in appetite suppression
and lipolysis, whereas activation of PPAR𝛼 by PEA results
in anti-inflammatory effects [118]. Known PPAR𝛽/𝛿 ligands
are similar to those for PPAR𝛼 with much lower levels of
activation [108]. PPAR𝛾 ligands include unsaturated FAs,
such as LA, LNA, CLA, DHA, and EPA, as well as FA deriva-
tives in the physiologically relevant range [119]. Additionally,
PPAR𝛾 agonists can have systemic anti-inflammatory effects
[100]. For example, the prevention of high-fat or high-energy
diet-induced adipose tissue inflammation and remodeling by
long-chain n-3 PUFAs is reported to involve PPAR𝛾 activa-
tion [120, 121]. Collectively, various FAs and their derivatives
are natural ligands for PPARs, with a fair amount of overlap
among the three PPAR subtypes, and these molecules act
as metabolic regulators by controlling the PPAR activity.
Although many studies have helped to elucidate the role of
PPARs in FA-mediated activation, more research is needed
to determine the tissue distribution of PPAR subtypes in
humans and evaluate the concentration and availability of
FAs and their derivatives in human tissues.

3.2. Conjugated Linoleic Acids (CLAs). CLAs are FAs that
are mainly found in foods derived from ruminant animals
[122]. CLAs are geometrical and positional isomers (cis-
or trans-double bond positioning at 7, 9; 8, 10; 9, 11; 10,
12; or 11, 13) of the parent molecule LA (cis-9, cis-12-18:2,
n-6). The cis-9, trans-11 (9Z, 11E-octadecenoic acid, C18:2)
isomer, also known as rumenic acid, is generated through
biohydrogenation of dietary LAs by ruminant microflora and
is the most abundant natural CLA isomer (over 75–80% of
total CLAs). Due to their multiple health benefits, CLAs are
currently being used as dietary supplements for altering body
composition in humans and livestock [123, 124]; however,
little is known regarding the mechanisms of these beneficial
properties of CLAs.

CLA isomers are ligands for PPAR𝛼, PPAR𝛽/𝛿, and
PPAR𝛾 [125, 126], exhibiting differences in health benefits
and PPAR activation [124, 127]. For example, 9Z, 11E-CLA
is a potent PPAR𝛼 ligand in the low nM range and exerts
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potent anticancer effects [125, 128]. In contrast, 10E, 12Z-
CLA causes adipocyte delipidation, IR, and inflammation by
acting as a PPAR𝛾 antagonist [129]. In addition, a mixture
of CLA isomers as well as 9Z, 11Z-CLA and 9Z, 11E-CLA
isomers can significantly activate PPAR𝛽/𝛿 in preadipocytes
[108]. Thus, there are important cellular mechanisms that
are able to differentiate subtle structural changes in various
CLA isomers to allow tissue- and species-specific responses
[130, 131]. Taken together, these findings support that CLA
affects the production of eicosanoids either directly or indi-
rectly, enhances PPAR𝛾 activation, attenuates the NF-𝜅B
pathway, and directly decreases proinflammatory cytokines
to have beneficial effects on inflammation, ultimately influ-
encing metabolic syndrome-related conditions, including
obesity, IR, and atherosclerosis [132].Thus, CLAs can directly
exert anti-inflammatory effects by regulating the expres-
sion of inflammatory mediators, potentially through NF-𝜅B-
dependent and/or PPAR𝛾-dependent pathways [133, 134].

