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ABSTRACT 

The viscosity of asphalt decreased significantly when 0.5% of WMA additive was added, 

but it remained relatively steady as the dosage rate increased up to 3.0%. The reduction pattern in 

viscosity as the dosage rate increases was similar for both CECABASE RT® and LEADCAP at 

all test temperatures of 120°C,125°C, 130°C and 135 °C, and a similar pattern was observed for 

both Sasobit® and Rediset. Based on the ABCD test device, the virgin asphalt binder PG 64-34 

cracked at -51.0°C and the PG 64-28 cracked at -41.3°C. As the WMA additives were increased 

from 0.5% to 3.0%, the cracking temperatures increased slightly but remained steady near the 

cracking temperature of the virgin asphalt binder. The ABCD test results confirmed that the 

cracking temperature of asphalt binder was not significantly affected by any of these four WMA 

additives. 

The BPN value steadily decreased as the specimen surface was abraded by a rotating 

rubber although the MTD value did not change significantly. The most significant change in 

BPN has occurred between 30 and 45 minutes of abrasion whereas no significant change was 

observed between 45 and 65 minutes of abrasion. The control WMA without additive exhibited 

the lowest Tensile Strength Ratio (TSR) value of 53.3%, which increased to 66.6% with lime and 

83.5% with an Anti-stripping agent (ASA). WMA-Sasobit exhibited 73.7% but it slightly 

decreased to 72.7% with lime and 72.3% with ASA. WMA-LEADCAP exhibited 80.3% but it 

decreased to 78.5% with lime and increased to 81.4% with ASA. The control HMA exhibited 

82.7% and it increased to 89.3% with lime and 92.6% with ASA. It can be concluded that TSR 

values of both WMA-Sasobit and WMA-LEADCAP were not affected by lime or ASA. 

A more extensive study should be performed quantifying the temperature-viscosity 

relationship of asphalt mixed with varying amounts of WMA additives at different temperatures. 
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An additional study should be performed on the effect of lime and anti-stripping agents on WMA 

mixtures with various additives. It is recommended that the skid test should be performed on 

WMA pavements in the field after several years of service. 
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1. INTRODUCTION 

 The basic concept of warm mix asphalt (WMA) technologies is to reduce the asphalt 

binder viscosity, which allows the asphalt to attain a suitable viscosity to coat the aggregates and 

thus compact asphalt mixtures at lower temperatures. The WMA technology was introduced in 

the United States in 2002 for lowering emissions and improving the working environment. 

Crows (2008) and Newcomb (2009) reported that 45 states in the US have used warm mix 

asphalt technology in real construction or field trial projects. Moreover, Alabama, California, 

Florida, Illinois, New York, North Carolina, Ohio, Pennsylvania, Texas, Virginia, Washington 

and Wisconsin have allowed the use of WMA mixtures on many highway projects. 

 The WMA mixtures were mainly evaluated for rutting resistance and moisture sensitivity 

because a lower mixing temperature may cause the incomplete drying of the aggregate. As a 

result, it may affect the adhesion between asphalt and the aggregate increasing the rutting 

potential in asphalt pavement. However, from the recent construction projects, it was reported 

that the moisture sensitivity and rutting resistance between WMA and HMA were quite similar. 

For example, WMA pavements using Aspha-min, Sasobit and Evotherm were constructed at 

three separate sites in Missouri. After two years of service life, no rutting was found in either 

WMA or HMA pavements. The WMA pavements using Aspha-min, Sasobit and Evotherm were 

also constructed in Ohio. It was reported that rutting resistance and moisture damage of the 
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WMA pavements were identical to those of HMA pavements (NCAT 2010). 

Phase 1 of the study was performed to evaluate strength, moisture sensitivity, stiffness, 

and rutting resistance of WMA mixtures with six WMA additives, which included Cecabase 

RT®, Sasobit®, Evotherm J1, Rediset
TM

 WMX and LEADCAP, along with the control WMA 

mixture without additive and the control HMA mixture. Overall, Sasobit®, Evotherm J1 and 

Rediset
TM

 WMX additives were effective in producing WMA mixtures in the laboratory that are 

comparable to HMA mixtures.  

Based on the moisture susceptibility test results, no WMA mixtures satisfied the 

Superpave requirement. Therefore, during the phase 2 study anti-stripping agents were added to 

the WMA mixtures in order to improve the moisture susceptibility. To address a safety concern 

for WMA pavements under heavy truck traffic with a high tire pressure, the friction and raveling 

characteristics were evaluated in the laboratory. 

One of main concerns for adding WMA additives to asphalt is that it might reduce the 

cracking resistance at a low temperature. To address this concern, this paper presents impacts of 

various amounts of WMA additives on the viscosity and low-temperature cracking of asphalt 

binder. In addition, the moisture sensitivity test was conducted to investigate the rutting 

resistance. For the moisture sensitivity test, both lime and an anti-stripping agent (LOF 65-00) 

were used to improve the moisture sensitivity resistance.  
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1.1 Objectives 

To provide a safe and reliable highway for truck traffic, warm mix asphalt (WMA) 

pavement must meet requirements for moisture sensitivity, raveling and friction resistance. 

However, a major difficulty in evaluating WMA mixtures is that there is no national research 

evaluating these fundamental characteristics. 

The objective of this research is (1) to evaluate impacts of various amounts of WMA 

additives on the viscosity and low-temperature cracking of asphalt binder; (2) to evaluate the 

skid resistance of WMA mixtures and (3) investigate the effectiveness of anti-stripping agents to 

improve moisture sensitivity of warm mix asphalt mixtures.  

1.2 Benefits  

The main product anticipated from this research is the evaluation results of various warm 

mix asphalt (WMA) materials with respect to their moisture sensitivity, raveling and fiction 

characteristics. This information would be very useful for pavement engineers who are interested 

in implementing the WMA technologies. Identified reliable WMA technologies from this 

research would contribute to the road safety by minimizing an accident risk caused by an unsafe 

road surface condition for increasing freight movements on the US surface transportation system.  

