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The rising complexity of machine learning algorithms and Artificial Intelligence in many 

applications, such as smart building, has prompted the development of alternate computing 

options. Because of their compact size, low power consumption, and diverse functionality, 

microelectromechanical systems (MEMS) have emerged as a possible candidate. This 

thesis focuses on using MEMS networks as computing units to classify a simple signal 

classification task using neural network methodology. The study intends to show the 

potential of using MEMS as an analog computing unit by discussing the advantage of the 

bi-stability pull-in behavior and hysteresis to create an accurate classifier of these 

waveforms. Modeling and simulation are being conducted to assess the MEMS-based 

computer units performance. The results reveal that the proposed methodology performs 

the required classification without requiring a digital computer. Furthermore, This study 

adds to the field of analog computing with MEMS by providing insights into the feasibility 

and potential of using MEMS networks for more complex classification tasks such as those 

related to smart building applications
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Motivation 

The need for small, energy-efficient solutions has grown significantly in computing. 

Although digital computing has been the dominating paradigm, its size and power 

consumption drawbacks have led to the investigation of alternate strategies. With its 

inherent benefits, analog computing has emerged as a possible answer to these problems. 

Analog computing has distinct advantages over digital computing, including energy 

efficiency, real-time processing, and the opportunity for compact implementations. 

Microelectromechanical systems (MEMS) offer an implementation platform for analog 

computing [20]. As a demonstration, this research focuses on the advantages of analog 

computing for signal classification tasks by employing  MEMS properties, such as 

hysteresis and bi-stability pull-in, because of their electrostatic actuation. Electrostatic 

actuation results from the interaction of electric charges between the fixed electrode and 

the beam in MEMS. This force has enabled accurate, precise microscale actuation, sensing, 

and control [34-37]. Traditional waveform classification techniques rely on 

computationally intensive digital signal processing algorithms or specialized hardware, 

which uses much energy and space. The potential for low power consumption and the small 

size of MEMS-based analog computing units, in contrast, addresses the drawbacks of the 
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digital method. MEMS devices are exceptional options for practical and compact 

waveform categorization due to their unique characteristics, including their capacity to 

execute analog computations and use hysteresis. 

This thesis aims to contribute to energy-efficient and portable computing solutions by 

adopting analog computing concepts using MEMS devices. The findings of this study have 

the potential to revolutionize waveform classification and encourage more analog 

computing research in various fields. In addition to providing a superior method for 

classifying triangle and square waveforms, MEMS-based analog computing also permits 

improvements in challenging computational tasks, ultimately spurs the creation of effective 

and portable computing systems. 

1.2 Literature Review  

Modern computing has a growing demand for faster processing units that can efficiently 

handle the increasing complexity of problems in machine learning algorithms and artificial 

intelligence applications. This demand is expected to continue growing shortly. These 

fields demand enormous processing power to handle enormous volumes of data and carry 

out intricate computations in real-time. On the other hand, traditional computer 

technologies have several significant drawbacks, including high power consumption and 

scaling restrictions. Researchers have focused on using other technologies, including 

MEMS, as a viable solution to address these difficulties. MEMS are small-scale devices 

integrating mechanical and electronic components to perform various activities. Due to 
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their durability, compact size, and low power consumption [14-16], MEMS are employed 

extensively as sensors [1-3], actuators [4-6], switches [7], wearable devices [8-10], and 

computer systems [11-13]. In addition to these applications, they have recently been 

proposed to be used in applications related to neuromorphic computing systems [31].  

The structure and operation of the human brain have served as a source of inspiration for a 

new approach to computing known as neuromorphic computing. It requires specialized 

hardware and software systems to imitate how information is processed and stored within 

the human brain. Utilizing MEMS is one of the most critical aspects of neuromorphic 

computing. Neuromorphic computers do computation utilizing physical hardware as 

opposed to a digital circuit. Considering this, electrostatic MEMS devices have shown they 

can carry out at least two distinct neuromorphic computing approaches. The first is known 

as normal neural network-based computing (N.N), while the second is known as reservoir 

computing (R.C) [32-33]. 

In the N.N. approach, a network of MEMS resonators was proposed first to perform 

recognizing spoken digits task [18]. In addition to that, a MEMS system with self-

oscillators was modeled and simulated. The system demonstrated the capability of auto-

associative memory operation with high robustness of pattern retrieval in the presence of 

nonlinearity, frequency and coupling strength dispersion, and white noise perturbations. 

However, to ensure that the system's performance is as it should be, a narrow frequency 

distribution is required, as this will prevent the system from performing as it should not. In 

addition to this, there will need to be stringent limitations placed on the repeatability of 

coupling strengths. The findings show that neurocomputing in a physically realistic 



4 

 

network of micromechanical oscillators using a manufacturing process based on silicon 

can be resistant to noise sources and fabrication [19]. 

 Alternatively, another piece of research presents an original idea for employing MEMS as 

a computing unit. The theory underpinning the concept is derived from the neuron rate 

model theory, an essential component of dynamic field theory. This theory is used for 

modeling of cognition and human behavior. The simulation of the detection and memory 

capacities of a single rate model neuron is accomplished by using the proposed approach, 

which uses the nonlinear dynamics of MEMS resonators, in particular, bi-stability and 

hysteresis [20]. In addition, a modeled simulation of MEMS suggested that continuous 

time recurrent neural network may serve as a foundation for human actions to be 

recognized. Hysteresis, in conjunction with pull-in or nonlinear arch geometries, enables 

tiny MEMS networks to represent the basic features of CTRNNs qualitatively and 

effectively. In this study, various neuron types were tested in the hidden layer, and the 

results were compared to those predicted by the long short term memory (LTSM) and 

CTRNN models. According to the findings, the MEMS-based CTRNN model's average 

accuracy in classifying five distinct activities is 77.94% compared to the standard 

CTRNN's 78.48% accuracy [21].  