3.3. Flavonoids. Flavonoids are a class of polyphenolic com-
pounds that are secondary plant products [135].The structure
of flavonoids is based on C6-C3-C6, which involves two
aromatic rings (A andB) linked to a heterocyclic ring (C) con-
taining one oxygen and three carbons. Flavonoids are classi-
fied as flavanols, flavones, flavonols, flavanones, isoflavones,
and anthocyanidins according to structural differences in
the C ring. Many studies have reported the functionalities
of flavonoids. One of the main functionalities of flavonoids
is their antioxidant effects, for example, metal chelating
activity [136], reactive oxygen species (ROS) scavenging [137,
138], antioxidant enzyme activation [139], and 𝛼-tocopherol
reduction [140], which collectively result in inhibition of
ROS-mediated cellular aging [141], inhibition of mutations
[142], anticancer effects [143], inhibition of LDL oxidation
and CVDs [144–146], and reduction of ischemic damage
[147]. Moreover, many studies have examined the antiobesity
effects of flavonoids with regard to energy expenditure and
lipid metabolism [148–151]. However, additional studies are
needed because the antiobesity effects of flavonoids are
still unclear. Thus, in this review, we discuss the effects of
flavonoids on PPAR𝛾-mediated obesity based on the role
of PPAR𝛾 as a master regulator of adipogenesis. Abundant
evidence has shown that PPAR𝛾 influences the adipogenic
transcriptional cascade as a master regulator of adipogenesis
[26, 152]. PPAR𝛾 is also involved in glucose and cholesterol
metabolism. Regulation of PPAR𝛾 activation is a primary
focus in studies of the control of obesity and type 2 diabetes.
TZD, a synthetic ligand for PPAR𝛾 activation, is used in
the treatment of type 2 diabetes. However, because TZD has
major side effects, such as edema, weight gain, and heart
failure, many researchers have attempted to identify natural
PPAR𝛾 activators [153–155]; indeed, identification of effective
therapeutic modulators of PPAR𝛾 without side effects or
with reduced side effects has become a major research
focus. Many studies have investigated the therapeutic effects
of natural substances owing to the potential or practical
negative effects of synthetic medications. Natural substances
originating from plants and fruits are traditionally used for
the treatment of various diseases. Additionally, the value

of natural substances as sources for new drug discovery
is increasing because natural substances can be used as a
therapeutic strategy to avoid side effects of synthetic drugs
[156]. Taken together, these findings highlight the role of
natural substances in PPAR𝛾-mediated mechanisms. In this
review, we discuss recent reports of the effects of flavonoids
on PPAR activity based on an antiobesity perspective.

Recent findings have suggested that dietary flavonoids
inhibit adipogenesis during differentiation of preadipocytes
and prevent obesity by downregulation of PPAR𝛾 expression.
Catechin significantly suppresses body fat accumulation and
downregulates PPAR𝛾 in visceral WAT [5]. Quercetin also
downregulates PPAR𝛾 in WAT but does not alter the amount
of body fat [18]. Notably, most evidence has been reported
from in vitro studies rather than in vivo studies. Several
flavonoids, including hesperetin [12], isoflavones [13], lic-
ochalcone A [15], luteolin [16], quercetin [19], and tangeritin
[21], have been shown to have inhibitory effects on adipogen-
esis during differentiation of preadipocytes into adipocytes,
accompanied by downregulation of PPAR𝛾. Activation of
PPAR𝛾 induces upregulation of various downstream target
genes involved in lipogenesis and FA synthesis. Although it
in unclear whether the inhibition of adipocyte differentiation
occurs directly through PPAR𝛾 activity, it is feasible that
flavonoids may effectively inhibit the transcriptional activity
of PPAR𝛾 by inhibiting adipocyte differentiation via down-
regulation of PPAR𝛾 [13].

