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DISTILLERS’ GRAINS: PAST, PRESENT, AND FUTURE ECONOMIC ANALYSES 

Daniel E. Gertner, M.S. 

University of Nebraska, 2021 

Advisor: Elliott J. Dennis 

This thesis is comprised of four chapters, each of which discusses or conducts 

economic research related to the distillers’ grains market. The first three chapters are 

meant to be standalone papers. Chapter four provides potential paths forward in distillers’ 

grains research based on the findings of the first three chapters and concludes the thesis.  

 The first chapter conducts a comprehensive literature review that categorizes and 

summarizes economic research on distillers’ grains products. This section shows how the 

physical market has moved beyond the current academic understanding of market 

products and structure. Existing research finds that traditional distillers’ grains products 

positively contribute to the livestock feeding industry, but much of the research covered 

in the literature review appeared in the early 2000s or shortly thereafter, leaving many 

current questions in the distillers’ grains industry unexplored.  

Chapter 2 estimates the magnitudes of and relationships between distillers’ grains 

price changes in response to the COVID-19 market shock using panel fixed effect 

models. The price fluctuations indicate that livestock producers favored the flexibility 

provided by dried distillers’ grains (DDGS) and, therefore, drove those prices upward 

more significantly than modified wet distillers’ grains (MDGS) and wet distillers’ grains 

(WDGS) prices. The disparate price responses by grain type and location offer some 

insight into how markets may respond in the event of future market shocks. 



 

 

Consequently, the results from this analysis can assist both ethanol plants and livestock 

producers in better preparing for future market shocks. 

The third chapter proposes an equilibrium displacement model (EDM) of the U.S. 

ethanol industry to estimate the short-run impacts of market shocks on prices and 

quantities in the distillers’ grains complex. The results of the EDM analysis indicate that 

the responses of ethanol and each type of distillers’ grain to market shocks rely heavily 

on the relationships between the products. Applying the EDM framework to real-world 

events can help both plants and producers in adjusting their operations to minimize the 

impacts of market shocks.
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CHAPTER 1 - A REVIEW OF THE ECONOMIC LITERATURE ON 

DISTILLERS’ GRAINS 

Abstract 

During the domestic ethanol boom of the mid-2000s to early 2010s, ethanol co-products 

grew to play a crucial role in both ethanol plant revenue streams and livestock feeding 

rations. Distillers’ grains co-products of ethanol production do more than provide an 

additional revenue stream for plants; they also allow for diversified, value-added product 

offerings. The purpose of this paper is to provide a comprehensive literature review that 

categorizes and summarizes economic research on distillers’ grains products. It is 

specifically shown how the physical market has moved well beyond the current academic 

understanding of market products and structure. Existing research finds that traditional 

distillers’ grains products positively contribute to the livestock feeding industry, 

especially in their ability to offset the impacts to the grain markets introduced by 

increased ethanol production. But much of the research covered in this literature review 

appeared during the ethanol boom of the first decade of the 2000s and shortly thereafter, 

which leaves many current questions in the distillers’ grains industry unexplored.  
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Introduction 

During the domestic ethanol boom of the mid-2000s to early 2010s, ethanol co-products 

grew to play a crucial role in both ethanol plant revenue streams and livestock feeding 

rations. As ethanol production grew both domestically and internationally, so, too, did 

distillers’ grains – a co-product of ethanol production – production and use. Increased 

distillers’ grains market penetration led to the expanded importance of distillers’ grains to 

ethanol plant revenue. When the ethanol industry experiences supply or demand 

volatility, distillers’ grains profits can often help regain revenue lost from altered ethanol 

production, highlighting the significance of distillers’ grains to the current and long-term 

viability of the ethanol industry.  

The growing revenue share of distillers’ grains has led ethanol plants to search for 

methods to extract additional value out of each product in the distillers’ grains space. In 

differentiating distillers’ grains beyond the traditional three-product offering, ethanol 

plants hoped to (1) create new revenue streams and (2) diversify their profit sources to 

hedge against adverse market shocks in each subsection of the industry. Consequently, 

plants have developed new technologies to modify or refine distillers’ grains to extract 

additional value. Innovations have included pelletized distillers’ grains, de-oiled 

distillers’ grains, high protein distillers’ grains, corn oil, and a variety of other products 

that allow plants to maximize the monetization of the natural co-products of ethanol 

production. These new products have further differentiated distillers’ grains and have 

helped to establish distiller-type feeds as goods with increasingly separate demand 

structures from the ethanol market. Given the fundamental changes to the distillers’ 
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grains products commonly studied in the economic literature, these value-added feeds 

have potentially modified previous conclusions. 

The purpose of this paper is to provide a comprehensive literature review that 

categorizes and summarizes economic research on distillers’ grains products. The paper 

demonstrates how the physical market has moved well beyond the current academic 

understanding of market products and structure. Peer-reviewed journal articles, extension 

publications, and conference presentations between 1990 to 2021 were gathered from 

economic, business, and animal science databases. Papers were filtered for relevance and 

then organized into eight general research categories, as determined by the stated 

objectives of each article. Studies are synthesized and summarized by themes, topics, 

types of distillers’ grains, market locations, and other impacted markets within each 

general research category. 

Most economic research related to distillers’ grains has primarily focused on the 

growth, impact, and future of the ethanol industry itself rather than conducting distillers’-

grains-centered analyses. As a result, ethanol’s impact on regional and national 

economies inhabits a well-explored segment of the academic literature (see An et al. 

(2011) for review of relevant studies). Distillers’ grains – long considered a secondary 

by-product of biofuel production – occupy a far less defined portion of the literature. The 

economic research that does exist has primarily focused on dried distillers’ grains. When 

other co-products are analyzed – such as wet and modified wet distillers’ grains – the 

focus is often on how they vary or compare to dried distillers’ grains.  

Existing research finds that traditional distillers’ grains products positively 

contribute to the livestock feeding industry, especially in their ability to offset the impacts 
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to the grain markets introduced by increased ethanol production. Very few studies 

mention innovations in ethanol co-product production such as pelletized, de-oiled, and 

high protein distillers’ grains. The few that conduct more in-depth analyses of value-

added co-products primarily examine the feeding value of value-added co-products for a 

livestock operation and do not explore market impacts. The results of the literature 

review revealed that value-added products, such as high protein distillers’ grains or 

pelletized distillers’ grains, may benefit livestock producers by increasing the feeding 

value or storability/transportability of distillers’ grains. Whether those benefits are 

experienced by livestock producers depends on prevailing market prices for the products 

(Perkis et al. 2008; Rosentrater and Kongar 2009).  

The rest of this paper is organized as follows. First, additional context to the 

development and use of distillers’ grains production is provided. Second, the methods 

behind the collection, selection, and organization of the research included in this review 

are discussed. Third, the ethanol co-product economic research is synthesized into one of 

eight general categories. Fourth, given the findings from the synthesis section, some 

future paths forward and their potential implications to the distillers’ grains industry are 

provided. The fifth section summarizes and concludes the paper.  

Distillers’ Grains Market Development 

Ethanol plant co-product production 

Distillers’ grains are most commonly produced via the dry-grind ethanol production 

process as opposed to the wet milling process, the latter of which primarily results in corn 

gluten feed by-products. The dry-grind process aims to ferment the highest possible 

percentage of the corn kernel. In this process, the entire corn kernel is processed, and 
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little is left to waste. The starch in the kernel is converted to ethanol and carbon dioxide, 

while the remaining protein, lipids, fiber, minerals, and vitamins are converted into co-

products such as thin stillage and wet distillers’ grains. The thin stillage that is not 

recycled as processing water is concentrated into condensed distiller solubles (CDS) 

through evaporation, which can be mixed with wet distillers’ grains to become WDGS 

and then dried into modified wet distillers’ grains (MDGS) or dried distillers’ grains 

(DDGS) (Liu 2011). Although CDS are typically added back to distillers’ grains, they 

can also be sold as a separate by-product to beef cattle fed low-quality forage diets 

(USDA NIFA 2019).  

In recent years, the distillers’ grains market has expanded beyond the traditional 

offerings of dried, modified wet, and wet distillers’ grains to include dried distillers’ 

grains with solubles, pelletized distillers’ grains, de-oiled distillers’ grains, high-protein 

distillers’ grains, and a variety of additional products. These products help to further 

differentiate distillers’ products from each other and provide additional revenue 

opportunities for ethanol plants.  

Ethanol plants continually seek to market distillers’ grains as they are an 

inevitable by-product of the ethanol production process. This comes in the form of 

finding new ways to market current distillers’ grains or by creating new value-added 

products. In absence of a market for distillers’ grains, the co-products must be produced 

and disposed of by the plants, often at a sizeable cost, and at times can reduce ethanol 

production. By marketing distillers’ grains to livestock producers, ethanol plants 

monetize a necessary waste product, while livestock producers gain an often more 
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affordable feed source for livestock rations with increased performance. This relationship 

between ethanol plants and livestock producers underscores the distillers’ grains market.  

Co-Products Use 

Distillers’ co-products have been produced for as long as the alcoholic distilling process 

itself, or since about 800 BCE (Shipman, 1998). Although the history of feeding those 

co-products to animals is less robust, the practice still has a long history; the first study 

about feeding distillers’ grains to cattle was published in 1907 (Aguilar, 2013). For much 

of the 20th century, the only distillers’ by-products that existed on a large scale came 

from alcoholic beverage production. But the proliferation of fuel ethanol production in 

the early 2000s created a new supply of distillers’ by-products that were centered around 

areas of high agricultural production.  

Initially, ethanol plants began selling distillers’ grains feeds to local livestock 

operations in the form of WDGS with 60-65% moisture to avoid disposing of the by-

products as waste. Given distillers’ grains’ high crude protein contents (25-35%), early 

market participants primarily considered distillers’ grains to be a protein feed. Therefore, 

they were generally priced as an imperfect alternative to soybean meal, which has a crude 

protein content of 45-50%. As the supply of ethanol and distillers’ grains grew, the 

“sister” market shifted to the corn, rather than soybean, market. This was because 

distillers’ grains offered similar nutritional properties to corn while excluding much of 

the unnecessary starch, which was expended in the ethanol production process. The fact 

that distillers’ grains were produced from corn also meant that their pricing could be tied 

to the corn market. At the same time, ethanol plants began investing more heavily in 

distillers’ grains technology to complement their co-product revenue stream. This 
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technology most often included drying capabilities that allowed plants to convert wet 

distillers’ grains to more transportable MDGS and DDGS.  

While both MDGS and WDGS offer slightly higher feeding values than DDGS 

(Nuttelman, et al. 2011), their moisture contents and weights make them difficult to ship 

beyond a limited radius, making DDGS the most common form of distillers’ grains 

nationally. Regardless of the form of distillers’ grains, each type offers – in most cases – 

superior nutritional properties to corn through lower starch content, higher total digestible 

nutrients, and higher crude protein content (Jenkins 2016). The favorable properties and 

relative abundance of distillers’ grains in areas with high ethanol production rates – 

paired with a concerted effort by ethanol plants to market distillers’ grains as co-products 

rather than by-products – helped form a market for distillers’ grains with a largely 

separate demand structure from the ethanol sector (Morgan 2020). 

Co-product importance to plant profitability 

Dried Distillers’ Grains with Solubles, Modified Distillers’ Wet Grains, and Distillers’ 

Wet Grains are the products that constitute the largest share of the co-product revenue 

stream for most ethanol plants. According to estimates from the Iowa State ethanol plant 

profitability model, over the last 15 years, total distillers’ grains’ percent of plant revenue 

has increased from approximately 10% to 27% (Hofstrand 2021; Figure 2). Specific 

breakdowns of the revenue contributions of each type of distillers’ grains were not 

available. 

Distillers’ grains and other co-products of ethanol production do more than 

provide an additional revenue stream for plants; they also play a crucial role in 

maintaining profit margins and allow for diversified, value-added product offerings 



8 

 

 

(Irwin 2020). Weak crude oil prices paired with steady corn prices over the past half-

decade made the margin for error in the ethanol industry thin. To hedge against adverse 

price trends in the ethanol industry, ethanol plants have focused on diversifying their 

operations to produce higher-value co-products (Voegele 2020). 

The economics behind traditional distillers’ grains products and newer products 

are explored in the academic literature to differing extents. The purpose of this literature 

review is to identify, compile, synthesize, and analyze the existing economic research 

about distillers’ grains. Doing so will provide insight into the distillers’ grains markets 

while identifying gaps in the literature and charting paths forward for future research.  

Selection and Categorization of Economic Distillers’ Grains Research 

An open literature search was conducted using online databases, including 

AgEconSearch, Agricola, Cambridge, CAB Abstracts and Global Health, EconLit, 

JSTOR, PubMed, Scopus, and Wiley Online Library databases. Articles in all databases 

were retrieved using the search string, “distiller* AND (econ* OR pric*)”. All results 

were limited to publication years between 1990 and 2021. To refine retrieved results, the 

following database-specific adjustments were made: (1) AgEconSearch results were 

filtered by English-language articles, (2) CAB Abstracts and Global Health and JSTOR 

results were filtered by terms found in the abstract, (3) Cambridge results were filtered by 

“access”, (4) and Scopus results were filtered by the keyword “Economics”. No 

modifications were made to the Agricola, EconLit, or Wiley database searches. 

In total, 972 articles were retrieved across the nine databases. After removing 

duplicate articles, 847 results remained. Article titles were then examined for English 

language and relevance to topics related to biofuels, grains, feed, livestock, and economic 
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analysis. Only titles clearly unrelated to distillers’ grains (i.e. “Medication Use Safety 

During Care Transitions for Children with Medical Complexity”) were filtered out. 

Following the title analysis, 473 articles remained. Next, abstracts and introductions were 

read to determine their pertinence to the synthesis. This required the articles to discuss 

and analyze at least one distillers’ grain or ethanol feed coproduct. After screening 

abstracts and introductions, 134 articles remained. Articles that conducted at least one 

economic analysis related to ethanol feed co-product markets, production, or demand 

were included in the final review. Economic analysis was broadly defined and meant to 

include basic cost-benefit analyses in addition to more complex econometric analyses. In 

total, 110 articles were included in this literature review and synthesis. Figure 1 provides 

a summary of the total article retrieval and screening process.  

Selected articles were classified by peer-reviewed publication status, the type of 

distiller grains examined, livestock type, other grain markets impacted by distillers’ grain 

use, and location of study. Common research topics between articles were identified and 

selected as the primary categories. Studies were then classified by which broad topic best 

fit the paper’s content. In situations where a paper could reasonably fit in multiple 

categories, papers were categorized by the primary analysis of the article. Table 1 

summarizes and categorizes all examined papers.  

Topics Covered 

Although the number of articles included under each topic varied, most topics featured 

consistent publications from the onset of widespread co-product analyses (2007-2008) to 

the present. Two categories, cost analysis, and economic impact analysis made noticeable 

deviations from this trend. The first cost analysis paper featured in this literature review 
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was published in 2006, while the final cost analysis paper was published in 2016. 

Similarly, the first economic impact analysis paper was published in 2005 and the last 

was published in 2013. This suggests that these analyses became less popular over time – 

likely because many basic research questions in these categories were already explored 

by the mid-2010s.  

Peer-Reviewed vs. Non-Peer Reviewed 

Peer-reviewed articles are classified as journal papers, books, government studies, 

conference papers and presentations, and rigorous extension publications. Non-peer-

reviewed articles were classified as short extension releases, working papers, and 

industry articles. In total, 87 peer-reviewed and 23 non-peer-reviewed articles were 

included in the analysis. 

 A distinction between peer-reviewed and non-peer-reviewed articles is made 

because of the differences in structure, content, and purpose of the articles. Peer-reviewed 

articles typically conduct rigorous economic or cost-benefit analyses that seek to answer 

a central research question. Non-peer-reviewed papers more often include broad 

overviews of current events in distillers’ grains markets, a basic explanation of a 

distillers’-related topic, or a relevant yet preliminary economic analysis. Peer-reviewed 

articles often analyzed the questions initially posed by non-peer-reviewed papers with 

greater detail which, in the case of distillers’ grains, often led to varying results and 

conclusions between studies. As a result, it was useful to identify which papers were 

peer-reviewed and non-peer-reviewed (see Table 1). The distinction was not pronounced 

enough to affect the synthesis of papers by topic, though, so little reference is made to 

peer review status in the body of this analysis.  
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Types of Distillers’ Grains 

Most papers focused on analyzing DDGS (N=106). Far fewer examined other types of 

distillers’ grains such as MDGS (N=12), WDGS (N=18), and value-added products 

(N=6). The imbalance was likely because DDGS comprise a much larger share of the 

distillers’ grain market than do MDGS, WDGS, and value-added products. From 2016-

2020, the average shares of distillers’ grains production in the United States were 53%, 

12%, and 35% for DDGS, MDGS, and WDGS, respectively (USDA-NASS 2021). The 

transportability of DDGS versus MDGS and WDGS make DDGS more relevant to a 

national or global audience. As for value-added co-products, their relatively recent entry 

to the market – which currently serves to limit their data availability and market share – 

was likely a primary cause for their limited visibility in the research.  

Commodity Impacted by Distiller Grains 

Articles often focused on the impacts that a particular distiller grain had on a specific 

industry. Three primary sectors were identified – grains (e.g. corn, soybeans, soybean 

meal, maize, and other feed substitutes), livestock (e.g. beef cattle, dairy cattle, hogs, 

poultry, and other livestock), and other (e.g. ethanol, industrial gasses, and oil). Many 

studies examined distillers’ grains in relation to more than one sector. Of the 110 articles 

included in the review, 59 papers studied distillers’ grains concerning “grains,” 69 related 

to “livestock,” and 31 broadly classified as “other.” 

Organizing the papers into these larger groups limits does limit some of the 

insights that are more obvious on a more granular level. For example, only six (8.5%) 

“livestock” papers include an analysis related to dairy. This is a relatively small amount, 

given that distillers’ grains are common and effective components of dairy cattle feed 
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rations. In general, studies show that DDGS can account for roughly 30% of dry matter in 

a lactating cow diet without reducing milk yield (Grings et al. 1992). This absence from 

the research may be because dairy cattle primarily use distillers’ grains as a protein 

source and more easily substitute distillers’ grains with other high-protein products when 

costs increase. The heavy skew toward beef cattle and hogs in this research can also be 

attributed to the regions of the United States where distillers’ grains were studied in the 

publications. The Great Plains and Midwest. States in these regions skew heavily toward 

beef cattle and hog production and, therefore, tend to focus on those industries in their 

analyses. 

Location of Study 

Many of the domestic papers were published from universities based in the Great Plains 

and Midwestern regions. Most papers focused on impacts within the U.S – 80 of the 110 

articles focused exclusively on domestic markets and 30 incorporated international and 

export markets in some manner. The 30 articles that incorporated international and export 

markets centered around DDGS rather than MDGS or WDGS. This is because DDGS are 

transportable, storable goods in comparison to MDGS and WDGS, which can only travel 

a limited radius. None of the export market-focused papers explored value-added goods, 

likely because value-added distillers’ grains were introduced fairly recently, and many of 

the papers explored in this literature review predate their arrival to the market.   

Economic Research on Distillers’ Grains 

The distinctions discussed above – such as types of distillers’ grains, commodities 

impacted by distillers’ grains, and location of study – help to better frame the existing 

state of the economic research related to ethanol co-products. Broader similarities and 
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differences between the papers are discussed in the body of the synthesis. Eighty-seven 

studies conduct economic or cost-benefit analyses, while 23 (mostly non-peer-reviewed) 

articles contain broader discussions of distillers’ grains markets underpinned by 

economic theory. The aim of this synthesis is to summarize the economic findings of the 

existing research while identifying potential areas for future exploration.  

Cost Analysis 

Articles in the cost analysis section primarily covered three broad categories: (1) ethanol 

plant cost structures (Rausch et al. 2007; Sesmero et al. 2016), (2) co-product generation 

(Rosentrater 2006; Rosentrater and Kongar 2009), and (3) environmental costs of 

ethanol/distillers’ grains production (Fabiosa 2009). Publication dates ranged from 2006 

to 2016, with all but one paper published before 2010 (Sesmero et al. 2016). All studies 

focused on distillers’ grain production in the United States. 

The ethanol plant cost structure studies centered around how ethanol plants use 

co-products to offset production costs and how variations in co-product production alter 

the costs faced by ethanol plants (Rausch et al. 2007; Sesmero et al. 2016). Results 

suggest that ethanol plants market co-products to increase plant revenues, but 

technological barriers to improving product quality and universality – resulting in 

distillers’ grains high phosphorus content and corn germ and fiber that is indigestible to 

nonruminants – limited the efficacy of co-products in reliably diversifying revenue 

streams (Rausch et al. 2007). Further, ethanol plants were found to change their co-

product mix in response to price signals (Sesmero et al. 2016). For example, if export 

demand is weak and local market demand is strong, ethanol plants shift a greater 
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percentage of their distillers’ grains production to wet distillers’ grains to reduce costs 

and increase co-product profit margins.  

The co-product generation studies focused on future co-product generation rates 

(Rosentrater 2006) and pelletized distillers’ grains production (Rosentrater and Krongar 

2009). They found the co-product production process to be heavily dependent on external 

market forces for future production levels. Therefore, ethanol plants needed to pursue 

research focused on value-added products to diversify bioethanol revenue streams and 

hedge against potential adverse market conditions (Rosentrater 2006). Pelletized 

distillers’ grains were one value-added product examined, the production of which was 

deemed a cost-effective process only in plants benefiting from the economies of scale 

(Rosentrater and Kongar, 2009).  

Finally, distillers’ grains were found to reduce the environmental costs of ethanol 

production by partially offsetting the land use impact of corn for ethanol (Fabiosa 2009). 

The extent to which distillers’ grains offset ethanol production’s environmental impact 

depended on whether feed compounders discounted the distillers’ grains nutrient profile 

to ensure they were at or above a realized nutrient profile 90% of the time. When feed 

compounders did so, distillers’ grains were found to be less effective at offsetting ethanol 

production’s environmental costs versus when no such measures were taken. Regardless 

of whether feed compounders discounted distillers’ grains nutrient profiles, DDGS were 

more effective at offsetting ethanol’s environmental impact than ethanol production 

scenarios that did not market any co-products.  

Cost-Benefit Analysis 
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Cost-benefit analysis studies constituted the largest portion of the distillers’ grains 

economic literature in this review and featured a greater variety of locations and livestock 

types than other sections. This variety is likely attributable to the fact that the cost-benefit 

analysis papers mostly included economic/cost-benefit analyses as complementary 

components to more central research questions, typically the efficacy of feeding 

distillers’ grains to various livestock types. In other words, these economic analyses were 

largely budgeting exercises with different feeds within rations. These were included in 

the synthesis since some measure of the costs and benefits of distillers’ grains was 

included in each study.  

 Thirty-four papers featuring eight different countries – Brazil (Corassa et al. 

2021), Bulgaria (Yildiz et al. 2015), Cuba (Rodriguez et al. 2016), Egypt (Abou-Zied et 

al. 2012; Allam et al. 2020; El-Deek et al. 2020; El-Rahman et al. 2014; Youssef et al. 

