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Abstract

We compare Bayes Model Averaging, BMA, to a non-Bayes form of model averaging called
stacking. In stacking, the weights are no longer posterior probabilities of models; they are obtained
by a technique based on cross-validation. When the correct data generating model (DGM) is on
the list of models under consideration BMA is never worse than stacking and often is demonstrably
better, provided that the noise level is of order commensurate with the coefficients and explanatory
variables. Here, however, we focus on the case that the correct DGM is not on the model list and
may not be well approximated by the elements on the model list.

We give a sequence of computed examples by choosing model lists and DGM’s to contrast the
risk performance of stacking and BMA. In the first examples, the model lists are chosen to reflect
geometric principles that should give good performance. In these cases, stacking typically outper-
forms BMA, sometimes by a wide margin. In the second set of examples we examine how stacking
and BMA perform when the model list includes all subsets of a set of potential predictors. When
we standardize the size of terms and coefficients in this setting, we find that BMA outperforms
stacking when the deviant terms in the DGM ‘point’ in directions accommodated by the model list
but that when the deviant term points outside the model list stacking seems to do better.

Overall, our results suggest the stacking has better robustness properties than BMA in the most
important settings.

Keywords: Key words: Bayes model averaging, stacking, robustness, model selection.

1. Introduction and an Example

Consider the following toy problem. Suppose the true model, i.e., the data generating model (DGM),
that produced the data we want to analyze, is a linear regression model with outcomesY, IID
N(0,σ2) errors denotedε, 12 explanatory variablesX0, ...,X11, and corresponding parameter vector
β = (β0, ...,β11). We takeX0 = 1 to be the constant term. Thus we have a supermodelY = Xβ+ ε.
Suppose that the investigators do not know what the true model is but have identified 3 models that
they think are plausible, and each of them is a submodel of the true model. The 3 models areY =
β0+β1X1+β2X2+β3X3+ε,Y = β0+β4X4+β5X5+β6X6+ε andY = β0+β7X7+β8X8+β9X9+ε.
Together, these three models form a set we call the model listM . Since they are disjoint in the sense
of having no explanatory variables in common, we regard them as forming the vertices of a triangle
in some model space. See Figure 1 in which we have represented models by the indices of their
explanatory variables.
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Next, let us consider four scenarios differing in which model is actually true. Scenario A has
Y = β0+β1X1+β2X2+β3X3+ε as the DGM so the true model is on the model list. Scenario B has
Y = β0+β1X1+β2X2+β4X4+β7X7+ε as the DGM; it is not on the model list but has elements from
all three models on the list. Scenario C hasY = β0+β1X1+β2X2+β4X4+β10X10+ ε as the DGM;
it is not on the model list. Without theX10 term it would be a combination of the first two models
on the model list. The extra variate,X10 means that it deviates from being a combination of the first
two models. Finally, consider scenario D in whichY = β0 + β1X1 + β2X2 + β10X10+ β11X11+ ε is
the DGM. Clearly, it is closest to the first model (which is exactly correct in scenario A) but further
by an equal amount from the other two models on the list.

To proceed, one must have a way to use the model list to get at the true model. For com-
parison purposes, consider three techniques. One is called stacking, (see work by Wolpert, 1992,
Breiman, 1996a, and Smyth and Wolpert, 1998). It finds coefficients based on a technique like
cross-validation as described in Section 2.1 below. The other is Bayes model averaging (BMA),
which assigns weights on the basis of posterior probabilities for the models on the list. The third
will be to choose the model having the largest posterior probability, essentially the Bayes informa-
tion criterion, BIC.

In the supermodel,β has 11 entries; the submodels are formed by setting some of the entriesβi

in β equal to zero. Now, if we generateβ’s from IID N(0,1)’s and then generate ann×11 matrix
X using N(0,1)’s as well, we can get ann× 1 vectorY from N(Xβ,1). This means we can get
an estimatêβ, taken here to be the posterior mean, for each model in the model space. Next, we
combine the models with theirβ’s by averaging, either by stacking or BMA to get an overall fitted
valueŶ. For both cases we need coefficients,αi,S for stacking andαi,B for BMA with i = 1,2,3, to
serve as weights for the 3 models in the two averaging schemes. Theβ̂’s that result from the model
average then arêβS = ∑αi,Sβ̂i and β̂B = ∑αi,Bβ̂i. (The fitted valuesYS andYB are obtained from
submatrices ofX with nonzero entries corresponding to the explanatory variables in the models.)
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COMPARING BAYES AND STACKING

Here, we evaluate how good a model is by its risk,R = E||β− β̂||2, whereβ̂ is formed from
adding the posterior means of the models using weights from stacking or BMA. This risk admits a
predictive interpretation that is in the same spirit as Hoeting et al (1999, Section 6) who used a cross-
validation criterion. Moreover, evaluatingR is intuitively equivalent to examining the regression
functions directly –R cannot be small unless the model average nearly coincides with the true
model. We get an estimate ofRby iterating the procedure described above, varying the model taken
as true (A, B, C, or D) and the form of averaging used. That is, we are fixing the model list and
varying the DGM to see how well the list performs.

If we choose a sample size of 100, we get a table of risks for 12 cases, depending on the DGM
and the technique of model averaging. Here, we generated theYi ’s from N(Xβ,σ2) with β = 1, a
vector with all entries one, andσ2 = 1. The results follow.

TRUE MODEL BMA STACKING CHOICE
A 0.03 0.043 0.03
B 0.56 0.45 0.60
C 0.56 0.38 0.57
D 0.54 0.57 0.54

Table 1: Risks for four models and three techniques

There are three things to note about Table 1. First, the third technique, model choice, in which
one chooses a fixed model to use never has the lowest risk for any row, except when it ties with
BMA. This is no surprise: Advocates of model averaging in general argue that averaging models
outperforms any specific model choice technique.

Indeed, in a series of papers, Yang (2003a, 2003b, 2003c) contrasts model selection and model
aggregation. This is done with several techniques, including AIC, BIC and BMA, in several con-
texts, time series and regression, from the standpoint of risk, estimation accuracy, and predictive
accuracy. The overall import of this work is that combined forecasting procedures typically have
risks with rates of convergence that are the same as if the best forecasting procedures were known.
Also, selection tends to work well relative to mixing only when the noise is small but that as the
noise increases the performance of mixing techniques improves more and more over selection, un-
der a risk criterion.

Second, the risks for the BMA when the true model is B, C, or D are very close, whereas those
for stacking are different. This suggests that BMA is less sensitive to the geometry of the model
list than stacking. Indeed, we suggest BMA is sensitive primarily to how close the DGM is to the
closest members of the model list (see Berk, 1966). Third, stacking had the lowest risk in B and
C where the true model was not on the model list but had some terms in common with models on
the list. In D, BMA won by a little, but it is seen that the extra terms in D not inM amount to a
larger noise rather than an explanatory variable. So, BMA is winning because it deals with model
uncertainty optimally not because it deals well with bias.

Note that in Table 1 we used a fixedβ instead of randomβ so R is not strictly a Bayes risk.
However, this is one of the simplest generic cases we could think of. The explanatory variables are
uncorrelated and as few as possible, consistent with having interesting cases; there is no variability
in the coefficients which have a single typical value; the variability in the noise,σ, is the same as the
variability in the explanatory variables. Thus, we can attribute differences in performance primarily
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to the location of the DGM relative to the model list. Henceforth, we include variability in the
coefficientsβ so that we really are examining a Bayes risk.

As a practical matter, in the cases we examined, the qualitative behavior of risks and Bayes
risks was the same provided the extra variability introduced by use of a prior within regression
models was commensurate with the variability in the noise term and explanatory variables. If one
permits correlation among the explanatory variables – as one would expect in practice –R remains
a meaningful quantity to compute, however its predictive interpretation and its usefulness as an
evaluation of the regression estimator is weakened.

One way to express the difference between two models is to count the number of terms by
which they differ. That is, given two modelsM1 andM2 add the number of terms which are in
M1 but notM2 to the number of terms inM2 but notM1. This is the cardinality of the symmetric
difference applied to the applied to the terms in the model. (In Section 5, we argue this is reasonable
in regression settings with uncorrelated explanatory variables; much beyond this context it may be a
serious oversimplification.) If we represented the model withX1, X2 andX3 as explanatory variables
by 123 (and the other models similarly) then, for instance, in scenario A, the DGM is on the model
list so the symmetric difference on the terms between the DGM and 123 is zero. However, in
scenario B the symmetric difference between the DGM and 123 is three since the DGM has two
terms (X4 andX7) that aren’t in 123 and one termX3 is not in in the DGM.

If we try to relate the better form of averaging to the sum of the symmetric differences between
the DGM and all members of the model list we get Table 2. It is seen that BMA seems to win near
and far from the DGM, i.e., for DGM’sA andD, but stacking wins on the midrange distances. Thus,
Bayes optimality appears to drop off rapidly as the DGM deviates from the model list. However,
BMA may recover when the distance from the DGM to the model list can be interpreted as noise
rather than bias, as in D. This may occur because BMA depends on the likelihoods more than
stacking does while stacking is more data driven than BMA is.