Recently, numerous natural substances have been
reported to potentially modulate PPAR𝛾 activity as a source
of PPAR𝛾 ligands; the natural compounds involved in
mediating these effects have been identified as flavonoids,
lignans, and stilbenes [157]. In particular, the role of
flavonoids in the regulation of PPAR𝛾 activity has been
extensively studied owing to the agonist potential of
these molecules. Moreover, several studies have reported
and highlighted the role of flavonoids as latent PPAR𝛾
agonists against GW9662 or T0070907 (PPAR𝛾 antagonists)
[6–8]. The agonistic effects of flavonoids on PPAR𝛾-
mediated obesity, however, vary according to the chemical
characteristics of the flavonoids. Some flavonoids selectively
modulate PPAR𝛾 activity and suppress adipogenesis or
obesity [5, 12, 13, 15, 16, 18, 19, 21]. In contrast, other
flavonoids promote adipogenesis by activation of PPAR𝛾
[6–11, 14, 17, 20], as shown in Table 3. Inhibition of the
transcriptional activation of PPAR𝛾 by flavonoids is closely
related to suppression of adipogenesis [13, 158]. Accordingly,
PPAR𝛾 activity can be altered through various pathways,
including posttranslational modification, ligand type, or
ligand-binding domain. For example, inhibition of PPAR𝛾
phosphorylation at serine 273 by PPAR𝛾 ligands leads to
antiobesity effects with fewer side effects because serine 273
phosphorylation prevents the transcription of antiobesity
genes [156, 159]. Although flavonoids are known to show
agonistic effects toward PPAR𝛾, the detailed molecular
mechanisms of their antiobesity effects have not been
fully elucidated. Taken together, these findings support the
importance of identifying novel flavonoids that modulate
PPAR𝛾 activity through posttranslational modification, for
example, through phosphorylation, in order to improve
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Table 3: Summary of recent publications on the effects of flavonoids: adipogenesis and PPAR𝛾 activity.

Flavonoid Model Effect PPAR𝛾 activity Ref.

Catechin
Adipocyte differentiation in human bone marrow
mesenchymal stem cells
High-fat diet- (HFD-) induced obese SD rats

Adipogenesis ↑
Fat ↓

Activity ↑
Not measured [5, 6]

Daidzein 3T3-L1 preadipocyte differentiation
High-fat high-sucrose diet-induced obese C57BL/6J mice

Adipogenesis ↑
Adipocyte area ↓

Activity ↑
Not measured [7]

Equol 3T3-L1 preadipocyte differentiation Adipogenesis ↑ Activity ↑ [8]
EGCG AML-I human preadipocyte differentiation Adipogenesis ↑ Not measured [9]
Fisetin 3T3-L1 preadipocyte differentiation Adipogenesis ↑ Activity ↑ [10]
Flavanone 3T3-L1 preadipocyte differentiation Adipogenesis ↑ Activity ↑ [11]
Hesperetin glucuronides 3T3-L1 preadipocyte differentiation Adipogenesis ↓ Not changed [12]
Isoflavonoids 3T3-L1 preadipocyte differentiation Adipogenesis ↓ Activity ↓ [13]
Kaempferol 3T3-L1 preadipocyte differentiation Adipogenesis ↓ Activity ↑ [14]

Licochalcone A 3T3-L1 preadipocyte differentiation
HFD-induced obese ICR mice

Adipogenesis ↓
Body weight ↓
Plasma lipid ↓

Not measured
Not measured [15]

Luteolin 3T3-L1 preadipocyte differentiation Adipogenesis ↓ Not changed [16]
Pentamethylquercetin 3T3-L1 preadipocyte differentiation Adipogenesis ↑ Not measured [17]
Quercetin HFD-induced obese Wistar rats Plasma TG ↓ Not changed [18]
Quercetin-3-O-(6󸀠󸀠-
Feruloyl)-𝛽-d-
galactopyranoside

3T3-L1 preadipocyte differentiation Adipogenesis ↓ Not measured [19]

Sakuranetin 3T3-L1 preadipocyte differentiation Adipogenesis ↑ Not changed [20]
Tangeritin 3T3-L1 preadipocyte differentiation Adipogenesis ↓ Not measured [21]
TG, triglyceride; HFD, high-fat diet.

our understanding of the interactions of flavonoids with
PPAR𝛾; such studies are expected to enhance the therapeutic
potential of flavonoids. Furthermore, additional studies of
the PPAR-dependent effects of flavonoids on tissue-specific
events, for example, in the WAT and BAT, are needed. Based
on the importance of the tissue-specific roles of PPAR, as
demonstrated in this review, future studies may focus on
tissue-specific PPAR regulation by flavonoids.