1.3 Advantages  

 Warm mix asphalt (WMA) technologies are able to reduce the binder resistance to high 
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shear forces, such as mixing and compaction, but maintain the resistance to normal stresses 

encountered by traffic loading. The advantages claimed for WMA include: 

 Less burner fuel required to heat the aggregates 

 Lower emissions at the asphalt plant 

 Less hardening of the asphalt binder in mixing and placement 

 Less worker exposure to fumes and smoke during the placement operation 

 Lower compaction temperature in the field 

 Longer construction season 

 Increased pavement density 

 Longer haul distances 

 Ability to incorporate higher percentages of RAP 

 Ability to place and compact thicker lifts 

 Ability to open to traffic sooner 

 The WMA products/processes work differently and are categorized into three groups: 

organic additive, foaming additive and chemical additive. These WMA technologies are 

emerging rapidly in the United States (NAPA 2007; Brian 2007; Bonaquist 2008; Dukatx 2009; 

Hurley at el 2010).  
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2. LITERATURE REVIEW 

 The use of warm mix asphalt (WMA) is rapidly increasing for the construction of roads 

world-wide. To sustain this development, it is necessary to understand the behavior of asphalt 

binder when different amounts of WMA additives are used. One of the major impacts of these 

WMA additives on the asphalt binder is that they would reduce the asphalt viscosity at a lower 

temperature. The reduction in asphalt viscosity allows the asphalt to mix and compact at a lower 

temperature. This approach brings about significant savings because the requirement of heating 

the aggregates up to 170°C is no longer. This new discovery is currently revolutionizing the road 

construction industry.  

 Hurley and Prowell (2005, 2006) evaluated three different WMA technologies: Aspha-

Min®, Sasobit® and Evotherm™, and concluded that all three technologies improved the 

compactibility of the asphalt mixture and resulted in lower air voids compared to HMA. That 

said, these technologies showed increasing tendencies to rutting and moisture susceptibility. This 

can be attributed to decreased aging of the binder, presence of moisture in the mixture, and 

incomplete drying of the aggregates due to a lower temperature. They reported that Sasobit® 

increased the PG grade of the binder; therefore, a lower grade binder should be used than the PG 

grade specified. They also reported that air void was less in the WMA mixture and the optimum 

asphalt content may be lowered to increase the air void. Of course, lowering asphalt content 
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could negatively affect the compactability of the mixtures. 

 Gandhi and Amirkhanian (2007) demonstrated that two of the three binders maintained 

the same PG grade with the addition of Sasobit®. Biro et al. (2007) reported that Sasobit® 

changed the flow properties of certain binders from Newtonian flow to shear thinning flow, and 

increased the viscosity of the binder at a mid-range temperature of 140°F. They also reported that 

Sasobit® significantly reduced a permanent deformation based on the repeated creep recovery 

test.  

 Kristjánsdóttir et al. (2007) reported that HMA producers are unlikely to adopt WMA 

technology purely for the benefits of lowered emissions and reduced fuel costs because the 

reductions in the latter can be offset by the increased price for the WMA technologies. They also 

noted that the reduction in the viscosity makes the best business case for WMA because the 

reduced viscosity can alleviate compaction problems associated with cold weather paving while 

improving the workability with stiff mixtures. 

 Nazimuddin et al. (2007) reported that Sasobit® decreased the rut depth which justifies 

the increase in high temperature binder grading. Kunnawee et al. (2007) reported AC 60/70 

binder modified with 3.0% Sasobit® improved the compactability of asphalt mixture and 

resulted in acceptable density at a temperature below a normal compaction temperature by 68°F 

to 104°F. In addition, the mixtures modified with Sasobit® exhibited a greater resistance to 
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densification under simulated traffic. 

 Hensley (1998) recommended that asphalt compaction occur on the field at a target 

viscosity of 0.28 + 0.02Pa.s and a corresponding temperature of 160°C. Bahia et al. (2006) 

recommended 3 Pa.s as a limiting low shear viscosity for estimating compaction temperature. Lu 

& Redelius (2006) studied the effect of asphalt that contains wax naturally. They concluded that 

when using waxy asphalt the asphalt mixtures showed a higher fracture temperature. With 

regards to moisture sensitivity, they found that adding wax to asphalt does not negatively affect 

the moisture sensitivity. The N-alkane rich crystallizing material in asphalt lowered the complex 

modulus at temperatures over approximately 40°C and exhibited a stiffening effect at a lower 

temperature below 40°C (Kvasnak et al. 2009). Asphalt containing natural waxes has a higher 

modulus and a lower phase angle compared to mixtures containing non-waxy asphalt. However, 

the significant hardening of some asphalt observed in binder testing by a Bending Beam 

Rheometer (BBR) was not observed in the moisture sensitivity test of asphalt mixtures 

(Gonzalez-Leon 2009). With organic additives, the viscosity of asphalt is reduced at the 

temperature above the melting point in order to produce asphalt mixtures at lower temperatures. 

Below the melting point, organic additives tend to increase the stiffness of asphalt (Bonaquist 

2008). 

 To determine the effect of WMA additives on CIR-foam mixtures, Lee et al. (2007) 
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prepared three types of CIR-foam specimens: (1) CIR-foam with 1.5% of Sasobit®, (2) CIR-

foam with 0.3% Aspha-min®, and (3) CIR-foam without any additive. They were evaluated for 

the indirect tensile strength test, dynamic modulus test and dynamic creep test. They reported 

that WMA additives had improved the compactibility of CIR-foam mixtures resulting in a lower 

air void. The indirect tensile strength of CIR-foam mixtures with Sasobit® was the highest, and 

the dynamic module of CIR-foam mixture with WMA additives was higher than those without 

any additive. Flow number of CIR-foam mixtures with Sasobit® was the highest followed by 

ones with Aspha-min® and ones without any additive. Based on the limited test results, they 

concluded that WMA additives could improve characteristics of CIR-foam mixtures by 

increasing its resistance to both fatigue cracking and rutting. 

 Prowell and Hurley (2008) evaluated the current WMA technologies that could 

significantly benefit the highway transportation system in the United States. NAPA (2008) 

published a WMA related document that included mix design and field trial data. As shown in 

Figure 2.1, Crews (2008) and Newcomb (2009) concluded that the number of states with WMA 

projects has increased significantly. 
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Figure 2.1 States where WMA projects were implemented 

 

 As summarized in Table 2.1, a number of WMA technologies have been developed and 

implemented in the US. These commercial WMA products/processes are available to produce 

asphalt mixtures at significantly lower temperatures than HMA. 