In yet another significant body of work, the categorization of a triangle and square signals 

was accomplished by using a three-node MEMS network that was mechanically connected. 

It is just necessary to apply a D.C. bias voltage to operate the network to complete the task. 

The work consisted mainly of simulation findings, with the classification tasks being 

effectively completed without using any circuits or other external processing devices [22]. 
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However, using mechanical connections between the MEMS limit the use of this 

computing unit for other applications. In this thesis, we present electrical connections with 

adjustable weights. This allows its reconfiguration to fit more than one application. 

A different method of neuromorphic computing was introduced in the middle of the 

2000s [17]. Reservoir computing, a computational paradigm inspired by the dynamics of 

physical systems, utilizes the concept of a "reservoir" to perform complex computations. 

The reservoir, implemented using physical systems such as electronic circuits or 

optoelectronic devices, exhibits rich and nonlinear dynamics that enable efficient 

information processing [23,24]. In reservoir computing, the transformed representation 

from the reservoir is further processed by a linear regression layer. Using a simple linear 

function, this layer maps the reservoir's state to the desired output. There is a possibility 

that this method could be used to directly carry out time series analysis [25-27]. 

Modifying a MEMS RC system utilizing the mutual information criterion proved 

successful. The findings show that a statistical model with an unimodal aim distribution 

can prevent chaos. The distribution will maximize the desired outcome's likelihood. 

Tuning the equilibrium between MEMS reservoir linearity and nonlinearity increases 

prediction accuracy [28]. This is a consequence of the tuning technique. In addition, 

MEMS R.C. accelerometers have been devised and constructed with the capacity to do 

sensing and calculation activities. The design comprises a connected beam responsible 

for the processing work and an accelerometer MEMS responsible for sensing motion to 

measure acceleration. Integrated systems are characterized by enhanced speed, lower 
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power consumption, and reduced size. This is in comparison to discrete modules used for 

sensing and regulating [29]. 

Despite the amount of work on MEMS RC, MEMS neural network computing still offers 

precise control over individual neural network elements, allowing for fine-tuned 

computations and higher accuracy than MEMS reservoir computing. Its flexibility in 

architectural design enables the implementation of various neural network models and 

algorithms, adapting to diverse problem domains. Additionally, MEMS neural network 

computing excels in parallelism, processing multiple inputs simultaneously for accelerated 

computations. In contrast, MEMS reservoir computing relies on sequential processing, 

potentially limiting processing speed. 

This thesis aims to investigate the feasibility of using MEMS networks as computing units 

for categorizing triangle and square waveforms using neural network computing 

methodology. The neural network approach will use MEMS devices' nonlinear dynamics 

and hysteresis to imitate rate model neurons' detection and memory capabilities. To 

evaluate the network's performance in identifying triangle and square waveforms, the 

research result will be based on simulation, and future work on experimental tests including 

both fabrication and testing of the network. This is expected to outperform typical digital 

computing methods in classification accuracy by using the unique features of MEMS. 

Second, the study emphasizes the benefits of adopting MEMS-based computing units, such 

as low power consumption, compact size, and parallelism, which can benefit real-time and 

portable applications. Overall, this research will add to the increasing body of knowledge 

on analog computing with MEMS and provide insights into the practicality and promise of 
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using MEMS networks for waveform categorization tasks using neural network 

methodology. 

1.3 Thesis Objectives 

This thesis investigates the feasibility and effectiveness of utilizing a MEMS network as a 

computing unit for classifying triangle and square waveforms. The network parameters 

will be optimized to ensure reliable and accurate classification. Considerations related to 

power consumption and scalability will be addressed to ensure the proposed MEMS-based 

solution's practical viability and applicability. By achieving these objectives, this research 

aims to contribute to creating new analog computing concept for signal classification 

techniques, demonstrate the potential of MEMS networks as novel computing units, and 

provide insights for the development of efficient and compact systems for real-time 

waveform analysis and recognition in diverse fields such as telecommunications, 

biomedical engineering, and internet of things (IoT) devices. 

 

  

1.4 Problem Statement   

MEMS have seen remarkable developments in recent years, which has opened up new 

possibilities for constructing effective computing units. These small devices have 

extraordinary capabilities, such as low power consumption, a compact design, and a high 
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integration density. This thesis uses the potential offered by MEMS technology as a 

computing unit to categorize triangular and square waveforms. Because of the similarities 

between triangle and square waveforms in terms of amplitude, classifying these two types 

of waveforms presents a considerable issue. For example, when the amplitude of each of 

these waveforms is the same, conventional methods, such as employing simple switches, 

are unable to differentiate between them accurately, Because of this constraint, there is a 

pressing need for more advanced processing units to identify minor waveform properties 

to accomplish reliable categorization, as shown in Figure 1.1 

 

Figure 1.1: Signal classification using switches is not trivial.  

A MEMS network is an exciting possibility for a solution in this scenario. Hysteresis is 

one of the distinctive qualities that MEMS devices show; this property, along with others, 

can improve waveform classification. The MEMS can have some memory by taking 

advantage of the hysteresis phenomenon, which makes it possible for the network to 

distinguish between triangular and square signals even when the amplitudes of the signals 



9 

 

are the same. In MEMS, the hysteresis effect describes the dependence of the device's 

output on its previous states. Due to the presence of this attribute, the MEMS network can 

store information regarding the waveform shape and its history. Incorporating this property 

into the architecture of the network makes it possible to use the MEMS hysteresis as a 

memory element, which in turn gives the network the ability to differentiate between 

triangle and square waveforms based on the distinctive temporal characteristics of each 

waveform. 