4. Nutrigenetics and PPAR𝛾 Polymorphisms

4.1. PPAR𝛾 Gene and Polymorphism. PPAR𝛼 is located on
chromosome 22q13.3 and spans 93.15 kb. Single nucleotide
polymorphisms (SNPs) in PPAR𝛼, that is, L162V, V227A, and
intron 7G>C, are associated with metabolic features, such
as dyslipidemia, CVD, and type II diabetes [160]. In this
review, we have focused on PPAR𝛾 SNPs associated with the
obesogenic environment because of the limited availability
of information regarding the clinical/biological effects of
genetic variants in PPAR𝛼 and PPAR𝛽/𝛿.

The PPAR𝛾 gene, which encodes a TF belonging to the
same family of NRs as steroid hormone receptors, is a master
regulator of the relationships between nutrients (such as
FAs), prostanoids, insulin-sensitizing agents, susceptibility to
obesity, control of peptides released from adipocytes, and
insulin sensitivity [161]. In macrophages, PPAR𝛾 has been
shown to regulate the suppression of inflammatory cytokine
production and improvement of insulin sensitivity [162].

Alternative promoter regions within the PPAR𝛾 gene allow
the formation of three PPAR𝛾 subtypes: PPAR𝛾1, PPAR𝛾2,
and PPAR𝛾3. Although PPAR𝛾1 mRNA has been identified
in many tissues, including the heart, liver, skeletal muscle,
and adipose tissue, PPAR𝛾2 mRNA is abundantly expressed
in adipose tissue, whereas PPAR𝛾3 mRNA is expressed in
macrophages, epithelial tissue, and adipose tissue [163]. The
PPAR𝛾 gene extends over 100 kb and includes nine exons,
which give rise to three different PPAR𝛾 transcripts with
differential promoter usage and differential splicing (PPAR𝛾1,
PPAR𝛾2, and PPAR𝛾3). The PPAR𝛾1 and PPAR𝛾2 expressed
during the differentiation of 3T3-L1 into adipocytes are
derived from two alternative transcripts which share six iden-
tical C-terminal exons. Although PPAR𝛾 is well known for its
role in adipogenesis, it also plays a crucial role inmaintaining
normal physiology, including insulin sensitization.

This role of PPAR is consistent with many human
genetic studies of various single amino acid mutations, such
as Pro12Ala, Pro115Gln, Cys114Arg, Cyc131Tyr, Cyc162Trp,
Val290Met, Pro388Leu, Arg425Cyc, C1431T, and Pro467Leu,
which are located in several domains [164].Of these identified
mutations in the PPAR𝛾 gene, a common polymorphism
occurs in the PPAR𝛾2-specific exon B. The Pro12Ala poly-
morphism rs1801282 (C34G) and the silent C1431T muta-
tion (His449His, CAC478CAT) are frequently observed in
PPAR𝛾2. Many mutations in the PPAR𝛾 gene are associated
with obesity and diabetes-related phenotypes [165]. For
example, the Pro115Gln mutation is associated with obesity
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but not IR, and the mutations Val290Met and Pro467Leu are
related to severe IR but not obesity [164]. The CCA-to-GCA
missense mutation in codon 12 of exon B of the PPAR𝛾 gene
encodes an NH2-terminal residue that defines the adipocyte-
specific PPAR𝛾2 isoform [166]. Obesity is a multifactorial
disorder involving the regulation of food intake and energy
expenditure, and ethnicity-dependent-genetic factors play
significant pathogenic roles. PPAR𝛾 genes independently
or dependently regulate the transcription of target genes
involved in obesity-related processes, such as adipogenesis,
IR, angiogenesis, and inflammation, in a tissue-dependent
manner. Therefore, PPAR𝛾2 gene polymorphisms influence
obesity in a complex manner, likely involving ethnicity-
dependent variations in obesity-related phenotypes.