Table 2.2 summarizes many field trials that have been performed using various WMA 

technologies (NAPA 2008). Overall, the WMA sections achieved a comparable density as the 

HMA sections at a significantly lower temperature. The energy savings and the air quality 

improvements by using WMA were observed. However, the performance, durability and 

compatibility of WMA test sections should be researched further. 
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Table 2.1 List of warm mix asphalt technologies in the world 

Category Name Process/Additive Company US Project 

Organic 

Additive 

Sasobit Fischer Tropsch Wax 
Sasol Wax Americas, 

Inc. 
Yes 

Asphaltan-B Montan Wax Romanta No 

Licomont BS-100 Fatty Acid Amide Clariant No 

Cecabase RT Unspecified Organic Additive Ceca No 

Asphaltan® Unspecified Organic Additive Romonta No 

Ecoflex Unspecified Organic Additive Colas No 

Sonneborn Unspecified Organic Additive Sonneborn Yes 

LEADCAP Unspecified Organic Additive Kumho Pertochemical No 

Foaming 

Aspha-min Zeolite Eurovia Yes 

Advera Zeolite PQ Corporation Yes 

Double Barrel Green Foaming Nozzle Astec Industries, Inc. Yes 

Ultrafoam GX Foaming Nozzle Gencor Industries Yes 

Terex® Warm Mix 

Asphalt System 
Foaming Nozzle Terex Roadbuilding Yes 

Aqua-Black Foaming Nozzle Maxam Equipment Yes 

WMA Foam 
Soft binder followed by hard 

binder  

Kolo Veidekke, Shell 

Bitumen 
No 

Low Energy Asphalt 

Sequential coating using wet 

fine aggregate and 

unspecified additive 

McConnaughay 

Technologies 
Yes 

LT Asphalt Absorbent filter Nynas No 

ECOMAC Foaming Screg No 

LEA, EBE and EBT 

Sequential coating using wet 

fine aggregate and 

unspecified additive 

LEACO,Fairco and 

EiffageTP 
Yes 

LEAB 

Sequential coating using wet 

fine aggregate and 

unspecified additive 

BAM No 

Chemical 

Additive 

Evotherm ET 
Emulsion with unspecified 

additive MeadWestvaco 

Asphalt 

Innovations 

Yes 

Evotherm DAT Unspecified additive Yes 

Evotherm J1 Unspecified additive Yes 

RedisetTM WMA Unspecified additive 
Akzo Nobel 

Surfactants 
Yes 

REVIXTM Unspecified additive 

Mathy Technology 

 and Engineering 

 Services Inc. and 

Paragon Technical  

Services Inc. 

No 
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Table 2.2 List of field trials using warm mix asphalt technologies 

Category Name Field Trial 

Organic 
Additive 

Sasobit® 

 I 95/I 495, Washington D.C. (2005) 

 Route 211, Route 220 Virginia (2006) 

 10% RAP, Missouri (2006); 14% RAP, Wisconsin (2006) 

 M-95, Michigan (2006) 

 SR 541, Ohio (2006) 

 I-70 Colorado (2007) 

Foaming 

WAM-Foam® 

 First field trial in Norway (1999); RV120, Norway (2000); FV 82 Frogn, Norway 
(2001) 

 NCC road, Sweden (2002) 

 Ooms Abenhorn, Netherlands (2003) 

 Conglobit, Italy (2004) 

Double Barrel® Green 

 Chattanooga, Tennessee (2007); 50% RAP, Chattanooga, Tennessee (2007) 

 Johnson County, North Carolina (2007) 

 Vancouver, British Columbia (2007) 

 S.R. 46 from US 431 to S.R. 96, Tennessee (2007) 

 York County, Sacramento (2007) 

Ultrafoam GXTM 
Process 

 N/A 

Terex® Warm Mix 

Asphalt System 
 Oklahoma City, Tennessee (2008) 

Low Energy Asphalt 

(LEA®) 
 Cortland, New York (2006) 

 RT 11, 98B, Bomax Rd. RT 38, RT 13, RT 79, New York (2007) 

Aspha-Min® 

 With PMA in Germany (2003) 

 Parking lot in Orlando, Florida (2004)  

 Charlotte, North Carolina (2004) 

 Montreal, Quebec, Canada (2004) 

 Columbus, Ohio (2005) 

 Hookest, New Hampshire (2005); Belmont, New Hampshire (2006) 

 OGFC in Orlando, Florida (2006) 

 SR 541 in Cambridge, Ohio (2006) 

Advera WMA 

 Hillsboro Pike, Tennessee (2007) 

 City Street, Vermont (2007) 

 Miller Park, Wisconsin (2007) 

 Yellowstone NP Entrance Rd, Wyoming (2007) 

 I-70, Colorado (2007)  

Chemical 

Additive 

RedisetTM WMA  Chico, California (2007) 

REVIXTM 

 CTR 11, Goodhue City, Minnesota (2007) 

 STH 33, La Crosse County, Wisconsin (2007) 

 State Ret. 53, Gainesboro, Tennessee (2007) 

 Highway 25, Smithville, Mississippi (2007) 

 CIR project, HWY 346, Iowa ( 2008) 

Emulsion 

Additives 
EvothermTM 

 County Road 900, Indiana (2005) 

 County Road, New York (2005) 

 Binder layer, Canada (2005) 

 Eskimo road, San Antonio (2005) 

 NCAT test track, Alabama (2005) 

 Miller Paving, Canada (2005); Road #46, Canada (2005) 

 Route 143, Virginia (2006) 

 SR 541, Cambridge, Ohio (2006) 

 I-70 Colorado (2007) 

 

 As shown in Table 2.3, NCAT (2010) reported that several WMA projects were 

completed in 2010, and, as shown in Table 2.4, six existing pavements are being monitored for 

the short-term performance.  
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Table 2.3 New construction projects to be documented as part of NCHRP 9-47A  

State WMA Technology Estimated Tonnage 

Indiana 
Evotherm DAT, Advera 

And Heritage wax 
20,000 

Michigan Advera and Evotherm 3G 10,000 

Virginia Astec DBG 60,000 

Montana Evotherm 3G 20,000 

Washington AQUABlack 75,000 

New York 
Sonneborn, Hydrogreen 

And Cecabase 
TBD 

Pennsylvania Aqua Foam TBD 

Florida Terex WMA Foam TBD 

 

Table 2.4 Monitoring projects to be documented as part of NCHRP 9-47A  

State Construction Date WMA Technology Total tons placed 

Missouri 2006. 09 
Evotherm ET, 

Sasobit and Asphamin 
6,600 

New York 2007. 07 LEA 19,000 

Colorado 2007. 08 
Evotherm ET, 

Sasobit and Advera 
3,000 

Tennessee 2007. 10 

Astec DBG, Advera, 

Evotherm DAT  

And Sasobit 

3,500 

Texas 2008. 06 Astec DBG 75,000 

Washington 2008. 06 Sasobit 13,000 

 



 

 13 

3. VISCOSITY AND LOW-TEMPERATURE CRACKING OF ASPHALT WITH WMA 

ADDITIVES 

 The concept of warm mix asphalt technologies is to reduce the asphalt binder viscosity. 

This reduction allows the asphalt to attain a suitable viscosity to coat the aggregates and enables 

the mixtures to compact at lower temperatures. Therefore, the viscosity level of the asphalt 

binder is very essential for the proper coating of asphalt on the aggregates. Many studies have 

addressed the benefits of warm mix asphalt, but limited research has been done as to a 

comparative study for the effect of viscosity on the asphalt binder with different WMA additives. 