2012; ), Hungary (Sandor et al. 2021), India (Changan et al. 2019; Sajjan et al. 2017), 

Philippines (Alvaran et al. 2018), and the United States (Bailey and Kallenbach 2010; 

Buckner et al. 2008; Coble et al. 2014; Diogenes et al. 2019; El-Hack et al. 2015; 

Gadberry et al. 2010; Harris et al. 2012; Klopfenstein et al. 2008; Kubas and Firman 

2014; Kubas and Firman 2015; Lowe II et al. 2016; Masa’deh et al. 2012; Nunez et al. 

2015; Oliveira et al. 2020; Paine et al. 2018; Ranathunga et al. 2010; Roberts 2009; 

Sandor et al. 2021; Schmit et al. 2008; Schmit et al. 2009; Tidwell et al. 2007; Troyer et 

al. 2020) – comprised the cost-benefit section of the review.  

The studies explored the value of feeding distillers’ grains ranging from DDGS to 

WDGS to high-fat and low-fat DDGS in beef cattle (Bailey and Kallenbach 2010; 

Buckner et al. 2008; El-Rahman et al. 2014; Gadberry et al. 2010; Klopfenstein et al. 
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2008; Troyer et al. 2020; Nunez et al. 2015), dairy cattle (Changan et al. 2019; Lowe II et 

al. 2016; Schmit et al. 2008; Schmit et al. 2009; Ranathunga et al. 2010; Yildiz et al. 

2015), dairy buffaloes (Alvaran et al. 2018), fish (Abou-Zied et al. 2012; Allam et al. 

2020; Diogenes et al. 2019; Oliveira et al. 2020; Sandor et al. 2021; Tidwell et al. 2007), 

goats (Paine et al. 2018; Sajjan et al. 2017), poultry (El-Deek et al. 2020; El-Hack et al. 

2015; Kubas and Firman 2014; Kubas and Firman, 2015; Masa’deh et al. 2012; Roberts 

2009; Rodriguez et al. 2016), hogs (Coble et al. 2014; Harris et al. 2012; Corassa et al. 

2021), and rabbits (Youssef et al. 2012). The papers examined distillers’ grains’ feeding 

value through the lens of animal performance analyses and models of representative 

operations and compared the cost of including distillers’ grains in animal diets versus the 

value of the changes in animal performance when fed distillers’ grains. Overall, the 

studies found distillers’ grains to be cost-effective, performance-enhancing, profit-

improving feed supplements and/or substitutes. These results held across most livestock 

types, but a few studies found distillers’ grains to hurt livestock operation profitability 

relative to alternative feeds (El-Rahman et al. 2014; Harris et al. 2012; Klopfenstein et al. 

2008). 

 A significant shortcoming with these articles is that most use budgeting to justify 

economic usefulness. These studies can provide use in the development of larger market 

models that examine how the efficacy of feeding new and different distillers’ co-products 

to unique livestock types can change market demand and supply. In this way, they can 

provide a valuable contribution to the existing literature by revealing what combinations 

of distillers’ grains type, location, and livestock type are most viable in the marketplace 

and, therefore, hold the most potential for more complex economic analyses.  
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Demand Analysis 

The demand analysis research in this literature review and were divided into four broad 

categories: (1) Contextual Demand (Gertner and Dennis 2020; Gertner and Dennis 2020; 

Olson and Capehart 2019), (2) Livestock Demand (Clemens and Babcock 2008; Fabiosa 

2008; Jones et al. 2007; Stockton 2006; Stockton and Stalker 2012; Suh and Moss 2014; 

Suh and Moss 2016; Wright et al. 2012), (3) Location Demand (Dooley 2008; Wang et 

al. 2011), and (4) Potential Demand (Beckman et al. 2011; Conley 2013; Dooley 2008; 

Ferris 2011; Hoffman and Dohlman 2011). The categories were determined by the 

primary research question from which ethanol co-product demand was analyzed. 

The contextual demand papers focused on distillers’ grains demand in response to 

external market forces, such as the COVID-19 pandemic, increased export demand, and 

ethanol production incentives (Gertner and Dennis 2020; Gertner and Dennis 2020; 

Olson and Capehart 2019). All three articles were published after 2019 and emphasized 

the extent to which distillers’ grains markets rely on exogenous variables. More 

specifically, distillers’ grains prices and demand were found to be supported by increases 

in ethanol production, export opportunities, and storability, all of which helped the co-

product markets to rapidly recover from the initial impacts of COVID-19 (Gertner and 

Dennis 2020; Gertner and Dennis 2020).  

Articles centering around the demand for distillers’ grains from livestock focused 

primarily on cattle, hogs, and general livestock markets (Clemens and Babcock 2008; 

Fabiosa 2008; Jones et al. 2007; Stockton 2006; Stockton and Stalker 2012; Suh and 

Moss 2014; Suh and Moss 2016; Wright et al. 2012). The eight articles broadly 

concluded feeding distillers’ grains were viable methods for increasing returns to 
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livestock operations. The articles pointed to nutritional variability, cost of transportation, 

corn prices, and feeding methods as factors that have significant impacts on the demand 

for and efficacy of feeding distillers’ grains. Demand for distillers’ grains from livestock 

operations was found to be sluggish to adjust to changes in these influencing factors (Suh 

and Moss 2014). In other words, only about a fifth of the long-run response to a change 

in the prices of feed grains was found to occur in the same marketing year as the price 

change (Suh and Moss 2014). Six of the articles were published before 2012, while two 

were published after 2014. Additionally, six of the eight studies only explored the 

demand for DDGS, while two expanded the analyses to include MDGS and WDGS. 

Given the (1) increased visibility of distillers’ grains in the marketplace and (2) increased 

heterogeneity in product types and characteristics, there is little understanding of how the 

factors affecting the demand for distillers’ grains from livestock operations have evolved 

over time. 

The two location demand papers examined factors influencing distillers’ grains 

production in Indiana and the United States as a whole (Dooley 2008; Wang et al. 2011). 

Results included the prediction that livestock producers in Indiana and the United States 

would, overall, have ready access to distillers’ grains in the coming years (Dooley 2008). 

The importance of including co-products in ethanol plants’ life cycle analyses was also 

stressed (Wang et al. 2011). Both location-based demand papers were published before 

2012 and focused only on DDGS, indicating the need for updated and expanded additions 

to the economic research in this area to further explain the impact of location on co-

product demand. Without location-specific studies, the demand structures of ethanol 

plants outside the major production zone of the Midwest remain unclear. An unclear 
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understanding of location’s impact distillers’ grains demand, therefore, leaves researchers 

unable to analyze the impact of location-specific market shocks.   

The future demand for ethanol co-products primarily focused on DDGS 

characteristics and market forces shaping their potential demand (Beckman et al. 2011; 

Conley 2013; Dooley 2008; Ferris 2011; Hoffman and Dohlman 2011). Feed quality 

heterogeneity and levels of per-animal consumption were topics of concern in the earlier 

articles in the section, while the prospect of demand outpacing supply was the focus of 

the more recently published articles. Three of the four studies focused exclusively on the 

future of DDGS demand (Beckman et al. 2011; Conley 2013; Dooley 2008; Hoffman and 

Dohlman 2011), while one study explored the viability of the market potential of 

extracting corn oil from DDGS for biodiesel production (Ferris 2011). Overall, the 

outlook for ethanol co-products demand was deemed positive.  

Economic Impact Analysis 

Studies exploring the economic impacts of ethanol co-products primarily did so through 

three lenses: (1) impacts on grains markets (Elobeid et al. 2006; Fabiosa 2009; Ferris 

2013; Markham 2005; Yu and Hart 2009), (2) impacts on livestock markets (Munkvold et 

al. 2008; Schmit et al. 2008; Skinner et al. 2012; Taheripour et al. 2010), and (3) 

environmental impacts (Bremer et al. 2011; Taheripour et al. 2008).  

In the studies examining the impact of distillers’ grains on grain markets, the 

primary focus was the effect of distillers’ grains production on grain market structures 

and prices – specifically corn (Yu and Hart 2009) and wider feed grain markets (Elobeid 

et al. 2006; Fabiosa 2009; Ferris 2013; Markham 2005). Papers analyzing the relationship 

between distillers’ grains and corn markets found that the onset of widespread ethanol 
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production changed the directional flows of corn in the United States. In other words, 

corn flowed in-state to ethanol plants and then primarily out-of-state in the form of 

ethanol and distillers’ grains (Yu and Hart 2009). This changed the domestic supply 

dynamics of feed by altering what products were available and where. Studies exploring 

the broader relationships between distillers’ grains prices and feed grains prices found 

that correlations of general feed ingredient prices and crude oil prices increased 

dramatically since wide-scale ethanol production began (Fabiosa 2009). This was 

because feed and fuel markets became more intertwined as corn was directed toward both 

animal feed and fuel ethanol markets. Because of corn’s unique status as both a livestock 

and fuel feedstock, the fact that the co-product of corn ethanol production, distillers’ 

grains, could be fed to livestock in place of corn helped temper the inflationary effect of 

increased ethanol production on grain prices (Elobeid et al. 2006; Ferris 2013; Markham 

2005). The earliest of these five studies was published in 2005, and the latest was 

published in 2013, with three 2009 publications. DDGS were the primary co-products of 

focus in the grain impact analysis research. Given the changes in ethanol and co-product 

production over the past decade, and the increased quantity of grains allocated toward 

that production, updated analyses of the impacts of ethanol co-products on grain markets 

would fill a currently unaddressed gap in the literature.  

Studies centering around the impacts of ethanol co-products on livestock markets 

all focused on DDGS in their analyses. Additionally, the studies found that – while 

increased ethanol production increased general feed costs for livestock producers – 

DDGS helped to alleviate those impacts and provided economic and nutritional benefits 

not present in previously-used feedstuffs (Munkvold et al. 2008; Schmit et al. 2008; 
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Skinner et al. 2012; Taheripour et al. 2010). Biofuel mandates were found to encourage 

additional crop production and discourage livestock production in most global regions, 

especially for non-ruminant livestock that benefit less from ethanol co-products 

(Taheripour et al. 2010). All three studies were published in 2012 or before, meaning the 

analyses were unable to account for the many developments in the types and quality of 

ethanol co-products over the past decade. These changes in ethanol co-products 

undoubtedly impact the livestock industry, but the nature of those impacts is unknown.  

 The studies exploring the economic and environmental impacts of ethanol co-

products found that excluding co-product production from economic analyses of ethanol 

plants alters the results of biofuel mandates in systematic ways (Taheripour et al. 2008). 

Models including co-products show smaller changes in the production of cereal grains 

and larger changes to produce oilseeds in the US and EU than models excluding co-

products (Taheripour et al. 2008). Additionally, feeding co-products to livestock were 

found to reduce the environmental footprint of ethanol plants relative to gasoline (Bremer 

et al. 2011). As with many of the previously discussed studies, the environmental and 

economic impact study only accounts for DDGS and WDGS in their analyses and were 

published in 2008 and 2011. The economic impacts of recent more specialized ethanol 

co-products have not been examined.  

Price Analysis 

Price analysis research in this literature review fell primarily into three broad categories: 

(1) price discovery (Etienne and Hoffman 2015: Fabiosa 2008; Hubbs et al. 2009; Irwin 

and Good 2013; Springer and Schmitt 2018; Van Winkle et al. 2008), (2) co-product 

price effects (Irwin and Good 2015; Suh and Moss 2017), and (3) co-product price 
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relationships (Etienne et al. 2017; Johnson et al. 2015). The price analysis section of the 

literature contained one of the largest proportions of recent publications of any section in 

this analysis, with most of the papers published since 2015. 

The papers on price discovery in ethanol co-product markets all focused 

exclusively on DDGS in the United States. In general, the articles found nutritional 

composition (Fabiosa 2008), location (Van Winkle and Schroeder 2008), and corn and 

soybean meal prices to be the most important determinants of DDGS prices (Etienne and 

Hoffman 2015). The valuation of nutritional components varied by the type of livestock 

demanding DDGS. For example, higher protein levels did not necessarily garner higher 

DDGS prices for hog operations, although they did for cattle operations (Hubbs et al. 

2009). Given the relative recency of most of these studies, future contributions to the 

literature would have the greatest impact by diversifying the product types and locations 

examined. Price discovery analyses beyond DDGS and the United States would help to 

better frame the pricing structures of ethanol co-products around the world. 

The two price effect papers examined ethanol co-product prices through disparate 

lenses: one explored the effects of a decline in DDGS prices, while the other analyzed the 

effects of changes in corn prices on DDGS. The first highlighted the risk of declining 

DDGS prices without declines in corn or soybean meal prices, which, ceteris paribus, 

would shrink ethanol plants’ profit margins (Irwin and Good 2015). Increases in corn 

prices, on the other hand, were found to lead to increases in DDGS prices – the 

production of which did not constitute a large enough share of the livestock feed market 

to offset corn price increases (Suh and Moss 2017). Both studies explored only DDGS 
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prices in the United States, so suggestions for potential contributions to the literature 

mirror those provided above. 

 In the two price relationship papers, the authors examined spatial and time-

varying price relationships between DDGS, corn, and soybean meal prices. Corn and 

soybean meal were found to contribute to each other’s prices, and corn was found to act 

as the largest contributor of uncertainty in DDGS prices (Johnson et al. 2015). DDGS 

prices were not found to influence corn and soybean meal prices (Etienne et al. 2017). 

Both studies examined the U.S. market and only examined DDGS prices. It is assumed 

that broad conclusions are likely to be similar between any individual ethanol co-product 

and corn and soybean prices. However, the effects of specialization and differentiation of 

ethanol co-products on price relationships are unknown, as is whether product 

differentiation strengthens or weakens the relationship to corn and soybean meal prices.  

Risk Management 

Seven studies comprised the risk analysis section of the literature review and explored 

topics primarily relating to cross-hedging, futures contracts, and transaction costs 

(Bekkerman and Tejada 2017; Brinker et al. 2009; Dahlgran and Gupta 2019; Murguia 

and Lawrence 2010; Tejada 2012; Tonsor 2008; Weseen and Kerr 2014). The studies 

were published from 2008 to 2019.  

The overall scope of risk management studies in the ethanol co-product domain is 

limited. Only North American studies were found and analyzed in this literature review, 

and each study focused on DDGS for risk management. Studies investigating risk 

management of ethanol co-products in international settings and a diversified range of co-

products would add to the breadth and depth of this corner of the literature.  
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The studies came to differing conclusions of the potential effectiveness of cross 

hedging DDGS with corn and soybean meal prices and, similarly, the potential efficacy 

of a DDGS futures contract in mitigating price risk. Given the fact that the attempt to 

create and maintain a DDGS futures contract failed, the studies following the failed 

contract more readily admitted the difficulty of cross hedging DDGS with corn and 

soybean meal, while those published before the introduction of the contract were more 

optimistic about its potential.  

Techno-Economic Analysis 

The techno-economic analysis papers in this literature review could be primarily 

categorized into two groups: (1) papers exploring the economics of converting distillers’ 

grains to biofuel (DeRose et al. 2019; Kumar et al. 2010; O’Brien et al. 2020; Wang et al. 

2009) and (2) using novel processes to enhance distillers’ grains’ production or value 

(Barnharst et al. 2021; Kurambhatti et al. 2021; Perkis et al. 2008; Rodriguez et al. 2010; 

Srinivasan et al. 2006; Srinivasan 2013; Wood et al. 2011; Wood et al. 2012; Zhang et al. 

2014). Their publication dates ranged from 2006 to 2021, and all studies were based in 

the United States.  

 Studies exploring the economic feasibility of using distillers’ grains for additional 

fuel production generally explored the costs and benefits of modular engineering 

processes for converting distillers’ grains into biofuels or biogases. For the most part, 

converting distillers’ grains to fuel was found to be energy efficient and technically 

feasible, but the economic practicality of the processes was highly dependent on 

economies of scale and prevailing market prices. As a result, no definitive economic 

conclusion was reached across all four papers. The other techno-economic analyses 
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papers – those exploring enhancements in distillers’ grains production and/or value – 

primarily analyzed how to produce distillers’ grains more efficiently or how to extract 

additional value out of distillers’ grains (Barnharst et al. 2021; Rodriguez et al. 2010; 

Wood et al. 2011; Wood et al. 2012). These research studies also came to differing 

conclusions about the efficacy of these processes.  

In general, the studies exploring enhancements to the distillers’ grains production 

process itself found those enhancements to be feasible (Barnharst et al. 2021; Rodriguez 

et al. 2010; Srinivasan et al. 2006; Srinivasan 2013; Wood et al. 2011; Wood et al. 2012), 

while the research analyzing processes producing new products were less definitive 

(Kurambhatti et al. 2021; Perkis et al. 2008; Rodriguez et al. 2010; Zhang et al. 2014). 

All papers conducted their analysis in the United States market. There is little research on 

whether international market players on either the ethanol or livestock production side 

would value these processes differently.  

Trade 

Papers focused on international trade and production of ethanol co-products primarily fell 

under two primary categories: (1) United States co-product exports (Babcock et al. 2008; 

De Matteis et al. 2019; DeOliveira et al. 2017; Fabiosa et al. 2009; Good 2015; Good 

2016; Good 2016; Hubbs 2018; Jewison and Gale 2012) and (2) international co-product 

production (De Matteis et al. 2018; Strydom et al. 2010; Strydom et al. 2010; Tokgoz 

2008). The publication years ranged from 2008 to 2019 and all focused on the export of 

DDGS. Given the low transportability of MDGS and WDGS, the focus on dried 

distillers’ products was less exclusionary in nature than some of the previous studies in 

other sections. Differentiation exists within dried distillers’ productions in the form of de-
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oiled, high protein, and pelletized products, though, and none of these products were 

explored in the studies. 

 Papers that focused on U.S. exports of ethanol co-products centered around 

potential export demand and export progress, and export demand from China was a 

primary focus (DeOliveira et al. 2017; Fabiosa et al. 2009; Good 2015; Good 2016; 

Jewison and Gale 2012). The primary determinants of export demand were found to be 

the importing country’s meat production, technical barriers to trade, tariffs, and US 

ethanol production (De Matteis et al. 2019). Overall, export outlooks were deemed 

positive, with quality heterogeneity concerns identified as one of the most significant 

barriers to increased export activity (Babcock et al. 2008; DeOliveira et al. 2017; Fabiosa 

et al. 2009; Good 2015; Good 2016; Good 2016; Hubbs 2018; Jewison and Gale 2012). 

Finally, China was found to be a major player in the market, with the ability to almost 

singlehandedly drive DDGS demand when fully participating in the marketplace 

(DeOliveira et al. 2017; Fabiosa et al. 2009; Good 2015; Good 2016; Jewison and Gale 

2012). 

 Trade and international use of co-products papers with a specific focus on co-

product production in international markets explored the implications of ethanol and co-

product production in Argentina (De Matteis et al. 2018), the European Union (Tokgoz 

2008), and South Africa (Strydom et al. 2010; Strydom et al. 2010). Studies found that 

ethanol production increased the competitiveness of feed industries in the countries and 

regions explored. The benefit of feed competitiveness was a result of DDGS reducing 

phosphorus contents of feed rations and reducing ration costs – both not available without 
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DDGS (De Matteis et al. 2018). No studies examined other ethanol co-products nor how 

internationally produced DDGS differ from those produced domestically.  

Revealed Needs for Additional Research 

In total, the 110 papers analyzed in this literature review covered a broad swath of 

economic topics in the distillers’ grains domain. Still, many research questions remain 

unanswered by the existing distillers’ grains economic literature. 

 One potential research path involves revisiting many of the topics already 

discussed in this paper. Most of the studies included in this review were published more 

than five years ago. Given the significant advancements in the domestic and international 

distillers’ grains industries, more up-to-date research is needed to verify prior results and 

examine new developments in the distillers’ grains domain. These studies could answer 

questions relevant to producers, academics, and industry professionals by exploring how 

distillers’ grains markets have evolved in recent years, whom those changes have 

benefited, and what – if any – distillers’ grains are most cost-effective for ethanol plants 

and livestock producers. These studies could fall under any of the categories included in 

this paper and would be valuable contributions to the literature.  

 Another path for research is to analyze highly specialized and value-added 

distillers’ products, for which there are currently few published academic studies. Due to 

the increasing amount of these products in the distillers’ grains and livestock feed 

industries, quantifying their economic costs, benefits, and impacts are much-needed 

additions to the literature. Research could help to uncover whether there are potential 

unrealized profits for ethanol plants in the value-added space and whether these products 

are cost-effective for producers. Cost, demand, and/or economic impact analysis studies 
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would be the most likely studies for these questions and would provide relevant 

information to the present-day distillers’ grains industry.  

From a livestock feeding perspective, proper valuation of nutritional 

characteristics of distillers’ grains from conventional and new value-added processes is 

essential for livestock nutritionists and producers to make economic substitutions. Beef 

cattle perform differently (better) in most scenarios where distillers’ grains are used 

(Bremer et al. 2011). For other livestock, such as dairy cattle, swine, and poultry, most 

companion grains, like soybean meal, are simple substitutes as performance is not 

influenced. As a result, an economic valuation of the nutritional components of DDGS by 

livestock type would be a valuable contribution to the literature.  

Additionally, further research into the disparate demand structures for DDGS, 

MDGS, and WDGS is needed. While DDGS is logical for national and global economics 

for both plants and end-users, wet and modified distillers’ are critical for many local 

cattle (dairy and beef) producers. In these markets, the price may, or may not, reflect 

national price trends. Data suggest price fluctuation for different months throughout the 

year, likely reflecting supply and demand principles. A more in-depth understanding of 

the level of connectedness, or lack thereof, of these markets would help in analyzing each 

type of distillers’ grain.  

 Expanding the scope of international research is another need. Given the scale of 

both the ethanol and livestock feeding industries in the United States, many studies have 

already explored the basic economics of distillers’ grains from both the ethanol plant and 

livestock producer perspectives. Whether these economics are the same internationally – 

given unique market structures, differing end users, and varying feed inputs – is largely 
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unexplored beyond basic cost-benefit analyses in lower-visibility industries such as 

aquaculture and alternative poultry operations. Further international research on distillers’ 

grains may help to uncover areas in which domestic ethanol plants could expand their 

reach. Conversely, adverse outcomes to international distillers’ grains markets may 

portend an unfriendly future domestically. Either way, research in this area would help to 

better frame the state of the global distillers’ grains industry. Any of the research 

categories found in this literature review would be useful angles from which to explore 

international distillers’ grains topics.  

 Future research studies would also do well to branch out beyond analyses that 

primarily explore beef cattle and hogs. Given beef cattle and hogs’ importance to the 

distillers’ grains industry, the heavy focus on those species in ethanol co-product research 

is understandable, but it has resulted in several gaps in the literature. Is there a viable path 

forward for ethanol co-products in the dairy, poultry, and aquaculture industries? Are 

there species currently underutilizing distillers’ grains from a profit maximization 

perspective, or will the market fail to expand beyond beef cattle and hogs? These studies 

would likely consist primarily of cost and demand analyses and would help to determine 

the long-term path of distillers’ grains demand.  