Distance to:
DGM WINNER 123 456 789 SUM
A BMA 0 6 6 12
B Stacking 3 5 5 13
C Stacking 3 5 7 15
D BMA 3 7 7 17

Table 2: Distances in model space

It is important to distinguish between model averaging and model combination (e.g., Minka,
2000). Model averaging assumes we have several models, as in the triangle example and we form
a weighted sum of them. By contrast, model combination is the ‘all subsets’ case in which we
would find coefficients for each term we were willing to include. Usually, this is done by weighting
all submodels of one supermodel formed from all the terms in the models one wishes to combine.
Breiman (1996a) claimed that the biggest gains arise when sets of dissimilar functions are used. If
this claim is substantially true then the distinction between averaging and combination is mostly a
function of the metric geometry of the model lists rather than the functional forms.

An approach intermediate between the two extremes of using many individual terms or many
dissimilar functions is adaptive. For instance, one can start with an exhaustive list and prune out
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inappropriate models. In effect, one is using the data to choose a list of models to average over.
Otherwise put, one can choose a big model and use appropriate regularizers. One way to do this
is via the LASSO, Tibshirani (1994). This method sets various coefficients to zero by a shrinkage
criterion. Kam (2002) uses a different technique in a neural nets context to eliminate elements of a
general model from further consideration.

A key point here is to regard model uncertainty as relative to a model list, which we take to
be a finitely parameterized subset of a model space. A model space is a large, presumably non-
parametric collection of models in which it is safe to assume the DGM lies. Posterior probabilities
are one well known description of model uncertainty, relative to a model list. Here, we also consider
approximation error, namely, how well the true DGM is approximated by elements of the model
list. To see how this affects our inferences, we examine settings in which the DGM is not readily
expressed in terms of the model list.

An idealistic Bayesian would argue that one should use BMA (or whatever other procedure
emerged from a Bayes risk optimization). In this case, the Bayesian would want to put a prior on
the full model space, or a countable dense subset, so that approximating the DGM would be assured.
Admitting the difficulty of this, the orthodox Bayesian would want to choose a finite model list to
generate an approximation to the DGM and verify that the loss due to that approximation is small.
This approach is difficult too, although philosophically consistent. The main problems would arise
from trying to ensure the posterior probabilities of the models on the model list converge properly.
Essentially this is the view taken by Hoeting et al. (1999).

Draper (1995) has a more conceptually satisfying framework. He distinguishes between a
‘within structure variance’ (WSV) and a ‘between structure variance’ (BSV). In BMA, the WSV
is the weighted variance over the models one is averaging and the BSV is often neglected partially
because it is difficult to define classes of structures and give meaningful distributions for them.
Nevertheless, the intuition behind the idea can be implemented. One example is work by Gustafson
and Clarke (2003). Although we do not examine BSV directly here, we argue the concerns it rep-
resents are encapsulated by our focus on the degree of model mis-specification weighting methods
can tolerate.

Unfortunately, stacking doesn’t have an associated treatment for the WSV like BMA does. Con-
sequently, we have used a risk criterion which can be regarded, in some cases, like a cumulative
average prediction error. This can be evaluated for both BMA and stacking providing a common
performance standard. For comparison purposes this is better because, as a criterion, prediction
permits all methods to compete equally for accuracy. We would not, in general, want to restrict our
attention to methods which had a well defined treatment for WSV when we knew other methods
gave better predictive performance.

The overall view developed here, from the triangle and other examples presented later, is pri-
marily for the regression case where the sources of variability in parameters, noise terms, and uncor-
related explanatory variables is roughly comparable and the sample size is moderate. In this context,
moderate means large enough to permit discernment among models but small enough that uncer-
tainty remains. First, when the DGM is on the model list, or very close to an element on the model
list BMA wins over stacking. Second, on the closed convex hull of the model list outside the BMA
domain some form of stacking wins over BMA. In general, for models of the formY = f (X)+ ε,
where f is in a class of functions,X is an explanatory variable andε is a noise term, the convex hull
consists of all functions of the formα f1(X1)+(1−α) f2(X2) for 0≤ α≤ 1. Here, ourf ’s are linear
in X with coefficientsβ so the model lists are finite dimensional so the convex hull is closed already,
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in the sense that any convergent sequence converges to a point in it. Alternatively, one can imagine
the closed convex hull formed from the mixtures from each parametric model because the mixture is
a good summary for all members of a parametric model. Third, for deviations of the DGM beyond
the closed convex hull, it is more typical for stacking to win than for BMA to win, although this is
in terms of magnitude of deviations. For many smooth and low variability directions of deviation of
the DGM from the model list for which BMA wins over stacking. However, stacking usually wins
over BMA for deviations of the DGM from the model list that involve nonsmooth or other high vari-
ability functions. As one includes correlations among stochastic quantities or permits perturbations
with size or variability outside the range the model list accommodates, this interpretation becomes
less tenable.

This amounts to a variance/bias tradeoff: When all random quantities in a regression setting
are of roughly comparable variability, BMA tends to win over stacking when bias is relatively low
but stacking tends to win over BMA when bias is relatively high. That is, the envelope around the
closure of the model list on which BMA approximates the DGM well and outside of which stacking
will typically win, will depend on the relative sizes of variances of the noise term, the coefficients,
and the explanatory variables and how these compare to the approximation error.

As noted above, our results suggest that direction of deviation matters as well as magnitude:
BMA usually loses out to stacking for unfortunate directions of deviation from the DGM to its
best approximation using the model list. At this time we are unable to formulate the notion of an
‘unfortunate direction’ any better than to argue heuristically: Regard the region where BMA wins
over stacking as a manifold in the model space. At each point on this manifold there is a finite
dimensional tangent space containing all the directions in which one can perturb the point while
remaining inside the manifold. (That is, there must be a smooth curve in the manifold which passes
through the point and has that direction as its tangent vector at the point.) An unfortunate direction
is a perturbation that takes the point outside the manifold.

As a practical matter, identifying these unfortunate directions in general is tentative. In the com-
putational work reported here, unfortunate directions correspond to deviation terms in the DGM,
biases, that are sufficiently difficult to approximate by elements of the model list. This includes, but
is not limited to, products of a polynomial with the indicator function of a set, and functions that
have a term of much higher or lower variability than the other terms. This latter category includes,
for instance, polynomials of degree higher by, say, two or more, than those in the model list. It also
includes polynomials with a slightly different exponent, say 1/3 or more, when the exponents are
less than one. In addition, unfortunate directions includes cases where the deviation is smooth and
has variability similar to those on the list, but is different in functional form. This includes cases
where explanatory variables, or function of them are missing. It appears that missing two or more
‘reasonable’ variables impairs the approximative power of the model list enough to make BMA
suboptimal. The results described here are broadly consistent with the suggestion that unfortunate
directions of deviation are functionsf (x) in which f has a higher rate of change with increasingx
than the functions on the model list.

In the absence of such unfortunate directions, BMA is best. However, the sensitivity of BMA to
the direction of perturbation may be so great that even a small magnitude perturbation, well within
experimental or sampling error, may make BMA underperform relative to stacking. Indeed, this
viewpoint is consistent with the common practice of using BMA more for variable selection than
for obtaining a regression function, see Hoeting et al. (1999, Section 4.1). Our effort here is to
use model averaging as a regression technique in which we imagine the true regression function as
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situated in an infinite dimensional (nonparametric) function space. For this reason, we have great
latitude in choosing model lists and great difficulty identifying directions.

Here, we extend the triangle example in several ways, varying the model list or the DGM to
see how they interact under various deviations. Although we examine the variability given model
lists, we do not investigate the uncertainty involved in of choosing a model list. In effect, this
assumes that model list selection has already been done through a separate process. We suggest
this can be done by invoking an information theoretic criterion as in Section 5.2. Consequently, we
neglect the variability in the representativity of the model list for the model space. This limitation
arises because our goal is to study the effect of model mis-specification on errors and the impact of
model list mis-specification on various weighting schemes, not the effect of varying a model list on
a specific weighting scheme.

On the other hand, we restrict our attention mostly to model lists that are of approximately the
same complexity as the DGM. (The exceptions to this are where we wanted to evaluate the effect of
complexity or needed the numerical properties of the functions to provide bounds.) Our notion of
complexity is the same as the distance used in the triangle example, simple minded term-counting.
This is unsatisfying because the DGM may differ from a model on the list by a small but very
complicated function. We ignore this case because such careful identification of a DGM will often
be impossible given the data at hand. Indeed, the most realistic cases will have DGM’s that are a
little more complicated than the elements of the model list and this degree of complication will be
of size similar to other terms in the DGM and be representable by a relatively simple functional
form.

An adaptive approach to model list selection would use the data to generate model lists, generate
stacking and BMA averages, and sequentially discredit models that were too far wrong. However,
without understanding the metric geometry of model lists and DGM’s and the tradeoff between bias
and variance in model lists it is premature to propose adaptive techniques for model list selection.

We investigate the interaction between DGM’s, model lists, and averaging techniques in a series
of computed examples. These illustrate principles we anticipate will be important for model list
choice. This is done in the context of linear models with an independent normal error and roughly
comparable variability in the main quantities. Section 2 is an extensive discussion of model aver-
aging in general, including descriptions of the stacking techniques and BMA that we use. Section
3 presents four computed ‘geometric’ examples and Section 4 presents two ‘typical’ examples in
an effort to map out a comparison between stacking and BMA. Section 5 provides some interpreta-
tion of our results in terms of optimality properties, information theory, and potential methodology.
Finally, Section 6 reviews our overall conclusions.