4.2. The Common Pro115Ala Polymorphism in PPAR𝛾 and
Obesity. The Pro12Ala polymorphism in PPAR𝛾2 was first
identified in 1997, and a point mutation found in the B exon
of the NH2-terminal of PPAR𝛾 at position 12 (rs1801282)
was shown to cause a moderate decrease in the transcription
activity and adipogenic potential of this protein [162]. The
rare allele frequencies are high in Caucasians (12%) and
relatively low in Asians (4% of Japanese and 1% of Chinese)
and African Americans (3%) [167]. The Ala allele generated
by the Pro12Ala polymorphism is associated with obesity and
confers a 25% reduction in the risk of type II diabetes, IR,
and CVD in Caucasians [167]. However, although PPAR𝛾 is
associated with IR and type II diabetes, the 12Ala allele does
not reduce the risk of diabetes in South Asians, Chinese, and
Malaysians [168, 169].The 12Pro-161T haplotype is associated
with lower body mass index (BMI) and lower fasting serum
triglycerides (TGs) in Koreans but not in Iranians [170, 171].
In ameta-analysis of BMI subgroups, theAla allelewas shown
to be associated with an increase in 0.96 units for BMIs of
35 or more, and this association was observed in individuals
with BMIs of 27 to less than 35 or with BMIs of 35 or more
when the meta-analysis was restricted to Caucasians [172];
this pattern was not found in Asians. Further analysis sug-
gested that this discrepancy may be explained by differences
in body weight distributions and lifestyles of these ethnic
groups [173]. In Italian population, carriers of the PPAR𝛾2
Ala allele were found to have higher BMIs and fat-mass levels
than carriers of the wild-type allele, although a metabolically
healthy profile was associated with the PPAR𝛾2 Ala allele
due to the more favorable distribution of adipose tissue.
Researchers also found that there was a genetic interaction
between Pro12Ala and ACE I/D with regard to BMI and
fat mass [174]. According to a gene-diet interaction analysis
of the PPAR𝛾 Pro12Ala polymorphism, there is an inverse
association between the PUFA to saturated FA (SFA) ratio
(P : S) and BMI/insulin levels in Ala carriers. Because the
mean P : S ratio varies by more than 10-fold, for example,
from 0.11 in Hungary to 1.2 in Portugal, this ratio may be
a more effective stimulator of adipogenesis in Pro carriers
than in Ala carriers [175]. This study suggested that when the
dietary P : S ratio is low, the BMI inAla carriers is greater than
that in Pro homozygotes. Moreover, although consumption
of a PUFA-containing diet does not affect PPAR𝛾2 mRNA
expression, individuals with the Pro12Pro genotype are more

likely to benefit from consumption of a PUFA-containing
diet [176]. Similarly, intake of monounsaturated FAs has been
shown to have this effect in Ala12 allele carriers. A study in
Québec, Canada, showed that total fat and saturated fat intake
are positively correlated with body mass change in Pro12
homozygotes, whereas Ala12 allele carriers are protected
from this change [177]. Moreover, the Ala12Ala genotype
also associated with higher expression of PPAR𝛾2, LPIN1,
and sterol regulatory element-binding protein-1c mRNA
compared with that in participants harboring the Pro12Pro
genotype. Thus, it is possible that different dietary patterns
between ethnic groups could modulate the relationship
between BMI and this particular SNP.

Adiponectin, an adipocyte-derived hormone, is encoded
by the adipocyte C1q and collagen domain-containing
(ACDC) gene located in chromosome 3q27. Many studies
have shown that adiponectin is reciprocally associated with
central and peripheral fat distribution, IR, inflammation,
and atherogenic lipid metabolites [178]. In a Danish study,
several ACDC polymorphisms were found to be associated
with body fat distribution, whereas Pro12Ala was found to
be associated with body fat accumulation (overall adiposity).
Additionally, the CC genotype of SNP-11377, an SNP in the
promoter of the ACDC gene, was shown to interact with
the homozygous Ala12Ala genotype to mediate BMI [179].
Cooperative interactions between the ACDC and PPAR𝛾
genes in the modulation of insulin sensitivity have also been
demonstrated in a recent family-based association study,
revealing significant interactions between SNP+45T/G of the
ACDC gene and the Ala12 allele in a Taiwanese population;
however, there was no evidence for this associated in the
Italian population [180].