Utilizing a MEMS network as a computing unit for the classification of triangle and square 

waveforms offers several benefits compared to more conventional methods. To begin, 

MEMS devices' inherent analog computation capabilities to make real-time processing 

possible and lower the computational burden generally associated with digital signal 

processing algorithms. This enables the devices to reduce the time needed to complete a 

task. Additionally, MEMS devices are suited for integration into portable and resource-

constrained systems because of their small size and low power consumption. This makes 

MEMS devices an attractive option. 

This thesis intends to overcome the complications associated with reliably identifying 

triangle and square waveforms by investigating the potential of MEMS hysteresis as a 

memory element within the network. In other words, the thesis will explore the potential 

of MEMS hysteresis as a memory element. In addition to contributing to waveform 

classification techniques, the successful development of such a computer unit based on 

MEMS will demonstrate the usability of MEMS technology in sophisticated signal 

processing systems.  
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CHAPTER 2 

ELECTROSTATIC MEMS 

This chapter discusses the mathematical modeling component, a process in which real-

world situations and their relationships are expressed mathematically or in which real-

world problems are translated into mathematical language, solved within a mathematical 

system, and solutions tested again within the real-world system. This chapter will derive 

the MEMS mathematical model based on the Parallel Plate beam equation. After that, we 

will simplify the model to the equivalent spring mass damper equation to make things 

easier to understand. In addition, we will discuss a few phenomena associated with MEMS, 

such as pull-in, hysteresis, stiction, and damping. 

 

2.1 MEMS Electrostatic Parallel Plate Model                                                                                                                                                                                                                                                                                                                                          

Electrostatic MEMS as a parallel plate refers to a specific type of technology that uses 

parallel plate capacitors as a key component. These devices are designed with two flat, 

conductive plates positioned parallel and separated by a tiny gap. Imagine two flat plates, 

like tiny sheets of metal, placed close together but not touching. The top plate can move or 

be controlled while the bottom plate remains still. The gap between the plates is very small, 

on micrometers or nanometers. The movable plate can be pushed or pulled by an external 
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force or using special mechanisms like electricity or vibrations. When the movable plate 

moves, it changes the space between the plates, affecting capacitance. Capacitance is a 

measure of how much electrical charge a capacitor can hold. In this case, the parallel plates 

act as a capacitor, and the distance between them determines the capacitance. When the 

movable plate moves, it changes the distance between the plates, which, in turn, changes 

the capacitance. These changes in capacitance can be detected and used for different 

purposes. Figure 2.1 illustrates the MEMS schematic as the parallel plate. 

 

Figure 2.1: MEMS schematic diagram. 

For modeling the MEMS as a parallel plate, the electrostatic force resulting from the 

applied voltage signal across the electrodes is defined as: 

FP.P. =
εA[VDC+VA.C. cos(Ωt)]2

2(g−x)2                                                                                             (2.1) 

where: 

x: The beam deflection. 

ε: Represents the permittivity of the material between the conductive components. 

A: The electrode area  

Ω: represents the A.C. signal frequency. 

t: represents the time. 

VDC: The DC bias voltage applied.  
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VAC: The A.C. signal applied. 

g: represents the initial gap between the electrodes. 

 

The interaction of electric charges causes the electrostatic force in MEMS. An electric field 

is created between two conducting components separated by a short distance when an 

electric potential difference (voltage) is applied. This electric field creates opposing 

charges on the conductive components' surfaces, resulting in an electrostatic force of 

attraction between them. 

2.2 Beam Equation 

The moving plate of the MEMS parallel plate can be approximated as a beam. A  Beam or 

Bernoulli-Euler equation is the mathematical representation of how a beam responds in the 

presence of a load and can be used to describe the MEMS motion. The equation is based 

on a few assumptions. These include the beam shape or geometry not changing 

significantly while applying a load. Also, the beam's cross-section is assumed to remain 

planner and normal to the deformed axis of the beam. Our work will be based on the 

Cantilever beam model. Cantilever is a type of beam that has been fixed from one side and 

free from the other side, as shown in Figure 2.2 

Assuming the applied force is a uniform distributed load over the beam, the deflection is 

defined as:                                                                                                                    
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δ =
wL4

8EI
 

                                                            (2.2) 

Where: 

δ: The deflection at the tip in m 

w: Load in kN/m 

L: Beam length in m 

E: Young's Modulus in MPa 

I: The beam moment of inertia in m4 

 

 

Figure 2.2: Cantilever beam schematic. 

If the deflection of the beam at the tip, which would have the largest deflection, is of 

interest, a set of ordinary differential equations can be used as follows based on Equation 

2.2. On the other hand, beam equation can be written as a partial differential Equation if 

interest is on the beam deflection over the position along the beam and time, as shown in 

equation 2.3: 

E. I.
∂4w

∂x4 + ρA
∂2w

∂t2 + c
∂w

∂t
− N

∂2w

∂x2 =F                                                                                                        (2.3) 
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where: 

E: Young's Modulus in MPa 

I: The beam moment of inertia in m4. 

ρ: Beam material density in kg/m3. 

A: Beam cross-sectional area in m2. 

c: damping coefficient in Ns/m. 

F: Applied force in Newton. 

 

Besides the mathematical representation of the beam equation, a more simplified 

representation can be used. This representation is based on the spring mass damper system 

formula. This representation provides a useful approximation that simplifies the analysis 

and helps us understand the dynamic behavior of beams, as we will discuss in the following 

section.   

2.3 Spring Mass Damper Model  

Instead of using the beam's high-order partial differential equation to describe the beam's 

dynamics and behavior under different loads or constraints, a simplified spring mass 

damper system representation, as shown in Figure 2.3, can be used. The spring-mass 

damper system is based on a set of ordinary differential equations, which is less challenging 

on the computing side and even easier to understand and track. Also, the spring mass 

damper system is a very useful representation to study the dynamic behavior of the beam, 
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finding and analyzing some important parameters such as the damping coefficient and the 

response at the resonance frequency. Moreover, we can study these parameters in the 

presence of different types of loads, which helps us understand different cases and gives 

us more flexibility to predict the system's behavior with different parameters.  