Finally, given the significant changes in the ethanol and distillers’ grains 

industries over the past decade, additional research charting possible paths forward for 

both industries is required to better understand what lies ahead for distillers’ grains, 

biofuels, and their adjacent industries. These studies would likely be a combination of the 

various research paths proposed above. In these studies, potential products, end-users, 

and locations would be compared and analyzed to determine the trajectory of the 
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distillers’ grains industry and how that trajectory can be altered in ways favorable to both 

ethanol plants and end-users. Given the fact that these studies would need to examine 

ethanol co-products from multiple perspectives, they would likely consist of a mix of 

cost, demand, and price analysis. These studies are crucial to allow ethanol plants, 

producers, and industry participants to better plan for the future of their respective 

industries. 

Conclusion 

Much of the research covered in this literature review appeared during the ethanol boom 

of the first decade of the 2000s and shortly thereafter. Overall, research has found 

distillers’ grains to be cost-effective, profitable, and potentially impactful products with 

the potential for significant market growth.  

While the research pieces covered in this literature review provide a general 

template for a few possible future studies, the literature to date has been far from 

comprehensive in its examination of the distillers’ grains market. This is evidenced by the 

suggested paths forward for research, along with the section-by-section discussions of 

potential shortfalls of the papers. The literature review was limited by the depth and 

breadth of the databases used in the study. Any journal articles not stored in the databases 

listed in the Methods section were not included in the literature review. Similarly, any 

articles not retrieved by the search terms detailed in the Methods section were not 

captured in this study. 

The makeup of the ethanol and distillers’ grains industries is very different from a 

decade ago, roughly when many of the papers in this review were published. More 

economic research is required to better understand the path forward for both ethanol 
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plants and livestock producers. Recent developments of new, differentiated products in 

the distillers’ grains markets have the potential to change the industry, but little research 

has addressed these new topics. Such research would better inform policy, planning, and 

decision-making from both ethanol plant and producer perspectives and would more 

accurately reflect today’s distillers’ grains industry. 
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Supporting Figures 

 

 
Figure 1: Search, Filtering, and Selection Process for Articles Used in the Synthesis Review 

Source: Authors’ compilation 
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Figure 2. Monthly DDGS Percent of Ethanol Plant Revenue, 2005-2021 

Source: Authors’ calculations using Iowa Ethanol Plant Profitability Model (https://www.extension.iastate.edu/agdm/energy/html/d1-

10.html
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Supporting Tables 

Table 1. Summary of Literature Review Results. 

Study Year Published Location 
Products 

Examined 
Product 

Domestic or 

Export 

Market 

Peer 

Reviewed 

(Y/N) 

Economic/Cost-

Benefit Analysis 

Markham (2005) 2005 USA DDGS Corn, soymeal, livestock Domestic No No 

Elobeid et al. 

(2006) 
2006 USA DDGS, MWDG Grain, oilseed, livestock Domestic Yes Yes 

Rosentrater 

(2006) 
2006 USA DDGS Ethanol Domestic Yes Yes 

Srinivasan et al. 

(2006) 
2006 United States DDGS Fiber Domestic Yes Yes 

Stockton (2006) 2006 USA DDGS Cattle Domestic Yes Yes 

Jones et al. 

(2007) 
2007 USA 

DDGS, 

MWDG, WDG 
Cattle Domestic Yes Yes 

Rausch et al. 

(2007) 
2007 USA DDGS Ethanol Domestic Yes Yes 

Tidwell et al. 

(2007) 
2007 USA DDGS Tilapia, catfish diet Domestic Yes Yes 

Babcock et al. 

(2008) 
2008 Global 

DDGS, 

MWDG, WDG 
Livestock, poultry 

Domestic & 

Export 
Yes No 

Buckner et al. 

(2008) 
2008 USA DDGS Beef cattle, corn Domestic Yes Yes 

Clemens and 

Babcock (2008) 
2008 USA DDGS, MWDG Cattle Domestic Yes Yes 

Dooley (2008) 2008 USA DDGS Livestock Domestic No No 

Dooley (2008) 2008 USA 
DDGS, 

MWDG, WDG 
Dairy, hogs, beef, poultry Domestic No No 

Fabiosa (2008) 2008 USA 
DDGS, 

MWDG, WDG 
Hogs Domestic No No 

Fabiosa (2008) 2008 USA DDGS Hogs Domestic No No 

Klopfenstein et 

al. (2008) 
2008 USA DDGS, WDG Beef cattle, corn Domestic No Yes 
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Table 1. Continued  

Study Year Published Location 
Products 

Examined 
Product 

Domestic or 

Export 

Market 

Peer 

Reviewed 

(Y/N) 

Economic/Cost-

Benefit Analysis 

Perkis et al. 

(2008) 
2008 United States 

Hydrolyzed 

Distillers’ 

Grains 

Ethanol Domestic Yes Yes 

Schmit et al. 

(2008) 
2008 USA DDGS 

Corn, soybean meal, 

livestock 
Domestic Yes Yes 

Schmit et al. 

(2008) 
2008 USA DDGS 

Dairy cattle, corn, soybean 

meal 
Domestic Yes Yes 

Taheripour et al. 

(2008) 
2008 

USA, EU, 

Brazil 
DDGS Cereal grains, oilseeds 

Domestic & 

Export 
Yes Yes 

Tonsor (2008) 2008 USA DDGS, WDG 
Cattle, soybean oil, winter 

wheat 
Domestic Yes Yes 

Van Winkle and 

Schroeder (2008) 
2008 USA DDGS Corn, soybean meal Domestic Yes Yes 

Wu and 

Munkvold 

(2008) 

2008 United States DDGS Corn, swine Domestic Yes Yes 

Brinker et al. 

(2009) 
2009 USA 

DDGS, Corn 

Oil 
Corn, soybean meal Domestic Yes Yes 

Fabiosa (2009) 2009 USA DDGS Hogs Domestic No No 

Fabiosa (2009) 2009 USA DDGS Crude oil, livestock Domestic Yes Yes 

Fabiosa et al. 

(2009) 
2009 China DDGS Livestock Export Yes Yes 

Hubbs et al. 

(2009) 
2009 USA DDGS Hogs Domestic No No 

Roberts (2009) 2009 USA DDGS Laying Hens Domestic Yes Yes 

Rosentrater and 

Kongar (2009) 
2009 USA 

Pelletized 

DDGS 
Ethanol Domestic Yes Yes 

Schmit et al. 

(2009) 
2009 United States DDGS 

Dairy cattle, corn, soybean 

meal 
Domestic Yes Yes 

Tokgoz (2009) 2009 EU DDGS Crude oil, grain, ethanol Export No No 
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Table 1. Continued 

Study Year Published Location 
Products 

Examined 
Product 

Domestic or 

Export 

Market 

Peer 

Reviewed 

(Y/N) 

Economic/Cost-

Benefit Analysis 

Wang et al. 

(2009) 
2009 United States DDGS Corn stover, industrial gas Domestic Yes Yes 

Yu and Hart 

(2009) 
2009 USA DDGS Corn Domestic Yes Yes 

Bailey and 

Kallenbach 

(2010) 

2010 USA DDGS Beef cattle, hay Domestic Yes Yes 

Beckman et al. 

(2010) 
2010 USA DDGS Corn, soybeans Domestic Yes Yes 

Gadberry et al. 

(2010) 
2010 USA DDGS Beef cattle, hay Domestic Yes Yes 

Hoffman and 

Dohlman (2010) 
2010 USA DDGS Livestock, poultry Domestic No No 

Kumar et al. 

(2010) 
2010 United States DDGS Corn stover, industrial gas Domestic Yes Yes 

Murguia and 

Lawrence (2010) 
2010 USA DDGS Corn, soybean meal Domestic Yes Yes 

Ranathunga et al. 

(2010) 
2010 United States DDGS Dairy cattle, soyhulls, corn Domestic Yes Yes 

Rodriguez et al. 

(2010) 
2010 USA DDGS Ethanol Domestic Yes Yes 

Strydom et al. 

(2010) 
2010 South Africa DDGS Livestock, maize Export Yes Yes 

Strydom et al. 

(2010) 
2010 South Africa DDGS Livestock, ethanol, maize Export Yes Yes 

Taheripour et al. 

(2010) 
2010 Global DDGS Livestock 

Domestic & 

Export 
Yes Yes 

Bremer et al. 

(2011) 
2011 United States 

DDGS, 

MWDG, WDG 

Corn, dairy cattle, beef 

cattle, hogs 
Domestic Yes Yes 

Ferris (2011) 2011 USA DDGS Biodiesel Domestic Yes Yes 
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Table 1. Continued 

Study Year Published Location 
Products 

Examined 
Product 

Domestic or 

Export 

Market 

Peer 

Reviewed 

(Y/N) 

Economic/Cost-

Benefit Analysis 

Wang et al. 

(2011) 
2011 USA DDGS Ethanol Domestic Yes Yes 

Wood et al. 

(2011) 
2011 United States DDGS, WDG Ethanol Domestic Yes Yes 

Abou-Zied et al. 

(2012) 
2012 Egypt DDGS Tilapia, fish meal Export Yes Yes 

Harris et al. 

(2012) 
2012 USA DDGS 

Hogs, soybean meal, pea 

chips 
Domestic Yes Yes 

Jewison and 

Gale (2012) 
2012 

USA Export to 

China 

DDGS, 

MWDG, WDG 
Livestock producers Export No No 

Masa'deh et al. 

(2012) 
2012 USA DDGS Pullets, soybean meal, corn Domestic Yes Yes 

Skinner et al. 

(2012) 
2012 USA DDGS Corn, hogs Domestic Yes Yes 

Stockton and 

Stalker (2012) 
2012 USA DDGS Cattle Domestic No No 

Tejada (2012) 2012 USA DDGS 
Corn, sorghum, soybean 

meal 
Domestic No No 

Wood et al. 

(2012) 
2012 United States DDGS, WDG Ethanol Domestic Yes Yes 

Wright et al. 

(2012) 
2012 USA DDGS Cattle Domestic Yes Yes 

Youssef et al. 

(2012) 
2012 Egypt DDGS Rabbits Export Yes Yes 

Conley (2013) 2013 USA DDGS Ethanol, corn Domestic Yes Yes 

Ferris (2013) 2013 USA DDGS Grains, oilseeds, biodiesel Domestic Yes Yes 

Irwin and Good 

(2013) 
2013 USA 

DDGS, 

MWDG, WDG 
Corn Domestic No No 

Srinivasan et al. 

(2013) 
2013 United States DDGS Broilers Domestic Yes Yes 
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Table 1. Continued 

Study Year Published Location 
Products 

Examined 
Product 

Domestic or 

Export 

Market 

Peer 

Reviewed 

(Y/N) 

Economic/Cost-

Benefit Analysis 

Coble et al. 

(2014) 
2014 USA DDGS Hogs Domestic Yes Yes 

El-Rahman et al. 

(2014) 
2014 Egypt DDGS 

Beef cattle, black cumin 

seed 
Export Yes Yes 

Kubas and 

Firman (2014) 
2014 USA 

DDGS, 

low/high fat 

DDGS 

Broilers, yellow grease Domestic Yes Yes 

Suh and Moss 

(2014) 
2014 USA DDGS Livestock Domestic Yes Yes 

Weseen et al. 

(2014) 
2014 Canada DDGS, WDG Corn, ethanol Export Yes Yes 

Zhang and 

Rosentrater 

(2014) 

2014 United States DDGS DDGS nutrients Domestic Yes Yes 

El-Hack et al. 

(2015) 
2015 Egypt DDGS Laying hens Export Yes Yes 

Etienne and 

Hoffman (2015) 
2015 USA DDGS Corn, soybean meal Domestic Yes Yes 

Good (2015) 2015 USA Export DDGS Corn, ethanol Export No No 

Irwin and Good 

(2015) 
2015 USA 

DDGS, Corn 

Oil 
Ethanol Domestic No No 

Johnson et al. 

(2015) 
2015 USA DDGS Corn, soybean meal Domestic Yes Yes 

Kubas and 

Firman (2015) 
2015 USA 

DDGS, 

low/high fat 

DDGS 

Turkey, yellow grease Domestic Yes Yes 

Nunez et al. 

(2015) 
2015 United States DDGS Beef cattle, corn Domestic Yes Yes 

Yildiz et al. 

(2015) 
2015 Bulgaria DDGS 

Dairy cattle, SFM, rapeseed 

meal, soybean meal 
Export Yes Yes 

Good (2016) 2016 USA Export DDGS Ethanol Export No No 
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Table 1. Continued 

Study Year Published Location 
Products 

Examined 
Product 

Domestic or 

Export 

Market 

Peer 

Reviewed 

(Y/N) 

Economic/Cost-

Benefit Analysis 

Good (2016) 2016 USA Export DDGS Corn, ethanol Export No No 

Lowe II et al. 

(2016) 
2016 United States DDGS, WDG 

Dairy cattle, grasses, corn 

silage 
Domestic Yes Yes 

Rodriguez et al. 

(2016) 
2016 Cuba DDGS Laying hens, soybean Export Yes Yes 

Sesmero et al. 

(2016) 
2016 USA DDGS, MWDG Ethanol Domestic Yes Yes 

Suh and Moss 

(2016) 
2016 USA DDGS, WDG Livestock, poultry Domestic Yes Yes 

Bekkerman and 

Tejada (2017) 
2017 USA DDGS Ethanol, corn Domestic Yes Yes 

DeOliveira et al. 

(2017) 
2017 USA Export DDGS Ethanol, corn Export No No 

Etienne et al. 

(2017) 
2017 USA DDGS Corn, soybean meal Domestic Yes Yes 

Sajjan et al. 

(2017) 
2017 India DDGS Goats, soybean meal Export Yes Yes 

Suh and Moss 

(2017) 
2017 USA DDGS Corn, cattle, chicken, pork Domestic Yes Yes 

Alvaran et al. 

(2018) 
2018 Philippines DDGS Dairy buffaloes Export Yes Yes 

De Matteis et al. 

(2018) 
2018 Argentina DDGS Hogs, corn Export Yes Yes 

De Matteis et al. 

(2018) 
2018 USA Export 

DDGS, 

MWDG, WDG 

Corn, soybean meal, 

livestock 
Export Yes Yes 

Hubbs (2018) 2018 USA Export DDGS Corn, ethanol Export No No 

Paine et al. 

(2018) 
2018 USA DDGS Goats, soybean meal Domestic Yes Yes 

Springer and 

Schmitt (2018) 
2018 United States DDGS Ethanol Domestic Yes Yes 
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Table 1. Continued 

Study Year Published Location 
Products 

Examined 
Product 

Domestic or 

Export 

Market 

Peer 

Reviewed 

(Y/N) 

Economic/Cost-

Benefit Analysis 

Changan et al. 

(2019) 
2019 India WDG Dairy cattle Export Yes Yes 

Dahlgran and 

Gupta (2019) 
2019 USA DDGS Corn, ethanol Domestic Yes Yes 

DeRose et al. 

(2019) 
2019 United States WDG Renewable fuels Domestic Yes Yes 

Diogenes et al. 

(2019) 
2019 Portugal DDGS 

Gilthead seabream, soybean 

meal 
Export Yes Yes 

Olson and 

Capehart (2019) 
2019 USA DDGS, MWDG Livestock Domestic No No 

Allam et al. 

(2020) 
2020 Egypt DDGS Catfish, fish meal Export Yes Yes 

El-Deek et al. 

(2020) 
2020 Egypt DDGS 

Broilers, sunflower meal, 

corn gluten meal, soybean 

meal 

Export Yes Yes 

Gertner and 

Dennis (2020) 
2020 USA DDGS Cattle, meat, oil Domestic No No 

Gertner and 

Dennis (2020) 
2020 USA DDGS 

Ethanol, feed substitutes, 

cattle 
Domestic No No 

O'Brien et al. 

(2020) 
2020 United States DDGS Corn stover, industrial gas Domestic Yes Yes 

Oliveira et al. 

(2020) 
2020 United States DDGS Aquaculture, soybean meal Domestic Yes Yes 

Troyer et al. 

(2020) 
2020 United States DDGS 

Beef cattle, field peas, 

wheatgrass 
Domestic Yes Yes 

Barnharst et al. 

(2021) 
2021 United States WDG 

Mucor indicus, Rhizopus 

oryzae 
Domestic Yes Yes 

Corassa et al. 

(2021) 
2021 Brazil DDGS Hogs Export Yes Yes 

Kurambhatti et 

al. (2021) 
2021 United States DDGS Hogs Domestic Yes Yes 
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Table 1. Continued 

Study Year Published Location 
Products 

Examined 
Product 

Domestic or 

Export 

Market 

Peer 

Reviewed 

(Y/N) 

Economic/Cost-

Benefit Analysis 

Sandor et al. 

(2021) 
2021 Hungary DDGS Carp Export Yes Yes 
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CHAPTER 2 - THE IMPACT OF COVID-19 ON THE U.S. DISTILLERS’ 

GRAINS MARKET 

 

Abstract: 

Distillers’ grains play an important role in both maintaining ethanol plant profit margins 

and providing affordable, nutritious feed to livestock producers. The arrival of COVID-

19 to the United States introduced a series of shocks to distillers’ grains markets. This 

paper estimates the magnitudes of and relationships between distillers’ grains price 

changes in response to the COVID-19 market shock using panel fixed effect models. The 

price fluctuations indicate that livestock producers favored the flexibility provided by 

dried distillers’ grains (DDGS) and, therefore, drove those prices upward more 

significantly than modified wet distillers’ grains (MDGS) and wet distillers’ grains 

(WDGS) prices. Modified and wet distillers’ grains price responses, though, were more 

pronounced in areas whose livestock production industries demanded fixed feeding 

schedules, such as the dairy industry in Wisconsin. The disparate price responses by grain 

type and location offer some insight into how markets may respond in the event of future 

market shocks. Consequently, the results from this analysis can assist both ethanol plants 

and livestock producers in better preparing for future market shocks. 
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Introduction 

Distillers’ grains play an important role in both maintaining ethanol plant profit margins 

and providing affordable, nutritious feed to livestock feedlots. Distillers’ grains are 

produced as necessary by-products of the fuel ethanol production process, and therefore 

rely on an input grain – most commonly corn in the United States – and fuel ethanol in 

their production (USDA ERS 2021). As a result, the primary tenets of the supply 

structure in the distillers’ grains market In the United States are fuel ethanol and corn, 

while livestock operations in need of feed products comprise the majority of distillers’ 

grains demand structure.  

 Since distillers’ grains are by-products to ethanol production, they rely on corn 

availability and prices and compete with corn as imperfect substitutes in livestock feed 

rations. Distillers’ grains also compete with other, non-corn substitute feed products in 

the market, such as soybean meal. The quantity of distillers’ grains demanded is, 

therefore, also influenced by the prices of those substitute feeds. Because of this 

relationship to the corn, ethanol, and livestock feed markets, distillers’ grains are 

uniquely susceptible to market shocks.  

The purpose of this paper is to explore the distillers’ grains price response to the 

COVID-19 shock in the United States, which introduced a series of unique market 

situations that allowed for disparate responses by location and type of distillers’ grain. To 

our knowledge, no research has yet quantified the price impacts of the COVID-19 market 

shock to the distillers’ grains market. To assist academic and industry participants in 

processing the impacts of COVID-19 on distillers’ grains markets, this paper conducts an 

analysis of the price impacts of COVID-19 supply and demand shocks in the distillers’ 
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grains industry. Results show that price responses to the COVID-19 shock varied by 

location and type of grain and may be attributed, in part, to the unique market structures 

of each state. Longer-term implications of the market shocks to the distillers’ grains 

industry introduced by the pandemic are also discussed.  

Background on Distillers’ Grains 

Distillers’ grains are produced via the dry-grind ethanol production process. The 

aim of the dry-grind process is to ferment the highest possible percentage of the corn 

kernel. The starch in the kernel is converted to ethanol and carbon dioxide, while the 

remaining protein, lipids, fiber, minerals, and vitamins are converted into co-products – 

the most common of which are distillers’ grains (Liu 2011). 

Wet Distillers’ Grains (WDG) are the distiller grains that are left over after the 

dry-grind process and consist of approximately 32.5% dry matter. Ethanol plants often re-

add solubles (syrup) to WDG to create wet distillers’ grains with solubles (WDGS) and 

can either sell the resulting grains directly as WDGS or create other distillers’ grains 

through drying WDGS. Modified Wet Distillers’ Grains with Solubles (MDGS) have 

48.8% dry matter and are created by drying WDGS once and Dried Distillers’ Grains 

with Solubles (DDGS), with 90% dry matter, are created by drying WDGS twice 

(Stewart and Duggin 2010).  

Ethanol plants sell these different types of distillers’ grains to livestock feeding 

operations, since their high protein content accelerates weight gain (Halfman 2020) and 

offers other favorable nutritional properties.1 While both MDGS and WDGS offer 

 
1 For example, using distillers’ grains in cattle feeding rations allows operators to use a lower quality forage 

such as wheat or corn stalks in the ration compared to a corn-based diet that requires a higher quality forage 

such as grass hay or alfalfa.  
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slightly higher feeding values than DDGS due to elevated digestibility from higher 

moisture contents, their moisture contents and weights make them difficult to ship 

beyond a limited radius (Nuttelman et al. 2011). As a result, WDGS and MDGS are 

purchased by producers generally within a 100-mile radius of an ethanol plant, whereas 

DDGS, the most common form of distillers’ grains nationally, can be shipped practically 

anywhere domestically or internationally (DeOliveira et al. 2017). Each type of distillers’ 

grain offers desirable nutritional properties compared to corn due to lower starch content, 

higher total digestible nutrients, and higher crude protein content (Jenkins 2016). Thus, 

one tradeoff for livestock feeders is the relative price, on a dry matter basis, of distillers’ 

grains to corn. In markets for which distillers’ grains are primarily a protein feed 

substitute, such as the hog, poultry, and dairy markets, livestock producers may also 

account for the relative prices of distillers’ grains versus soybean meal or other high-

protein feeds. For ease of comparison between products and location, those other possible 

feed substitutes are not accounted for in this analysis. Instead, the focus remains on the 

relationship between corn and distillers’ grains on a dry-matter basis.  

Livestock producer demand for distillers’ grains has helped ethanol plants market 

distillers’ grains as co-products rather than as by-products. This has assisted in forming a 

market for distillers’ grains that is mostly separate from non-production-related aspects of 

the ethanol sector (Morgan 2020). This strategy of building a standalone market for 

distillers’ grains has largely been successful. Low crude oil prices and relatively steady 

corn prices over the past half decade made for a thin and volatile ethanol profit margin. 

According to estimates from Iowa State University’s ethanol plant profitability model, 

total distillers’ grains’ percent of plant profit has increased from approximately 10% to 
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27% in the past 15 years (Hofstrand 2021). Thus, distillers’ grains and other co-products 

of ethanol production have increased ethanol plant profitability, maintained strong plant 

cash flows2, and created additional incentives for plants to produce ethanol (Irwin 2020).  