It is very difficult to control the temperature in the field and it is often found that the aggregates 

are mixed at different temperatures at each construction site.  

 During this phase 2 study, the effect of temperature on the viscosity of the binder with 

WMA additives was investigated to determine the lowest temperature that can be used to mix 

asphalt with aggregates. In addition, the impacts of various amounts of WMA additives on low-

temperature cracking of asphalt binder were identified. The viscosity and lowest cracking 

temperature of asphalt binder with four WMA additives were measured and compared with those 

of straight asphalt binder.  

3.1 Viscosity and Low Temperature Cracking Tests 

 The viscosity is needed to ensure proper handling of the asphalt binder and for quality 
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control and assurance. As shown in Figure 3.1, a chart of viscosity versus temperature was 

developed for determining the optimum mixing and compaction temperatures of asphalt mixture 

(ASTM 2493). The viscosity of the asphalt binder should be between 0.15 and 0.19 Pa.s for 

mixing and 0.25 and 0.31 Pa.s for compaction. The SuperPave specification requires the 

viscosity of asphalt binder to be below 3.0 Pa.s at 135°C in order to be pumped through the 

asphalt plant.  

 To characterize the low temperature property of the asphalt binder, as shown in Figure 3.2, 

the asphalt binders with WMA additives were tested using the Asphalt Binder Cracking Device 

(ABCD) in the environment chamber. The ABCD is a testing device to determine the low 

temperature cracking property of asphalt binder, and it was used to quantify the impact of WMA 

additives on the low temperature property of asphalt binder. The strain and temperature readings 

are recorded on 10-second intervals from strain gauge in a silicone mold shown in Figure 3.2.  
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Figure 3.1 Mixing and compaction temperature (ASTM 2493) 

 

 

Figure 3.2 Asphalt Binder Cracking Device (ABCD) and environmental chamber 

 

3.2 Viscosity Testing Plan 

 As summarized in Table 3.1, five different dosage rates (0.5%, 1.0%, 1.5%, 2.0% and 

3.0% of asphalt weight) for each WMA additive were selected to measure the viscosity. The 

viscosity test was conducted from 120°C to 135°C with increments of 5°C, and three readings 

were recorded for each sample at an interval of 60 seconds. 
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Table 3.1 Dosage rate of WMA additives adopted for this study 

WMA Additives Dosage Rate (%) 
Temperature 

(°C) 

Dosage Rate 

recommended by manufacturer 

CECABASE RT® 
0.5%  

1.0%  

1.5%  

2.0%  

3.0% 

120°C  

125°C 

130°C 

135°C 

0.4% of binder weight 

Sasobit® 1.5% of binder weight 

LEADCAP 3.0% of binder weight 

Rediset
TM

WMX 2.0% of binder weight 

3.3 Viscosity Test Results 

3.3.1 Straight Asphalt Binder (A) 

 The viscosity of the PG 64-28 virgin asphalt was measured at 120, 125, 130 and 135°C 

and the test results are summarized in Table 3.2. The highest viscosity value was 3.01 Pa.s 

measured at 120°C and lowest viscosity value was 1.25 Pa.s at 135°C. As Figure 3.9 

demonstrates, and as expected, the viscosity has decreased significantly as the temperature 

increased from 120 to 135°C. It should be noted that the virgin asphalt would be too stiff to mix 

with aggregates at 120 °C. 

 

Table 3.2 Viscosity test results of the straight asphalt binder 

 
Viscosity at 135°C 

(Pa.s) 

Viscosity at 130°C 

(Pa.s) 

Viscosity at 125°C 

(Pa.s) 

Viscosity at 120°C 

(Pa.s) 

Virgin Asphalt 1.25 2.37 2.85 3.01 

 



 

 17 

 

Figure 3.3 Plots of viscosity of straight asphalt binder against testing temperature 

 

3.3.2 Evotherm J1 (B) 

 Evotherm J1 was developed without water so that it would reduce an internal friction 

between asphalt binder, aggregate, and among coated aggregate particles during mixing and 

compaction (Bonaquist 2008; Anderson et al. 2008). Evotherm J1 can be directly added to 

asphalt binder at a specified dosage rate by weight of asphalt. Table 3.3 summarizes the viscosity 

test results of asphalt binder using Evotherm J1. As shown in Figure 3.4, the viscosity decreased 

as the temperature and dosage rate increased. The viscosity decreased significantly when the 

small amount of 0.5% was added at temperatures between 120 and 130 °C. It should be noted 

that the increase of dosage rate from 0.5% up to 3.0% did not significantly lower the viscosity.  
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Table 3.3 Viscosity test results of asphalt binder using Evotherm J1 

Dosage Rate 
Viscosity at 135°C 

(Pa.s) 

Viscosity at 130°C 

(Pa.s) 

Viscosity at 125°C 

(Pa.s) 

Viscosity at 120°C 

(Pa.s) 

0.5% 1.11 1.46 1.92 2.25 

1.0% 1.07 1.33 1.79 2.10 

1.5% 1.05 1.23 1.72 1.95 

2.0% 0.95 1.16 1.65 2.04 

3.0% 0.84 1.08 1.45 1.84 

 

 

Figure 3.4 Plots of viscosity of asphalt binder using with Evotherm J1 against dosage rate 

 

3.3.3 Rediset (C) 

 Rediset additive is a combination of organic additive and surfactants with the aim of 

enhancing the adhesion between asphalt and aggregates (Akzo Nobel 2009). It can be directly 

added to aggregates at a specified dosage rate by weight of asphalt. Table 3.4 summarizes the 

viscosity test results of asphalt binder using Rediset. As shown in Figure 3.5, the viscosity 

decreased as the temperature and dosage rate increased. The viscosity decreased significantly 
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when the small amount of 0.5% was added at temperatures between 125 and 130 °C. However, 

for a temperature of 120 °C, the reduction in viscosity was not as significant, and the further 

reduction in viscosity was achieved by increasing the dosage rate from 0.5 to 1.0%.   