 

Figure 2.3: Spring-mass damper schematic. 

For the spring mass damper system, the equation of motion can be find using Newton 

second law as: 

∑F=ma                                                                                                                                               (2.4) 

mẍ + cẋ + kx = F                      (2.5) 

where: 

m: is the proof of mass in kg. 

c: is the damping coefficient in Ns/m. 

k: is the spring stiffness in N/m. 

F: is the applied force in N.  
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2.4 Single Degree of Freedom Model Parameters  

Here we present a detailed explanation of extracting the single-degree model parameters, 

such as the equivalent mass and stiffness for the beam and the electrostatic force. 

The equation of motion states that the sum of the forces acting on the plate is equal to the 

mass times the acceleration of the plate. In this model, we assume that the movable plate 

can be represented as a single-degree-of-freedom system, with its motion along one 

direction, denoted by x. The equivalent mass of the movable plate is denoted by m, and the 

equivalent stiffness of the beam supporting the plate is denoted by k. The damping 

coefficient, c, accounts for any dissipation of energy in the system. The equation of motion 

for the MEMS device is 

  mẍ + cẋ + kx = F                (2.6) 

Combining the effective mass and the equivalent stiffness for the beam to this model, 

assuming that meff=0.646m and keq=
8EI

L3  .[30] 

So, our final model is shown as: 

0.646 m ẍ + cẋ +
8EI

L3 x =
εA[VDC+VA.C. cos(Ωt)]2

2(d−x)2             (2.7) 

Where: 

E: Young's Modulus in MPa 

I: The beam moment of inertia in kg/m2. 

L: Beam length in mm. 

ε: Represents the permittivity of the material between the conductive components. 
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A: The electrode area  

VDC: The DC bias voltage applied.  

VAC: The A.C. signal applied. 

d: represents the initial gap between the electrodes. 

2.5 Pull-in Bi-stability Phenomenon 

A DC voltage is applied to the beam in microelectromechanical systems, causing it to 

deflect. An A.C. signal can also be used if the deflection is required to have an oscillating 

motion about that point. This can aid in analyzing MEMS behavior by providing more 

parameters to investigate. Both DC and A.C. loads have an upper limit beyond which the 

mechanical restoring force of the beam can no longer resist the opposing force, resulting 

in a continuous increase in beam deflection, which increases the electrostatic force until 

contact occurs between the beam and fixed electrode. This instability behavior is called 

Pull-in, and the voltage associated with reaching this behavior is called Pull-in voltage. If 

a D.C. signal was applied to the beam, it resulted in a static pull-in, whereas an A.C. signal 

resulted in a dynamic pull-in behavior. A stopper is added to eliminate a short circuit 

between the beam and the fixed electrode. Figure 2.4 shows a beam under the pull-in. 
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Figure 2.4: Beam under pull-in. 

2.6 Hysteresis Phenomena  

In the context of MEMS, hysteresis plays a crucial role in their working principles. 

Hysteresis in MEMS refers to a phenomenon where the system's response, such as a 

material or structure, is dependent on the current input force or deformation and its history. 

Specifically, when a force or voltage is applied to a material, causing it to undergo 

deformation in the forward direction, hysteresis manifests as a nonlinear behavior during 

the subsequent reduction of the force. More specifically, when the applied force is 

decreased, the material's deformation does not follow the exact reverse path of the initial 

forward deformation. Instead, the material exhibits a lag or memory effect, resulting in a 

different deformation path during the force reduction compared to the forward path. This 

behavior is characteristic of hysteresis in MEMS. Integrating this explanation with the 

previous definition, we can provide a revised and more comprehensive description: 

Hysteresis, in general, refers to the phenomenon where the response of a system depends 

not only on its current input but also on its history or past inputs. In the context of MEMS, 

hysteresis becomes a significant factor in the system's working principles. When a certain 

type of force is applied to a material or structure within a MEMS device, causing it to 

undergo deformation in the forward direction, hysteresis manifests as a nonlinear behavior 

during the subsequent force reduction. The material's deformation during force reduction 

does not follow the exact reverse path of the initial forward deformation but exhibits a lag 
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or memory effect. This behavior is known as hysteresis in MEMS, and it influences the 

performance and characteristics of the MEMS network. Figure 2.2 shows the hysteresis 

loop behavior in MEMS. 

 

Figure 2.5: Hysteresis loop curve. 

 

2.7 Damping Effect  

We include the damping effect in the simplified model for the MEMS device with a single 

degree of freedom because we want to account for energy dissipation within the system. 

The device's dynamic behavior and stability are directly influenced by damping, which 

plays an essential role in both aspects. The damping coefficient, denoted by the letter c in 
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the equation of motion, is responsible for the resistance to motion that damping provides. 

It is responsible for lowering the magnitude of oscillations and managing the rate at which 

the moveable plate returns to its original position after the disruption. The effectiveness of 

the damping effect is directly proportional to the magnitude of the damping coefficient, 

denoted by the letter c. A higher damping coefficient results in a more severe energy loss 

and faster decay of oscillations. The reduction in the frequency of oscillations causes both 

of these effects. On the other hand, if the damping coefficient is smaller, the system can 

continue oscillating for longer before coming to rest.  

In the result chapter, we will talk more about how the damping ratio would affect the 

damping coefficient, which could result in a system that works as intended or one that fails 

to do the task asked of it. 

2.8 Stiction Effect  

Capillary forces are one of the sources of nonlinearities in MEMS. This force can be due 

to humidity, leading to stiction. In this section, the stiction effect was studied and molded. 

Wet conditions can come from wet etching, an important process to remove the sacrificial 

layers to ensure the release of the microstructures from the substrate [30].  