COVID-19 and the Distillers’ Grains Market  

When the first COVID-19 case was officially detected in the United States, the resulting 

government and industry responses led to shocks in the distillers’ grains industry. Stay-

at-home orders reduced consumer travel, and demand for gasoline and fuel ethanol fell, 

causing some ethanol plants to temporarily reduce capacity and/or idle (Snodgrass 2020). 

Since distillers’ grains are co-products of ethanol production, diminished ethanol 

production decreased the availability of distillers’ grains, subsequently raising the price 

of distillers’ grains. 

 From a distillers’ grains demand perspective, homebound consumers demanded 

higher levels of grocery store food while greatly reducing their food service purchases 

(Dong and Zeballos 2021). The influx of at-home food demand caused a series of rapidly 

changing supply and demand conditions along the livestock and meat complex. Meat and 

livestock products destined for restaurants were repacked and reprocessed for 

compatibility in grocery stores (Kang and Bunge 2020). Meat packing plants continued to 

try to process harvest-ready animals, but a growing number of positive cases among plant 

workers forced idling, reduced plant utilizations, and – in some cases – led to temporary 

closures (Gallagher 2020). This created a transitory supply surplus situation for livestock 

 
2 Over the past decade, ethanol plants have developed new value-added products such as pelletized 

distillers’ grains, de-oiled distillers’ grains, and corn oil. This has been done to create additional revenue 

streams and to protect profit margins from adverse price trends in the ethanol market (Voegele 2020). 
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producers while creating a meat shortage for retailers. Wholesale cutout prices rose, and 

livestock cash prices dropped, forcing some producers to sell livestock far below 

breakeven prices. These hiccups created uncertainty in the livestock supply chain, which 

typically relies heavily on distillers’ grains to accelerate weight gain. Many producers 

responded by slowing their herds’ weight gain by – in some cases – limiting the use of 

distillers’ grains in animal feeding diets (Gertner and Dennis, 2020). 

Despite a demand structure for distillers’ grains that is largely separate from 

ethanol’s, the production of distillers’ grains directly depends on the amount of ethanol 

produced. While the closure of meatpacking plants most directly impacted the demand 

for distillers’ grains, their effect on distillers’ grains production was far outweighed by 

the effect of unprecedentedly low demand for gasoline. Meatpacking plants closed 

sporadically and for only a few weeks at a time, while global gasoline demand remained 

low for months (Domonoske 2020). As is evident in Figure 1,the impact of ethanol 

production slowdowns on co-product production was stark: From March to May of 2020, 

the production of types of distillers’ grains experienced unprecedented reductions. Since 

data regarding monthly distillers’ grains production by state are not publicly available, 

Figure 1 estimates distillers’ grains production in some of the nation’s top ethanol-

producing states by multiplying national distillers’ grains production by each state’s 

percentage of total ethanol operating production in 2018 (Nebraska Energy Office 2018). 

During the period initial COVID-19 market shock, 73 ethanol plants in the United States 

idled and 71 more significantly reduced operations to deal with the impact of COVID-19 

on ethanol demand (Snodgrass 2020).  
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Prices for both ethanol and distillers’ grains have made significant recoveries 

since the initial market shocks in the early days of the pandemic. Renewed demand for 

travel, re-opened restaurants and meatpacking plants, vaccines, and a general adjustment 

to a world with COVID-19 have contributed to this recovery in distillers’ grains prices. 

The markets in which specific ethanol plants operate also influenced the strength of price 

recoveries for ethanol and distillers’ grains. Still, the mechanisms behind the price 

movements in the distillers’ grains industry have not, to our knowledge, been examined 

via economic analysis since the arrival of COVID-19 in the United States.  

A model was developed that explores the price impacts of COVID-19 on 

distillers’ grains markets in various states. These results are then analyzed by type of 

distillers’ grain, relationship between distillers’ grains, and location.  

Data 

Weekly prices for corn, DDGS, MDGS, and WDGS in Iowa, Nebraska, South Dakota, 

and Wisconsin were obtained from the Livestock Marketing Information Center (LMIC). 

These data were reported by USDA’s Agricultural Marketing service and compiled by 

LMIC. The distillers’ grains prices represent an aggregation of weekly spot bids that 

ethanol plants reported in dollars per ton. These bids were reported as free on board 

(FOB) origin, which means that the buyer is at risk once the seller ships the product. The 

corn prices represent daily US #2 spot bids at ethanol plants and are reported in dollars 

per bushel. Volume estimates were not available. The report dates are restricted to 

between January 2018 to August 2021 to limit periods where prices are not reported. 

Missing prices are filled in with a linear-interpolation method. The lockdown measures to 

control the spread of COVID-19 began to occur between February and May 2020 and 



59 

 

 

began to be lifted at various times during the summer and fall of 2020. The data provides 

significant pre-Covid, Covid, and post-Covid periods, allowing for proper identification 

of any significant price changes within and between each time frame.   

The states Iowa, Nebraska, South Dakota, and Wisconsin were strategically 

chosen. First, ethanol production is not ubiquitous in every state in the US. This lack of 

production – or lower levels of production – results in some states having sporadic 

reporting of prices by USDA-AMS (compiled by LMIC) across all three distillers’ grains. 

The objective of this paper is to examine the impact of COVID-19 on each type of 

distillers’ grains, rather than just DDGS. This created a subset of states containing, in 

part, Iowa, Nebraska, South Dakota, and Wisconsin. Together, these four states comprise 

roughly 50% of the nation’s ethanol nameplate capacity and operating production, 

meaning they are some of the primary players in the domestic distillers’ grains market 

(NEO 2018).  

 Iowa, Nebraska, South Dakota, and Wisconsin are also all located in the Upper 

Midwest – the center of domestic ethanol and distillers’ grains production – while each 

maintains unique demand structures and livestock industries. These unique demand 

structures can be used to make an inference about how the different livestock industries 

were affected by adverse price movements to provide context to the varying price 

responses by type of grain and location. Livestock production in Iowa, Nebraska, South 

Dakota, and Wisconsin is dominated by different livestock sectors. In Iowa, the livestock 

and livestock products industries in the state generated over $14 billion in direct cash 

receipts in 2019. During that year, cattle production, hog production, and dairy 

production contributed roughly 28%, 55%, and 7% of the total livestock-related cash 
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receipts in the state, respectively. Nebraska’s livestock and livestock products industries 

generated over $11 billion in direct cash receipts in 2019, with cattle, hog, and dairy 

production contributing to 89%, 7%, and 2% of those receipts. South Dakota’s livestock 

production and animal products industries received over $4 billion in direct cash receipts 

in 2019, of which 67%, 14%, and 12% were comprised by cattle, hog, and dairy 

production. Finally, Wisconsin’s livestock and livestock products industries generated 

over $7 billion in direct cash receipts in 2019, with cattle, hog, and dairy production 

contributing to 21%, 2%, and 72% of those receipts, respectively (Economic Research 

Service 2020).  

Several modifications were made to the data to reflect current livestock feeding 

decisions and allow for appropriate price comparisons. First, distillers’ prices were 

reported in dollars per ton, and corn prices were reported in dollars per bushel. To 

remove these different units of measurement, all prices were converted to a dry matter 

basis. Second, livestock producers – especially beef cattle producers – make decisions 

about rations based, in part, on the relative prices of corn and distillers’ grains. As 

distillers’ grains become more expensive relative to corn, livestock producers substitute 

away from distillers’ grains and toward corn. To capture these movements 

simultaneously, all dry-matter prices were converted to percent-corn, dry matter prices. 

Thus, the dependent variable of interest is the price ratio of distillers’ grains dry matter to 

corn dry matter by location, not the nominal price levels.  

Figure 2 plots distillers’ grains prices as a percentage of corn prices from January 

2018 to August 2021. As is evident, prices for dried, modified, and wet distillers’ grains 

as a percent of corn all increased simultaneously in the early part of 2020, when COVID-
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19 first arrived in the United States and created the series of market responses discussed 

earlier. Although the magnitude of the response varied by type of grain and location, all 

types of distillers’ grains briefly became more expensive relative to corn. The exact 

nature of these responses will be later discussed. 

 Most ethanol plants offer at least two types of distillers’ grains to purchase. 

Livestock producers can choose between distillers’ grains by adjusting their feeding 

rations given price differences between distillers’ grains relative to corn. Figure 3 plots 

price ratio differences between distillers’ grains by location. Unlike Figure 2, the 

responses to COVID-19 are less clear in the differences between percent-corn grain 

prices than the percent-corn grain prices themselves. In general, modified wet distillers’ 

grains briefly became less expensive relative to wet distillers’ grains across all locations, 

while dried distillers’ grains became more expensive relative to modified wet distillers’ 

grains. The differences between dried and wet distillers’ prices varied by location, and 

locations took distinct amounts of time to return to baseline relationships. Possible 

explanations for these responses are discussed in the results section.  

Empirical Strategy 

The optimal model was determined to be a panel fixed effects model in which the 

percent-corn price of each type of distillers’ grains was regressed on a COVID-19 

dummy variable that was specific to each state’s optimal COVID-19 start and end date. 

State and month-year-trend variables were the fixed effects variables, and the error term 

was clustered by state. Given that the start and end dates were similar across states for 

percent-corn prices, as shown in Table 1, the start and end dates were not forced to be the 

same across all states or within each type of distillers’ grain. Instead, the model was 
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allowed to self-select optimal start and end dates according to the highest adjusted R2 

value.  

The basic empirical specification to estimate the impact of COVID-19 measures 

on the corn-to-distillers’ grains price ratio is as follows: 

1) 𝑌𝑑𝑗𝑤𝑦 = 𝛽0 + 𝛽1𝐶𝑂𝑉𝐼𝐷𝑑𝑗𝑡 + 𝜆𝑗 + 𝜃𝑚𝑦𝑡 + 𝜀 

For each distillers’ grain 𝑑 in state 𝑗 in week 𝑤 and year 𝑡, the coefficient of interest, 𝛽1, 

estimates the within distillers’ grain price impact of COVID by comparing weeks with 

and without COVID impacts. The variable 𝐶𝑂𝑉𝐼𝐷𝑑𝑗𝑞𝑦  equals 1 if the corn-distillers’ 

price ratio occurs in week 𝑡 identified as having an abnormally high price ratio and 0 

otherwise. The general specification also includes state dummies, 𝜆𝑗, and month-year-

trend dummies, 𝜃𝑚𝑦𝑡. The state dummies are omitted in the state-specific models. The 

error term, 𝜀, is clustered by state in the general model specifications and is not clustered 

in the state-specific models.  

The panel fixed effect empirical specification used to estimate the impact of 

COVID-19 measures on the corn-to-distillers’ grains price spread ratio is identical: 

2) 𝑌𝑑𝑗𝑤𝑦 = 𝛽0 + 𝛽1𝐶𝑂𝑉𝐼𝐷𝑑𝑗𝑡 + 𝜆𝑗 + 𝜃𝑚𝑦𝑡 + 𝜀 

where, in this case, 𝑑 refers to the type of distillers’ grains price spread and the 

coefficient of interest, 𝛽1, estimates the within distillers’ grain price spread impact of 

COVID by comparing weeks with and without COVID impacts.3 

Identification of Pandemic Start and End Dates 

 
3 The sample is limited to price ratios after 2017 to eliminate frequent weeks where prices were not 

reported for distillers’ grain prices in select states. 
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To answer the question of when the initial COVID-19 impact started and ended in the 

distillers’ grains market, the models shown in Appendix Tables 1-3 were specified, and 

the data was iterated through each model by type of distillers’ grain and distillers’ grain 

spread. Various start and end dates were also iterated through the models, both increasing 

by increments of one week in each subsequent loop. The best-fitting models were 

determined by the highest adjusted R2 value for each location and distillers’ grains. 

Adjusted R2 values can be found in Table 1. Consequently, the optimal start and end 

dates – along with the optimal model specification – were determined by the models’ 

performances over the course of the loops, rather than by an arbitrary selection process. 

The average start date of March 14, 2020 and end date of May 16, 2020 selected by the 

individual percent-corn distillers’ grains models aligns with the general understanding of 

the initial COVID-19 shock. Mid-March to mid-May 2020 saw 42 US states and 

territories issue mandatory stay-at-home orders, which led to many of the market impacts 

discussed earlier in this paper, such as reduced gasoline demand, ethanol plant closures 

and slowdowns, processing plant issues, and limited food service demand (Moreland et. 

al, 2020).  

The same model specification (found in the Empirical Model section above and 

specification (4) in Appendix Tables 1-3) produced the highest adjusted R2 for each 

measure, but the optimal start and end dates vary by type of distillers’ grains and 

location. The results of these optimal models can be found in Tables 2-4.  

Results 

Price Impacts by Type of Distillers’ Grains 
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Table 2 reports the percent-corn price impacts of the COVID-19 shock. The value of the 

COVID-19 coefficient is the average percentage increase of distillers’ grains percent-corn 

prices during the COVID-19 impact from pre- and post-shock levels. In decreasing order 

of magnitude, the COVID-19 shock caused the DDGS, WDGS, and MDGS percent-corn 

prices to rise by 35%, 30%, and 24% respectively. All values were significant at the 95% 

confidence level. 

Several reasons help explain the different price responses by type of distillers’ 

grain. One explanation is the nature of the markets for each type of distillers’ grain. Dried 

distillers’ grains can be shipped anywhere around the world because of their low moisture 

content (Iowa State University 2020). Although the DDGS demand structure offers more 

flexibility in distributing price impacts, the supply structure was significantly disrupted 

during COVID. For example, while DDGS is more easily shipped and stored than MDGS 

or WDGS, the global logistics of finding available containers and trucks proved 

extremely difficult (Twinn et. al, 2020). Additionally, drying distillers’ grains costs 

money, and ethanol plants, whose margins were squeezed during the initial shock, may 

have chosen to direct that money elsewhere and, instead, sell MDGS or WDGS.  

Modified and wet distillers’ grains can only be affordably shipped within a certain 

radius of an ethanol plant, usually about 100 miles for MDGS and 50 miles for WDGS 

(Dooley and Martens 2008). Helping boost their prices during market uncertainty are the 

superior nutritional qualities provided by their higher moisture contents (Duckworth 

2020). Wet distillers’ grain’s price response was likely elevated in comparison to 

MDGS’s due to the same root cause of DDG’s price increase: If ethanol plants were, in 

fact, reducing the amount of distillers’ grains going through the dryer, MDGS would 
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have been a natural middle ground for ethanol plants to produce and feedlots to demand. 

They offer more flexibility than WDGS in shipping and storing, and they require less 

drying than DDGS. This likely led to a relative abundance of MDGS in the marketplace 

and kept price reactions muted when compared to DDGS and WDGS prices. Since 

WDGS can only be shipped about 50 miles from an ethanol plant, they often enjoy a 

stable demand from local farms and feedlots. Prices, therefore, were likely supported by 

the continuation of that demand paired with reduced availability due to production 

slowdowns.  

Price Impacts by Type of Distillers’ Grains and Location 

Table 3 displays the magnitude of the COVID-19 percent-corn prices shock by type of 

distillers’ grain and state. The four states examined were Iowa, Nebraska, South Dakota, 

and Wisconsin. The magnitude of impacts varied both (1) across states but within the 

same distillers’ grain type and (2) across distillers’ grain type but within the same state. 

For example, Nebraska DDGS prices as a percent of corn were, on average, 44% higher 

during the COVID shock, while Wisconsin DDGS percent-corn prices were only 21% 

higher. Conversely, Wisconsin WDGS prices as a percent of corn averaged 35% higher 

than non-COVID shock periods, while Nebraska percent-corn WDGS prices were only 

18% above average non-COVID values. All impacts discussed in this section were found 

to be significant at the 99% confidence level. 

Total availability of distillers’ grains in each state – measured by distillers’ grains 

production – helps to account for some of the variation within types of distillers’ grains. 

Another likely explanation for the diverse responses to the COVID-19 impact on 
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distillers’ grains markets relates to the nature of the dominant livestock industries in each 

state and how each industry uses distillers’ grains in their operations.  

The dominant livestock industries in each state are relevant because they affect 

how producers around regional ethanol plants respond to distillers’ grains price changes. 

Beef cattle, dairy cattle, and hog production occur on tight schedules from birth to 

slaughter, but beef cattle producers, especially, have some power to influence the pace of 

those schedules by either slowing or accelerating weight gain according to market 

conditions (Clark 2019). Dairy producers, on the other hand, have little say over whether 

their cattle produce milk; biologically, milk production occurs regardless of market 

conditions (Minson 1990).  

These relationships are apparent in the varying price reactions within distillers’ 

grain type and between states. The states with the highest proportions of beef cattle 

production, Nebraska and South Dakota, experienced the largest DDGS price increases as 

a percent of corn during the initial COVID-19 shock. Larger impacts on dried products in 

beef cattle-heavy states likely occurred because beef cattle producers have some measure 

of flexibility in their feeding rations. When plants began to close or idle and producers 

anticipated higher prices on the horizon, dried distillers’ products were in highest demand 

because producers had the ability to store the feed beyond the purchase date. Since 

livestock operations within a roughly 100-mile radius can fairly easily switch between 

DDGS, MDGS, and WDGS, the flexibility provided by DDGS was likely attractive to 

those operations. The influx of demand for product to use not only in the present period 

but for a few weeks or months in the future (as a hedge against the uncertainty the market 

was facing) likely drove prices upward. This ability was unique to beef cattle producers 
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because the production timeframe can be adjusted more easily than in hog or dairy 

production, where producers must follow rigid production cycles. The relative price of 

soybean meal versus distillers’ grains would have also played a larger role in hog and 

dairy operations than beef cattle operations.  

In non-beef-cattle-centric states, on the other hand, producers enjoyed less 

flexibility in manipulating their animals’ feed rations. Dairy producers, in particular, were 

bound by biology to feed their animals a consistent, stable ration regardless of market 

conditions. This issue of steady demand for feed inputs even during poor market 

conditions was evidenced by the milk dumping seen in the early days of the COVID-19 

pandemic. Despite nearly nonexistent demand for dairy producers’ end products, their 

dairy cattle kept producing milk (Schneider 2020). Wisconsin, which is heavily 

dominated by dairy production, revealed dairy producers’ need for a steady feed source in 

the MDGS and WDGS percent-corn price reactions during the COVID-19 shock, where 

Wisconsin experienced some of the largest increases. Since dairy producers require a 

dependable feed source, they have long served as a convenient outlet for the difficult-to-

ship and difficult-to-store MDGS and WDGS co-products of local ethanol plants. When 

ethanol production began to falter, the dairy cows still required their usual MDGS and 

WDGS feedstuffs, so producers were forced to pay higher prices to feed their animals. 

Since few, if any, hog producers feed MDGS or WDGS, the relative increase in those 

prices in Iowa was likely driven by other livestock industries or by a shortage of those 

products relative to DDGS. 

 The livestock industries in each state played an incomplete role in determining the 

price impacts of the COVID-19 shock, but the unique dynamics of each livestock type 
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help to place the price shocks in real-world context. Other factors, such as the extent to 

which ethanol plants idled or closed in each state, also impacted price reactions, but the 

lack of public, state-level data makes the exact effects of those shocks difficult to 

quantify.  

Price Spread Impacts by Type of Distillers’ Grains 

Only one of the non-state specific price spread relationships using optimal dates – DDG-

WDGS – experienced a significant impact during the COVID-19 shock. On average, the 

DDGS and WDGS price spread as a percent of corn was about 19.3% greater than 

average during the COVID-19 shock at the 95% confidence level. DDGS percent-corn 

prices were elevated compared to WDGS percent-corn prices likely due to the flexibility 

offered by DDGS in a period when feedlots and producers faced significant uncertainty 

about the markets for their animals. With food service sales significantly reduced and 

processing plants around the country limiting capacity and temporarily idling, purchasing 

DDGS allowed producers to better adapt to changing situations than WDGS, which must 

be fed in a short time frame. As will be explored in the next section, though, whether this 

dynamic can be attributed to COVID-19 can be debated, given the significant amount of 

noise in the data far beyond what is generally understood as the initial COVID-19 impact.  

Price Spread Impacts by Type of Distillers’ Grains and Location 

The price spread impacts by state and type of distillers’ grains can be found in Table 4, 

which includes results from the models that solved for the optimal COVID-19 dates and 

the models that imposed the start and end dates on the models. As can be seen in Table 1, 

the optimal dates selected by the models do not consistently align with the dates selection 

by the percent-corn price models. Figure 3 helps to explain this discrepancy, as a 
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significant amount of noise extends beyond what is generally understood as the initial 

COVID-19 shock. Consequently, start and end dates based on the average optimal start 

and end dates from the individual, percent-corn distillers’ grains models were imposed. 

Those dates were March 14, 2020 and May 16, 2020, respectively. This allowed for a 

more straightforward examination of the behaviors of distillers’ grains price spreads 

during the initial COVID-19 shock. 

Within each type of distillers’ grain price spread, general trends are more difficult to 

identify. For the DDG-MDGS price spread, all impacts are significant at the 90% 

confidence level, and all the impacts are positive. For the DDG-WDGS price spread, only 

the Nebraska response is significant, and it is positive and significant at the 99% 

confidence level. Finally, three of the four MDGS-WDGS price spread responses are 

significant, all at the 95% confidence level or higher, with Iowa and South Dakota’s 

responses negative and Nebraska’s response positive. The positive DDG-MDGS and 

DDG-WDGS relationship was addressed for DDG-WDGS in the section above and holds 

here, as well. The negative MDGS-WDGS relationship in Iowa and South Dakota and 

positive MDGS-WDGS relationship in Nebraska indicates that WDGS were preferred to 

MDGS in Iowa and South Dakota, but MDGS was preferred to WDGS in Nebraska 

during the COVID-19 shock. Modified distillers’ grains were likely preferred to WDGS 

in Nebraska during the initial shock due to the large number of cattle feedlots in the state 

who wanted some level of flexibility in storing their feedstuffs while they responded to 

market conditions. Modified distillers’ grains offered slightly more flexibility than 

WDGS in storage and transportation, which helps to explain the relationship. Plus, since 

WDGS are generally more common in the marketplace than MDGS, the limited 
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availability of MDGS relative to WDGS at a time when some of the traits of MDGS were 

desired also likely drove MDGS higher relative to WDGS prices.  

Robustness Checks 

In this section, possible factors that could confound the estimates resulting from the 

model are explored, such as endogeneity or issues in the error term. Several alternative 

models are tested to demonstrate the robustness of the main effect.  

Endogeneity occurs when, for whatever reason, the error term is correlated with 

the independent variable in an econometric model. Possible causes of endogeneity are 

selection bias, reverse causality, measurement error, or omitted variables. The existence 

of endogenous variables can make the results of a model incorrect and/or untrustworthy 

and limit the robustness of the model. In this analysis, given the nature of the research 

question and data, the most likely causes of endogeneity would be omitted variables or 

measurement error. Potential omitted variables could include month, quarter, week, or 

year fixed effect variables or quarter-year trend variables. Results from models including 

these variables can be found in Tables A1 and A2. As is evident, these models more 

poorly represented the data according to the 𝑅2 and adjusted 𝑅2 values, indicating those 

variables do not belong in the actual model.  