 

Table 3.4 Viscosity test results of asphalt binder using Rediset 

Dosage Rate 
Viscosity at 135°C 

(Pa.s) 

Viscosity at 130°C 

(Pa.s) 

Viscosity at 125°C 

(Pa.s) 

Viscosity at 120°C 

(Pa.s) 

0.5% 1.20 1.54 2.02 2.49 

1.0% 1.13 1.44 1.93 2.14 

1.5% 1.12 1.40 1.84 2.09 

2.0% 1.11 1.39 1.86 1.99 

3.0% 0.94 1.15 1.66 2.07 

 

 

Figure 3.5 Plots of viscosity of asphalt binder using Rediset against dosage rate 

 

3.3.4 Sasobit® (D) 

 Sasobit® is a Fischer-Tropsch wax produced from the coal gasification process and is 
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typically added to the asphalt (wet process) or the asphalt mixture (dry process) at a specified 

dosage rate by weight of asphalt. Table 3.5 summarizes the viscosity test results of asphalt binder 

using Sasobit. As shown in Figure 3.6, the viscosity decreased as the temperature and dosage rate 

increased. The viscosity decreased significantly when the small amount of 0.5% was added at 

temperatures between 125 and 130 °C. Notwithstanding, for a temperature of 120 °C the 

reduction in viscosity was not as significant, and the further reduction in viscosity was achieved 

by increasing the dosage rate from 0.5 to 1.5%. 

  

Table 3.5 Viscosity test results of asphalt binder using Sasobit 

Dosage Rate 
Viscosity at 135°C 

(Pa.s) 

Viscosity at 130°C 

(Pa.s) 

Viscosity at 125°C 

(Pa.s) 

Viscosity at 120°C 

(Pa.s) 

0.5% 1.22 1.54 1.99 2.40 

1.0% 1.22 1.46 1.94 2.32 

1.5% 1.12 1.38 1.89 2.14 

2.0% 0.96 1.32 1.72 2.06 

3.0% 0.96 1.23 1.72 2.00 
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Figure 3.6 Plots of viscosity of asphalt binder using Sasobit 

 

3.3.5 Cecabase RT (E) 

 Cecabase RT is room temperature liquid additive that can be mixed easily into the hot 

asphalt binder before the asphalt mix production. The liquid Cecabase RT additive can be added 

to asphalt at a specified dosage rate by weight of asphalt. Table 3.6 summarizes the viscosity test 

results of asphalt binder using Cecabase RT. As shown in Figure 3.7, the viscosity decreased as 

the temperature and dosage rate increased. The viscosity decreased significantly when the small 

amount of 0.5% was added at all temperatures. For a temperature of 120 °C, the reduction in 

viscosity was not as significant and the further reduction in viscosity was achieved by increasing 

the dosage rate from 0.5 to 1.0%. It should be noted that the reduction in viscosity was higher 

than any other WMA additives tested in this study. 
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Table 3.6 Viscosity test result of asphalt binder with Cecabase RT 

Dosage Rate 
Viscosity at 135°C 

(Pa.s) 

Viscosity at 130°C 

(Pa.s) 

Viscosity at 125°C 

(Pa.s) 

Viscosity at 120°C 

(Pa.s) 

0.5% 0.95 1.16 1.44 1.96 

1.0% 0.75 0.91 1.20 1.52 

1.5% 0.73 0.86 1.11 1.45 

2.0% 0.68 0.84 1.06 1.40 

3.0% 0.65 0.78 0.99 1.28 

 

 

Figure 3.7 Plots of viscosity of asphalt binder using Cecabase RT 

 

3.3.6 LEADCAP (F)  

 LEADCAP is an organic WMA additive, which is a wax-based composition including 

crystal controller and adhesion promoter. Crystal controller adjusts the wax crystallinity at the 

low temperature. LEADCAP additive can be added to asphalt at a specified dosage rate by the 

weight of asphalt. Table 3.7 summarizes the viscosity test results of asphalt binder using 

LEADCAP. As shown in Figure 3.8, the viscosity decreased as the temperature and dosage rate 

increased. The viscosity decreased significantly when the small amount of 0.5% was added at 
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temperatures between 125 and 130 °C. However, for a temperature of 120 °C, the reduction in 

viscosity was not as significant and a further reduction was achieved by increasing the dosage 

rate from 0.5 to 1.0%. It should be noted that the reduction in viscosity was significantly higher 

than that of Sasobit particularly for temperatures between 120 and 125 °C.   

 

Table 3.7 Viscosity test results of asphalt binder using LEADCAP 

Dosage Rate 
Viscosity at 135°C 

(Pa.s) 

Viscosity at 130°C 

(Pa.s) 

Viscosity at 125°C 

(Pa.s) 

Viscosity at 120°C 

(Pa.s) 

0.5% 1.12 1.08 1.28 1.81 

1.0% 1.03 0.96 1.23 1.71 

1.5% 0.89 0.91 1.20 2.08 

2.0% 0.77 0.90 1.20 1.80 

3.0% 0.76 0.92 1.18 3.18 

 

 
Figure 3.8 Plots of viscosity of asphalt binder using LEADCAP 

 

3.4 Summary of Viscosity Test Results 

 For each temperature from 135, 130, 125 to 120°C, the viscosity is plotted against the 
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dosage rate in Figure 3.9 (a), (b), (c), and (d), respectively. As shown in Figure 3.9 (a), the test 

results show a steady decline in viscosity with increased dosage of additives. The viscosity of 

asphalt decreased significantly when 0.5% of CECABASE RT® was added, but the viscosity did 

not decrease when up to 1.0% of Sasobit® was added. Figure 3.9 (b) and (c) show a more drastic 

reduction in viscosity when 0.5% of WMA additive was added with the viscosity remaining 

relatively steady as the dosage rate increased up to 3.0%. The reduction pattern in viscosity as 

the dosage rate increases was similar for both CECABASE RT® and LEADCAP at all test 

temperatures and a similar pattern was observed for both Sasobit® and Rediset. Figure 3.9 (d) 

shows that the behavior of LEADCAP at 120°C became similar to Sasobit® and Rediset as the 

dosage rate increased from 1.0% to 3.0%.   

 

  

(a) Temperature at 135°C                  (b) Temperature 130°C 
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(c) Temperature 125°C                   (d) Temperature at 120°C 

Figure 3.9 Plots of viscosity of asphalt binder at four different temperatures 

 

3.5 Low Temperature Cracking Test Results 

 As shown in Figure 3.10, real-time plots of the strains developed in asphalt binders with 

varying amounts of LEADCAP were automatically generated as the test temperature was 

gradually lowered. The test ended when the sample was cracked, producing a sudden jump in 

strain. When the amount of LEADCAP increased from 0.5 to 3.0%, as can be seen from Figure 

3.10, the cracking temperature of asphalt binder slightly decreased from -49.9°C to -48.6°C. This 

result indicates that the cracking temperature of asphalt binder would not be significantly 

affected by LEADCAP. However, it is interesting to note that when the amount of LEADCAP 

increased from 0.5% to 3.0%, the failure strain increased from 130.6 to 167.7 microstrains. This 

result supports that LEADCAP increases the ductility of asphalt binder. 
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Figure 3.10 ABCD test results of the LEADCAP with varying amounts 

 

 Table 3.8 summarizes the cracking temperatures of asphalt binder with varying amounts 

of WMA additives at 0.5, 1.5, 2.5 and 3.0%. The cracking temperature was obtained directly 

from the temperature versus strain plot at the strain jump and plotted against the dosage rate in 

Figure 3.11. The virgin asphalt binder PG 64-34 cracked at -51.0°C and the PG 64-28 cracked at 

-41.3°C. As the WMA additives were increased from 0.5 to 3.0%, the cracking temperatures 

increased slightly, but remained steady near the cracking temperature of the virgin asphalt binder. 