In the beginning, we assumed that the only force affecting the system is the electrostatic 

force, so, at pull-in, the restoring force that pulls the system away from the pull-in is the 

beam's stiffness and the stopper's reaction force Fr.  Both dynamic and steady-state 

schematic of the beam are shown in Figure 2.6. 
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Figure 2.6: a) Dynamic response free body diagram. b) Static response free body 

diagram at pull-in.  

Equation 2.8 represents the beam's dynamic response, while equations 2.9 and 2.10 are 

for the static equilibrium at the pull-in state: 

mẍ + cẋ + kx = Fe ,                   At steady state: ẍ = ẋ = 0                   (2.8) 

 

kx@pull−in = Fe@pull−in
+ Fr ,     where Fr can never be Fr ≥ 0                   (2.9) 

 

Fe =
εAV2

(g0−x)2    and     Fe@pull−in
=

εA[VDC+VA.C. cos(Ωt)]2

(g0−x@pull−in)2       (2.10) 

 

where x is the beam's tip deflection and x@pull−in is the stopper height. m, c, and k are 

the mass, damping constant, and stiffness of the beam, respectively. Fr is the normal 

reaction force of the stopper. Fe is the electrostatic force, ε = 8.854 × 10−12, A, V, and 

g0 are the absolute permittivity of air, the overlapping area between the two electrodes, 

the input voltage, and the initial gap between the electrodes at rest position, respectively. 

To maintain the pull-in, all forces acting toward the pull-in must be greater than or equal 

to the stiffness restoring force (kx@pull−in). Since the only force assumed to act toward 

the pull-in is the electrostatic force, then Fe ≥ kx@pull−in is required to maintain the pull-

in. To release the system (pull-out), the electrostatic force Fe should be decreased to 
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achieve Fe < kx@pull−in, which can be done by decreasing the input voltage (Fe =

εA[VDC+VA.C. cos(Ωt)]2

(g0−x@pull−in)2 ).  

Theoretically, if the electrostatic force is set to zero (Fe = 0), the beam must release and 

never get stuck). However, based on initial testing in ambient air, some designs stick at 

the pull-in and never release even at zero input voltage (Fe = 0). This brings us to question 

the claim that Fe is the only force acting on the system toward the pull-in? Specifically, 

due to wet etching by some acidic liquids during fabrication and the fact that the beams 

are operated in the room environment, there is a good chance of wet adhesion sticking 

forces (capillary force). Stepping further into this hypothesis, we introduce a capillary 

sticking force to our model, see Figure 2.7 and Equation 2.11: 

 

 

Figure 2.7: Spring mass system under capillary stiction force (wet adhesion). 
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Fcap =
2γAcapcos(θ)

(d−x)
            (2.11) 

where: 

 γ: is the surface tension for the liquid (γ = 0.073N/m for water) 

 θ: is the angle that the liquid makes between the beam and the substrate (assume perfect 

wetting with θ = 0°) 

d: is the thickness of the liquid layer. 

 Acap : is the area of the beam that is in contact with the water (we will assume Acap = aA 

and vary the ratio a~(0 − 0.2). 

Figure 2.8 shows the free-body diagram considering the electrostatic and capillary forces. 

Since 𝐹cap is not applied unless pull-in occurs and x can never exceed x@pull−in (beam 

never penetrates through the stopper, then x@pull−in. This leads to 2.12 and 2.13: 

 

Fcap@pull−in
=

2γ(aA)

(g0−x@pull−in)
         (2.12) 

 

kx@pull−in = Fe@pull−in
+ Fcap@pull−in

+ Fr       (2.13) 

 
 

Figure 2.8: Static response free body diagram at pull-in under electrostatic and 

capillary forces. 
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Assuming the worst-case scenario of angle (θ = 90°), we need to estimate the water 

contact area. A good beam design to work for this estimation is the CL900 design, as this 

design parameters will be discussed in Chapter 4. This beam has been experienced to be 

stuck for some chips and work fine for others. Using this beam parameter, we manually 

adjusted the area ratio 𝑎 until we reached the critical range where a slight change stuck the 

system. The simulation results will be discussed in the results chapter. 
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CHAPTER 3 

 METHODOLOGY 

In this chapter, we will discuss our MEMS network's working principles and the signal 

classification methodology. 

3.1 Working Principles and Classification Methodology 

This section shows the methodology used to solve the classification problem shown in 

Figure 3.1. Next, we will explain the signal classification methodology that we used. 

 

Figure 3.1: Square vs triangle waveform classification problem. 

When a triangle signal is applied as the actuation voltage, the  first input MEMS device 

pulls in, and its positive coupling with the output MEMS  O3 also results in pulling it in, as 

shown in the sequence starting from Figure 3.2 to Figure 3.5. 
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Figure 3.2: MEMS network diagram before at the beginning of signal. 

 

Figure 3.3: Both input MEMS start to deflect while increasing the input voltage. 
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Figure 3.4: First MEMS reached the pull-in. 

 

Figure 3.5: Output MEMS reach the pull-in due to the voltage coming from the first 

MEMS. 
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 As the voltage continues to increase, I2 will also reach the pull-in, resulting in an output 

multiplied with a negative weight as in input to the output MEMS O3. However, due to bi-

stability hysteresis, O3 remains pulled in due to the effective voltage acting upon it, as 

shown in Figure 3.6 and 3.7. 

  

Figure 3.6: 2nd MEMS at pull-in. 
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Figure 3.7: Output MEMS at pull-in due while the input voltage decreased due to 2nd 

MEMS pull-in. 

And then the applied voltage signals will keep decrease, the 2nd MEMS will release first, 

then the 1st MEMS release too which makes the output MEMS release as shown in Figure 

3.8,3.9 and 3.10. 