2. Model Averaging – Bayes and Non-Bayes

A paradigmatic formulation of the problem of model averaging is given by Juditsky and Nemirovski
(2000). Their setting is one which we have found convenient to adopt. Briefly, consider a compact,
convex setA∈ IRm with elementsα = (α1, ...,αm). For now, assumeA is contained in theL1 ball,
so that∑m

i=1 |αi | ≤ 1. Fix some function space and an elementf in it. Choose a list of models, say
f1, ... fm in the space. LetfA denote the best approximation tof using linear combinations of the
fi ’s weighted by the entries in the optimal elementα∗ ∈ A. That is, we have definedfA = ∑m

i=1α∗i fi
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whereα∗ = (α∗1, ...,α∗m) is defined by

α∗ = argmin
α

∫ (
f (x)−

m

∑
i=1

αi fi(x)

)2

dµ(x). (2.1)

This optimality criterion is merely one of many which we could have chosen.
The overall goal of model averaging is the following. Given a setA, a list of functionsf1, ..., fm,

n observations of the formYi = f (Xi)+ εi for i = 1, ...n assumed IID mean zero, common variance
σ2, and a boundL so that max(| fi |, | f |) ≤ L find an estimator as close to being as good asfA as
possible.

Two comments about this structure are appropriate here.
First, note that this assumes thefi have been given so that implicitly the model list uncertainty is

zero. However, we want to consider how well the model list approximates the true model. The key
issue is how to choose thefi ’s given that we do not knowf . A secondary question is how to choose
the model selection principle, or here, more specifically, the model averaging technique. After all,
we have no guarantee thatf can be represented as a sum of thefi ’s. This leads to a notion of model
list approximation error, separate from the model approximation error of how well a single model
approximates the true model.

Second, thefi ’s chosen are written as if they were functions in a function space. Often this
is true. More generally, they can be regarded as parametrized functions, that isfi(x) = fi(x|θ).
Examples of this include the case that thefi ’s are neural networks with different architectures or
linear regression models with different functions and possibly different explanatory variables. In
these cases, there is an estimation problem forθ nested within eachfi as well as an estimation
problem forα across thefi ’s.

With these structures in mind we review several important contributions to the general approach
of model averaging. We begin with the two techniques we use here: Stacking and BMA. Then we
turn to functional aggregation, agnostic learning, greedy approximation and data fusion.

2.1 Stacking

The main idea in stacking is to combinef1, ..., fm by a cross-validation technique. The idea is that
the models are ‘stacked’ in layersfi with weightsαi . In particular, Wolpert (1992) and Breiman
(1996a) described stacking as follows (see also Smyth and Wolpert, 1998, for many, more recent,
references). Define vectors

zj = (z1, j , ...,zm, j ) = ( f− j
1 (xj), ..., f− j

m (xj))

in which the superscript− j means that thejth observation(yj ,xj) is not used to estimate the coef-
ficients in eachfi which are then evaluated at the deletexj . Theα is chosen to minimize

L = ∑
j

(yj −∑
i

αizi, j)2. (2.2)

There are various choices for the setA leading to different techniques for optimizingL and numerous
variants on leave-one-out cross-validation. (Breiman, 1996a, argues that stacking works well in
practice even though it has not yet been shown to satisfy an optimality principle formally.)
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Our work differs from Breiman (1996a) because we are testing how well the method works in the
presence of model approximation error. The procedure we followed was to consider a supermodel
Y = Xβ+ ε and identifymsubmodels of it to play the role of thefi ’s. Write these models as

Yi = Xiβi + εi,

for i = 1, ...,m. Fix i = 1 and use 4/5 of the data to estimateβ̂ and the remaining 1/5 of the entries
in Xi with β̂i to get a vector of fitted valueŝY(i=1),1/5, of lengthn/5. Doing this for each of the other
fifths of the data in turn gives a vector of lengthn that we denoteY(1) = (Ŷ(1),1/5, ...,Ŷ(1),5/5). Do the
same for each of the other values ofi to getY(1), ...,Y(m), one vector of fitted values for each model.
Note that delete-1 cross validation would use(n− 1)/n of the data in each(Xi,Yi) for i = 1, ...,m
rather than 4/5. We used fifths because it gives a better evaluation of the performance of the model
in a predictive sense while retaining most of the data for estimating the parameters.

Now, we estimateβ by the posterior mean. We have fixedσ = 1 and used aN(0,σ) prior on
each of theβ’s. It remains to determine the stacking coefficients by minimizing||Y−∑i αiY(i)||2.
There are several ways to do this. The first form of stacking is to permitα to be unconstrained, i.e.,
it ranges overIR. We call thisS1. The second form of stacking we use isS2 in which we impose
∑i αi = 1. In both cases negative coefficients are permitted. Since this is counterintuitive, we also
consider a third and fourth form of stacking, denotedS3 andS4. In S3, we start with theS2 weights
and impose∑i αi = 1 andαi ≥ 0 by replacing negativeαi ’s with zero and then renormalizing so
the nonzeroαi ’s sum to one. A more sophisticated approach replaces the truncation by a quadratic
optimization that incorporates the constraint∑i αi = 1. This is done inS4. Indeed, it is seen that
the techniques of stacking increase in their complexity and conceptually get closer to BMA, even
though the determination of theα′s remains like cross-validation.

In any of these 4 stacking procedures our predictor is of the form

Ŷ = ∑
i

αi(Xiβ̂i) = ∑
i

X̃i(αi
˜̂βi) (2.3)

in which the tilde’s indicate that the quantity under them has been lifted up to have dimension equal
to that of the corresponding quantity in the supermodel by putting zeros in as necessary when an
explanatory variable is not included in prediction. We do this so that the trueβ will have the same
dimensionality as the overall estimate ofβ.

In evaluating the performance of the averaging technique we look atR= Rn = E||βT − β̂||2 in

which β̂ is ∑i αi
˜̂βi andβ̂ is an estimate based onn data points. We argue that this is the right analog

to the Bayes approach which would be optimal and use posterior probabilities of models in place of
the αi ’s. Our use ofR here is as a Bayes risk on the parameter estimates because we have chosen
new parameters at random on each iteration. In fact, as observed in Section 5.1, if the entries in the
matrix X are independent, this Bayes risk is a predictive criterion as well as an assessment of error.

2.2 Bayes Model Averaging

Again, we supposefi(x) = fi(x|θi). Suppose also that we have a priors across families and priors
within families. Now, for a setS, and datasetD the probability thatScontains the data generating
model, DGM, is

W(S|D) = ∑
i=1

∫
w(Mi ,θi |D)I fi,θi∈Sdθi = ∑

i=1

∫
w(Mi|D)w(θi |D,Mi)I fi,θi∈Sdθi . (2.4)
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Within each integral the first posterior probability is the posterior for theith submodel and the second
is the posterior density for the parameter in the submodel.

This leads to an average over models of the form

YB = ∑
i

W(Mi|D)XiE(βi|D) (2.5)

for the linear regression case, parallel to Equation 2.3. The general properties of BMA have been
studied extensively. A few of the most important papers, among many others, include the following.
Madigan and Raftery (1994) verified that BMA beats out model choice under a logarithmic scoring
rule in that BMA provides better predictive ability than using any one model, perhaps because of its
optimal treatment of what we call here the within model list uncertainty; see also the examples by
Hoeting et al. (1999, Section 7). Clyde (1999) addresses some of the prior selection questions and
model search strategies. She directly confronts the problem of the model space being too large to
permit an exhaustive search. To deal with model uncertainty, she implements the orthodox Bayes
program by a stochastic, rather than an algorithmic, search. George and Foster (2000) address the
model uncertainty problem in Bayes model selection by an empirical Bayes technique which they
related to conventional model selection principles. For further references, see Clyde (1999).

2.3 Other Non-Bayes Averaging Techniques.

Juditsky and Nemirovski (2000) developed an approach called functional aggregation. It uses the
structure at the beginning of this section. They establish an upper bound on the error of approximat-
ing f by linear combinations of thefi ’s. In their proof they estimate inner products between thefi ’s
which are much like covariances. This gives a method of construction resulting in an estimator sat-
isfying their theorem. Stacking can also be expressed in terms of quantities that are like covariances
(Smyth and Wolpert, 1998).

This setting has been elaborated on by Lee, Bartlet and Williamson (1996). Their technique,
agnostic learning, satisfies an optimality criterion somewhat like Juditsky and Nemirovski (2000).
However, their setting is much more general. They only assume a joint probability model for the
X’s andY’s and approximate the probabilistic relationship by a function within a general class of
functions so as to minimize the expected value of a loss function. Their technique is primarily
intended for neural networks. They still establish a theoretical bound on the performance of their
method. In the proof of that theorem they introduce quantities that can be recognized as averages of
models. Indeed, their functionf ∗ is expressible in terms of partial sums denotedfk. See also work
by Haussler (1992) and Kearns and Vazarani (1994).

Another approach is through greedy approximation (Jones, 1992, 2000). The idea here is ap-
proximate a function in anL2 space by another function within a subset of that space by evaluating
it at a linear combination of the explanatory variables. Finding the best linear combination at one
stage leaves a residual to which one applies the procedure again. At each stage one optimally fits the
residual. The result is a sequence of partial sums of functions evaluated at linear combinations of
explanatory variables. The partial sum converges to the true function. The main theorem establishes
the rate of this converges inL2 norm in terms of sample size.