The ABCD test results confirmed that the cracking temperature of asphalt binder was not 

significantly affected by any of these four WMA additives. 
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Table 3.8 Cracking Temperature of Binders with WMA Additives 

Dosage  
Sasobit 

(64-34) 

Rediset 

(64-34) 

Leadcap 

(64-34) 

Leadcap 

(64-28) 

Ceca 

(64-34) 

0.50% -48.3 -48.8 -49.8 -39.8 -48.43 

1.50% -49.77 -51.5 -48.9 -40.7 -49.5 

2.50% -49.29 -49.7 -48.6 -36.9 -48.85 

3.00% -48.1 -50.2 -48.6 -39.4 -51.67 

 

 

Figure 3.11 Temperature at which crack occurs by additive 
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4. EVALUATION OF FRICTION CHARACTERISTIC OF WMA PAVEMENT 

 The frictional characteristic of pavement is one of the primary factors needed to 

determine highway safety. Therefore, friction characteristics of WMA mixtures should be 

evaluated before they can be applied as a surface layer on highways. Galambos et al. (1977) 

reported that macrotexture is essential in providing escape channels to water in the tire-surface 

interaction, thus reducing hydroplaning. Jayawickrama et al. (1996) found that the magnitude of 

microtexture depends on initial roughness on the aggregate surface and the ability of the 

aggregate to retain this roughness against the polishing action of traffic. Chelliah (2002) reported 

that 25% of all traffic accidents occur when pavement surfaces are wet and 13.5 % of those 

traffic accidents caused by water film on pavement surfaces are critical. Over the years, the 

WMA research has been focused on the moisture susceptibility of the WMA mixtures and their 

rutting potential, and there is limited research done about friction characteristics of WMA 

pavements.  

4.1 Skid Resistance of Pavements 

 The tire-pavement interactions are affected by road geometric design, paving materials, 

weather conditions and micro-topography (Ludema and Gujrati 1973). Over time, the skid 

resistance of the pavement surface decreases due to a polishing of pavement surface which is a 

result of shearing action from tires. Stephens and Geotz (1967) indicated that angularity of coarse 
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aggregates contribute to tire-pavement friction by establishing point contacts that protrude from 

above the tire‘s water level. Geol (1995) reported that the coefficient of friction is significantly 

affected by the grading of aggregates used in the preparation of asphalt mixtures. As shown in 

Figure 4.1, the micro-texture would depend on surface aggregate properties in the material and is 

responsible mainly for pavement friction at low speeds. The macro-texture is the result of the 

size, shape, and arrangement of aggregate particles in the asphalt mixtures.  

 The locked wheel trailer can be used to measure the skid resistance of the pavement 

surface at any speed. The ribbed tire skid resistance values ranges from 27 at 96km/h to 57 at 64 

km/h, while the smooth tire resistance values ranges from 11 at 96km/h to 53 at 64km/h on 

various types of pavement. Normally, the skid resistance value decreases as the speed increases. 

Hibbs (1996) measured the skid resistance on nine test sections at a speed of 56km/ h, 72km/ h, 

and 90km/ h. Skid resistance value ranged from 60 at 56km/h to 26 at 90km/h for ribbed and 

smooth tires on various pavement surfaces. The skid resistance value of smooth tires was 

generally lower than that of ribbed tire at high speed. The influence of macro and microtextures 

on the sliding friction coefficients are plotted against the speed (Hibbs 1996).   
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Figure 4.1 Type of the pavement surface texture 

 

 

Figure 4.2 Decreasing skid resistance value as a function of speed (Hibbs 1996) 

 

 Road wear is caused by flaws in the pavement materials due to aggregate displacement 

and broken aggregates caused by tires. Further, the wear and abrasion of pavements can cause 

sliding accidents, particularly in rain. Poor drainage causes less contact between the road and tire 

surfaces resulting in a wet, slippery road surface—making traffic accidents likely. Figure 4.3 

shows that, given the British Pendulum Number (BPN), the higher mean macro-texture depth 

will lower the accident rate (Alexandros 1997). Figure 4.4 illustrates that the Skid Number (SN) 

decreases as the water film thickness and speed increases (Alexandros 1997). 
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. 

 

Figure 4.3 Relationship among accident rate, BPN and macrotexture (Alexandros 1997) 

 

 

Figure 4.4 Relationship among SN, Water Film Depth and Speed (Alexandros 1997) 
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4.2 Laboratory Tests of Skid Resistance 

 A locked wheel skid trailer (ASTM E 274-97) is one of the more widely used devices to 

measure the skid resistance of pavements in the field. In this study, a British Pendulum Test 

(BPT), a regularly used mobile device, was used to evaluate the skid resistance of warm mix 

asphalt pavement and hot mix asphalt pavement in the laboratory.  

4.2.1 Sand Patch Method 

 To evaluate the surface texture of WMA pavement, as shown in Figure 4.5, the surface 

texture depth was measured by the sand patch method following ASTM E965. The sand patch 

test procedure is described below. 

1. Sweep the pavement surface with a soft hand brush. 

2. Fill the cylinder with sand to the top and level with a straight edge. 

3. Pour the measured sand on the test surface and, with the rubber disc spreading tool, 

sweeping it into a circular patch with the surface depressions filled to the level of the 

peaks. 

4. Measure the diameter of the sand patch at four or more equally spaced locations and 

record to the nearest 1 mm (1/10 in.). 

5. Calculate the surface texture depth by dividing the volume of sand by the circular surface 

area covered by sand. 
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Figure 4.5 Tools to measure the surface texture of pavements 

 

4.2.2 British Pendulum Test 

To evaluate the friction characteristic of WMA mixtures, as shown in Figure 4.6, the friction 

coefficient was measured from the compacted specimens in the laboratory using the BPT device. 

The friction testing procedure using the BPT is summarized as follows: 

1. Wet the test surface and slider using distilled water unless a dry test is being carried out. 

2. Bring the pointer round to its stop. Release the pendulum arm by pressing the button C 

and catch it on its return swing before the slider strikes the road surface. Note the reading 

indicated by the pointer. 

3. Return the arm and pointer to the release position, keeping the slider clear of the test 

surface by utilizing the lifting handle. Repeat swings, spreading the water over the 

contact area with a spray between each swing (unless dry testing). Record the readings as 
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required by the standard used. 