  

Figure 3.8: 2nd MEMS at pull-out (release) due to the failing edge of the input signal. 
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Figure 3.9: 1st MEMS at pull-out (release) due to the failing edge of the input signal. 

 

Figure 3.10: Output MEMS at pull-out (release) because no voltage is applied fro the 

input MEMS . 

 nput Signal

MEMS  eflection

 nput Signal

MEMS  eflection

 
1
 
ef
le
ct
io
n 
  
m
 

 ime  s 

 ime  s 

 
3
 
ef
le
ct
io
n 
  
m
 

 1

 1

 2

 2

 ime  s 

 
2
 
ef
le
ct
io
n 
  
m
 

1
  
 
 
 
 

2
 
 
 
 
 
 

 nput  oltage from input MEMS

Output MEMS  eflection

 
 
 
  
 
 
 
 
  
 
 
 
  
 

 
 
 
  
  
 
 
  
 
 
 

( 
)

 
 
 
  
  
 
 
  
 
 
 
  
 

       
        

 nput Signal

MEMS  eflection

 nput Signal

MEMS  eflection

 
1
 
ef
le
ct
io
n 
  
m
 

 ime  s 

 ime  s 

 
3
 
ef
le
ct
io
n 
  
m
 

 1

 1

 2

 2

 ime  s 

 
2
 
ef
le
ct
io
n 
  
m
 

1
  
 
 
 
 

2
 
 
 
 
 
 

 nput  oltage from input MEMS

Output MEMS  eflection

 
 
 
  
 
 
 
 
  
 
 
 
  
 

 
 
 
  
  
 
 
  
 
 
 

( 
)

 
 
 
  
  
 
 
  
 
 
 
  
 



31 

 

On the other hand, when a square signal is applied, both I1 and I2 pull in simultaneously. 

The combined effective voltage exerted by these input devices on O3 cannot cause a pull-

in response. Figure 3.11 to Figure 3.14  show the MEMS network and a schematic for the 

classification task based on  the square signal. 

 

Figure 3.11: Applying square signal for the input  MEMS . 
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Figure 3.12: Both input MEMS reach the pull-in due the the rapid shape of square 

signal . 

  

Figure 3.13: Both input MEMS at pull-in will generate a voltage that is not enough to 

make the output MEMS reach the pull-in . 
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Figure 3.14: Output MEMS didn’t pull-in while the input MEMS reach pull-in . 

By observing the pull-in behavior and the resulting status of the output MEMS device, the 

network effectively classifies the input signals. The distinct responses exhibited by the 

MEMS devices within the network provide a reliable basis for signal classification. To 

differentiate between triangle and square signals, this method makes use of the unique 

characteristics and hysteresis features of MEMS devices. This interconnected methodology 

ensures the network's response to different input signals is well understood and provides a 

robust foundation for accurate signal classification. 
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CHAPTER 4 

MEMS DESIGN 

This chapter summarizes the MEMS design steps, where a cantilever design was proposed 

with different parameters to find the optimal design that satisfies our needs.  

4.1 Cantilever Design  

In this section, we aimed to find the optimal parameters for our Cantilever to make our 

MEMS network capable of the classification task. We tried to have more than one design 

due to fabrication limitations. The design and optimization steps were done using 

MATLAB. A wide range of values for each beam parameter was performed to ensure we 

have as many working designs as possible. 

Figure 4.1 shows the cantilever schematic and the parameters we used for the design. Also 

Table 4.1 summarizes the different working designs and their parameters. 

 

Figure 4.1: Cantilever beam with parameters. 
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Table 4.1: Summary of Cantilever different design parameters. 

Design  L b g0 d S Vbi1 Vbi2 Vbout W1 W2 Vin 

 [um] [um] [um] [um] [um] [V] [V] [V]   [V] 

CL400 400 100 3 6 1.25 14 9 17 1 -.75 20 

CL500 500 100 4 6 1 14 9 17 1 -.75 20 

CL600 600 100 5 6 2 14 8 17 1 -.75 20 

CL700 700 100 5 6 1.5 10 6 13 1 -.75 15 

CL900 900 100 5 6 1.5 7 4 7 1 -.75 10 

CL1000 1000 100 5 6.1 1.25 5 3 6 1 -.75 10 

CL1500 1500 100 5 7 2 4 2 2 1 -.75 5 

CL2000 2000 100 15.2 7 3.8 9 7 11 1 -.75 10 

4.2 CL900 Design  

We found that the stiction force plays a major role in determining the suitable working 

design. Whereas we increase the contact area ac between the beam and moisture, the chance 

to reach the pull-in and stick increases as shown in Figure 4.2. 
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Figure 4.2: Cantilever beam with the presence of capillary force(stiction). 

As a result, we found that the CL900 design can be considered the best working design in 

the presence of stiction force.  All designs with higher lengths tend to be stuck without 

release, as shown in Table 4.2. 

 

Table 4.2: Summary of Cantilever different design parameters with restoring force. 

Design  L b g0 d S K MaxRestoringForce ac 

 [um] [um] [um] [um] [um] [N/m] [uN] [10-6] 

CL400 400 100 3 6 1.25 34.65 60.63 5519 

CL500 500 100 4 6 1 17.74 53.22 468 

CL600 600 100 5 6 2 10.26 30.80 3620 

CL700 700 100 5 6 1.5 4.65 22.62 875 

CL900 900 100 5 6 1.5 3.04 10.64 227 

CL1000 1000 100 5 6.1 1.25 2.33 8.73 50 

CL1500 1500 100 5 7 2 1.04 3.13 43 
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CL2000 2000 100 15.2 7 3.8 0.44 5.01 6 

 

From table 4.2, we found that when the contact area ratio ac exceeds a value of 227*10-6, 

the beams never release due to the capillary force. Also, CL900 design gives us the highest 

capacitance change reflected in the deflection compared to the other working designs.  
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CHAPTER 5 

Discussion and Results 

In this chapter, we present the discussion and results of our research on signal classification 

based on analog computing using a MEMS network. We successfully developed and 

implemented the MEMS network for signal classification tasks and conducted several case 

studies to investigate the impact of various parameters on classification performance. The 

findings provide valuable insights into the capabilities and behavior of the MEMS network 

and shed light on its potential for signal classification applications. 