Another recent approach is called boosting. The central idea here is that combining a large
collection of weak prediction rules (through weighted majority voting for instance) is much easier
that finding one highly accurate stand-alone prediction rule and still gives a very accurate prediction
rule. A good overview, with a large reference list, can be found in work by Schapire (2002). In a
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sense, what is going on here is that the variability over prediction rules is substituting for data and
modeling we wish we had.

A variant on the idea of boosting is called bootstrap aggregating or bagging. The earliest clear
statement of the technique seems to be by Breiman (1996b). The idea is to enhance the perfor-
mance of a predictor by repeatedly evaluating the predictor on bootstrap samples and then form-
ing an average over those samples. Breiman (1996c) studied instability and in a separate paper
(Breiman, 1996b) argued that bagging will produce substantial improvements in predictors when
they are based on ‘unstable’ procedures such as neural nets, CART’s, and subset selection in linear
regression.

Despite the success of boosting and bagging – and the philosophically attractive centrality of
prediction they have – we have focussed on stacking (a version of delete-1 cross validation) and
BMA for two reasons. One is that these two methods have been well studied theoretically and
computationally from the optimization standpoint so a comparison to seek where each works best
seems timely. The second is we wanted to get at the DGM directly. Even though any good prediction
scheme will be consistent for the DGM, we wanted to motivate the choice of model list and look
at how well it can be used to approximate the DGM by different techniques. In principle, the
decision rules one combines in a boosting context are analogs of the choice of model list but the
linkage between boosting and function approximation is not as close. Also, it is well recognized
that bagging (when it works) mostly reduces variance, not bias (Breiman, 1996b; Buhlman and Yu,
2002), and our interest here is on bias. (We comment that the collection of unfortunate directions
identified in the introduction as having high rates of change may correspond, in a heuristic sense, to
the unstable predictors where bagging seems to be most effective.)

A general approach by Clarke (2001) sought to combine model selection principles on sets of
models on which they might be optimal. There it was proved that model averaging never does
asymptotically worse than model choice for predictive purposes, if the model selection principles
are consistent. This technique was implemented computationally by de Luna and Skouras (1999).

Finally, Luo and Tsitsiklis (1994) have an approach called data fusion. They combine functions
from different sources in a communications network to get one overall message, or output. Their
setting is information theoretic, but the procedures are similar.

3. Stacking vs. BMA: Geometric Examples

Here we present a collection of geometric examples to compare the performance of the four stacking
procedures to BMA. We describe them as geometric because they stem from an effort to visualize
the metric geometry of an infinite dimensional function space. Since these spaces are infinite di-
mensional, there will be diverse ways to draw two dimensional diagrams of multidimensional sub-
spaces. Our diagrams are not unique; they are merely efforts to visualize the collection of functions
that would be well approximated by a given model list.

For instance, Figure 1 depicts three functional forms as points. It would be equally valid to
regard them as vectors coming out of the origin and forming some kind of pyramidal shape. The
location of B and C relative to these points would be depicted differently in these two cases. Using
linear independence of functions to form basis elements gives a nearly Euclidean geometry different
from a supremum norm geometry which is better for some approximation purposes. Ultimately, the
same collection of functions is represented but the properties of ther representation may be very
different. Our term counting measure is cruder than these.
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Alternatively, one can regard the models on the model lists that we use here as subsets of the
elements of a basis for the function space containing the DGM. An individual term is a basis el-
ement. If the basis is ordered by some criterion like frequency, then we are evaluating how well
averaging techniques perform using sets of basis elements that represent truncations of expansions
in the basis.

Implicit in this is the view that selection of model lists will rely, at least initially, on choosing
subsets of a basis based on geometric approximation principles. To this end, the names of the
examples have been chosen to suggest the principle they illustrate.

3.1 Computational Results

We contrast stacking and BMA in four scenarios. The first three have a fixed DGM and several
model lists. The fourth has fixed model lists and considers a class of DGM’s. In all cases, the DGM
is not on the model list and we evaluate the Bayes riskRby simulation. We report our approximate
R’s to two decimal place accuracy even though in some cases the precision is higher. We did this
because an improvement of less than 0.01 is too small to prefer one method over another. Thus, even
though a bigger number of replicates would give higher precision we only chose a number large
enough, that a normal test for the differences between the two methods would reject equality (at the
0.05% level or better); in most cases we report 100. We always verified the results qualitatively for
higher replication sizes. In addition, we chose sample sizesn for Rn large enough to permit reliable
comparisons yet small enough to be reasonable in practice; in most cases we report 50. We always
verified the results qualitatively for higher sample sizes.

We comment that we have presented a representative selection of all the cases we computed. In
fact, in various places we give slightly stronger interpretations than are justified strictly on what we
give here. In those places we indicate what we omitted.

3.1.1 DENSITY

Consider the case that the DGM is

Y = β0 + β1X1+ β2X2+ β3X3 + β4X4+ β5X5+ ε

with ε’s IID N(0,σ2). Suppose there are three model lists,

M1 = {X2
1 ,X2,X3,X4,X5;X1,X

2
2 ,X3,X4,X5;X1,X2,X

2
3 ,X4,X5}

M2 = M1∪{X1,X2,X3,X
2
4 ,X5}

M3 = M2∪{X1,X2,X3,X4,X
2
5}.

Here, the terms separated by semi-colons are in the same model. For brevity we have not written
in theβ’s which are random. Later, in Subsection 4 when we vary the DGM, we will drop theβ’s
in the DGM too since the list of explanatory variables is all that is needed to specify the model.
Clearly, none of the model lists contains the DGM{X1,X2,X3,X4,X5}.

For 100 repetitions and a sample size of 50 we have the following table of Bayes risks. We have
used an asterisk to indicate the entry in a column with the smallest risk.

It is seen that in all cases stacking wins over Bayes. As the model list index increases the risk
decreases so it is the coarsest stacking procedure that wins.
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Technique M1 M2 M3

BMA 0.37 0.29 0.24
S1 0.28* 0.24* 0.21*
S2 0.31 0.26 0.22
S3 0.31 0.25 0.21
S4 0.31 0.25 0.21

Table 3: Risks and model list density

As suggested by Figure 2, the models on the lists, denotedA, B,C, D, andE look like the positive
octant of a sphere in five dimensions. Note that lines with the same number of marks are equal in
length. That is, each of the models is two terms distance from the DGM at the center and any two
models are four terms distant from each other. This means that if we consider a sphereB(DGM,2+
η) centered at the DGM with radius 2+ η for someη > 0 then card{Mi ∩B(DGM,2+ η)} is
increasing ini, even when normalized by Vol(B(DGM,2+ η)) to give the approximate density of
Mi at the DGM.

We comment that in the simulation results presented here, we have assumed that all of the data
comes from the same wrong model (although theβ varies). In fact, one can redo the simulations so
that, say, any proportion comes from the wrong model and the rest comes from one or more models
in M1. As the proportion of data from a model on the list increases, the degree by which BMA
outperforms stacking increases, in terms ofR. We justify this formally in a short Appendix.

3.1.2 BRACKETING

Here we argue that as the ability of the model list to provide bounds on the DGM increases, the
degree by which stacking should outperform BMA also increases. This differs from the concept
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of density (models per unit volume in the model space) because we are examining proximity in a
function approximation sense. Given two modelsm1 andm2 which bracket a DGM, we imagine a
region in model space that joinsm1 andm2 and passes through the DGM. This is denoted by a line
with endpoints indicated by spheres in Figure 3. Doing this for another pair of models that brackets
the DGM gives another line ending in cubes in Figure 3. The plane formed from them represents the
region in model space generated by the Cartesian product of the list consisting of the four models
together. Thus, it is geometrically reasonable to represent the DGM as an interior point of any one
of three regions in the model space: two lines and a plane. The Cartesian product of the plane with
the line ending with pyramids would form a three dimensional interior if we continued to nest model
lists. The intuition here is that as the DGM is situated in nested regions of increasing ‘dimension’,
formed from larger and larger model lists whose elements bracket the DGM, the available volume
near the DGM that the averaging strategy tries to fill up also increases. As this ‘dimension’ increases
it is harder for two models to be close, a situation that should favor stacking over BMA.

Thus, we consider a simple model

Y = X1+X2+ ε

whereε is normal as before and define

M1 = {X1 +
√
|X2|sign(X2);X1 +X2

2},

M2 = {
√
|X1|sign(X1)+X2;X

2
1 +X2},

where sign(·) is the sign of its real valued argument and

M3 = M1∪M2.

Here,M3 is“two dimensional” in the sense that the first 2 model lists can be regarded as lines joining
the two elements inM1 andM2.
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Our comparison of the model spaces and model averaging techniques is summarized in the
following table. We have used 100 simulations repetitions and a sample size of 50. (The pair of
asterisks in the bottom row means that the two entries are equal, and smallest. In some simple cases,
the optimizations that give S3 and S4 coincide.)