4. Raise the head of the tester so that it swings clear of the surface again and check the free 

swing for zero error. 

 

 

Figure 4.6 British Pendulum device to measure friction coefficient 

 

As shown in Figure 4.7, the sliding length should be between 125 and 127 mm 

 

 

Figure 4.7 Sliding length needed for BPT 
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 As expected, the friction coefficient was affected by the contact area of the BPT device 

on the asphalt specimen in the laboratory. When the bottom of the pendulum of the BPT device 

touches the center of the specimen, as shown in Figure 4.8, it will create a contact area in a 

rectangular shape. However, if the BPT device is not centered at the specimen, the contact area 

would be lessened. 

 

 

Figure 4.8 Contact area between sample and the bottom of the pendulum of BPT Device 

 

 Skid resistance values measured for three samples by different contact area are 

summarized in Table 4.1. Although there was no significant difference among three specimens, 

as shown in Figure 4.9, the difference in skid resistance values between full and partial contact 

areas was very significant, ranging between 15.3 and 16.8.  
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Table 4.1 Skid resistance measured from different contact area 

Full  BPN MTD SN 40 Partial BPN MTD SN 40 

Sasobit 93.0 1.6 72.7 Sasobit 75.7 1.6 57.3 

WMA 1 95.0 1.8 75.5 WMA 1 77.0 1.8 59.6 

WMA 2 95.0 1.3 72.9 WMA 2 76.0 1.3 56.1 

 

 

Figure 4.9 Skid number measured from different contact areas from different samples 

 

4.2.3 Abrasion Test 

The abrasion test was performed to evaluate the abrasion resistance of WMA mixtures 

using the polishing device, as shown in Figure 4.10. First, the WMA mixtures with Sasobit and 

LEADCAP were produced at temperatures between 117°C and 121°C whereas the control HMA 

mixtures were kept at 147°C. Second, the WMA mixtures were compacted at temperatures 

between 112°C and 123°C whereas the control HMA mixture remained between 126°C and 

135°C. Two test specimens were prepared for each WMA additive and control HMA. The 
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abrasion head was then rotated while touching on the surface at the speed of 78 rpm for 15 

minutes.  

 

    
Figure 4.10 Polishing testing device  

 

Table 4.2 summarizes BPN, MTD and SN 40 values of WMA specimens with Sasobit, 

no additive and LEADCAP. It should be noted that the BPN value steadily decreased although 

the MTD value did not change significantly. For all three specimens, as shown in Figure 4.14, 

the most significant change in skid number has occurred between 30 and 45 minutes of abrasion 

whereas no significant change was observed between 45 and 65 minutes of abrasion. It can be 

postulated that the polishing effect on WMA is significant enough to necessitate a skid test on 

pavements in the field after several years of service. As shown in Figure 4.11, 4.12 and 4.13, it 

can be observed that the surface was worn by a rotating head for up to 60 minutes of abrasion.    
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Table 4.2 Skid resistant results of polishing test 

 Sasobit Control WMA LEADCAP 

Time(min) BPN MTD SN 40 BPN MTD SN 40 BPN MTD SN 40 

0 92.0  1.6  71.7  89.3  1.2  67.5  102.0  1.1  78.2  

15 93.0  1.6  72.6  89.3  1.1  67.0  95.0  1.1  72.0  

30 89.3  1.5  69.1  82.7  1.1  61.1  94.3  1.1  71.4  

45 73.3  1.2  53.0  75.7  1.1  54.8  70.3  0.9  49.0  

60 73.7  1.2  53.8  76.7  1.1  55.9  70.3  0.9  49.1  

 

 

Figure 4.11 Control WMA mixture after abrasion for 30, 45, and 60 minutes 

 

 

Figure 4.12 WMA-Sasobit mixture after abrasion for 30, 45, and 60 minutes 

 

 

Figure 4.13 WMA-LEADCAP mixture after abrasion for 30, 45, and 60 minutes 
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Figure 4.14 Skid number against polishing time for three different WMA mixtures 
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5. EVALUATION OF MOISTURE SENSITIVITY 

It was suspected that WMA mixtures may be more susceptible to moisture damage than 

HMA mixtures. The moisture damage in asphalt mixtures is defined as a loss of strength due to 

the presence of moisture in terms of a tensile strength ratio (TSR). Hurley and Prowell (2006) 

evaluated the moisture susceptibility of WMA mixtures containing Aspha-min®, Sasobit®, and 

Evotherm®. They reported that WMA mixtures with Aspha-min® exhibited the lower TSR value 

than HMA mixtures below the SuperPave TSR value of 80%. Kvasnak et al. (2009) reported that 

the laboratory-produced WMA mixtures using Evotherm® DAT additive was more moisture 

susceptible than the plant-produced WMA mixtures. Gonzalez-Leon et al (2009) reported that 

WMA mixtures with Cecabase RT® additive achieved a minimum requirement of 0.75, which is 

a value derived from a ratio of the fracture force of the wet specimen over the dry specimen. 

Xiao et al. (2009) reported that TSR values of WMA mixtures with Sasobit® and Aspha-min® 

additives were lower than 85% but increased above 85% when 1.0% or 2.0% hydrated lime was 

added.  

To evaluate the moisture sensitivity of WMA mixtures, the modified Lottman test was 

performed following AASHTO T 283 procedure. The experiment plan and the testing condition 

are summarized in Table 5.1. 
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Table 5.1 Condition of modified Lottman test 

Classification Specification 

Condition 
 Temperature: 25˚C 

 Dry & Wet Condition 

WMA Additive 
 LEADCAP 

 Sasobit 

Sample Type 

 HMA, HMA+Lime, HMA+Anti-stripping (LOF 65-00) 

 WMA, WMA+Lime, WMA+ Anti-stripping (LOF 65-00) 

 WMA (LEADCAP), WMA (LEADCAP)+Lime, WMA (LEADCAP)+ Anti-

stripping (LOF 65-00) 

 WMA (Sasobit), WMA (Sasobit)+Lime, WMA (Sasobit)+ Anti-stripping 

(LOF 65-00) 

 

5.1 Moisture Sensitivity Testing Procedure 

To perform the modified Lottman test eight specimens, four for dry condition and four for 

wet condition, were prepared for each of the following: the control WMA mixture, WMA 

mixture with lime, WMA mixture with anti-stripping, the control HMA mixture, HMA mixture 

with lime, HMA mixture with anti-stripping and WMA mixtures with Sasobit additive. To 

prepare the test specimens with 7±0.5% air void, as summarized in Table 5.2, all specimens were 

compacted at between 11 and 40 gyrations. As shown in Figure 5.1, for dry conditioning, three 

specimens in a sealed pack were placed in the water bath at 25˚C for 2 hours, and for wet 

conditioning three specimens saturated at between 70% and 80% were placed in a freezer at -