Another possible cause of endogeneity would be measurement error. 

Measurement error occurs when there is inaccuracy in the values observed as opposed to 

the realized values in the market. In this case, measurement error would occur if USDA 

inaccurately measured and reported distillers’ grains and/or corn prices, or if LMIC 

incorrectly aggregated those prices. Whether or not this may be the case is beyond the 
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scope of this paper and, if true, would complicate the results of many prior research 

projects. 

 The results in Tables A1 and A2 indicate that the models selected for this analysis 

best represented the data of the available models. Consequently, there are no clear 

confounding factors that would cause one to distrust the models used or the results of this 

analysis.  

Post-Pandemic Implications  

Long-term Impacts on the Distillers’ Grains Market 

The purpose of this section is to provide examples of shocks in which the analysis used in 

this paper could be applied to quantify the impacts of non-pandemic market disturbances. 

Both supply and demand shock scenarios will be introduced, and potential implications 

of those shocks are discussed. Considering these scenarios reveals that the impacts 

introduced by the pandemic are not limited to a once-in-a-century virus. Instead, 

producers who rely heavily on distillers’ grains in their livestock feed rations regularly 

expose themselves to these potential risks. To better prepare for the future, producers 

may, consequently, consider changing their relationship to distillers’ grains in the coming 

years.  

One potential shock to the distillers’ grains industry is a weather-related 

disruption. This disruption could come in the form of a drought, flood, or severe storm, 

any of which would serve to limit the supply of corn. Ceteris paribus, a negative impact 

to the corn supply would place upward pressure on distillers’ grains prices. In turn, 

ethanol and distillers’ grains would become more expensive to produce, which would 

limit the quantity of distillers’ grains supplied to the marketplace. A market shock 
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unrelated to the natural world that would affect the market for distillers’ grains would be 

the removal of governmental support for the ethanol industry. This removal of support 

would most likely come in the form of a relaxation of the ethanol blending requirement 

for oil refineries. With lower minimum blending requirements, the demand for ethanol 

from oil refineries would fall, which would negatively impact ethanol prices and plants’ 

demand for corn. Lower demand for corn from plants would lower corn prices, all else 

equal, and would also negatively affect distillers’ grains prices. Finally, a third possible 

market shock is the spread of a livestock disease in the United States or abroad. Disease 

would reduce the number of animals, which would lower the demand for corn and 

distillers’ grains, all else equal. As a result, corn and distillers’ grains prices would fall. 

Cheaper corn would make ethanol less expensive to produce, but the decline in distillers’ 

grains prices would place downward pressure on plant revenues 

The effects of market shocks like COVID-19 on the distillers’ grains industry 

would likely take two forms: adjustments to distillers’ supply and adjustments to 

distillers’ demand. On the supply side, ethanol plants would likely continue their effort to 

distinguish their distillers’ grains products by further specializing and differentiating their 

feed products. Pelletized distillers’ grains, high protein distillers’ grains, and de-oiled 

distillers’ grains are examples of these value-added (or value-subtracted, depending on 

the customer) products currently in the marketplace. By further differentiating their 

product lines, ethanol plants can create demand structures less reliant on only one or two 

livestock species while receiving a premium for the products they sell. 

 On the demand side, livestock producers may begin to consider how to avoid the 

price volatility in distillers’ grains by making permanent shifts away from distillers’ 
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grains. Small, operation-specific grain milling, corn crushing, and corn flaking operations 

is an example of how this shift is already starting to occur. Although the upfront 

investment is high, if producers feel confident they can lock in a lower, more consistent 

feed cost over the long run by investing in their own feeding infrastructure, they may 

begin to shift their resources away from distillers’ grains. A large-scale shift away from 

distillers’ grains would likely have a significant negative impact on the ethanol industry, 

barring the development of other non-feed ethanol co-products. 

Summary and Conclusions 

The market conditions introduced by the pandemic and subsequent government and 

industry responses created a unique set of shocks unparalleled in their volume and 

magnitude and led to simultaneous disruptions in supply, demand, and derived demand in 

the distillers’ grains market.  

 This paper aimed to quantify the price impacts of the market shock of COVID-19 

on DDGS, MDGS, and WDGS prices and price spreads in Iowa, Nebraska, South 

Dakota, and Wisconsin. A panel fixed effect model was used to measure both the timing 

and magnitude of price movements. The model revealed varying responses by location 

and types of distillers’ grains, indicating the importance of local distillers’ grains market 

structures in determining prices. The price fluctuations seemed to indicate that livestock 

producers favored the flexibility provided by DDGS and, therefore, drove those prices 

upward more significantly than MDGS and WDGS prices. MDGS and WDGS price 

responses, though, were more pronounced in areas whose livestock production industries 

demanded fixed feeding schedules, such as the dairy and hog industries in Wisconsin and 

Iowa.  
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The disparate price responses by grain type and location offer some insight into 

how markets may respond in the event of future market shocks. Depending on the type of 

shock, ethanol plants will be differently equipped to weather market impacts based, in 

part, on their location and grain production patterns. Additionally, the results can provide 

livestock producers with insight into how distillers’ grains prices may respond in 

different market scenarios and, therefore, help them to prepare accordingly in the case of 

another impact to the distillers’ grains market. As a result, the distillers’ grains market 

responses to COVID-19 can help both ethanol plants and livestock producers better 

prepare for future market shocks.  
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Supporting Tables 

 

Table 1. Optimally Solved Beginning and Ending Dates of COVID-19 by Type of 

Distillers’ Grain by State 
  State Adjusted R2 Start Date End Date 

Panel (a): Distillers’ Grain  

DDGS Iowa 0.801 3/14/2020 5/2/2020 

DDGS Nebraska 0.780 3/14/2020 5/16/2020 

DDGS South Dakota 0.848 3/14/2020 5/9/2020 

DDGS Wisconsin 0.918 3/14/2020 5/30/2020 

MDGS Iowa 0.756 3/14/2020 5/9/2020 

MDGS Nebraska 0.733 3/14/2020 5/16/2020 

MDGS South Dakota 0.822 3/14/2020 5/16/2020 

MDGS Wisconsin 0.882 3/14/2020 5/16/2020 

WDGS Iowa 0.738 3/14/2020 5/2/2020 

WDGS Nebraska 0.748 3/14/2020 5/16/2020 

WDGS South Dakota 0.802 3/14/2020 5/16/2020 

WDGS Wisconsin 0.810 3/14/2020 5/2/2020 

Panel (b): Distillers’ Grain Spread  

DDGS-MDGS Iowa 0.477 3/14/2020 9/12/2020 

DDGS-MDGS Nebraska 0.743 3/14/2020 5/2/2020 

DDGS-MDGS South Dakota 0.490 3/14/2020 4/18/2020 

DDGS-MDGS Wisconsin 0.835 3/14/2020 5/23/2020 

DDGS-WDGS Iowa 0.467 3/14/2020 11/7/2020 

DDGS-WDGS Nebraska 0.614 3/14/2020 5/2/2020 

DDGS-WDGS South Dakota 0.565 3/14/2020 8/22/2020 

DDGS-WDGS Wisconsin 0.519 3/14/2020 4/25/2020 

MDGS-WDGS Iowa 0.464 3/14/2020 5/2/2020 

MDGS-WDGS Nebraska 0.414 2/15/2020 8/22/2020 

MDGS-WDGS South Dakota 0.638 3/14/2020 6/6/2020 

MDGS-WDGS Wisconsin 0.665 3/14/2020 5/23/2020 
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Table 2. Main Effects of COVID-19 On Distillers’ Grains and Distillers’ Grains Price Spreads 
  Distiller Grains Distiller Grains Spreads 

  DDG MWDG WDG DDG-MWDG DDG-WDG MWDG-WDG 

COVID-19 35.261*** 24.097*** 30.450** 3.244 -19.300** 0.488 

Standard Error (4.175) (3.229) (8.457) (5.356) (5.860) (5.901) 

              

Fixed Effects             

State x Month-Year Trend Yes Yes Yes Yes Yes Yes 

              

Observations 748 748 748 748 748 748 

Adjusted R2 0.889 0.840 0.707 0.498 0.257 0.341 

Residual Standard Error 

(df=701) 6.924 6.730 11.585 6.020 11.152 10.536 

Note: **p<0.05; ***p<0.01
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Table 3. Effect of COVID-19 by Type of Distillers’ Grain and State 
  Iowa Nebraska South Dakota Wisconsin 

Panel (a): DDG         

COVID-19 25.905*** 44.275*** 27.015*** 21.296*** 

Standard Error (4.773) (5.071) (3.966) (5.612) 

          

Fixed Effects         

State x Month-Year Trend Yes Yes Yes Yes 

          

Observations 187 187 187 187 

Adjusted R2 0.908 0.887 0.927 0.950 

Residual Standard Error (df=143) 5.943 7.081 5.538 4.860 

Panel (b): MWDG         

COVID-19 18.118*** 31.131*** 18.008*** 29.023*** 

Standard Error (3.582) (3.845) (3.113) (3.108) 

          

Fixed Effects         

State x Month-Year Trend Yes Yes Yes Yes 

          

Observations 187 187 187 187 

Adjusted R2 0.904 0.889 0.925 0.940 

Residual Standard Error (df=143) 5.002 5.370 4.347 4.340 

Panel (c): WDG         

COVID-19 42.520*** 18.311*** 33.364*** 34.877*** 

Standard Error (8.460) (3.675) (5.960) (4.853) 

          

Fixed Effects         

State x Month-Year Trend Yes Yes Yes Yes 

          

Observations 187 187 187 187 

Adjusted R2 0.823 0.878 0.893 0.895 

Residual Standard Error (df=143) 10.533 5.132 8.322 6.043 

Note: ***p<0.01
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Table 4. Impacts of COVID-19 by Distillers’ Grain Spread and State 
  Iowa Nebraska South Dakota Wisconsin 

Panel (a): DDG-MWDG                 

COVID-19 8.401** 5.751*  16.180*** 13.144*** 16.444*** 8.817*** 8.179*** 8.371*** 

Standard Error (3.464) (3.313) (3.069) (2.781) (3.229) (2.989) (2.453) (2.160) 

                  

Fixed Effects                 

State x Month-Year Trend Yes Yes Yes Yes Yes Yes Yes Yes 

                  

Forced Start/End Dates No Yes No Yes No Yes No Yes 

Observations 187 187 187 187 187 187 187 187 

Adjusted R2 0.621 0.614 0.777 0.77 0.718 0.687 0.871 0.875 

Residual Standard Error (df=143) 4.582 4.627 3.821 3.883 3.955 4.174 3.054 3.016 

Panel (b): DDG-WDG                 

COVID-19 -23.367*** -8.63 34.271*** 25.964*** -11.650** -6.539 -0.462 -2.743 

Standard Error (7.142) (6.454) (5.062) (4.709) (5.605) (4.959) (5.421) (3.354) 

                  

Fixed Effects                 

State x Month-Year Trend Yes Yes Yes Yes Yes Yes Yes Yes 

                  

Forced Start/End Dates No Yes No Yes No Yes No Yes 

Observations 187 187 187 187 187 187 187 187 

Adjusted R2 0.615 0.592 0.693 0.665 0.779 0.775 0.796 0.797 

Residual Standard Error (df=143) 8.747 9.013 6.302 6.576 6.864 6.925 4.695 4.684 

Panel (c): MWDG-WDG                 

COVID-19 -24.108*** -14.381** -8.163* 12.820*** -19.830*** -15.356*** -5.616 -5.050 

Standard Error (7.661) (6.959) (4.346) (3.706) (5.896) (5.216) (4.146) (3.696) 

                  

Fixed Effects                 

State x Month-Year Trend Yes Yes Yes Yes Yes Yes Yes Yes 

                  

Forced Start/End Dates No Yes No Yes No Yes No Yes 

Observations 187 187 187 187 187 187 187 187 

Adjusted R2 0.556 0.539 0.539 0.564 0.796 0.792 0.758 0.758 

Residual Standard Error (df=143) 9.538 9.718 5.322 5.175 7.221 7.283 5.162 5.161 

Notes: Start date is fixed at 2020-03-14 and the End Date is fixed at 2020-05-16. These start and end dates are based on the average optimal start and end dates 

from individual distiller grains; *p<0.1; **p<0.05; ***p<0.01
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Table A1. Different Model Specifications for Dried Distillers’ Grains Using Optimal Start and 

End Dates 
  DDG 

  (1) (2) (3) (4) (5) 

COVID-19 45.486*** 45.168*** 42.713*** 35.261*** 42.302*** 

Standard Error (2.525) (2.295) (2.518) (4.175) (2.584) 

            

Fixed Effects           

State Yes Yes Yes Yes Yes 

Year Yes No Yes No No 

Quarter Yes No No No No 

Month No No Yes No No 

Week No No No No Yes 

            

Trend           

Quarter-Year No Yes No No No 

Month-Year No No No Yes No 

            

Observations 748 748 748 748 748 

R2 

 

0.585 0.806 0.663 0.896 0.687 

Adjusted R2 0.579 0.801 0.655 0.889 0.66 

Residual Standard Error 13.487  

(df = 737) 

9.283  

(df = 729) 

12.220  

(df = 729) 

6.924  

(df = 701) 

12.121  

(df = 689) 

Note: ***p<0.01 

 

 

Table A2. Different Model Specifications for Modified Wet Distillers’ Grains Using Optimal 

Start and End Dates 
 MWDG 

 (1) (2) (3) (4) (5) 

COVID-19 31.508*** 31.823*** 28.542*** 24.097*** 27.767*** 

Standard Error (2.233) (3.210) (2.096) (3.229) (1.996) 

      

Fixed Effects      
State Yes Yes Yes Yes Yes 

Year Yes No Yes No No 

Quarter Yes No No No No 

Month No No Yes No No 

Week No No No No Yes 

       
Trend      

Quarter-Year No Yes No No No 

Month-Year No No No Yes No 

       
Observations 748 748 748 748 748 

R2 0.558 0.741 0.642 0.850 0.665 

Adjusted R2 0.552 0.735 0.633 0.840 0.637 

Residual Standard Error 

11.260 

(df = 737) 

8.656 

(df = 729) 

10.189 

(df = 729) 

6.730 

(df = 701) 

10.134  

(df = 689) 

Note: ***p<0.01 
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Table A3. Different Model Specifications for Wet Distillers’ Grains Using Optimal Start and End Dates 
 MWDG 

 (1) (2) (3) (4) (5) 

COVID-19 49.149*** 44.181*** 48.174** 30.450** 48.788** 

Standard Error (7.933) (6.624) (9.621) (8.457) (9.895) 

           

Fixed Effects           

State Yes Yes Yes Yes Yes 

Year Yes No Yes No No 

Quarter Yes No No No No 

Month No No Yes No No 

Week No No No No Yes 

            

Trend           

Quarter-Year No Yes No No No 

Month-Year No No No Yes No 

            

Observations 748 748 748 748 748 

R2 0.509 0.648 0.552 0.725 0.571 

Adjusted R2 0.502 0.639 0.541 0.707 0.535 

Residual Standard Error 15.093 

(df = 737) 

12.854 

(df = 729) 

14.495 

(df = 729) 

11.585 

(df = 701) 

14.586 

(df = 689) 

Note: **p<0.05; ***p<0.01      
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Table A4. Different Model Specifications DDGS-MDGS Spread Using Optimal (Non-

Forced) Start and End Dates 
  DDGS-MDGS 

  (1) (2) (3) (4) (5) 

COVID-19 9.618 7.428 9.563 3.244 9.513 

Standard Error (4.876) (5.975) (4.744) (5.356) (4.842) 

            

Fixed Effects           

State Yes Yes Yes Yes Yes 

Year Yes No Yes No No 

Quarter Yes No No No No 

Month No No Yes No No 

Week No No No No Yes 

Forced Start/End Dates No No No No No 

            

Trend           

Quarter-Year No Yes No No No 

Month-Year No No No Yes No 

            

Observations 748 748 748 748 748 

Adjusted R2 0.325 0.436 0.339 0.498 0.317 

Residual Standard Error 6.982 (df = 737) 6.384 (df = 729) 6.910 (df = 729) 6.020 (df = 701) 7.021 (df = 689) 

 

Table A5. Different Model Specifications DDGS-WDGS Spread Using Optimal (Non-Forced) 

Start and End Dates 
  DDGS-WDGS 

  (1) (2) (3) (4) (5) 

COVID-19 -15.188* -15.776* -16.215* -19.300** -16.659* 

Standard Error (5.982) (5.626) (5.954) (5.860) (5.764) 

            

Fixed Effects           

State Yes Yes Yes Yes Yes 

Year Yes No Yes No No 

Quarter Yes No No No No 

Month No No Yes No No 

Week No No No No Yes 

Forced Start/End Dates No No No No No 

            

Trend           

Quarter-Year No Yes No No No 

Month-Year No No No Yes No 

            

Observations 748 748 748 748 748 

Adjusted R2 0.143 0.218 0.164 0.257 0.14 

Residual Standard Error 11.976 (df = 737) 11.443 (df = 729) 11.830 (df = 729) 11.152 (df = 701) 12.000 (df = 689) 

Note: *p<0.1      
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Table A6. Different Model Specifications MDGS-WDGS Spread Using Optimal (Non-

Forced) Start and End Dates 
  MDGS-WDGS 

  (1) (2) (3) (4) (5) 

COVID-19 -14.498 -7.127 -15.118 0.488 -15.374 

Standard Error (7.629) (7.513) (8.840) (5.901) (8.904) 

            

Fixed Effects           

State Yes Yes Yes Yes Yes 

Year Yes No Yes No No 

Quarter Yes No No No No 

Month No No Yes No No 

Week No No No No Yes 

Forced Start/End Dates No No No No No 

            

Trend           

Quarter-Year No Yes No No No 

Month-Year No No No Yes No 

            

Observations 748 748 748 748 748 

Adjusted R2 0.212 0.306 0.212 0.341 0.186 

Residual Standard Error 11.522 (df = 737) 10.811 (df = 729) 11.527 (df = 729) 10.536 (df = 701) 11.711 (df = 689) 
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Table A7. Different Model Specifications DDGS-MDGS Spread Using Optimal (Forced) 

Start and End Dates 
  DDGS-MDGS 

  (1) (2) (3) (4) (5) 

COVID-19 12.027** 11.644** 12.173** 9.021*** 12.429** 

Standard Error (3.089) (2.936) (2.963) (1.533) (2.986) 

            

Fixed Effects           

State Yes Yes Yes Yes Yes 

Year Yes No Yes No No 

Quarter Yes No No No No 

Month No No Yes No No 

Week No No No No Yes 

Forced Start/End Dates Yes Yes Yes Yes Yes 

            

Trend           

Quarter-Year No Yes No No No 

Month-Year No No No Yes No 

            

Observations 748 748 748 748 748 

Adjusted R2 

 

0.344 
 

0.462 0.355 0.507 0.334 

Residual Standard Error 6.883 (df = 737) 6.233 (df = 729) 6.824 (df = 729) 5.968 (df = 701) 6.935 (df = 689) 

Note: **p<0.05; ***p<0.01 

Table A8. Different Model Specifications DDGS-WDGS Spread Using Optimal (Forced) 

Start and End Dates 
  DDGS-WDGS 

  (1) (2) (3) (4) (5) 

COVID-19 -4.666 -0.149 -6.542 2.013 -7.754 

Standard Error (9.619) (7.889) (10.670) (8.082) (10.919) 

            

Fixed Effects           

State Yes Yes Yes Yes Yes 

Year Yes No Yes No No 

Quarter Yes No No No No 

Month No No Yes No No 

Week No No No No Yes 

Forced Start/End Dates Yes Yes Yes Yes Yes 

            

Trend           

Quarter-Year No Yes No No No 

Month-Year No No No Yes No 

            

Observations 748 748 748 748 748 

Adjusted R2 0.070 0.145 0.088 0.176 0.059 

Residual Standard Error 12.479 (df = 737) 11.962 (df = 729) 12.359 (df = 729) 11.745 (df = 701) 12.549 (df = 689) 
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Table A9. Different Model Specifications MDGS-WDGS Spread Using Optimal (Forced) 

Start and End Dates 
  MDGS-WDGS 

  (1) (2) (3) (4) (5) 

COVID-19 -18.255* -11.997 -20.265* -5.492 -22.058* 

Standard Error (6.976) (6.817) (8.171) (6.535) (8.257) 

            

Fixed Effects           

State Yes Yes Yes Yes Yes 

Year Yes No Yes No No 

Quarter Yes No No No No 

Month No No Yes No No 

Week No No No No Yes 

Forced Start/End Dates Yes Yes Yes Yes Yes 

            

Trend           

Quarter-Year No Yes No No No 

Month-Year No No No Yes No 

            

Observations 748 748 748 748 748 

Adjusted R2 0.228 0.321 0.234 0.343 0.217 

Residual Standard Error 11.407 (df = 737) 10.697 (df = 729) 11.363 (df = 729) 10.521 (df = 701) 11.487 (df = 689) 

Note: *p<0.1 
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Table A10. Prices Pre, During, and Post COVID-19 by State and Type of Distillers’ Grain 
  Pre COVID-19 COVID-19 Post COVID-19 

  Obs. Mean 

St. 

Dev. Min Max Obs. Mean 

St. 

Dev. Min Max Obs. Mean 

St. 

Dev. Min Max 

Iowa                               

DDG 115 1.113 0.133 0.809 1.424 7 1.703 0.221 1.277 1.919 65 1.126 0.198 0.680 1.468 

MWDG 115 0.942 0.100 0.711 1.204 8 1.440 0.206 1.130 1.690 64 0.977 0.158 0.645 1.202 

WDG 115 1.038 0.145 0.678 1.305 7 1.928 0.303 1.415 2.337 65 1.024 0.227 0.571 1.527 

Nebraska                               

DDG 115 1.144 0.126 0.877 1.385 9 1.783 0.218 1.419 2.046 63 1.138 0.203 0.712 1.495 

MWDG 115 1.033 0.112 0.787 1.251 9 1.433 0.107 1.230 1.530 63 0.982* 0.165 0.669 1.294 

WDG 115 1.052 0.111 0.750 1.254 9 1.424 0.153 1.16 1.642 63 1.016 0.132 0.724 1.298 

South Dakota 

DDG 115 1.121 0.130 0.837 1.367 8 1.741 0.226 1.288 2.001 64 1.153 0.205 0.710 1.543 

MWDG 115 1.050 0.105 0.759 1.189 9 1.1458 0.151 1.170 1.640 63 1.060 0.171 0.693 1.349 

WDG 115 1.003 0.172 0.721 1.467 9 1.846 0.215 1.378 2.022 63 1.091* 0.195 0.756 1.632 

Wisconsin                               

DDG 115 1.138 0.11 0.895 1.380 11 1.827 0.231 1.355 2.052 61 1.176 0.188 0.719 1.405 

MWDG 115 1.013 0.144 0.712 1.277 9 1.146 0.159 1.110 1.625 63 0.993 0.156 0.622 1.275 

WDG 115 1.036 0.115 0.743 1.353 7 1.689 0.232 1.331 1.928 65 1.029 0.165 0.648 1.428 

Notes: The COVID-19 timeframe is defined by the optimal (non-forced) cutoff dates for each location and measure; * indicates post COVID-19 mean is 

statistically different compared to the pre COVID-19 level at the 95% confidence level. 
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Table A11. Prices Pre, During, and Post COVID-19 by State and Distillers’ Grain Spread 
  Pre COVID-19 COVID-19 Post COVID-19 

  Obs. Mean 

St. 