5.1 Successful Signal Classification 

Our investigation demonstrated that the MEMS network can achieve successful signal 

classification. By harnessing the analog computing capabilities of the MEMS devices, we 

effectively processed and interpreted input signals, achieving accurate classification 

results. This outcome validates the viability of the MEMS network as a promising solution 

for signal classification tasks. Figure 5.1 shows the MEMS network response to both 

triangle and square signals. As shown, we can see that as a triangle signal is applied on the 

first MEMS, at the pull-in voltage, the MEMS reaches the pull-in as it has the maximum 

deflection available. Then the output from the first MEMS is multiplied by a positive gain 

and fed to the output MEMS which also reached the pull-in. When the second MEMS 
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reaches the pull-in too, the output from that MEMS is multiplied by a negative gain and 

then fed to the output MEMS, as shown in Figure 5.1. The applied voltage on the output 

MEMS was decreased, but the output MEMS was still in the pull-in position due to the 

hysteresis effect until the total applied voltage reached the pull-out voltage, then, the 

MEMS would pull out and back to the original released state. 

On the other hand, when a square signal is applied, both input MEMS reach the pull-in 

simultaneously, but the output voltage from both of them to the output MEMS is not 

enough to reach the pull-in. 

 

Figure 5.1: a) First MEMS response, b) Second MEMS response, c) Output MEMS 

response. (The black signals in the figures represents the input voltage applied to 

each MEMS, while the blue lines represent the deflection) 
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5.2 Case Studies  

To gain deeper insights into the behavior and performance of the MEMS network, we 

conducted several case studies focusing on parameters that could impact classification 

outcomes. The case studies encompassed the investigation of capillary sticking force, 

damping, and varying input signal frequency effects on the pull-in behavior. The findings 

from each case study are presented below. 

5.2.1 Damping Effect Study 

 

The damping effect emerged as a significant factor affecting the classification performance 

of the MEMS network. We tried different values for the damping ratios 𝜁, starting with 0.2 

until 3.52 as shown in the following figures, Fig.5.2 to Fig.5.4.  

 

Figure 5.2: MEMS network response with 𝜁=0.2 
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Figure 5.3: MEMS network response with 𝜁=3.5 

 

 

Figure 5.4: MEMS network response with 𝜁=3.52(The network is not capable of 

classifying the input signal due to high damping ratio) 
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From the figures above, we found that within a realistic range of damping ratios, the 

classification performance of the MEMS network for signal shapes remains largely 

unaffected until a value for the damping ratio that exceeds 3.52. This analysis showed that 

the network is robust to damping variations in the context of signal classification. 

5.3.2 Varying Input Signal Frequency 

 

Our investigation into varying input signal frequencies uncovered a correlation between 

signal frequency and classification accuracy. The MEMS network exhibited high accuracy 

within certain frequency ranges, but deviations were observed at extreme frequency values. 

Our hypothesis is that for better accuracy, the input signal must have a frequency lower 

than the MEMS natural frequency. We performed a sweep for the input signal frequency 

over the cantilever beam designs to validate this hypothesis. Figure 5.5 to Figure 5.20 

shows results for a frequency sweep from 200 to 5.6 kHz for the CL900 design. 
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Figure 5.5: MEMS network response with 200 Hz frequency. (O1 and O2 pull-in 

when applying a triangle waveform and pull-out when applying a square waveform, 

depending on the input MEMS output state. O3 classifies the input waveform 

signal.) 

 

Figure 5.6: MEMS network response with 2000 Hz frequency.( The output MEMS 

pulls-in for triangle signals and releases for square signals.)  
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Figure 5.7: MEMS network response with 2500 Hz frequency. (The second input 

MEMS does not reach pull-in as it should but the output MEMS still pulls-in for 

triangle signals and releases for square signals.) 
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Figure 5.8: MEMS network response with 5500 Hz frequency. (The output MEMS 

fail to successfully pull-in and classify the input signal.)

 

Figure 5.9: MEMS network response with 5600 Hz frequency. (The output MEMS 

fail to successfully pull-in and classify the input signal.) 

  

The CL900 design natural frequency is around 10 kHz. The figures show a solid 

classification is expected up to an input frequency below 2.5 kHz. While the second MEMS 

start to fail in reaching the pull-in, the classification still works for the output MEMS in 

the range between 2.5 kHz to 5.5 kHz. Finally, starting from 5.6 kHz frequency the network 

failed to classify the signals. Based on the simulation results, in conclusion, the input signal 

frequency may not exceed 10-20% of the natural frequency of the MEMS design.  

5.3.3 Capillary Sticking Force 

Our analysis revealed that the capillary sticking force exerted a noticeable influence on the 

classification performance of the MEMS network. Higher capillary sticking forces 
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introduced deviations in classification accuracy. This is true because if the beam stuck the 

classification task will fail at all. This observation emphasizes the importance of carefully 

considering and optimizing the capillary sticking force to ensure optimal performance of 

the MEMS network in signal classification tasks. We may start our claim by assuming that 

there is a water moisture with a maximum height of the stopper, which can lead to a stiction 

if there was a contact between the beam and the water, Assuming the worst-case scenario 

of the contact angle (θ = 0°), we need to estimate the water contact area, we defined a ratio 

for the contacted area between the beam when contacted the stopper and water to  the total 

length of the beam as shown in Figure 5.10.  

 

Figure 5.10: Cantilever beam with a capillary force assumed depending on the 

contact area ratio. 