Among the SNPs rs10865710 (C-681G), rs7649970 (C-
689T), and rs1801282 (C34G, Pro12Ala), the G allele of
rs10865710 in the PPAR𝛾 gene is frequently observed and
has been shown to be associated with increased susceptibility
to nonalcoholic fatty liver disease (NAFLD) [181]. Despite
ethnic differences in the prevalence of NAFLD, the incidence
of NAFLD is known to primarily depend on lifestyle, dietary
habits, and hepatic metabolic syndrome. Many genetic vari-
ations related to the obesogenic environment, including
oxidative stress, inflammation, fibrogenic mediators, dyslipi-
demia, and IR, are involved in the pathogenesis of NAFLD
[182]. The A12 allele is associated with lower fasting plasma
glucose but does not affect blood pressure, BMI, or other
metabolic parameters in Palestinian individuals. However,
in obese patients, the 12Ala allele was associated with ele-
vated total plasma cholesterol levels and a tendency toward
increased low-density lipoprotein (LDL) cholesterol [183].
The PPAR𝛾 Pro12Ala polymorphism is associated with a
reduced risk of myocardial infarction (MI) according to the
Physician’s Health Study but confers an increased risk of
MI or cardiac death according to the Health Professionals
Follow-Up Study [184]. Additionally, we found that the 12Ala
variant of PPAR𝛾2 may influence CVD risk by affecting lipid
metabolism in obese Palestinian individuals with type II
diabetes [184]. Therefore, additional studies of the PPAR𝛾
Pro12Ala polymorphism are necessary to fully elucidate
the role of PPAR genetics in obesity independent of CVD,
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particularly with regard to available pharmacological PPAR-
targeted agents.

4.3. The Common C1431T Polymorphism in PPAR𝛾 and
Obesity. The C1431T polymorphism, also referred to as
His447His, His447His, C161T, or CAC478CAT, is a silent
mutation located in exon 6 of PPAR𝛾 and is considered
a better predictor of fasting insulin levels and IR than
Pro12Ala. The polymorphism C1431T has been shown to be
associated with susceptibility to CVDs, diabetes, abnormal
leptin concentrations, obesity, and metabolic syndrome and
is associated with BMI [185, 186]. Although the C1431T
polymorphism has not been extensively studied, the rare
T allele has also been inconsistently linked to increases in
weight. Because the Pro12Ala andC1431T polymorphisms are
in linkage disequilibrium, both rare alleles are associatedwith
increased body weight, and the overall effect is additive when
these alleles occur together [187]. In Chinese patients with
diabetes, the Pro12Ala and C1431T polymorphisms may not
be major etiological factors for type 2 diabetes; however, the
C1431T polymorphism is associated with overweightness or
obesity, despite the observation that there are no differences
in the frequencies of C1431T, Pro12Ala, and their haplotypes
between patients with type 2 diabetes and control subjects
[188].Notably, theAla12 allele is consistently associatedwith a
lower BMI, whereas the T1431 allele is consistently associated
with higher BMI in the Scottish nondiabetic population
[186]. In contrast, the heterogenotype and Ala homogeno-
type of PPAR𝛾 Pro12Ala are significantly associated with
higher risk of obesity, whereas the C1431T polymorphism
is not significantly associated in individuals from northern
India. None of the haplotypes are associated with morbid
obesity [189]. In the Korean population, the Pro12Ala and
C1431T SNPs have been shown to be associated with some
parameters of metabolic syndrome in women [190]. In the
EDEN mother-child cohort study, mothers homozygous for
the T allele of C1431T were also more obese (24% versus
9%, resp.; 𝑃 = 0.035), and three times more mothers had
gestational diabetes (18% versus 6%, resp.; 𝑃 = 0.044).
Moreover, the Pro-T haplotype conferred the highest risk
of gestational diabetes (odds ratio = 1.89, 95% confidence
interval [CI] = 1.05–3.40), whereas the Ala-C haplotype was
associated with the lowest risk of gestational diabetes (odds
ratio = 0.12, 95% CI = 0.52–1.70) [191]. Additionally, one
study showed that both the Pro12Ala and C1431T variants
of PPAR𝛾 are not associated with metabolic syndrome or
obesity in a population from southern India [192]. However,
in UK and Chinese individuals with coronary artery disease
(CAD), the PPAR𝛾 C1431T polymorphism is significantly
associated with CVD risk factors, such as fasting serum
lipid profiles, in the context of variant genotypes (CT + TT)
[193, 194]. Angiogram-positive patients carrying the T allele
have significantly higher TGs, serum C-reactive protein, and
fasting blood glucose levels, and obese patients harboring
at least one CAT478 allele have higher leptin levels than
other obese patients with similar BMIs, suggesting that the
PPAR𝛾 genemay influence the levels of plasma leptin in obese
individuals [195]. Finnish women with both Ala and 478CAT
alleles have significantly more fat mass than women with