Dev. Min Max Obs. Mean 

St. 

Dev. Min Max Obs. Mean 

St. 

Dev. Min Max 

Iowa                               

DDGS-MDGS 115 0.170 0.073 0.033 0.363 26 0.206 0.062 0.13 0.398 46 0.124* 0.067 0.025 0.283 

DDGS-WDGS 115 0.075 0.120 -0.262 0.352 34 -0.017 0.159 -0.418 0.228 38 0.149* 0.142 -0.141 0.486 

MDGS- WDGS 115 -0.095 0.097 -0.397 0.128 7 -0.469 0.234 -0.798 -0.138 65  -0.042* 0.139 -0.353 0.332 

Nebraska                               

DDGS-MDGS 115 0.112 0.050 -0.014 0.231 7 0.380 0.137 0.190 0.541 65 0.159* 0.068 -0.010 0.279 

DDGS-WDGS 115 0.093 0.077 -0.064 0.273 7 0.410 0.144 0.251 0.601 65 0.124 0.121 -0.154 0.332 

MDGS- WDGS 111 -0.018 0.075 -0.191 0.164 27 -0.031 0.085 0.085 0.187 49 -0.029 0.082 -0.169 0.122 

South Dakota 

DDGS-MDGS 115 0.070 0.066 -0.077 0.263 5 0.314 0.127 0.118 0.432 67 0.09* 0.053 -0.026 0.264 

DDGS-WDGS 115 0.118 0.128 -0.157 0.469 23 -0.127 0.086 -0.280 0.011 49 0.108 0.126 -0.072 0.437 

MDGS- WDGS 115 0.048 0.133 -0.350 0.339 12 -0.355 0.078 -0.476 -0.208 60  -0.018* 0.122 -0.241 0.297 

Wisconsin                               

DDGS-MDGS 115 0.125 0.055 0.004 0.220 10 0.378 0.110 0.186 0.497 62 0.189* 0.061 0.073 0.314 

DDGS-WDGS 115 0.102 0.087 -0.018 0.393 6 0.112 0.121 0.017 0.322 66 0.189* 0.107 0.050 0.570 

MDGS- WDGS 115 -0.023 0.108 -0.209 0.299 10 -0.230 0.122 -0.401 0.042 62 -0.026 0.056 0.056 0.090 

Notes: 

1) The COVID-19 timeframe is defined by the optimal (non-forced) cutoff dates for each location and measure. 

2) A * next to Post COVID-19 mean indicates a statistically significant difference compared to the Pre COVID-19 level at at least the 95% confidence 

level. 



90 

 

 

Supporting Figures 

 
Figure 1. Total Production by Type of Distillers’ Grains by State, Jan 2015 – Jan 

2021 
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Figure 2. Weekly Percent-Corn Prices for DDG, MDGS, and WDGS in Iowa, 

Nebraska, South Dakota, and Wisconsin – 2018-2021.  
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Figure 3. Weekly Percent-Corn Price Differences for Distillers’ Grains in Iowa, 

Nebraska, South Dakota, and Wisconsin – 2018-2021. 
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CHAPTER 3 - A MARKET MODEL TO MEASURE IMPACTS IN THE 

DISTILLERS’ GRAINS MARKET 

 

Abstract:  

Distillers’ grains are co-products of the fuel ethanol production process and are 

commonly marketed to livestock operations as important components to livestock feed 

rations. The purpose of this paper is to estimate the impacts of different market shocks on 

the ethanol and distillers’ grains sectors. Specifically, this paper develops an equilibrium 

displacement model (EDM) of the U.S. ethanol industry to estimate the short-run impacts 

of different market shocks on prices and quantities of ethanol, WDGS, MDGS, and 

DDGS. The results of the equilibrium displacement analysis indicate that the responses of 

ethanol and each type of grain to market shocks rely heavily on the relationships between 

the products. Applying this analysis to real-world events may help both plants and 

producers in adjusting their operations to minimize the impacts of market shocks. 
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Introduction 

Distillers’ grains are co-products of the fuel ethanol production process and are 

commonly marketed to livestock operations as important components to livestock feed 

rations. In the United States, the vast majority of ethanol and, therefore, distillers’ grain is 

produced from corn – roughly 40% of the total US corn crop goes to ethanol production 

each year (USDA ERS 2021). Consequently, distillers’ grains use corn as a primary input 

in production while also serving as an imperfect substitute to corn for livestock feedlot 

operations. 

 Since distillers’ grains are necessary co-products to ethanol production and rely 

on corn prices while also competing with corn as end products in the marketplace, they 

are uniquely susceptible to a wide variety of market shocks. These shocks can come in 

form of supply shocks, demand shocks, or some combination of the two. Despite the 

importance of distillers’ grains to both the ethanol and livestock industries, the nature of 

the responses from different distillers’ grains (dried distillers’ grains (DDGS), modified 

wet distillers’ grains (MDGS), and wet distillers’ grains (WDGS)) and the ethanol system 

due to various shocks are largely unknown. 

  The purpose of this paper is to estimate the impacts of different market shocks on 

the ethanol sector. Specifically, this paper develops an equilibrium displacement model 

(EDM) of the U.S. ethanol industry to estimate the short-run impacts of different market 

shocks on prices and quantities of ethanol, WDGS, MDGS, and DDGS. The model 

incorporates vertical linkages from ethanol production through the creation of different 

distillers’ grains. The model assumes a fixed proportion Leontief structure and that 

ethanol plants face three decisions for distillers’ grains in the production process: They 
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decide whether to (1) sell all wet distillers’ grains, (2) dry the WDGS to produce and sell 

MDGS, or (3) dry MDGS to produce and sell DDGS. To our knowledge, no existing 

papers have attempted to address this topic. 

 The results of the equilibrium displacement analysis indicate that the responses of 

ethanol and each type of grain to market shocks rely heavily on the relationships between 

the products. For example, a reduction in the quantity of livestock demanding distillers’ 

grains results in unequal declines in the demand for each type of distillers’ grain. This 

difference is due to the substitution effects between each type of distillers’ grain. The 

equilibrium displacement analysis results are important to both ethanol plants and 

livestock producers for understanding the ways in which certain market shocks may 

impact their operations.  

 The objective of this paper is to propose an equilibrium displacement framework 

to measure the impacts of market shocks to the distillers’ grains’ prices and quantities. By 

incorporating the relationships between dried, modified, and wet distillers’ grains in the 

market, this model framework allows users to observe the relative distribution of 

different market shocks to each distillers’ grain product. Applying this analysis to real-

world events may help both plants and producers in adjusting their operations to 

minimize the impacts of market shocks.  

Ethanol Plant Production 

In the United States, distillers’ grains are most often produced by the dry-grind ethanol 

production process. The purpose of the dry-grind production process is to ferment as 

much of the corn kernel as possible while leaving little to waste. In this process, the 

starch in the kernel is converted to ethanol and carbon dioxide, and the residual proteins, 



96 

 

 

fats, and fiber are converted into thin stillage and wet distillers’ grains co-products. The 

thin stillage is then often concentrated into condensed distillers’ solubles, which is mixed 

with wet distillers’ grains to become wet distillers’ grains with solubles (WDGS) and 

then dried to become modified wet distillers’ grains with solubles (MDGS) or dried 

distillers’ grains with solubles (DDGS) (Liu 2011).  

When distillers’ grains first began to experience widespread availability in the 

marketplace, they were primarily sold to local livestock operations as WDGS with 60%-

65% moisture and were considered a protein feed due to their high crude protein contents 

(25%-35%). They were consequently priced as an alternative to soybean meal, whose 

crude protein content is 45%-50%. But as supply grew, distillers’ grains shifted to being 

primarily viewed as alternatives to corn in livestock feed rations.  

Today, distillers’ grains products are most commonly sold as WDGS, MDGS, and 

DDGS. Both MDGS and WDGS contain high moisture contents that limit the distance 

they can be shipped, although they both offer slightly higher feeding values than DDGS 

(Nuttelman et al. 2011). As a result, DDGS are the most common form of distillers’ 

grains nationally, comprising roughly 50% of the total distillers’ grains market (USDA-

NASS 2021). Each type of distillers’ grain features lower starch and fiber content, higher 

protein, and higher levels of digestible nutrients than corn, making the nutritional 

properties of all types of distillers’ grains preferred to corn in most cases (Liu 2011). 

These properties helped build a market for distillers’ grains which complements that of 

the ethanol sector in its importance to ethanol plant revenue (Morgan 2020). 

Model of U.S. Ethanol Industry  
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An equilibrium displacement model for a representative ethanol plant that produces 

ethanol and wet, modified, and dried distillers’ grains was constructed. A Leontief 

production function is assumed in which the proportions of the ethanol plant technology 

to produce ethanol and wet distillers’ grains remain fixed. This is largely supported by 

the fact that one bushel of corn produces 2.8 gallons of ethanol and 17-18 lbs. of 

distillers’ grains, and little can be done to alter that ratio.4 Using this hypothetical plant, 

the effects of different supply, demand, and combined supply and demand shocks to 

ethanol and distillers’ grains market are demonstrated.  

Structural Model 

The industry cost function is assumed to be representative of a cost function for a typical 

ethanol plant. 

Quantity Constraint 

The total quantity of distillers’ grains can be represented by: 

 𝑄𝑤
𝑠 × 0.325 = 𝑄𝑤

𝐷 × 0.325 + 𝑄𝑚 × 0.475 + 𝑄𝑑 × 0.9 

where Qw
s  is the quantity of wet distillers’ grains supplied prior to any drying decision, 

and Qw
D , Qm, Qd are the quantities of wet, modified, and dried distillers’ grains supplied 

to the market following the drying decisions. Each coefficient represents the average dry 

matter percentage of each type of grain. 

First, the initial share of distillers’ grain dry matter going to 𝑄𝑤
𝐷 , 𝑄𝑚, and 𝑄𝑑 needs to 

be calculated. 

1) 𝛼1𝑄𝑤
𝑆 = ∑ 𝛼𝑗𝑄𝑗𝑗  

 
4 Other co-products can also comprise a portion of plant revenue, such as corn oil and carbon dioxide. 

These co-products are not included here to maintain the simplicity of the model.  
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The log differential of Equation 1 is as follows: 

𝑎1𝑑𝑄1 = ∑𝛼𝑗𝑑𝑄𝑗

𝑗

 

𝑎1

𝑑𝑄1

𝑄1
= ∑𝛼𝑗

𝑄𝑗

𝑄1

𝑑𝑄𝑗

𝑄𝑗
𝑗

 

𝑎1𝑑𝑙𝑛𝑄1 = ∑𝛼𝑗𝑠𝑗𝑑𝑙𝑛𝑄𝑗

𝑗

 

𝑑𝑙𝑛𝑄1 =
∑ 𝛼𝑗𝑠𝑗𝑑𝑙𝑛𝑄𝑗𝑗

𝛼1
 

where 𝛼1 is the percent dry matter in each type of distillers’ grain, 𝑄1 is the total quantity 

of wet distillers’ grains produced prior to any drying decisions, 𝑄𝑗 is the quantity of 

distillers’ grain post-drying decision 𝑗 = {𝑊𝐷𝐺𝑆,𝑀𝐷𝐺𝑆, 𝐷𝐷𝐺𝑆}, and 𝑠𝑗 is the share the 

distillers’ grain 𝑗. The shares of each grain were calculated using the five-year average 

shares of production of DDGS, MDGS, and WDGS, according to data from the United 

States Department of Agriculture’s National Agricultural Statistics Service. Those shares 

are 53%, 12%, and 35% for DDGS, MDGS, and WDGS, respectively. 

Following the log differential of Equation 1 using the previously specified dry 

matter and market share percentages retrieves: 

𝑑 ln𝑄𝑤
𝑆 = 0.35 × 𝑑 ln𝑄𝑤

𝐷 + 0.18 × 𝑑 ln𝑄𝑚 + 1.47 × 𝑑 ln𝑄𝑑 

Supply Function Specification 

Let the cost function 𝐶(𝑄𝑤, 𝑄𝑒; 𝑃𝑐 , 𝑃𝑒𝑙𝑒𝑐 , 𝑃𝑛𝑎𝑡 , 𝑃𝑜) describe the technology of the ethanol 

plant, where: 

𝑄𝑤 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑊𝐷𝐺𝑆 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 

𝑄𝑒 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑒𝑡ℎ𝑎𝑛𝑜𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 
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𝑃𝑐 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑐𝑜𝑟𝑛 

𝑃𝑒𝑙𝑒𝑐 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 

𝑃𝑛𝑎𝑡 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 

𝑃𝑜 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑜𝑡ℎ𝑒𝑟 𝑒𝑡ℎ𝑎𝑛𝑜𝑙 𝑝𝑙𝑎𝑛𝑡 𝑖𝑛𝑝𝑢𝑡𝑠 

Then, WDGS supply is set equal to a share of ethanol supply as specified by the 

Leontief structure. This retrieves: 

2) 𝑄𝑤
𝑆 = 𝛼𝑄𝑒

𝑆, leading to: 𝑑 ln𝑄𝑤 = 𝑑 ln𝑄𝑒   

Likewise, the ethanol supply is given by 𝑃𝑒
𝑠 = 𝐶𝑒. Once again taking the 

logarithmic differential of the ethanol supply function to get it in terms of elasticities 

gets5: 

3) 𝑑 𝑙𝑛 𝑃𝑒
𝑠 = 𝜀𝑒𝑤𝑑 𝑙𝑛 𝑄𝑤

𝑠 + 𝜀𝑒𝑒𝑑 𝑙𝑛 𝑄𝑒 + 𝜀𝑒𝑐𝑑 𝑙𝑛 𝑃𝑐 + 𝜀𝑒𝑒𝑙𝑒𝑐𝑑 𝑙𝑛 𝑃𝑒𝑙𝑒𝑐 +

𝜀𝑒𝑛𝑎𝑡𝑑 𝑙𝑛 𝑃𝑛𝑎𝑡 + 𝜀𝑒𝑜𝑑 𝑙𝑛 𝑃𝑜 

The assumption that 𝑑 ln𝑄𝑤 = 𝑑 ln𝑄𝑒 is because it is assumed that WDGS and 

ethanol are jointly produced in an ethanol plant (i.e. by producing one you also produce 

the other) whose technology is the same, and the proportions of that technology remain 

fixed regardless of the quantity produced. 

After the initial distilling process, the ethanol plant must decide whether to sell 

WDGS or convert them into either MDGS by drying them once or DDGS by drying them 

twice. For simplicity, it is assumed the ethanol plant uses different technology to create 

WDGS, MDGS, and DDGS, and the plant must account for the prices in the other 

distillers’ grain before each decision to create a drier product. This follows that the cost 

 
5 Considering roughly 40% of the United States’ corn supply goes to ethanol production, it may be the case 

that corn should be endogenous to the supply of ethanol in this model. Doing so was beyond the scope of 

this paper, but it may be worth considering in future analyses. 
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function 𝐶(𝑄𝑚, 𝑄𝑤; 𝑃𝑤 , 𝑃𝑒𝑙𝑒𝑐 , 𝑃𝑛𝑎𝑡 , 𝑃𝑎𝑑𝑑) describes the technology used to make MDGS 

and the cost function 𝐶(𝑄𝑑, 𝑄𝑚; 𝑃𝑚, 𝑃𝑒𝑙𝑒𝑐 , 𝑃𝑛𝑎𝑡, 𝑃𝑎𝑑𝑑) describe the technology used to 

make DDGS. Then the MDGS supply function is given by 𝑃𝑚
𝑠 = 𝐶𝑚 and the DDGS 

supply function is given by 𝑃𝑑
𝑠 = 𝐶𝑑, where: 

𝑄𝑤 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑊𝐷𝐺𝑆 

𝑄𝑚 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑀𝐷𝐺𝑆 

𝑄𝑑 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝐷𝐷𝐺𝑆 

𝑃𝑤 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑊𝐷𝐺𝑆 

𝑃𝑚 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑀𝐷𝐺𝑆 

𝑃𝑑 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝐷𝐷𝐺𝑆 

𝑃𝑒𝑙𝑒𝑐 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 

𝑃𝑛𝑎𝑡 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 

𝑃𝑎𝑑𝑑 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑟𝑦𝑖𝑛𝑔 𝑖𝑛𝑝𝑢𝑡𝑠 

Once again taking the logarithmic differential of the MDGS and DDGS supply 

function, respectively, to get both in terms of elasticities retrieves: 

4) 𝑑 𝑙𝑛 𝑃𝑚
𝑠 = 𝜀𝑚𝑚𝑑 𝑙𝑛 𝑄𝑚 + 𝜀𝑚𝑤𝑑 𝑙𝑛 𝑃𝑤 + 𝜀𝑚𝑒𝑙𝑒𝑐𝑑 𝑙𝑛 𝑃𝑒𝑙𝑒𝑐 + 𝜀𝑚𝑛𝑎𝑡𝑑 𝑙𝑛 𝑃𝑛𝑎𝑡 +

 𝜀𝑚𝑎𝑑𝑑𝑑 𝑙𝑛 𝑃𝑎𝑑𝑑  

5) 𝑑 𝑙𝑛 𝑃𝑑
𝑠 = 𝜀𝑑𝑑𝑑 𝑙𝑛 𝑄𝑑 + 𝜀𝑑𝑚𝑑 𝑙𝑛 𝑃𝑚 + 𝜀𝑑𝑒𝑙𝑒𝑐𝑑 𝑙𝑛 𝑃𝑒𝑙𝑒𝑐 + 𝜀𝑑𝑛𝑎𝑡𝑑 𝑙𝑛 𝑃𝑛𝑎𝑡 +

𝜀𝑑𝑎𝑑𝑑𝑑 𝑙𝑛 𝑃𝑎𝑑𝑑  

This assumes a sort of cascading production from WDGS to MDGS to DDGS. In 

other words, it is assumed DDGS can only be produced from MDGS and not from 

WDGS.  

Demand Specification 
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Let the demand function for ethanol be given as 𝑄𝑒
𝑑 = 𝑓(𝑃𝑒 , 𝑃𝑔, 𝐾), where: 

𝑃𝑒 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑒𝑡ℎ𝑎𝑛𝑜𝑙 

𝑃𝑔 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑝𝑢𝑚𝑝 𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒 𝑝𝑟𝑖𝑐𝑒𝑠 

𝐾 = 𝑔𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 

Then, taking the logarithmic differential of the ethanol demand function to get it in terms 

of elasticities gets: 

6) 𝑑 𝑙𝑛 𝑄𝑒
𝑑 = 𝜂𝑒𝑒𝑑 𝑙𝑛 𝑃𝑒 + 𝜂𝑒𝑔𝑑 𝑙𝑛 𝑃𝑔 + 𝜂𝑒𝑘𝑑 𝑙𝑛 𝐾 

Let the demand function for WDGS be given as 𝑄𝑤
𝑑 = 𝑓(𝑃𝑤, 𝑃𝑚, 𝑃𝑑 , 𝑃𝑐 , 𝑃𝑠, 𝑄𝑙𝑜𝑓) where: 

𝑃𝑤 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑊𝐷𝐺𝑠 

𝑃𝑚 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑀𝑊𝐷𝐺𝑠 

𝑃𝑑 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝐷𝐷𝐺𝑠 

𝑃𝑐 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑐𝑜𝑟𝑛 

𝑃𝑠 = 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑜𝑡ℎ𝑒𝑟 𝑠𝑢𝑏𝑠𝑖𝑡𝑢𝑡𝑒 𝑓𝑒𝑒𝑑𝑠 

𝑄𝑙𝑜𝑓 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 𝑜𝑛 𝑓𝑒𝑒𝑑 

Then, taking the logarithmic differential of the WDGS demand function to get it 

in terms of elasticities retrieves: 

7) 𝑑 𝑙𝑛 𝑄𝑤
𝑑 = 𝜂𝑤𝑤𝑑 𝑙𝑛 𝑃𝑤 + 𝜂𝑤𝑚𝑑 𝑙𝑛 𝑃𝑚 + 𝜂𝑤𝑑𝑑 𝑙𝑛 𝑃𝑑 + 𝜂𝑤𝑐𝑑 𝑙𝑛 𝑃𝑐 + 𝜂𝑤𝑠𝑑 𝑙𝑛 𝑃𝑠 +

𝜂𝑤𝑙𝑜𝑓𝑑 𝑙𝑛 𝑄𝑙𝑜𝑓  

The demand specification for MDGS follow the same as WDGS as 𝑄𝑚
𝑑 = 𝑓(∙). 