The simulation results for three different cases with a contact ratio of 0.0002,0.00025 and 

0.00027 respectively are shown below. 
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Figure 5.11: MEMS network response in the present of a capillary force with a 

contact ratio of 0.0002. 

 

Figure 5.12: MEMS network response in the present of a capillary force with a 

contact ratio of 0.00025. 
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Figure 5.13: MEMS network response in the present of a capillary force with a 

contact ratio of 0.00028. 

We found that the capillary force can be a major parameter that can have the MEMS 

permanently stick (failure), consequently fail the classification task. We need to be aware 

of it because increasing the contact area between the beam, the stopper and the water can 

generate a big force to a point where the restoring force will not be enough to release the 

beam leading to a permanent beam sticking (device failure). And the whole classification 

will fail.  
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CHAPTER 6 

THESIS SUMMARY AND FUTURE WORK 

6.1 Thesis Summary and Conclusions 

The purpose of this thesis was to investigate the possibility of using a MEMS network as 

a processing unit for the purpose of distinguishing between triangular and square 

waveforms. The goal of this research was to overcome the constraints of conventional 

methods of digital signal processing by capitalizing on the benefits of analog computing, 

more especially by making use of MEMS devices. This study aimed to investigate the 

feasibility and effectiveness of computing that is based on MEMS, develop a suitable 

circuit architecture, optimize network parameters, address concerns regarding scalability, 

and demonstrate the potential of MEMS networks for waveform classification. 

It has been proved via simulation and some initial experimentation that a MEMS network 

is capable of effectively classifying triangle and square waveforms, even when the 

amplitudes of the two waveforms are the same. The network was able to perform good 

classification. The designed circuit architecture was able to successfully integrate MEMS 

devices, capitalizing on the analog computation capabilities of these devices and making 

use of hysteresis to improve classification performance. 
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As a result MEMS devices are flexibility to scale, have enabled the integration of numerous 

computer units, which in turn has made it possible to execute difficult waveform 

categorization jobs. 

In conclusion, the findings of this research were able to successfully illustrate the efficiency 

as well as the possibility of utilizing a MEMS network as a processing unit for the 

categorization of triangle and square waveforms. Utilizing the one-of-a-kind characteristics 

of MEMS devices allowed for the advantages of analog computing to be tapped into. Some 

of these advantages include low power consumption, real-time processing, and 

compactness. The findings of this research provide a foundation for the development of 

efficient and compact systems for real-time waveform analysis and recognition. These 

contributions to the improvement of waveform classification techniques were made 

possible by the findings of this research, The goals of this research were not only 

accomplished, but it also shed light on the enormous potential offered by analog computing 

that is based on MEMS. The power of analog computing paradigms to overcome the 

constraints of traditional digital techniques was demonstrated by the successful 

implementation of the suggested MEMS network as a computing unit for waveform 

classification.  

6.2 Future Work 

In the future work, several options will be explored to further enhance the performance of 

the MEMS-based computing units for waveform classification. One crucial aspect is the 
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optimization of the MEMS device design to achieve better capacitance changes which are 

related to the deflection, thereby improving the classification accuracy. 

During the initial fabrication process, cantilever beam designs were manufactured, but it 

was observed that the classification task did not work as expected results. The capacitance 

change in response to the waveform inputs was relatively low, affecting the ability of the 

MEMS network to distinguish between triangle and square waveforms accurately, Figure 

6.1 shows the cantilever design under the microscope. 

 

Figure 6.1: CL900 design under microscope. 
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To address this issue, a clamp-clamp beam design was subsequently fabricated and tested. 

The clamp-clamp design exhibited a higher capacitance value compared to the cantilever 

beam, resulting in a more significant response to the waveform inputs. 

 As a result, the classification task using the clamp-clamp design demonstrated improved 

accuracy, successfully distinguishing between triangle and square waveforms As shown in 

Figure 6.2. 
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Figure 6.2: Classification Task Experiment Result using Clamped-Clamped Design. 

Both square and triangle cases were experimentally tested. When the input signal is square, 

as shown with both blue and yellow lines, there is no pull-in behavior for the output MEMS 

as shown with the green line, just a noise. While for the triangle case as shown with the 

blue and yellow lines, the yellow line is also a triangle but because the oscilloscope is 

clipping the signal, the output MEMS reach the pull-in, and when the triangle signal is 

decreasing the output MEMS releases.  

In the future work, further refinements will be made to the clamp-clamp design to optimize 

its performance and ensure robust and consistent capacitance changes.  

Lastly, real-world applications for the MEMS-based computing units will be explored. This 

includes investigating the potential for integrating the MEMS networks into portable and  

low-power electronic devices for real-time waveform classification in various fields, such 

as signal processing, communication systems, and wearable technologies. 

By focusing on these future directions, this research seeks to contribute to the advancement 

of analog computing using MEMS and to explore the full capabilities of MEMS networks 

as powerful computing units for waveform classification tasks, opening up new avenues 

for innovative applications in diverse technological domains. 
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APPENDIX A 

Appendix A shows more investigation for the different case studies that we show through 

this work with more simulation results. 

 

Figure A.1: MEMS network response with 𝜁=0.4 

 

Figure A.2: MEMS network response with 𝜁=0.5 
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Figure A.3: MEMS network response with 𝜁=0.75 

 

Figure A.4: MEMS network response with 𝜁=0.9 
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Figure A.5: MEMS network response with 𝜁=1 

 

Figure A.6: MEMS network response with 𝜁=1.5 
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Figure A.7: MEMS network response with 500 Hz frequency. 

 

Figure A.8: MEMS network response with 1000 Hz frequency. 
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Figure A.9: MEMS network response with 1500 Hz frequency. 

 

 

Figure A.10: MEMS network response with 3500 Hz frequency. 
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Figure A.11: MEMS network response with 4500 Hz frequency. 
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