Model List M1 M2 M3

BMA 2.53 2.21 0.98
S1 2.55 2.22 1.35
S2 2.55 2.23 1.36
S3 2.46* 2.15* 0.84*
S4 2.46* 2.15* 0.88

Table 4: Risks and dimension of the interior

There are two implications. First, the risks decrease as the internal dimension of the manifold
formed from the model list increases, when the extra dimensions added are functionally helpful. As
indicated in Figure 3, if we define another model list with two models, we can imagine the DGM as
an interior point of a three dimensional manifold. In results not shown here, if the extra dimension is
generated by models which bound the DGM as a function of its explanatory variables then the risk
decreases. However, adding more dimensions toM3 can increase the risk if the extra dimensions
correspond to functions that cannot be used to bound the DGM or are otherwise strikingly different
from it. Thus, the ‘direction’ here may be quantified as the difference between the DGM and
approximations to it formed from models on the model list. Essentially, this is the bias, as in
Section 1.

Here we argue that, subject to constraints, increasing complexity is helpful. Suppose the DGM
is a sum of all second order terms in 3 variables,

Y = X2
1 +X2

2 +X2
3 +X1X2+X2X3+X1X3+ ε.

Note there are six terms. We define three model lists each with 6 models in which each model
differs from the DGM by four terms, the same sense of distance as used before. The model lists
differ in their complexity, also as measured by number of terms: The models on list 1 have 8 terms,
the models on list 2 have 6 and the models on list 3 have 4. Figure 4 shows one modelRi from each
of the three model listsMi in relation to the DGM. The lines joined to eachRi indicate the terms
that get summed to form the model. Explicitly, the first, higher complexity, model list is

M1 = {X2
1 ,X2

2 ,X2
3 ,X1X2,X2X3,X1,X2,X3;X2

1 ,X2
2 ,X1X2,X2X3,X1X3,X1,X2,X3;

X2
1 ,X2

2 ,X2
3 ,X1X2,X1X3,X1,X2,X1X2X3;X2

1 ,X2
2 ,X2

3 ,X3X1,X2X3,X1,X3,X1X2X3;

X2
1 ,X2

3 ,X1X2,X2X3,X1X3,X1,X2,X1X2X3;X2
2 ,X2

3 ,X1X2,X2X3,X1X3,X1,X3,X1X2X3}.
To form this list we dropped one term from the DGM but added three others in various ways. The
list of equally complex models is

M2 = {X2
3 ,X1X2,X2X3,X1X3,X1,X2;X2

1 ,X1X2,X2X3,X1X3,X1,X1X2X3;

X2
1 ,X2

2 ,X2
3 ,X1X2,X1,X2;X2

1 ,X2
2 ,X2

3 ,X1X3,X1,X1X2X3;
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X2
2 ,X2

3 ,X1X2,X2X3,X1,X2;X2
1 ,X2

3 ,X1X3,X1X2,X2,X3}
To form this list we dropped two terms from the DGM but added two in various ways. The list of
lower complexity models is

M3 = {X2
1 ,X2

2 ,X2
3 ,X1;X1X2,X2X3,X1X3,X1;X

2
2 ,X2

3 ,X1X2,X1;

X2
1 ,X2

2 ,X2X3,X1X2X3;X2
3 ,X1X2,X2X3,X1;X2

2 ,X1X2,X1X3,X2}.
To form this list we dropped three terms from the DGM but added one in various ways. In all three
cases, the new terms added were chosen to be relatively far from each other, in an effort to ‘fill out’
the model space.

3.1.3 COMPLEXITY

We compared the performance of the four forms of stacking and BMA for these three model lists
with 200 repetitions and a sample size of 100. These larger numbers arose because there were more
terms in these models than in the earlier cases. However, as before, other numbers of repetitions
and sample size were qualitatively the same. In the table below, when one of two equal entries is
starred it means the two entries are equal to the exactitude shown, but later digits favor the starred
one.

In each row, the risk increases from left to right as the number of terms decreases. Thus, for fixed
distance, higher complexity helps. Moreover, the coarser stacking wins with the lower complexity,
the more refined stacking wins with the higher complexity. This suggests that BMA would win with
high enough model complexity (as measured here). This is consistent with the view that as more
terms are included in the models, the model lists span a larger subspace thereby approximating a
DGM better. Indeed, the amount by which BMA loses to the best of the stacking methods increases
as the complexity decreases as seen in the last row. In view of the interpretation of the term-counting
distance, one can regard this as a sort of ‘maximum entropy’ principle.
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Model List M1 M2 M3

BMA 0.19 0.74 1.61
S1 0.15 0.29* 0.56*
S2 0.15 0.36 0.73
S3 0.14* 0.57 1.21
S4 0.14 0.44 1.03
BMA -Best 0.05 0.46 1.04

Table 5: Complexity

3.1.4 SENSITIVITY

Here we investigate the effect of varying the DGM while using one of two reasonable model lists.
The DGM is varied by perturbing the exponents on explanatory variables. This is an important case
because exponents are often chosen for convenience on the basis of scatter plots with unexamined
variability. Also, there is a tradeoff: At what point does a deviation in the exponent change from a
robustness check to a new explanatory variable?

Consider a collection of DGM’s of the form

Y = Xα
1 +Xβ

2 +Xγ
3 + ε,

with the usual linear model conventions. We choose a collection of values for the vector(α,β,γ)
starting withα = β = γ = 1 and then considering variants on it. The other triples were as follows.
First we set(α,β,γ) = (4/5,4/5,4/5),(2/5,2/5,2/5) to represent the general effect of the explana-
tory variables entering by lower powers, then we set(α,β,γ) = (6/5,6/5,6/5),(8/5,8/5,8/5)
to represent the effect of higher powers. Then we setα = 1 so see how the other powers af-
fected the results. We did computations for(β,γ) = (4/5,6/5),(6/5,6/5), (4/5,4/5) and then for
(β,γ) = (2/5,8/5),(8/5,8/5),(2/5,2/5).

The two model spaces were

M1 = {X1 +X2+X3;X
2
1 +X2

2 +X2
3 ;X1X2;X2X3;X1X3}

and
M2 = {X1,X2,X3,X

2
1 ;X1,X2,X3,X

2
2 ;X1,X2,X3,X

2
3 ;X1,X2,X3;

X2
1 ,X2

2 ,X2
3 ,X1X2,X2X3,X1X3}.

Thus, in terms of explanatory powerM1 is equivalent toM2. However, the models inM2 are closer
to each other in the term-counting distance than the models inM1 are, because the models inM1

have no overlapping terms.
To get a high enough precision we used 400 repetitions with sample size 100 to get the following

table when the DGM wasα = β = γ = 1.
These results are expected: When the DGM is in on the model list BMA wins. (No patterns

were noted for stacking risks.) However, in other cases, we found that even relatively small model
approximation errors made BMA lose out to stacking. Here is one case with 100 reps and sample
size 50. The other scenarios and sample sizes were qualitatively the same.
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Sensitivity: α = β = γ = 1 α = 1,β = 4/5,γ = 6/5
Model List M1 M2 M1 M2

BMA 0.043* 0.043* 6.25 6.25
S1 0.068 0.059 6.24 6.35
S2 0.065 0.055 6.25 6.32
S3 0.412 0.043 4.53* 6.22
S4 0.045 0.048 6.03 6.17*

Table 6: Sensitivities for different values ofα, β andγ

Thus, even with relatively small changes in the exponents stacking won and the finer methods of
stacking tended to perform better. It is seen that the risks for the stacking procedures were all smaller
for M1 than forM2. We suggest, like Breiman (1996a), this occurs because the elements ofM2 have
more terms in common than do the elements ofM1 so they are closer together. Since having two
exponents 0.2 away from 1 is enough to let stacking win over BMA, BMA is just not very robust.
Indeed, in other series of computations involving changes in powers or truncated variables BMA
performed very poorly relative to stacking.

4. Stacking vs. BMA: A Typical Setting

Next we examine all subsets regression to see how stacking and BMA compare in what many regard
as a typical setting. In effect, we regard each term as a model rather than grouping terms into models.
When we use all subsets of a collection of explanatory variables, interest focuses on determining
which variables to include rather than finding appropriate functions of them. In some cases like this,
BMA sometimes does better than stacking, possibly because the model list in this case is so much
richer than in the geometric examples.

We treat two cases. The first, ‘Absolute’, case is in the same spirit as the earlier geometric
examples. In the second, ‘Relative’ case, we reweight the perturbation term so it will have the
same degree of variability and the other terms, regardless of functional form. This changes the
results significantly although it will be difficult to do in practice because the perturbation terms are
typically unknown. In the unnormalized case, like those before, the size of the model approximation
error appears to dictate which of BMA and stacking will have lower risk. In the other, normalized,
case it is the direction of model approximation error that matters.

4.1 Computational Results

Here we investigate the effect of using all subsets with 4 explanatory variables. Now, for{X1;X2;X3;X4}we
use

M = {X1;X2;X3;X4;X1,X2; ...;X1,X2,X3,X4}.

as our model list and we consider two types of deviation term.
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4.1.1 THE ABSOLUTE VERSION

We consider four possible DGM’s:

Y1 = X1+X2+X3+X4;Y3 = X1+X2+X3+X4+X2
1 ;

Y2 = X1+X2+X3+X4+X1X2;Y4 = X1 +X2+X3+X4+X2
1 +X1X2.

Recall thatX2
1 is typically a bigger bias term thanX1X2. The computational results are summa-

rized here for 100 repetitions and a sample size 50.