Taking the logarithmic differential of the MDGS demand function to get it in terms of 

elasticities gets: 

8) 𝑑 𝑙𝑛 𝑄𝑚
𝑑 = 𝜂𝑚𝑤𝑑 𝑙𝑛 𝑃𝑤 + 𝜂𝑚𝑚𝑑 𝑙𝑛 𝑃𝑚 + 𝜂𝑚𝑑𝑑 𝑙𝑛 𝑃𝑑 + 𝜂𝑚𝑐𝑑 𝑙𝑛 𝑃𝑐 + 𝜂𝑚𝑠𝑑 𝑙𝑛 𝑃𝑠 +

𝜂𝑚𝑙𝑜𝑓𝑑 𝑙𝑛 𝑄𝑙𝑜𝑓 
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The DDGS demand specification allows for export market conditions (𝑀) to 

influence domestic DDGS demand. Thus, the demand specification is 𝑄𝑑
𝑑 =

𝑓(𝑃𝑤, 𝑃𝑚, 𝑃𝑑 , 𝑃𝑐 , 𝑃𝑠 , 𝑄𝑙𝑜𝑓, 𝑀). Taking the logarithmic differential of the DDGs demand 

function to get it in terms of elasticities retrieves: 

9) 𝑑 𝑙𝑛 𝑄𝑑
𝑑 = 𝜂𝑑𝑤𝑑 𝑙𝑛 𝑃𝑤 + 𝜂𝑑𝑚𝑑 𝑙𝑛 𝑃𝑚 + 𝜂𝑑𝑑𝑑 𝑙𝑛 𝑃𝑑 + 𝜂𝑑𝑐𝑑 𝑙𝑛 𝑃𝑐 + 𝜂𝑑𝑠𝑑 𝑙𝑛 𝑃𝑠 +

𝜂𝑑𝑙𝑜𝑓𝑑 𝑙𝑛 𝑄𝑙𝑜𝑓 + 𝜂𝑑𝑚𝑑 𝑙𝑛 𝑀 

Equilibrium Conditions 

We now take equations (1)-(9) and put them in a matrix format with the endogenous 

variables on the left-hand side and the exogenous on the right-hand side. These yield: 

10) 

−
𝑾𝑫𝑮 𝑴𝒂𝒓𝒌𝒆𝒕 𝑪𝒍𝒆𝒂𝒓𝒊𝒏𝒈

𝑸𝒘 = 𝑸𝒆 
𝑬𝒕𝒉𝒂𝒏𝒐𝒍 𝑺𝒖𝒑𝒑𝒍𝒚
𝑴𝑾𝑫𝑮 𝑺𝒖𝒑𝒑𝒍𝒚
𝑫𝑫𝑮 𝑺𝒖𝒑𝒑𝒍𝒚

𝑾𝑫𝑮 𝑫𝒆𝒎𝒂𝒏𝒅
𝑬𝒕𝒉𝒂𝒏𝒐𝒍 𝑫𝒆𝒎𝒂𝒏𝒅
𝑴𝑾𝑫𝑮 𝑫𝒆𝒎𝒂𝒏𝒅
𝑫𝑫𝑮 𝑫𝒆𝒎𝒂𝒏𝒅 [

 
 
 
 
 
 
 
 
 
 
𝒅 𝐥𝐧𝑸𝒘

𝒔 𝒅 𝐥𝐧 𝑸𝒘
𝒅 𝒅 𝐥𝐧𝑸𝒆 𝒅 𝐥𝐧𝑸𝒎 𝒅 𝐥𝐧 𝑸𝒅 𝒅 𝐥𝐧 𝑷𝒘 𝒅 𝐥𝐧 𝑷𝒆 𝒅 𝐥𝐧 𝑷𝒎 𝒅 𝐥𝐧𝑷𝒅

−1 0.35 0 0.18 1.47 0 0 0 0
−1 0 1 0 0 0 0 0 0
𝜀𝑒𝑤 0 𝜀𝑒𝑒 0 0 0 −1 0 0
0 0 0 𝜀𝑚𝑚 0 𝜀𝑚𝑤 0 −1 0
0 0 0 0 𝜀𝑑𝑑 0 0 𝜀𝑑𝑚 −1
0 −1 0 0 0 𝜂𝑤𝑤 0 𝜂𝑤𝑚 𝜂𝑤𝑑

0 0 −1 0 0 0 𝜂𝑒𝑒 0 0
0 0 0 −1 0 𝜂𝑚𝑤 0 𝜂𝑚𝑚 𝜂𝑚𝑑

0 0 0 0 −1 𝜂𝑑𝑤 0 𝜂𝑑𝑚 𝜂𝑑𝑑 ]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
𝒅 𝐥𝐧𝑷𝒄 𝒅 𝐥𝐧 𝑷𝒐 𝒅 𝐥𝐧𝑷𝒆𝒍𝒆𝒄 𝒅 𝐥𝐧𝑷𝒏𝒂𝒕 𝒅 𝐥𝐧𝑷𝒂𝒅𝒅 𝒅 𝐥𝐧 𝑷𝒔 𝒅 𝐥𝐧𝑷𝒈 𝒅 𝐥𝐧𝑸𝒍𝒐𝒇 𝒅 𝐥𝐧𝑴 𝒅 𝐥𝐧𝑲

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−𝜀𝑒𝑐 −𝜀𝑒𝑜 −𝜀𝑒𝑒𝑙𝑒𝑐 −𝜀𝑒𝑛𝑎𝑡 0 0 0 0 0 0
0 0 −𝜀𝑚𝑒𝑙𝑒𝑐 −𝜀𝑚𝑛𝑎𝑡 −𝜀𝑚𝑎𝑑𝑑 0 0 0 0 0
0 0 −𝜀𝑑𝑒𝑙𝑒𝑐 −𝜀𝑑𝑛𝑎𝑡 −𝜀𝑑𝑎𝑑𝑑 0 0 0 0 0

−𝜂𝑤𝑐 0 0 0 0 −𝜂𝑤𝑠 0 −𝜂𝑤𝑙𝑜𝑓 0 0

0 0 0 0 0 0 −𝜂𝑒𝑔 0 0 −𝜂𝑒𝑘

−𝜂𝑚𝑐 0 0 0 0 −𝜂𝑚𝑠 0 −𝜂𝑚𝑙𝑜𝑓 0 0

−𝜂𝑑𝑐 0 0 0 0 −𝜂𝑑𝑠 0 −𝜂𝑑𝑙𝑜𝑓 −𝜂𝑑𝑀 0 ]
 
 
 
 
 
 
 
 
 
 

 

 

Eq. (10) can be rewritten as: 
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[
 
 
 
 
 
 
 
 
 
𝑄𝑤

𝑆

𝑄𝑤
𝐷

𝑄𝑒

𝑄𝑚

𝑄𝑑

𝑃𝑤

𝑃𝑒

𝑃𝑚

𝑃𝑑 ]
 
 
 
 
 
 
 
 
 

= 𝐴−1⏟
9𝑥9

𝐵⏟
9𝑥10

[
 
 
 
 
 
 
 
 
 

𝑃𝑐

𝑃𝑜

𝑃𝑒𝑙𝑒𝑐

𝑃𝑛𝑎𝑡

𝑃𝑎𝑑𝑑

𝑃𝑠

𝑃𝑔
𝑄𝑙𝑜𝑓

𝑀
𝐾 ]

 
 
 
 
 
 
 
 
 

 

where A is equal to the left-hand matrix in Eq. (10) and B is equal to the right-hand 

matrix in Eq. (10).  

Model Parameterization 

Solutions for the Y variable in equation (10) require elasticity estimates for the elements 

of A and parameter estimates for the elements of B. Elasticity measures the 

responsiveness of changes in one measure to changes in another measure. For example, 

price elasticity of demand measures the change in quantity demanded resulting from a 

change in price. Elasticities can be directly interpreted as percentages, so a price elasticity 

of -2 would mean that quantity would decrease by 2% in response to a 1% increase in 

price. When possible, elasticity estimates are obtained from the extant literature. Table 2 

lists the elasticities used in the model.  

Hypothetical Shocks 

In this section, potential market shocks to the distillers’ grains industry are explored. The 

purpose of this section is to provide applications of the analysis in this paper to examples 

of real-world market disturbances. For the sake of simplicity, all shocks introduced here 

will be explored at the 10% magnitude – either positive or negative – in the equilibrium 

displacement model. Both supply and demand shock scenarios are introduced, and results 

of these shocks are discussed in next section, followed by possible long-term 
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implications. As will be evident by these results, livestock producers who heavily rely on 

distillers’ grains in their livestock feed rations regularly expose themselves to these 

potential risks in the market. To better manage distillers’ grains price volatility, producers 

may, consequently, consider changing their relationship to distillers’ grains in the coming 

years, while ethanol plants may explore ways to limit the price fluctuations in the 

distillers’ grains marketplace. 

Supply Shocks 

The first shock explored is a supply shock in the corn market. This disruption could be in 

the form of a weather-related disruption, a corn-specific plant disease, or an insect 

infestation that would specifically limit corn supply (i.e., corn borer). Since corn is the 

primary input in ethanol production, a negative impact to the corn supply would be 

expected to limit the supply of distillers’ grains by making ethanol and distillers’ grains 

more expensive to produce. The exact impact on distillers’ grains prices is less clear since 

distillers’ grains serve as substitutes to corn in the livestock feed market. One historical 

example of this type of shock is the 2019 floods throughout much of the Midwestern 

United States. These floods impacted corn supply, reduced ethanol production by roughly 

13%, and raised gasoline prices (Renshaw and Kelly, 2019).  

 The second shock is an increase in the price of natural gas. Since natural gas is an 

input in ethanol and distillers’ grains production, an increase in natural gas prices would 

raise input costs and negatively impact the supply of ethanol and distillers’ grains. 

Natural gas would comprise a different share of production costs for WDGS versus 

DDGS, thus the impact varies by type of distillers’ grain. This is because natural gas is an 

input in both the ethanol production and distillers’ grains drying processes. A real-world 
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example of this is currently unfolding in the marketplace. Natural gas prices in the United 

States this year have risen over 80% versus the same period last year (Eaton and Blunt 

2021). 

 The third shock is an increase in crude oil and gasoline prices. Fuel ethanol is a 

complementary product to gasoline in domestic markets because of the minimum fuel 

blending requirements. However, it can also act, in some cases, as an imperfect substitute 

to gasoline, since vehicles have varying levels of flexibility in the percentage of ethanol 

in gasoline blends that their engines can handle. As a result, the direction of the impacts 

of an increase in gasoline prices on the ethanol and distillers’ grains industry is unclear. A 

recent example of this impact has been price of gasoline surging 6.1% in October 2021 

versus October 2020 (Mutikani 2021).  

Demand Shocks 

The fourth shock is anything that would serve to reduce the quantity of livestock 

demanding feed in the United States. This could range from the introduction of more 

stringent environmental regulations that would reduce the total number of livestock in the 

United States to the spread of a livestock disease that would cause animal mortality or 

morbidity and would, therefore, reduce the quantity of feed consumed. All else equal, 

fewer livestock would mean lower demand for distillers’ grains, and this could hold true 

in both the short-run and the long-run.  

Lower demand for livestock feed would not only impact distillers’ grains demand 

– it would also impact the markets for corn and other livestock feeds. Therefore, ceteris 

paribus, animal feed prices would be expected to decline. This decline in feed prices 

would serve to lower the cost of production for ethanol, since corn would be less 
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expensive to purchase. The effect on the distillers’ grains market would be ambiguous. 

On one hand, lower input costs would make distillers’ grains less expensive to produce, 

but reduced demand would disincentivize distillers’ grains production. Consequently, the 

quantity of distillers’ grains produced would likely rely on the state of the ethanol market. 

If ethanol production is proving profitable for ethanol plants, they would produce ethanol 

and, therefore, distillers’ grains, regardless of whether a robust market for distillers’ 

grains exists. On the other hand, if ethanol production is less profitable, ethanol plants 

would likely reduce the production of ethanol in an attempt to support both ethanol and 

distillers’ grains prices.  

There are few historical examples of a shock of this type in the United States. 

Internationally, spread of African Swine Fever in China certainly affected the country’s 

demand for feed crops, but the direct impact to US distillers’ grains markets were 

difficult to identify beyond a general reduction in demand for US feed exports. A spread 

of a similar magnitude in one of the major US livestock industries, though, would likely 

hamper domestic distillers’ grains and livestock feed markets in a manner similar to the 

one discussed above.   

Supply and Demand Shock 

The fifth shock would be an impact to governmental regulations, such as the removal of 

government support for the ethanol industry or the introduction of minimum quality 

standards for distillers’ grains. An introduction of minimum quality or nutrition standards 

to the distillers’ grains market would likely impact both the supply and demand of 

distillers’ grains. If, for example, certain types of distillers’ grains were required to 

contain specified minimum levels of protein, fat, and oil, livestock producers would be 
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better able to ensure the quality of the feed they were providing their livestock. All else 

equal, the minimum quality or nutrition standards would likely increase the demand for 

distillers’ grains from livestock producers, as they would increase confidence in product 

quality and predictability of livestock performance. On the supply side, these standards 

would likely impose additional costs on ethanol plants, since plants would need to ensure 

their products met the minimum requirements. Ceteris paribus, an increase in costs would 

decrease the production of distillers’ grains. The exact impact on the distillers’ market 

would depend on the relative increase in demand versus the rise in input costs, since 

elevated demand would incentivize additional production, while higher input costs would 

have the opposite effect. 

Results 

For the five proposed scenarios, a 10% shock is assumed. In other words, positive 10% 

shocks to the corn price, natural gas price, and gasoline price were introduced to the 

model in separate scenarios. A negative 10% shock to livestock on feed and government 

policies were applied in the fourth and fifth scenarios. 

 The changes in the prices and quantities for each commodity in the system is 

reported in Table 1. All the positive 10% shocks resulted in the same directional 

responses for the supply and demand of each product – although the magnitude varied by 

product. The positive 10% shocks to corn, natural gas, and gasoline prices, for example, 

all resulted in negative impacts to ethanol supply but positive impacts to ethanol 

demanded. These results can be interpreted in percentage terms. For example, a 10% 

increase in the price of natural gas resulted in a 3.6% decline in ethanol supply in this 

model. Distillers’ grains demand, on the other hand, experienced negative responses to 
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the positive shocks, all likely the result of the higher prices of distillers’ grains caused by 

the positive price shocks.  

 Conversely, the negative 10% price shocks generally resulted in opposite 

directional responses for each measure, dependent on whether the shock was applied to 

livestock on feed or government policies. Predictably, a negative shock to livestock on 

feed led to a decline in demand for distillers’ grains, while a negative shock to 

government policies led to increases in demand for distillers’ grains. In this case, the 

concept of a negative shock to government policies is more unclear. It could be best 

described as a pullback in government regulations. With fewer government regulations, 

inefficiency would be decreased in the markets, which could help explain the subsequent 

increase in distillers’ grains demand.  

Discussion and Conclusions 

This equilibrium displacement model serves as a useful tool in quantifying impacts to the 

ethanol and distillers’ grains industry, the results it produces are of little practical use 

without an examination of their potential long-term impacts on the market. In general, the 

long-term effects of these market shocks on the distillers’ grains industry would be 

expected to take two forms: adjustments to distillers’ supply and adjustments to distillers’ 

demand.  

The equilibrium displacement model only reflects adjustments to these factors in 

the short run, since the model inherently holds everything else equal while applying a 

single shock. Over the long-run, ethanol plants and livestock producers have more time to 

adjust their decision-making to reach new equilibriums in the market.  
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A long-term adjustment to these market shocks on the supply-side of the 

distillers’ grains market would likely come in the form of ethanol plants continuing their 

effort to distinguish their distillers’ grains products by further specializing and 

differentiating their feed products. Pelletized distillers’ grains, high protein distillers’ 

grains, and de-oiled distillers’ grains are examples of these value-added (or value-

subtracted, depending on the customer) products currently in the marketplace. These 

differentiated product lines further divide the distillers’ grains market and would serve to 

insulate each faction from market shocks in an adjacent distillers’ grain type.  

 On the demand side, livestock producers may look to avoid distillers’ grains 

market volatility entirely by making permanent shifts away from their reliance on 

distillers’ grains. To do this, livestock producers may absorb the upfront cost to invest in 

small, operation-specific grain milling or corn crushing operations to replace distillers’ 

grains in their livestock feed rations. Despite the upfront cost, the prospect of more 

consistent and manageable feed costs over the long run may incentivize the shift away 

from distillers’ grains. A large-scale shift away from distillers’ grains would likely 

cripple the ethanol industry, barring the development of ethanol co-products for primarily 

non-feed purposes. Beef cattle operations, where most of these grain milling and corn 

crushing operations are being considered, comprise roughly 63% of the domestic 

distillers’ grains market (Hoffman and Baker 2010). So, losing even a portion of beef 

cattle demand for distillers’ grains would introduce series demand issues for the distillers’ 

grains industry.  

 To understand market shocks to the ethanol and distillers’ grains industry, an 

equal consideration of both short-run and long-run responses is needed. This paper 
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provides an equilibrium displacement framework for quantifying the short-run impacts of 

market shocks and uses those results to inform a discussion of possible long-run 

adjustments. Most of the work in this space to date has focused on dynamic adjustments 

to distillers’ grains supply or demand rather than conducting comparative statics analysis 

in the distillers’ grains market (Schmit et al. 2008; Schmit et al. 2009; Suh and Moss 

2014). A comparative statics analysis allows for a closer look at how changes in one 

supply or demand component affect the entire industry and can be easily updated to 

reflect longer-term market shifts. The results found in this paper suggest that both 

distillers’ grains supply and demand are susceptible to market shocks. Ethanol plants and 

livestock producers must, therefore, strategically plan to minimize the impacts of these 

shocks to their operation 



111 

 

 

References 

Eaton, Collin, and Katherine Blunt. “Natural-Gas Exports Lift Prices for U.S. Utilities 

Ahead of Winter.” The Wall Street Journal. Dow Jones & Company, November 7, 

2021. https://www.wsj.com/articles/natural-gas-exports-lift-prices-for-u-s-utilities-

ahead-of-winter-11636281000.  

Hoffman, Linwood, and Allen Baker. “Market Issues and Prospects for U.S. Distillers’ 

Grains Supply, Use, and Price Relationships.” Economic Research Service. United 

States Department of Agriculture, December 2010. 

https://www.ers.usda.gov/mediaImport/107533/fds10k01_1_.pdf. 

Hofstrand, Don. “Tracking Ethanol Profitability: Ag Decision Maker.” Tracking Ethanol 

Profitability. Iowa State University, September 14, 2021. 

https://www.extension.iastate.edu/agdm/energy/html/d1-10.html. 

Kelly, Stephanie, and Jarrett Renshaw. “EXCLUSIVE EPA to Urge U.S. Biofuel 

BLENDING Mandates below 2020 Levels, Sources Say.” Reuters. Thomson 

Reuters, August 20, 2021. https://www.reuters.com/business/energy/us-epa-

recommend-lower-biofuel-blending-mandates-below-2020-levels-sources-2021-08-

20/.  

Khachatryan, Hayk, Jia Yan, and Ken Casavant. “Spatial Differences in Price Elasticityof 

Demand for Ethanol.” Journal of the Transportation Research Forum, 2011. 

https://doi.org/10.5399/osu/jtrf.50.3.4130.  

Liu, KeShun. “Chemical Composition of Distillers’ Grains, a Review.” Journal of 

Agricultural and Food Chemistry 59, no. 5 (2011): 1508–26. 

https://doi.org/10.1021/jf103512z. 

Luchansky, Matthew S., and James Monks. “Supply and Demand Elasticities in the U.S. 

Ethanol Fuel Market.” Energy Economics 31, no. 3 (2009): 403–10. 

https://doi.org/10.1016/j.eneco.2008.12.005.  

Mathews, Kenneth H., and Michael J. McConnell. “The Market for U.S. Livestock Feed 

Proteins.” Applied Economic Perspectives and Policy 34, no. 4 (2012): 555–69. 

https://doi.org/10.1093/aepp/pps030. 

Morgan, Tyne. 2020. Ethanol Plants Could Soon Start Producing for DDGs, Not Ethanol. 

March 27. https://www.drovers.com/article/ethanol-plants-could-soon-start-

producing-ddgs-not-ethanol. 

Mutikani, Lucia. “Surging Gasoline, Food Prices Fan U.S. Inflation.” Reuters. Thomson 

Reuters, November 10, 2021. https://www.reuters.com/business/us-consumer-

prices-surge-weekly-jobless-claims-fall-2021-11-10/.  

Nuttelman, Brandon L., Will A. Griffin, Josh R. Benton, Galen E. Erickson, and Terry J. 

Klopfenstein. 2011. Comparing Dry, Wet, or Modified Distillers’ Grains Plus 

Solubles on Feedlot Cattle Performance. Lincoln, Nebraska: The Board of 

Regents of the University of Nebraska 

Renshaw, Jarrett, and Stephanie Kelly. “Midwest Floods Hammer U.S. Ethanol Industry, 

Push Some Gasoline Prices toward 5-Year High.” Reuters. Thomson Reuters, April 

8, 2019. https://www.reuters.com/article/usa-ethanol-floods/rpt-midwest-floods-

hammer-u-s-ethanol-industry-push-some-gasoline-prices-toward-5-year-high-

idUSL1N21P06D.  

Schmit, T. M., R. N. Boisvert, D. Enahoro, and L. Chase. “Dairy Farm Management 

Adjustments to Biofuels-Induced Changes in Agricultural Markets.” Working 

https://www.extension.iastate.edu/agdm/energy/html/d1-10.html
https://www.reuters.com/business/energy/us-epa-recommend-lower-biofuel-blending-mandates-below-2020-levels-sources-2021-08-20/
https://www.reuters.com/business/energy/us-epa-recommend-lower-biofuel-blending-mandates-below-2020-levels-sources-2021-08-20/
https://www.reuters.com/business/energy/us-epa-recommend-lower-biofuel-blending-mandates-below-2020-levels-sources-2021-08-20/
https://doi.org/10.5399/osu/jtrf.50.3.4130
https://doi.org/10.1021/jf103512z
https://doi.org/10.1016/j.eneco.2008.12.005
https://www.drovers.com/article/ethanol-plants-could-soon-start-producing-ddgs-not-ethanol
https://www.drovers.com/article/ethanol-plants-could-soon-start-producing-ddgs-not-ethanol
https://www.reuters.com/article/usa-ethanol-floods/rpt-midwest-floods-hammer-u-s-ethanol-industry-push-some-gasoline-prices-toward-5-year-high-idUSL1N21P06D
https://www.reuters.com/article/usa-ethanol-floods/rpt-midwest-floods-hammer-u-s-ethanol-industry-push-some-gasoline-prices-toward-5-year-high-idUSL1N21P06D
https://www.reuters.com/article/usa-ethanol-floods/rpt-midwest-floods-hammer-u-s-ethanol-industry-push-some-gasoline-prices-toward-5-year-high-idUSL1N21P06D


112 

 

 

Paper - Department of Applied Economics and Management, Cornell   University, 

no. WP 2008-16 (2008): 31 pp. 

Schmit, T. M., R. N. Boisvert, D. Enahoro, and L. E. Chase. “Optimal Dairy Farm 

Adjustments to Increased Utilization of Corn Distillers’ Dried Grains with 

Solubles.” Journal of Dairy Science 92, no. 12 (December 2009): 6105–15. 

https://doi.org/10.3168/jds.2009-2213. 

Suh, Dong Hee & Moss, Charles B., 2014. "Dynamic Adjustment of Demand for 

Distiller's Grain: Implications for Feed and Livestock Markets," 2014 Annual 

Meeting, February 1-4, 2014, Dallas, Texas 162454, Southern Agricultural 

Economics Association. 

Taheripour, Farzad, Thomas W. Hertel, Wallace E. Tyner, Jayson F. Beckman, and 

Dileep K. Birur. “Biofuels and Their by-Products: Global Economic and 

Environmental Implications.” Biomass and Bioenergy 34, no. 3 (2010): 278–89. 

https://doi.org/10.1016/j.biombioe.2009.10.017. 

USDA ERS. “Feedgrains Sector at a Glance.” United States Department of Agriculture 

Economic Research Service, June 28, 2021. 

https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/feedgrains-sector-

at-a-glance/.  

USDA-NASS. USDA/NASS QuickStats Ad-hoc Query Tool, 2021. 

https://quickstats.nass.usda.gov/. 

 

 

 

 

 

https://doi.org/10.1016/j.biombioe.2009.10.017
https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/feedgrains-sector-at-a-glance/
https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/feedgrains-sector-at-a-glance/


113 

 

 1
1
3

 

Supporting Tables 

Table 1. Results of Equilibrium Displacement Model Shocks. 