18˚C for 16 hours and in water bath at 60˚C for 24 hours followed by conditioning in water bath 

at 25˚C for 2 hours. 
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Table 5.2 Number of gyrations applied to produce WMA and HMA specimens for moisture 

sensitivity test 

Mix Type 

Number of Gyrations 

Dry Condition Wet Condition 

#1 #2 #3 #4 #1 #2 #3 #4 

WMA 26 33 25 25 21 22 28 31 

WMA_Lime 24 16 17 14 15 16 17 16 

WMA_Anti-stripping (LOF 65 -00) 27 24 29 32 25 26 30 40 

LEADCAP 31 26 27 27 26 24 30 34 

LEADCAP_Lime 21 18 19 17 19 20 16 23 

LEADCAP_Anti-stripping (LOF 65-00) 30 26 31 33 36 30 35 30 

Sasobit 23 11 22 - 16 24 17 - 

Sasobit_Lime 17 20 21 - 21 18 22 - 

Sasobit_ Anti-stripping (LOF 65-00) 26 32 26 - 22 24 22 - 

HMA 18 18 17 18 13 17 18 18 

HMA_Lime 19 13 22 21 20 26 17 19 

HMA_Anti-stripping(LOF 65 00) 16 12 20 11 17 17 11 12 
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Figure 5.1 Flow chart of moisture sensitivity test for WMA and HMA specimens 

 

5.2 Mixing and Compaction Temperatures 

As shown in Table 5.3 and Table 5.4, the temperatures of asphalt, aggregate, mixture and 

compacted specimen were recorded throughout the sample preparation process and plotted in 

Figure 5.2. WMA mixtures were produced at temperatures of around120°C whereas the control 

HMA mixture was kept around 135°C. WMA mixtures were compacted at temperatures between 

105°C and 110°C with the control HMA mixture between 125°C and 130°C.
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5.3 Bulk Specific Gravities and Air Voids  

The bulk specific gravities of each specimen were determined following AASHTO T 166 

(AASHTO 2001). Table 5.5 and 5.6 summarize the bulk specific gravities and air voids of the 

WMA mixtures and the control HMA mixture and plotted in Figure 5.3 and 5.4, respectively. Air 

voids of all specimens ranged between 5.8% and 8.3%. 

5.4 Results of Tensile Strength Ratio Test 

The tensile strength ratio (TSR) is defined as a ratio of the indirect tensile strength of a 

wet specimen over that of a dry specimen as follows: 

 

Tensile strength ratio (TSR) = 100
Dry

Wet

ITS

ITS
 

  ITSWet = average indirect tensile strength at wet condition 

  ITSDry = average indirect tensile strength at dry condition 

 

Table 5.7 summarizes indirect tensile strengths and TSR values of WMA, WMA-LEADCAP, 

WMA-Sasobit, and HMA with and without lime or Anti-Stripping Agent (ASA). The indirect 

tensile strengths of samples for each category were very consistent with a small standard 

deviation value, which indicates that indirect tensile strength tests were performed consistently. 

Figure 5.5 and 5.6 show plots of the average indirect tensile strengths and tensile strength ratio, 

respectively. The control WMA without additive exhibited the lowest TSR value of 53.3%, 

which increased to 66.6% with lime and 83.5% with ASA. WMA-Sasobit exhibited 73.7% but it 
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slightly decreased to 72.7% with lime and 72.3% with ASA. WMA-LEADCAP exhibited 80.3% 

but it decreased to 78.5% with lime and increased to 81.4% with ASA. The control HMA 

exhibited 82.7% and it increased to 89.3% with lime and 92.6% with ASA. It can be concluded 

that TSR values of both WMA-Sasobit and WMA-LEADCAP were not affected by lime or ASA. 
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6. SUMMARY AND CONCLUSIONS 

The implementation of Warm mix asphalt (WMA) is rapidly increasing. To provide a safe 

and reliable highway for heavier truck traffic with a high tire pressure the WMA mixtures should 

provide a sufficient skid resistance and a resistance to low-temperature cracking and moisture 

damage. In this study, we evaluated: (1) the temperature-viscosity relationship, (2) resistance to 

low-temperature cracking, (3) resistance to abrasion, and (4) the effectiveness of lime and anti-

stripping agents in improving moisture sensitivity. 

6.1 Conclusions 

Based on the limited laboratory experiment, the following conclusions are derived: 

1. The viscosity of asphalt decreased significantly when 0.5% of WMA additive was added, 

but it remained relatively steady as the dosage rate increased up to 3.0%. The reduction 

pattern in viscosity as the dosage rate increases was similar for both CECABASE RT® 

and LEADCAP at all test temperatures of 120°C,125°C, 130°C and 135 °C. A similar 

pattern was observed for both Sasobit® and Rediset.  

2. Based on the ABCD test device, the virgin asphalt binder PG 64-34 cracked at -51.0°C 

and the PG 64-28 cracked at -41.3°C. As the WMA additives were increased from 0.5 to 

3.0%, the cracking temperatures increased slightly, but remained steady near the cracking 

temperature of the virgin asphalt binder. The ABCD test results confirmed that the 
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cracking temperature of the asphalt binder was not significantly affected by any of these 

four WMA additives. 

3. The BPN value steadily decreased as the specimen surface was abraded by a rotating 

rubber although this did not change the MTD value significantly. The most significant 

change in BPN occurred between 30 and 45 minutes of abrasion, whereas no significant 

change was observed between 45 and 65 minutes of abrasion.    

4. The control WMA without additive exhibited the lowest Tensile Strength Ratio (TSR) 

value of 53.3%, which increased to 66.6% with lime and 83.5% with an Anti-stripping 

agent (ASA). WMA-Sasobit exhibited 73.7% but it slightly decreased to 72.7% with lime 

and 72.3% with ASA. WMA-LEADCAP exhibited 80.3% but it decreased to 78.5% with 

lime and increased to 81.4% with ASA. The control HMA exhibited 82.7% and it 

increased to 89.3% with lime and 92.6% with ASA. It can be concluded that TSR values 

of both WMA-Sasobit and WMA-LEADCAP were not affected by lime or ASA.   

6.2 Future Studies 

A more extensive study should be performed quantifying the temperature-viscosity 

relationship of asphalt mixed with varying amounts of WMA additives at different temperatures. 

Additionally, a more extensive study should be performed on the effect of lime and anti-stripping 

agent on WMA mixtures with various additives. Finally, it is recommended that the skid test 

should be performed on WMA pavements in the field after several years of service. 
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