DGM 1 DGM 2 DGM 3 DGM 4
BMA 0.14* 1.20* 1.61 2.66
S1 0.27 1.39 1.82 3.04
S2 0.25 1.33 1.81 3.03
S3 0.78 1.81 2.08 3.05
S4 0.14 1.22 1.58* 2.66*

Table 7: All subsets

If we redo the computations droppingX4 or X4 + X3 the results are qualitatively the same, al-
though the risks in each entry decrease as the variables are dropped.

The pattern is clear: As the deviation term increases, the risks increase. In addition, BMA works
better with small deviation terms like zero and a product; stacking works better with larger deviation
terms, like higher powers. This relatively good performance by BMA is limited by the richness of
the model list and the convenient form chosen for the DGM. Moreover, in columns 1 and 4 S4 and
BMA are indistinguishable, given the tolerance. This held for other sample sizes and repetition
numbers. Because the bias is relatively small, more sophisticated stacking techniques performed
better than the rest.

4.1.2 A RELATIVE VERSION

In contrast with the absolute version we offer a relative version that gives contrasting results. The
model list is the same as before but we now consider 4 different DGM’s. They are

Y1 = X1+X2+X2
1;Y2 = X1+

√
|X1|sign(X1);

Y3 = X1+X2+X1X2;Y4 = X1+X2χX2>0.

These were chosen partially for variety, since the last example revealed the behavior of stacking and
BMA for the present model list with deviant cross and square terms. We wanted some comparability
and some novelty.

The key difference here is that we modify the prior on the coefficient of the perturbation term.
This modification increases or decreases the variance of the perturbation term so that the overall
variance of the term is the same as the other terms. For instance, for the first DGM in earlier
examples we would have usedβ3X2

2 , both β3 and X2 distributed independentN(0,1). Here, we
replaceX2

2 by X2
2/
√

2. Now Var(X2/
√

2) = 1, the same as the explanatory variables in the other
terms. If we didn’t do this, it would correspond to using aN(0,2) prior on β3: The expression
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β3X2
2/
√

2 with β3 andX2 distributed as independentN(0,1)’s corresponds to the expressionα3X2
2

with α3 distributed asN(0,1). While this makes the variability equivalent, it reduces the effect of
the functional form and presumes knowledge about the perturbation term we would never have. (If
we did have such knowledge we would build it into the model list.)

For brevity, we only present and discuss some of results for S3, S4 and BMA since S1 and
S2 never won. As before, we usen = 50 as our sample size. The results are, in an average risk
sense, that BMA did best for cases 1 and 3. In these cases, S4 did almost as well as BMA, and S3
was distinguishably worse than S4. In cases 2 and 4, S3 did best. BMA did almost as well, and
S4 was distinguishably worse. Thus, for nice, smooth deviations BMA wins, while for nonsmooth
deviations the robustness of stacking gives better performance.

To probe this, we redid the simulations partitioning the outcomes into ten subsets based on the
absolute value of the coefficient on the perturbation term. Then we calculated the corresponding
average risks. The ratios of risks presented here by decile track how rapidly the performance of
BMA falls off as the effect of the perturbation term increases. Note that as the decile increases
the standardized DGM is further and further from the domain on which BMA on the model list
would be optimal. Our results are in the following tables. A value greater than 1 means BMA
is performing better than the stacking procedure indicated. A value less than 1 indicates BMA is
performing worse.

Decile 1 2 3 4 5 6 7 8 9 10
S3/BMA 2.85 2.17 1.87 1.57 1.55 1.43 1.31 1.06 1.16 1.02
S4/BMA 1.12 1.07 1.06 1.07 1.04 1.03 1.05 1.01 1.03 0.99

Table 8: Ratios of risks for deviant square term

Decile 1 2 3 4 5 6 7 8 9 10
S3/BMA 2.44 1.45 1.37 1.07 1.03 0.93 0.86 0.79 0.75 0.71
S4/BMA 1.22 1.18 1.16 1.05 1.02 1.06 1.02 0.99 1.00 1.00

Table 9: Ratios of risks for deviant signed square root term

Decile 1 2 3 4 5 6 7 8 9 10
S3/BMA 2.55 1.97 1.88 1.79 1.47 1.43 1.28 1.13 1.15 1.04
S4/BMA 1.12 1.05 1.05 1.06 1.02 1.04 1.03 1.03 1.02 0.98

Table 10: Ratios of risks for cross term

It is seen that the standardization shrinks the perturbation effect of the square so that BMA does
better, in contrast to the absolute case. Also, as before, BMA does better than stacking with the cross
term. However, with the other two deviations, BMA only outperforms the stacking procedures until
the size of the coefficients is in the 6th decile beyond which S3 performs best. It may be that
beyond the 6th decile the perturbation is large enough that the higher sensitivity of BMA to model
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Decile 1 2 3 4 5 6 7 8 9 10
S3/BMA 2.21 1.45 1.33 1.15 1.04 0.99 0.92 0.84 0.80 0.74
S4/BMA 1.22 1.18 1.16 1.04 1.01 1.06 1.02 1.00 0.99 0.99

Table 11: Ratios of risks for characteristic function term

mis-specification becomes a problem. That this occurs for some perturbation terms and not others
shows that the optimality of BMA is dependent on the direction of the deviation.

It seems that S3 begins to win over BMA when the perturbation term has a coefficient greater
than the median of the other coefficients and the direction of perturbation is ‘outside’ the model list
in the sense that a square root or a truncation is not well modeled by a higher power. BMA tends
to win, here, when the perturbation is in a direction readily accommodated by the model list – here,
cross terms and higher powers – and is not too big. Taken together, it seems that when there is one
perturbation term, direction matters more under normalization and size matters more without.

5. Relation of Results to Optimality Properties

In all but one of geometric cases where model approximation error was nonzero, the error was
large enough that some form of stacking always performed better than BMA in terms of risk under
squared error loss on the parameters. The only exceptions occurred in the bracketing setting when
we used an extra model list having models that were functionally very different from the DGM. (We
conjecture this occurred for the same reason as in scenario D in the triangle example.) On the other
hand, BMA tended to outperform stacking for model lists large enough that the lesser robustness of
BMA didn’t matter. Here, we focus on the big, typical picture.

5.1 Bayes and Non-Bayes Optimality

Intuitively, one expects data driven methods like stacking to converge to their limits slower than
methods such as BMA that are more dependent on likelihoods. In addition, one expects stacking to
be more robust against model mis-specification. This property is important unless one model on the
list is exactly right or so close to being exactly right that other sources of variability – such as model
approximation error – are huge by contrast. However, when this is not the case the risk behavior of
a non-Bayes method like stacking, i.e., leave-one-out cross-validation, will perform better.

Recall that the Bayesian concept of model uncertainty depends on the model list. The models
on the list are assigned weights in[0,1], even though one must assume one of the models is true
to get optimality results. In these cases, all but one of the weights will go to zero and the last will
go to one. On the other hand, when the DGM is not on the list the estimator formed by weighting
elements from the list will typically converge to the member of the list closest to the DGM. Here,
even though we rechoose the parameters within the model in each iteration, it is unclear that the
posterior probabilities in the BMA will converge to numbers in[0,1] to identify the mixture of
models closest to the DGM. That is, instead of the BMA converging to an element of the closed
convex hull of the model list, it might be only to an element of the model list. Since BMA loses its
optimality as the DGM deviates from the model list, we want to know how big the deviation must
be before another procedure, like stacking, works better.
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To understand this it helps to think about the relevant optimality properties. BMA is the Bayes
action under a squared error criterion. Also, the usual optimality of Bayes methods follows from the
complete class theorem (Robert, 1997). However, this doesn’t apply here because we have found
risks with respect to a joint likelihood outside the model list which yielded the Bayes model average
and this quantity is different from the Bayes risk used in the complete class theorem. In the absence
of this optimality, it is no surprise that BMA doesn’t perform better than stacking.

By contrast, stacking uses coefficients derived from a cross validation technique which is opti-
mal under some predictive criteria. Indeed, delete-one cross-validation, as a model selection prin-
ciple, is equivalent to AIC, Mallow’sCp, and a form of generalized cross validation (Li, 1987).
Moreover, Shibata (1981) showed that AIC is asymptotically optimal for choosing the number of
terms to include in a linear model when the dimension of the model is allowed to increase. (Hannan
and Quinn 1979 establish this for a dependent case as well.) Most importantly here, Shao (1997) and
Li (1987) show that AIC, and procedures equivalent to it such as delete-one cross-validation, is op-
timal in some predictive contexts. On the other hand, there are cases where delete-k cross-validation
can be similar to the BIC, see Shao and Tu (1996) for more details.

Here, the risk we have used is equivalent to a predictive criterion in some cases. More for-
mally, when the explanatory variables are independent and the DGM is on the model list both
cross-validation and BMA are optimal because our Bayesian criterion has a predictive interpreta-
tion. The argument is as follows. Suppose there arep predictors in total. Fixed data yieldsβ̂, which
is p×1, as the model-averaged estimate ofβ, which is alsop×1. Instead of evaluating predictive
performance at one or a few points in the design space, we want to average over the whole space.
Let Z bep×1 and have the same distribution as gives rise to theX vectors. So, still for a single fixed
data set, we can regardE((Zt ∗ β̂−Zt ∗β)2) as the prediction error averaged over the design space.
But this can be rewritten as(β̂−β)t ∗Cov(Z)∗ (β̂−β) which can then be averaged across(β,data)
to get a Bayes risk measure of performance. So far in our simulations, the covariate vectors are
taken to bep independent standard normals, so that Cov(Z) is the p× p identity matrix, and we
are simply averaging(β̂−β)t ∗ (β̂−β) = ||β̂−β||2 across(β,data) realizations. (If we were to try
dependent covariates we would have to include Cov(Z).)