Equation # Equation 
Variable 

Impacted 

Positive 10% Shock Negative 10% Shock 

Price of 

Corn Price of Natural Gas Price of Gasoline Livestock on Feed Government Policies 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

1 

WDG Market 

Clearing 𝑑 ln𝑄𝑤
𝑠  -0.229 -0.036 -0.284 0.000 0.100 

2 Qw=Qe 

𝑑 ln𝑄𝑤

= 𝑑 ln𝑄𝑒  0.881 0.052 0.409 0.387 -0.144 

3 Ethanol Supply, MCe 𝑑 ln𝑃𝑒
𝑠 -0.229 -0.036 -0.284 0.000 0.100 

4 

MWDG Supply, 

MCm 𝑑 ln𝑃𝑚
𝑠  0.505 0.025 0.201 0.241 -0.071 

5 DDG Supply, MCd 𝑑 ln𝑃𝑑
𝑠 -0.427 -0.040 -0.315 -0.122 0.111 

7 WDG Q Demanded 𝑑 ln𝑄𝑤
𝐷  -1.611 -0.058 -0.891 -0.627 0.314 

6 Ethanol Q Demanded 𝑑 ln𝑄𝑒
𝐷 0.070 0.011 0.000 0.000 0.000 

8 MWDG Q Demanded 𝑑 ln𝑄𝑚
𝐷  -1.289 -0.035 -0.713 -0.502 0.251 

9 DDG Q Demanded 𝑑 ln𝑄𝑑
𝐷 -1.031 -0.017 -0.570 -0.401 0.201 
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Table 2. Estimated Elasticities in Equilibrium Displacement Model. 

 
Elasticity Estimate Source 

𝜀𝑒𝑤 0 Substitution constraints in Leontief production 

𝜀𝑒𝑒 0 Substitution constraints in Leontief production 

𝜀𝑚𝑚 0 Substitution constraints in Leontief production 

𝜀𝑚𝑤 0.8 Estimate of WDGS cost share in MDGS production 

𝜀𝑑𝑑 0 Substitution constraints in Leontief production 

𝜀𝑑𝑚 0.8 Estimates of MDGS cost share in DDGS production 

𝜂𝑤𝑤 -1.3 Author estimate 

𝜂𝑤𝑚 0.06 Author estimate 

𝜂𝑤𝑑 1.24 Share-weighted symmetry constraint 

𝜂𝑒𝑒 -3.27 Khachatryan et al. 2011 

𝜂𝑚𝑤 0.18 Share-weighted symmetry constraint 

𝜂𝑚𝑚 -1.8 Author estimate 

𝜂𝑚𝑑 1.63 Share-weighted symmetry constraint 

𝜂𝑑𝑤 0.82 Share-weighted symmetry constraint 

𝜂𝑑𝑚 0.37 Share-weighted symmetry constraint 

𝜂𝑑𝑑 -1.19 Share-weighted symmetry constraint 

𝜀𝑒𝑐 0.7 Five-year average of corn’s contribution to ethanol’s cost of 

production (Hofstrand 2021). 

𝜀𝑒𝑜 0.14 Estimated cost share 

𝜀𝑒𝑒𝑙𝑒𝑐  0.05 Estimated cost share 

𝜀𝑒𝑛𝑎𝑡 0.11 Five-year average of natural gas’s contribution to ethanol’s cost of 

production (Hofstrand 2021). 

𝜀𝑚𝑒𝑙𝑒𝑐  0.0025 Estimated cost share 

𝜀𝑚𝑛𝑎𝑡 0.11 Five-year average of natural gas’s contribution to ethanol’s cost of 

production (Hofstrand 2021). 

𝜀𝑚𝑎𝑑𝑑 0.0675 Author estimate 

𝜀𝑑𝑒𝑙𝑒𝑐  0.0225 Estimated cost share 

𝜀𝑑𝑛𝑎𝑡 0.11 Five-year average of natural gas’s contribution to ethanol’s cost of 

production (Hofstrand 2021). 

𝜀𝑑𝑎𝑑𝑑 0.0675 Author estimate 

𝜂𝑤𝑐 1.4245 Suh and Moss 2014 

𝜂𝑤𝑠 0.024 Matthews and McConnel 2011 

𝜂𝑤𝑙𝑜𝑓 -1 Author estimate 

𝜂𝑒𝑔 -2.843 Luchansky and Monks 2009 

𝜂𝑒𝑘 -1 Author estimate 

𝜂𝑚𝑐 1.4245 Suh and Moss 2014 

𝜂𝑚𝑠 0.024 Matthews and McConnel 2011 

𝜂𝑚𝑙𝑜𝑓 -1 Author estimate 

𝜂𝑑𝑐 1.4245 Suh and Moss 2014 

𝜂𝑑𝑠 0.9 Taheripour et al. 2010 

𝜂𝑑𝑙𝑜𝑓 -1 Author estimate 

𝜂𝑑𝑀 -1 Author estimate 
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CHAPTER 4 - DIRECTIONS FOR FUTURE DISTILLERS’ GRAINS 

RESEARCH 

 

Abstract:  

Previous papers published in the economic distillers’ grains literature have offered an 

overview of the existing research, analyzed the domestic distillers’ grains market, and 

explored some theoretical and realized impacts that shocks can have on the market. This 

paper proposes potential paths for the future direction of distiller grains research in 

economics and explores the potential contributions of non-distillers’ ethanol co-product 

economic research to the literature. This paper concludes that the ethanol and distillers’ 

grains markets seem poised to remain the subject of interest in the academic literature for 

the foreseeable future. The potential for future research in the ethanol co-products space 

is full of opportunities for innovative studies of new and existing products, and the 

research paths discussed in this paper would be valuable contributions to the literature, 

providing much-needed insights to industry participants.  
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Introduction 

The previous sections have offered an overview of the economic distillers’ grains 

literature, analyzed the domestic distillers’ grains market, and explored some theoretical 

and realized impacts that shocks can have on the market. This section discusses the future 

direction of distiller grains research in economics. I also explore the potential 

contributions of non-distillers’ ethanol co-product economic research to the literature. 

The paper is structured as follows:  

1) Each section begins with a broad overview of the area identified as potentially 

under-researched or in need of re-exploration. 

2) A more detailed exploration of the specifics of the research area, including types 

of data needed, locations of interest, and contribution to the literature. This format 

is repeated by topic.  

3) A summary concludes the paper. 

Value-Added Co-Products 

The economic distillers’ grains literature to date has, generally, has focused on a rather 

limited subsection of the possible research paths. It has done so by prioritizing the types 

of distillers’ grains that currently comprise the largest market share while omitting new 

and recently emerged value-added co-products (see Table 1 in the literature review in 

Chapter 1). Value-added distillers’ grains products include high protein, pelletized, and 

de-oiled distillers’ grains, among many other products. Papers that mention newer, value-

added co-products or areas with potential for significant market expansion generally offer 

hypothetical scenarios but do not conduct a rigorous analysis of those products. These 

value-added co-products could fundamentally shift the distillers’ grains landscape by 
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providing features distinct from traditional ethanol co-products. A more systematic 

exploration of these lower-visibility yet high-potential products could provide insight into 

the potential trajectory of the distillers’ grains industry. This Information, therefore, could 

assist both ethanol plants and livestock producers in effectively planning for the future of 

their operations. Some of the specific research questions related to each value-added 

product are explored below. 

Contribution #1: High Protein Distillers’ Grains 

High protein distillers’ grains differ from traditional distillers’ grains in their 

nutritional composition, and many types of high protein distillers’ grains exist. These 

grains can be produced using pre-treated hydrolyzed distillers’ grains to increase protein 

contents, or they can be made by separating the fiber from traditional distillers’ grains to 

producer higher-fat, higher-protein products – among many other production methods 

(Perkis et al. 2008; Srinivasan et al. 2006; Srinivasan et al. 2013). How does the 

subsequent nutritional change affect different livestock types, and are those variations in 

feeding value consistent across livestock types? What is the cost of producing high 

protein distillers’ grains versus the premium or discount the products received in the 

marketplace? How do feeding high protein distillers’ grains help livestock producers to 

minimize cost or maximize profit? 

Contribution #2: Pelletized Distillers’ Grains 

 Pelletizing dried distillers’ grains does little to change the nutritional composition 

of the product (Tidwell et al. 2000). Instead, pelletized distillers’ grains offer logistical 

benefits to traditional distillers’ grains in their ease of transportation, storage, and feeding 

(Rosentrater and Kongar 2009). What price premium do these logistical benefits earn in 
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the marketplace, and how does that premium compare to the cost of pelletizing distillers’ 

grains? In what ways does purchasing pelletized distillers’ grains provide value to 

livestock operations? 

Contribution #3: De-Oiled 

 De-oiled distillers’ grains are made by extracting the corn oil from distillers’ 

grains and selling the corn oil and distillers’ grains separately. These products are nearly 

ubiquitous in the marketplace and are generally sold under the traditional DDGS, MDGS, 

and WDGS umbrellas (Luebbe and Erickson 2013). This was not the case when many of 

the studies included in the literature review were conducted, and little is known about 

how de-oiled distillers’ grains differ from traditional distillers’ grains in their feeding 

value. If the feeding value of de-oiled distillers’ grains differs from traditional distillers’ 

grains, are livestock producers paying traditional distillers’ grains prices for 

fundamentally different products? Should they, instead, be paying a premium or discount 

for these de-oiled products?  

Economic Analysis 

Access to private/company data is likely required to conduct an economic 

analysis of these lower-visibility, value-added distillers’ grains products. USDA typically 

publishes distillers’ grains data for only DDG(S), MDGS, and WDGS, and availability of 

data is sporadic by location. Data directly from ethanol plants would likely include cost, 

revenue, and customer base information related to value-added co-products. With this 

data, researchers could estimate the historical and future success of value-added products 

– and their relationship to more traditional co-products in the marketplace.  
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A different approach would be to look at value-added co-products from the 

customer perspective. The purpose would be to determine if the “value-added” is 

symmetric or if the share of value is primarily accrued at the ethanol plant level instead of 

an even split between ethanol plants and livestock operations. This would also describe 

substitution patterns between traditional co-products and new value-added co-products. 

Given that some co-products are hypothetical or not used by all producers, gathering this 

data would likely take the form of a choice experiment/survey sent to livestock producers 

in which they would rank the relative value of various products to their operation.  

Industry Impact 

These research questions would help to determine if these products are cost-

effective and profitable for both plants and producers. Since ethanol plants continue to 

roll out new products to the market – and livestock producers remain interested in ways 

to improve their operations – a more rigorous examination of these products would help 

to shape the understanding of the future of the distillers’ grains space. It would also help 

determine if these value-added products are independent of traditional co-products’ 

market structures.  

International Research 

Another possible avenue to expand the existing distillers’ grains research would be to 

conduct a more comprehensive analysis of the state of – and potential in – the 

international distillers’ grains industry. In many cases, ethanol plants rely on international 

trade to weather unfavorable market conditions and/or to boost domestic prices by 

limiting the supply of distillers’ grains in the United States (Fabiosa et al. 2009). Without 

a comprehensive understanding of the international distillers’ grains market, ethanol 
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plants limit themselves of potential price-boosting revenue streams, while livestock 

producers suffer from a lack of information to understand distillers’ grains prices and, 

therefore, plan for the future. This international research could be conducted from both a 

US export perspective and an international production perspective.  

Contribution #1: Internationally Produced 

 Studies on non-corn ethanol co-products were excluded from the literature review 

to allow for appropriate comparisons. However, international ethanol production has a 

greater variety of inputs than in the United States, with both wheat ethanol and sugarcane 

ethanol comprising significant shares of ethanol markets in certain countries (Sing et al. 

2016). A significant amount of work could be conducted on how consumers view the 

substitutability or complementarity of, specifically, wheat ethanol co-products and if end 

user’s profit margins would be affected by switching from traditionally-used corn 

distillers’ co-products to other distillers’ co-products.  

Researchers could determine whether qualitative differences in the corn versus 

wheat and sugar co-products exist, the relative premium or discount rewarded to 

international plants for those differences, and whether that premium or discount is 

commensurate with the change in product quality. Researchers could also explore 

whether international livestock producers value co-products produced in the United 

States or abroad differently and whether the unique valuations benefit domestic or 

international ethanol plants. These analyses would provide a better understanding of the 

competition US ethanol plants face overseas and could offer insight as to whether an 

international investment is warranted.  

Contribution #2: Potential Export Destinations for US Distillers Grains  
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 Economic theory suggests that products flow between location A and location B if 

the cost in location A plus the transportation to location B is less than the cost in location 

B. There is a growing body of literature that examines the export destination factors that 

impact trade flows. In the distillers’ grains literature, there is little research on the drivers 

of distiller grains' trade flow. Some of these export destination factors could include the 

livestock feeding population, alternative feedstuffs, ethanol profit margins, costs of other 

imported distiller grains, and government/market regulations on feed use. A better 

understanding of these factors would help determine viable export countries for U.S.-

produced distillers’ grains.  

Economic Analysis 

While some studies could simply replicate the methods of domestic research 

papers that use publicly available data, the accessibility of that data varies from country 

to country and may not be as comprehensive as the information available in the United 

States. For that reason, in many cases, the data would need to be retrieved from either 

domestic ethanol plants exporting products internationally, international ethanol plants 

producing their co-products, or international livestock producers purchasing co-products 

produced in their home country or from abroad. Data retrieved from international ethanol 

plants – especially those using non-corn ethanol feedstocks – could take the form of 

simple cost and revenue information regarding basic distillers’ grains products. Or the 

data could be more advanced – such as products sold by customers and co-products in 

development. This data would provide researchers the opportunity to determine what 

differentiates internationally produced distillers’ grains and their corresponding markets 

from domestic distillers’ grains exported abroad. 
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Industry Impact 

While numerous studies have analyzed distillers’ grains economics from the 

vantage point of both plants and producers, the question of whether these results hold 

internationally – given varying production practices and unique regulations – has rarely 

been asked in the existing distillers’ grains literature. The research questions detailed 

above would help provide insight into areas where domestic ethanol plants can further 

their international impact. Similarly, this research will help determine if certain 

international markets hold latent potential for export expansions. If the results of 

international studies indicate a negatively-trending market for distillers’ grains overseas, 

they may offer insights on how – if possible – to prevent similar outcomes domestically. 

Either way, this research would provide valuable information regarding the state of the 

international and domestic distillers’ grains market.  

Governmental Regulations and Industry Challenges 

Few topics of potential interest to distillers’ grains economic research seem to undergo as 

much change, or face the potential for change, as the ever-evolving government 

regulations facing the ethanol and distillers’ grains industries. Despite the continual 

specter of new or adjusted regulations and, concurrently, altered industry structures, few 

studies have examined the economic impact of these regulations directly on the distillers’ 

grains industry. Most of the studies that do explore governmental regulations infer these 

impacts through the lens of regulations on the ethanol industry (Gallagher et al., 2000). 

For example, studies analyzing the impact of minimum fuel blending requirements 

inherently incorporate an impact on distillers’ grains quantities regardless of whether they 

are explicitly included in the analysis.  
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Regulations that increase ethanol output will increase distillers’ grains output, 

while those that decrease ethanol output will result in a commensurate decline in 

distillers’ grains availability. These studies, therefore, occupy a well-explored section of 

the literature, even if more attention could be paid to the exact economic impacts of these 

increases or decreases in distillers’ grains availability. However, areas with little-to-no 

existing economic research include regulations that directly impact distillers’ grains 

products, such as nutrition or quality standards. This is because few regulations on 

distillers’ grains nutrition and quality currently exist. But, as the industry continues to 

evolve and products are further refined to extract additional value, some effort to define 

what adequately constitutes various distillers’ grains products may be undertaken. Studies 

examining the potential impact of these regulations would provide much-needed insight 

into the market.  

Contribution #1: Nutrition Standards 

 Given the proliferation of new, value-added distillers’ grains products, the 

definition of what constitutes certain distillers’ grains beyond basic moisture content 

information can vary from day to day and from ethanol plant to ethanol plant. As a result, 

livestock producers can struggle to know the true value of the products they are 

purchasing, which puts them at a disadvantage in the ethanol plant-livestock producer 

relationship. The introduction of nutrition/composition standards to the distillers’ grains 

industry could help close the information gap between an ethanol plant and livestock 

producer. If livestock producers knew the minimum protein, fat, and oil contents of 

various distillers’ grains products, for example, they could more effectively measure the 

costs of purchasing the products versus the value they would provide to their operation. 
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On the other hand, mandating minimum nutrition or composition standards may impose 

new costs on ethanol plants. A full cost-benefit analysis would likely need to consider 

how any new regulations would outweigh the benefit to the marketplace.  

Contribution #2: Quality Standards 

 The impact of quality standards/regulations of distillers’ grains on the ethanol 

industry has not been explored. Quality standards could include rules relating to 

maximum levels of mycotoxins or phosphorus and require ethanol plants’ products to 

meet those standards. While these standards would not likely impact the feeding value of 

distillers’ grains in terms of nutritional composition, they would guarantee a safe product 

to end-users, thus improving animal health and limiting disease.  

Economic Analysis 

 To analyze the impact of changing regulations on the distillers’ grains industry, 

different hypothetical policy scenarios would need to be proposed. These studies would 

rely on existing or newly gathered data from ethanol plants on distillers’ grains quality. 

This data is not currently being collected. Then, using different proposed nutrition and 

policy standards, the economic impacts could be examined. Of specific interest would be 

the costs of policy adherence to ethanol plants and the corresponding benefit of a 

guaranteed minimum product quality to livestock producers. The subsequent change in 

prices of distillers’ grains – and the impact of those price changes on the market – would 

underpin most economic studies relating to distillers’ grains regulations. 

Industry Impact 

 It may be the case that governmental regulations play the single largest role in 

determining the future of the ethanol and distillers’ grains industry in the United States. 
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With little research to back up that claim, though, little is known about the extent to 

which a change in regulations could impact the distiller co-product market. Adding this 

research to the existing literature would help both ethanol plants and livestock producers 

better plan if changes are ever introduced. It would also assist industry representatives in 

better articulating their arguments for or against certain changes. At the very least, 

distillers’ grains policy analysis studies would provide regulators with additional insight 

into the impact of the policies they introduce and would help market participants to better 

understand the role these policies could play in shaping future distillers’ grains markets.   

Non-Traditional Co-Products 

Nearly all the existing economic research has focused on the feed co-products of the 

ethanol production process. Little research has focused on non-feed ethanol co-products 

in the marketplace. When these products are excluded, it is often assumed that these non-

traditional co-products are not valuable to ethanol plant profitability. This section is 

fundamentally different from the topics traditionally explored. Non-traditional co-

products include products that cannot be used as livestock feed or for any similar use and, 

therefore, are entirely separate from distillers’ grains markets. Their connection to 

distillers’ grains is that they are both co-products of ethanol production and that the 

production of these other co-products impacts the quantity of distillers’ grains in the 

market 

 A variety of products can be produced in the ethanol process aside from the most 

well-known co-products – distillers’ grains and corn oil. Among the products also offered 

by ethanol plants are purified alcohol, CO2 and dry ice, hand sanitizer, concrete 

rejuvenator, and base materials for bioplastic production. These products currently 
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comprise a small fraction of ethanol plants’ revenue and overall production (Jessen 

2021). This is because certain products can only be made in small amounts per every 

larger amount of ethanol. For example, one bushel of corn leads to, on average, 2.9 

gallons of denatured fuel ethanol and 15.2 pounds of distillers’ grains but only 0.8 pounds 

of corn oil and 1.1 pounds of carbon dioxide (RFA 2021). In other cases, it may be 

because a more established market already exists for co-products such as distillers’ grains 

and, therefore, plants do not choose to allocate resources to the development of these 

other products. Regardless, there is a lack of understanding about these products in the 

economic literature.  

Two of the non-traditional co-products that are likely to play an outsized role in 

the future of ethanol production are purified alcohol/hand sanitizer and bioplastic 

production. The production of the former by ethanol plants proliferated during the 

COVID-19 pandemic, while the latter will likely play a key role in the future of an 

industry concerned with sustainability.  

Contribution #1: Purified Alcohol/Hand Sanitizer 

 Most ethanol plants producing purified alcohol and hand sanitizer products are 

fairly new to the process and do so in small amounts relative to total ethanol and other 

co-product production (Wells, 2020). Fundamental questions are still not well understood 

such as whether the introduction of these consumer-oriented products made more plants 

more profitable and what consumer preferences are for corn-ethanol-based vs. traditional 

hand sanitizers.  

Contribution #2: Bioplastics 
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 Bioplastics are a potential generator of plant revenue given the ever-growing 

concerns around sustainability. Since ethanol plants have found some technical success in 

producing biopolymers, a practical extension of the technical ability is discovering 

whether producing these products is economically viable (Drennan 2018). If not, what 

stands in the way of making these products economically feasible? Some factors to 

consider would be if cost constraints or end-user demand play a larger role in determining 

whether ethanol plants shift some capacity to bioplastic production, or if there would 

need to be a change in the market to incentivize additional production capacity.  

Economic Analysis 

Researchers would need cost, revenue, and research data from ethanol plants to 

determine whether alternative co-products offer a largely untapped opportunity for 

ethanol plants. Equally as important would be substitute/complement product data from 

potential end-users of these products. This data could come from – in the case of hand 

sanitizer – consumer research, or – in the case of bioplastics – surveys of plastic product 

manufacturers. Both the ethanol plant and end-user perspectives would be essential in 

determining the viability of these products in the marketplace 

Industry Impact 

These non-traditional co-products provide a unique opportunity for ethanol plants. 

Plants looking to efficiently allocate limited resources would be interested in what the 

profit-maximizing product portfolio looks like. These non-traditional products could 

complement traditional distillers’ grains production or replace them entirely. The 

products could be a new frontier for the ethanol industry, or they could be permanent 

niche products that a limited amount of ethanol plants produce secondary to distillers’ 
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grains production. Without research on the subject, it will be difficult to know which is 

the case and whether increased attention should be paid to these products by industry 

participants.  

Conclusion 

Whether these research paths come to fruition relies, in large part, on the future of the 

ethanol and distillers’ grains industries themselves. This future remains as uncertain 

today as at any point since the inception of the modern-day ethanol and ethanol co-

product markets. With an increasing push toward more stringent environmental 

regulations – one that increasingly prioritizes battery-electric cars over flex-fuel vehicles 

– the long-term viability of fuel ethanol in the domestic market remains in question. It 

seems likely that ethanol plants will need to eventually find other end-users for fuel 

ethanol, or they will need to adapt their product offerings to achieve continued success in 

the market. Whether a change in those product offerings will measurably impact 

distillers’ grains production remains uncertain. On the other hand, ethanol and biofuel 

production remains a key flashpoint in politically important states such as Iowa, 

Wisconsin, Michigan, and Ohio, which lowers the prospects for market overhauls that 

negatively impact the ethanol industry. 

Regardless, the ethanol and distillers’ grains markets seem poised to remain the 

subject of interest in the academic literature for the foreseeable future. The potential for 

future research in the ethanol co-products space is full of opportunities for innovative 

studies of new and existing products. Any of the research paths discussed above would be 

valuable contributions to the literature and would provide much-needed insights to 

industry participants. The directions taken by the industry and the paths pursued in 
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research are likely to influence each other, given the potential turning point presently 

facing the industry. Therefore, it is more important than ever to continue to explore new 

frontiers in the ethanol and co-product literature. Doing so will prove critical in 

understanding complex markets at an even more complex time.  
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