other alleles. Thus, the CAC478CAT polymorphism is not
associated with BMI or other variables related to obesity in
different ethnic population. Previous studies on isoflavones
have shown their potential antiobesity effects, although the
mechanisms are not clear; accordingly, foods containing
high levels of isoflavones, such as Korean fermented soy
food (Doenjang), have been used as functional foods for
the treatment or prevention of obesity in Korea [196]. In a
clinical study of Doenjang, visceral fat area was significantly
decreased by Doenjang supplementation in individuals with
a mutant T allele of PPAR𝛾2 compared with those harboring
a C allele [197], suggesting that Doenjang interacted with
mutant alleles of PPAR𝛾2 to exert antiobesity and antioxida-
tive effects in obese individuals.

4.4. Rare PPAR𝛾 Polymorphisms and Obesity. The Pro115Gln
polymorphism, a very rare gain-of-function mutation in
PPAR𝛾, is associated with obesity but not IR. Because
fibroblasts containing the Pro115Gln mutation accumulate
2.5 times more TGs than the corresponding wild-type cell
line, we expected individuals with the Pro115Gln mutation
would tend to be obese in field studies. A variant of rare
Pro115Gln has been shown to be associated with increased
BMI among obese individuals, an effect attributed to con-
stitutive activation of the PPAR𝛾 protein, which results in
accelerated cell differentiation. Dominant-negative PPAR𝛾
mutations are associated with severe IR, hypertension, and
alterations in lipid profiles (low high-density lipoprotein
[HDL], high TGs) [198]. These studies implied that the
Pro115Gln polymorphism has pathophysiological relevance
in obesity; however, in the nationwide German Epidemio-
logical Field Study, the Pro115Gln polymorphism was shown
to have no relevant impact on morbid obesity [199]. The
Val290Met and Pro467Leu polymorphisms are the best-
characterized dominant-negative mutations of PPAR𝛾2 and
have been shown to dramatically reduce the transcriptional
activity ofPPAR𝛾2 in vitro, resulting in severe IRwith increas-
ing fat accumulation, hypertension, and reduced adiponectin
levels [165].

Based on these interesting findings fromprevious studies,
we plan to investigate the association of rare or unknown
polymorphisms in the PPAR𝛾2 gene with BMI, obesity, and
basal metabolic rates in obese individuals in the future.