This argument assumes independence of the explanatory variables. which does not hold in many
of our examples. Nevertheless, in an important context we have a predictive interpretation.

Because cross-validation has an optimality property over a larger domain than BMA, we expect
cross-validation will work better than BMA when its optimality supersedes Bayes optimality. This
happens off the domain of Bayes optimality because one expects Bayes optimality on a small region
is likely to be stronger (on that region) than the optimality of cross-validation which holds over
a much larger region. Indeed, the two senses optimality, for cross-validation and for Bayes, are
incompatible so one will not reduce to the other, in general. On the other hand, it is tempting to
think of the model average from stacking as corresponding to a Bayes model average where each
coefficient in the Bayes average has a separate prior rather than requiring the coefficients to form a
probability on the model list.

This provides a partial explanation for the greater sensitivity of BMA to the model list than
stacking has: When the hypotheses of Bayes optimality are not satisfied, for instance when the
DGM is not an element of the model list, the drop off from the optimality of Bayes methods, as
guaranteed by the complete class theorem, for instance, may be so rapid that BMA is regularly
beaten by other procedures, such as stacking, that are less sensitive to the model list. This drop
off may be important after relatively small deviations from the model list so that more data driven
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methods should be preferred. In fact, the more rapid convergence of BMA on the span of the model
list may become harmful on its complement. Succinctly, BMA is not robust against deviations of
the model.

However, recall that the key strength of BMA is the optimal way it makes use of the model list.
That is, the sensitivity of BMA to the model list is not an argument against BMA so much as it is an
argument in favor of a proper assessment of model uncertainty, model list uncertainty, and model
approximation to determine when the sensitivity of Bayes to the model list is a problem, in part
because of bias.

5.2 Methodological Implications of the Geometry of Model Lists

In the cases presented here, and in many others not presented, we found that even with relatively
small model approximation error BMA loses out to stacking. Also, our results suggest coarser forms
of stacking do better when the elements of the model list are more distinct or the deviation of the
DGM from the model list is greater. It is seen that our results suggest choosing single term models
and then averaging does better than using models with several terms. Breiman (1996a) suggested
that the biggest gains arise when dissimilar sets of functions are used and our results are consistent
with this. We suggest this may be due to an interaction between the coefficients in the averaging
across models and the estimation of the coefficients within models.

Work by George (2001) to counteract dilution is also an effort to overcome excessive similarity
among models. Dilution is the phenomenon that the posterior probability that should accumulate
at a DGM can be spread over a set of wrong models that are close to the DGM. If this set is large
and its elements are badly located relative to the DGM then the posterior probability at a model
near the DGM can be smaller than the posterior probability at a model further from the DGM.
Eliminating dilution is one reason why model averaging techniques in general tend to outperform
model selection procedures, in particular for predictive purposes.

Taken together with our present work these considerations suggest the following. We want the
model list to reflect the right domain in the model space. The domain should be as big as possible
so we include all reasonable candidates yet should be as small as possible so we have manageable
BSV. Moreover, we want to choose a model list to span the domain with elements as far apart as
possible, subject to generating the same span. Clearly, in a predictive context such as we have used
here, the span should decrease as data accumulate.

An adaptive procedure will satisfy these constraints. Start with a relatively large model list,
whose members remain relatively distinguishable among themselves, spread out over the model
space. To get predictions one should use a data driven method such as stacking. As data accumulate,
isolate a region of the model space for elaboration. At stage 2, choose another model list, with
members differing by one or two terms as most, within that region. Then, switch to BMA for this
smaller region. Obviously, one could iterate the first stage to narrow the region represented by the
model list further to ensure the bias would be small enough that BMA could be expected to work
well. (In principle this could be done by choosing model lists with members robust to anticipated
classes of perturbations, such as truncations, oscillations, and different exponents.) The point is
to use BMA only at the last stage where model list elaboration is complete. Thus, one uses each
technique where it performs best.
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5.3 Data Compression and Mutual Information

Model selection is the ultimate data compression because the model is a summary not just for
the data one has got but for all the data one might potentially get. So, to formalize the adaptive
method just described, at least conceptually, recall the existing machinery of data compression
(Cover and Thomas, 1991, Berger, 1971, Blahut 1987). Now, let us regard the potential models as
messages to be sent. Since this is a nonparametric space, full specification of a DGM will typically
require infinitely many bits to get perfect precision. Thus, we choose a finite collection of canonical
representatives. This corresponds to a model list. Sending one of these representatives will require
only finitely many bits – corresponding to a pre-selected degree of precision – and we will choose
the representatives so that whatever the DGM is, it will never be unacceptably far from at least one
of them.

5.3.1 MODEL LIST SELECTION AS A RATE DISTORTION PROBLEM

The big task is to choose the canonical representatives. Unfortunately, it is impossible to formulate
a universal recipe that gives an optimal choice of canonical representatives to use as our model list.
However, there is a criterion that will let us evaluate how close a proposed collection of representa-
tives is to optimality. This criterion is the rate distortion function, RDF. Evaluating it for a proposed
model list will tell us how well that model list satisfies a reasonable data compression criterion.
Here, we do not propose achievement of the RDF lower bound as the solution to the model list
selection problem. We only observe that the intuition behind the RDF, and its heuristic properties,
may encapsulate some key features of the adaptive model averaging and evaluation of variability
that we have considered here.

The general problem of data compression is to speed transmission of the important information
by permitting a controlled loss of less important information. In the paradigm case we imagine an
n-vector of dataXn IID according to a probabilityP and we seek representativesX̂n(1), ..., X̂n(M)
for someM that we set equal to 2nR for someR > 0 that we will call the rate. This is the rate
used in Shannon’s rate distortion theorem. A future outcome vectorXn will be approximated by
the representativêXn(i) closest to it. To measure distance, or distortion, we usedn(Xn, X̂n(i)) =
(1/n)∑n

j=1d(Xj , X̂j(i)) for some univariate distanced. Now, for everyXn we defineφ(Xn) =
argmini dn(Xn, X̂n(i)) so thatφ gives the canonical representative closest to the data string obtained.

The goal is to find a set of canonical representatives of the right size, withEd(X,φ(X)) ≤ ∆
where∆ > 0 is a pre-assigned tolerance. In principle there are many sets of such representatives;
we want one that achieves Shannon’s RDF

R(∆) = min
p(x|x̂):Ed(X,φ(X))≤∆

I(X; X̂),

at least asymptotically, whereI(·; ·) is the Shannon mutual information between the two arguments.
The functionR(∆) is the minimal number of bits needed, on average, to represent a source symbol
with distortion bounded by∆. The achievability direction of Shannon’s rate distortion theorem says
that forR> R(∆) and anyε > 0 there is a code with rateRand distortion less than∆+ε. A converse
holds too.

Regarding the DGM as a message within a function space, like anXn, to be compressed, Shan-
non’s rate distortion theorem implies there will be a model list that nearly achieves the RDF. Indeed,
a comment by Blahut (1987, p. 209, par. 2) shows that one way to achieve the rate distortion func-
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tion lower bound is to choose elements that are relatively far from each other in the chosen distortion
measure; this is consistent with preferring the elements on a model list to be fairly dissimilar.

A limitation of this approach, shared by other approaches, is that we cannot uncover the DGM
exactly (outside of repeated efforts and ever more data). At best, we can only identify a representa-
tive for it, as an approximation. The distortion is an approximation error and the probability of error
in decoding is like the uncertainty of model selection. An important conceptual difference between
data compression and model list selection is that data compression optimality properties integrate
over the samples space and therefore implicitly assume a scheme will be used repeatedly while in
statistics we choose the model once. Nevertheless, the statistician can regard the integration over the
sample space as a pre-experimental design criterion for finding a model list from which to choose.

5.3.2 DISTORTION ASNUMBER OF TERMS IN THE NORMAL CASE

It remains to choose the distanced that gives the constraint in the RDF minimization. In the spirit
of information theory, consider using the conditional Shannon mutual information asd. In general,
the relative entropy of Kullback-Leibler distance, between two probabilitiesP andQ is

D(P||Q) =
∫

p(x) log
p(x)
q(x)

µ(dx)

whereµ is a common dominating measure andp, q are Radon-Nikodym derivatives with respect to
it. The Shannon mutual information, SMI, is the relative entropy between a joint distributionPX×Y

and the product of its marginal distributions,PX ×PY, written

I(X;Y) = D(PX×Y||PX ×PY).

The pointwise conditional SMI, pointwise CSMI, is the SMI between the conditional distributions
with the values of the conditioning variables specified, for instance

I(X;Y|Z = z) =
∫

p(x,y|z) log
p(x,y|z)

p(x|z)p(y|z)µ(dx,dy).

The CSMI itself is the expectation of the pointwise CSMI:I(X;Y|Z) =
∫

p(z)I(X;Y|Z = z)dz. The
relative entropy is not a metric but has distance like properties such as defining a convex neighbor-
hood base. Locally, the relative entropy does behave like squared error, which is a metric.

Although it is defined quite generally, we use the SMI here for normal error linear regression. It
is easy to verify that forY = Xβ+ εÑ(Xβ,σ2) andY′ = Xα+ ε′Ñ(Xα,σ′2) we have

I(Y;Y′|α,β,X,σ,σ′) =
1
2

(
log(

σ′

σ
)2−1

)
+

σ2

2σ′2
(1+X(β−α))2 .

To develop an interpretation for this as a distance in the present setting suppose the matrixX
is a single row with three parts:X = (X1, ...,Xk1,Xk1+1, ...,Xk2, ...,Xk2+1, ...,Xk3). The first part of
the string corresponds to the explanatory variables that are only inY, i.e., the correspondingαi ’s
are zero. The middle string corresponds to the explanatory variables that are only inY′, i.e., the
correspondingβi ’s are zero. The third string has the explanatory variables common to both models.
These are the only variables for which the correspondingβ’s andα’s are not zero.
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Assume, as we have in our computations, that all theαi ’s andβi ’s areN(0,1) and thatY and
Y′ are the same physically so that the commonXi ’s will have the same coefficients, at least in some
average sense. Then, ifσ = σ′ we have

I(Y;Y′|A,B,X) =
1
2

EX

(
k1

∑
i=1

X2
i +

k2

∑
k1+1

X2
i

)
.

If the Xi ’s are independent and have a common distribution then this counts the number ofXi ’s the
two models do not have in common. It is the cardinality of the symmetric difference on model space
defined in the introduction and used throughout. It is seen that under this distance it doesn’t matter
whether the approximation error is due to inclusion of an extra term in the DGM or in the model
list. Both give the same discrepancy.

We comment that the expressions for the CSMI can be extended to include cases where the
explanatory variables are correlated. This would give a notion of distance substantially different
from merely counting terms. We have not derived these expressions even though our computed
examples sometimes include terms that are not independent. In addition, it is unclear how use of the
CSMI could extend to non-regression settings. For the present, we accept these limitations because
our focus is on developing the intuition for independent variable regression settings.

6. Conclusions

Our general point is that BMA is more sensitive to model approximation error than stacking is when
the variabilities of the random quantities are roughly comparable. We have sought to characterize
this via distance and direction in the model space. This led to our assertion that BMA will be
outperformed by stacking when the bias exceeds one term of size equal to the leading terms in the
model or when the direction of deviation has a different functional form (with higher variability)
that the model list cannot approximate well. Providing an information theoretic interpretation of
model selection as a data compression problem led us to justify our use of the number of terms as
an appropriate measure of distance and was consistent with Breiman’s (1996a) intuition.

Our geometric examples in Section 3 confirm that several intuitively reasonable properties of
model lists are desirable. One is high density: More models in the neighborhood of the DGM
is better than few models in the neighborhood of the DGM. Another is high interiorness: More
models that bracket the DGM, in the sense of making it an interior point of a higher dimensional
shape, corresponds to better predictive performance. Higher complexity, in the sense of number
of terms, is better than lower complexity. This is subject to fixing the cardinality of the model list
and the distance from the model list elements to the DGM. Fourth, making the elements of the
model list relatively distinguishable rather than permitting overlap improves approximation power.
Our treatment in the more typical setting, especially the standardized case, shows the importance of
direction and suggests the extra variation from the bias matters most.

We emphasize the narrowness of the examples we have computed and the consequent limi-
tations on the generality of our conclusions. For instance, we can see the necessity of requiring
the variabilities ofX’s, ε’s and β’s to be comparable by considering the following cases. Sup-
pose we have a model list with three models:Y = β0 + β1X1 + ε, Y = β0 + β2X2 + ε andY =
β0 + β1X1 + β2X2 + β3X3 + ε where theX’s, ε’s, and(β0,β1,β2) are independentN(0,1)’s but that
β3 is N(0,τ2). If Y = β0 + β1X1 + β2X2 + β3X3 + ε is the DGM, the intuition developed here pre-
dicts that stacking beats out BMA whenτ2 is small enough. If the distribution ofβ3 is replaced with
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N(0,1) then BMA will win over stacking. On the other hand, in some cases (not given here) where
BMA wins over stacking but the model list does not contain the true model and the variabilities of
theβ’s andX’s are roughly comparable, then, usually, as the variance ofε decreases, stacking does
better and better ultimately beating out BMA. That is, a decrease inσ2 tends to amplify the effect
of model mis-specification.

There are other general points. If a DGM is not on the model list then we get convergence of
a model average to the convex combination closest to the DGM. Thus, the SE for a parameter (or
model) measures variability around the wrong model and assesses how close we are to identifying
it rather than the true model. This means we must explicitly examine Draper’s (1995) BSV or the
bias to get an accurate expression for the variability.

Also, the geometry of how the model lists are situated within the model space, and where the
DGM is relative to them matters greatly when comparing model averaging schemes. If the DGM is
not on the model list we want to know how well we have approximated it. A model choice approach
amounts to identifying the model that is closest to the true model. However, one expects to do
better than this if some kind of averaging is used. Thus, we want a model list that will permit the
DGM to be well represented by some averaging procedure. The rate distortion function, and vector
quantization techniques in general, may be one way to do this.

A general approach may be adaptive. One wants to choose a readily distinguishable set of
models from a non-parametric model space, choose a small set of these which are closest to the
stacking average and then elaborate models in that region, iterating the procedure, and switching to
BMA in place of stacking at the last stage because the robustness concerns will have been reduced.
In essence, one wants the diameter of the model list to decrease at a rate reflecting the accumulation
of data and the cardinality of the model list to increase until the approximation error is one term or
less, and is in a convenient direction.

The design issue remaining is in the geometry. For a list of models,M = {m1, ...,mk} let
the diameter beδ(M ) = maxi, j d(mi,mj) for some distanced and real numberδ. Now, we want
a procedure for choosing a model listMn at stagen so that #(Mn) increases slowly andδ(Mn)
decreases slowly. Ensuring the sequence< Mn > is optimal and choosing the appropriate model
averaging procedure at each stage may give better results in an adaptive context than any fixed
method.
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Appendix A.

Here we give the argument that using contaminated distributions induces a linear term in the error
where the coefficient is related to the fraction of contamination.

Recall, we are repeatedly sampling from(X ,M ,Θ,Y), equipped with a distribution we denote
generically byf (x) f (m) f (θ|m) f (y|θ,m,x). Here,x is a realized value of the design matrix treated
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as a random variableX , m is a realized value ofM , a random variable varying over the model list,
θ is a realized value ofΘ which we take to represent the parameter, andy is the outcome ofY,
the response of interest. In our examples,f (x) factors into a product of independentN(0,1)’s; the
number of factors equals the number of entries in the overall design matrix. The model variableM
varies over the model list. Here, we use one of two choices for the distribution ofM . The typical
case is thatM is degenerate: It assigns probability one to a fixed model, where model means a
selection of explanatory variables (the entries inX ) and choice of corresponding factors, theβi ’s.
When this fixed model differs from the fixed model generating the data, theYi ’s, we say we are in
the wrong model case.

More generally, we needn’t choose a degenerateM . Indeed, we can choose any distribution
for the elements of the model list. The weight put on a specific model is the probability that we
will obtain a data set assuming it to be true. The parameter vectorΘ is the ‘β-vector’ in the linear
regression model, possibly with theσ in the error termε. Usually, theβi ’s are independentN(0,1)
random variables. Finally, given the model, the parameter, and the design matrix, we generateY as
the response by adding aN(0,σ2) error term,ε.

The error we estimate by simulations is

E (SQE(X ,M ,Θ,Y)) = E

(∫ [
Ê(Y|X = x)−E(Y|X = x)dx

])

where the first expectation in the integral (with the ‘hat’) depends onX ,Y and assumesM f̃ (m),
while the second expectation in the integral depends onM ,Θ. If f (M ) is a product of IIDN(0,1)’s
thenSQE= ||β̂−β||2, where theβ’s have dimension equal to that of the full model.

When the data come from the right model, i.e., one inM1, then we evaluate

Ef (SQE(X ,M ,Θ,Y))

where f is the four-fold density above. In the wrong model case, we evaluate

Eg(SQE(X ,M ,Θ,Y))

whereg(x,m,θ,y) = f (x)g(m) f (θ|m) f (y|θ,m,x) andg is degenerate at the wrong model (the other
densities are the same as inf ).

If we write
gη(x,m,θ,y) =

f (x)((1−η) f (m)+ ηg(m)) f (θ|m) f (y|θ,m,x) = (1−η) f (x,m,θ,y)+ ηg(x,m,θ,y)

then we see that
Egη (SQE(X ,M ,Θ,Y))

= (1−η)Ef (SQE(X ,M ,Θ,Y))+ ηEg(SQE(X ,M ,Θ,Y))

so we see that as the proportion of data from the wrong model increases, the risk increases linearly
in that proportion. Typically, BMA will win when the true model is in the model list. However,
when the data comes largely or entirely from the wrong model our computations suggest stacking
will typically give smaller risks. The degree of improvement depends on the geometry of the model
list and where the DGM sits relative to that list.
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