5. Conclusion

The modulation of the PPAR activities poses significant
impacts on metabolism, irrespective of the modifications
that originated from external factors, such as hormones,
temperature, excess nutrition, and PPAR-targeted drugs, or
from genetic alternations such as polymorphism. Too much
activation and too little activation of PPARs are both associ-
ated with improper fatty acid handling and maldistribution
of fat, which leads to pathogenesis of metabolic diseases.
In this review, we intend to provide an integrative view
of PPAR regulation by summarizing the recent updates in
PPAR regulation in white and brown fat, dietary ligands
of PPARs and by incorporating common and rare PPAR
polymorphism. We would like to emphasize that PPARs’
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unique function of depositing extra energy intowhite adipose
tissue and burning out fats in brown/beige adipose tissue
and muscle should be balanced for maintaining metabolic
health. To reach this goal, wise and prudent usage of natural
PPAR ligands through diet could be an option. Also, keen
understanding in tissue- and subtype-specific regulation of
PPARs is perquisite for the development of drugs to treat
metabolic syndrome utilizing PPAR biology. With the advent
of “omics era,” our knowledge in individual variation in
metabolic susceptibility has been tremendously progressed.
Therefore, the individual genetic modification of PPARs
should be taken into consideration with their environmental
modifiers for an innovative approach to prevent obesity such
as precision or personalized medicine.
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[166] M. Stumvoll and H. Häring, “The peroxisome proliferator-
activated receptor-𝛾2 Pro12Ala polymorphism,” Diabetes, vol.
51, no. 8, pp. 2341–2347, 2002.

[167] D. Altshuler, J. N. Hirschhorn, M. Klannemark et al., “The
common PPAR𝛾 Pro12Ala polymorphism is associated with
decreased risk of type 2 diabetes,” Nature Genetics, vol. 26, no.
1, pp. 76–80, 2000.

[168] V. Radha, K. S. Vimaleswaran, H. N. S. Babu et al., “Role
of genetic polymorphism peroxisome proliferator-activated
receptor-𝛾2 Pro12Ala on ethnic susceptibility to diabetes in
South-Asian and Caucasian subjects: evidence for heterogene-
ity,” Diabetes Care, vol. 29, no. 5, pp. 1046–1051, 2006.



16 PPAR Research

[169] E. S. Tai, D. Corella, M. Deurenberg-Yap et al., “Differential
effects of the C1431T and Pro12Ala PPAR𝛾 gene variants on
plasma lipids and diabetes risk in an Asian population,” Journal
of Lipid Research, vol. 45, no. 4, pp. 674–685, 2004.

[170] M. K. Moon, Y. M. Cho, H. S. Jung et al., “Genetic poly-
morphisms in peroxisome proliferator-activated receptor 𝛾 are
associated with Type 2 diabetes mellitus and obesity in the
Korean population,” Diabetic Medicine, vol. 22, no. 9, pp. 1161–
1166, 2005.

[171] R. Meshkani, M. Taghikhani, B. Larijani et al., “Pro12Ala poly-
morphism of the peroxisome proliferator-activated receptor-𝛾2
(PPAR𝛾-2) gene is associated with greater insulin sensitivity
and decreased risk of type 2 diabetes in an Iranian population,”
Clinical Chemistry and Laboratory Medicine, vol. 45, no. 4, pp.
477–482, 2007.

[172] A. Mansoori, M. Amini, F. Kolahdooz, and E. Seyedreza-
zadeh, “Obesity and Pro12Ala polymorphism of peroxisome
proliferator-activated receptor-gamma gene in healthy adults:
a systematic review and meta-analysis,” Annals of Nutrition and
Metabolism, vol. 67, no. 2, pp. 104–118, 2015.

[173] J. Ma, Y. Li, F. Zhou, X. Xu, G. Guo, and Y. Qu, “Meta-
analysis of association between the Pro12Ala polymorphism
of the peroxisome proliferator-activated receptor- 𝛾2 gene
and diabetic retinopathy in Caucasians and Asians,” Molecular
Vision, vol. 18, pp. 2352–2360, 2012.

[174] A. Passaro, E. Dalla Nora, C. Marcello et al., “PPAR𝛾 Pro12Ala
and ACE ID polymorphisms are associated with BMI and
fat distribution, but not metabolic syndrome,” Cardiovascular
Diabetology, vol. 10, article 112, 2011.

[175] J. Luan, P. O. Browne, A.-H. Harding et al., “Evidence for gene-
nutrient interaction at the PPAR𝛾 locus,” Diabetes, vol. 50, no.
3, pp. 686–689, 2001.
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