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Human activity detection is crucial to personalize the control of the building 

environment. For example, understanding certain human activities (e.g., walking, sitting, 

etc.) for an occupant in a building helps provide the proper thermal comfort control. 

However, these applications require large-scale neural networks that are challenging to 

implement and train. 

In this thesis, we implemented a continuous-time recurrent neural network 

implementation (CTRNN) network that can solve real-time human activity detection with 

a smaller-size network. The CTRNN uses differential equations with a time constant to 

describe the neuron equations. It was implemented and trained for the first time using 

TensorFlow. Specifically, the forward path of the CTRNN was implemented using a new 

recurrent cell in TensorFlow, and the training was performed while utilizing the auto-

differential function to implement the backpropagation through-time algorithm. 

 The CTRNN showed a high ability to capture a complex pattern in the temporal data of 

the acceleration measurements of human activities. More importantly, despite the smaller 

size, we show that the CTRNN outperforms the standard recurrent neural network (RNN) 

in accuracy, convergence, and stability. The research also investigates the impact of training 

the time-constant parameters of CTRNN for the first time to improve its performance.
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Chapter 1  
INTRODUCTION AND BACKGROUND 

 

1.1  Motivation 

 

Human activity detection has many applications in health care, security, and robotics 

[36-37]. Human activity detection is critical in customizing smart buildings. Metabolic rate 

is a critical determinant of the comfort zone [36], which may be assessed by human activity 

analysis. Machine learning algorithms have reached high levels of complexity with many 

parameters to train that surpass the computational capabilities of average CPUs in personal 

computers [11-13]. To give a perspective, the Megatron model by Nvidia has 8.3 billion 

parameters to be trained [11], the BERT (Bidirectional et al. from Transformers) has 110 

M trainable parameters [9], and the BART (Bidirectional and Auto-Regressive 

Transformers) model by Facebook has about 140 M trainable parameters [10]. An 

alternative is to use specific clusters of servers owned by big companies like Google, 

Facebook, and IBM to perform such computing. However, those digital-based 

supercomputers need tremendous power and are not widely spread to be used by average 

users.  

Conversely, analog computing, which mimics how a human's brain works, needs less 

power to operate [14]. Inspired by the human brain, the Continuous Time Recurrent 

Network (CTRNN) is a machine learning algorithm that can be solved analogously.   

Differential equations are used to describe its neuron equation. The response of the 

biological human cell behavior inspires this differential equation. Our hypothesis is this 

differential equation brings richness to the network compared to the discrete equations that 
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describe the standard recurrent neural network (RNN) and are solved using digital 

computers. RNN is a machine learning algorithm that extracts knowledge from sequential 

data with different input sizes. We expect a CTRNN with fewer neurons and, thus, fewer 

parameters to perform similarly to an RNN with many neurons. To validate this hypothesis, 

we explore an innovative approach to implementing and training CTRNN in this thesis and 

compare its accuracy and network size performance to standard RNN. As a case study, we 

targeted human activity classification problems. This problem involves the complex task 

of dealing with the temporal behavior in time series data.  

1.2 Literature Review 

 
Human activity detection is crucial in developing smart buildings. For its 

implementation, it utilizes many technologies like wearable, camera-based, infrared (IR), 

ultrasonic, and Wi-Fi sensors [39]. Human activity detection enables intelligent, responsive 

environments that adapt to the resident's needs and preferences. Recognizing human 

activities will also help save energy consumption, enhance security, improve indoor 

environmental quality, and provide personalized services. For example, the work [40] 

employed human activity recognition to manage HVAC systems, lighting, heating, 

ventilation, and air conditioning by responding to occupancy and activity patterns, 

decreasing energy usage, and enhancing energy efficiency. Moreover, the work in [41] 

utilized human activity recognition, which identifies irregularities, like unauthorized 

access or atypical behavior, thereby bolstering security measures and thwarting potential 

intrusions. 
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Complex machine learning algorithms such as the RNN that capture the temporal 

behavior in the training data are needed for human detection. Capturing such behavior and 

data patterns by emulating the neuron response of a neural network is not new. Various 

works attempt to construct mathematical models to simulate and discover these patterns in 

the data. The Ising model is one of the first formal examples [2]. The Ising model was not 

originally formulated as a neural network but provided the fundamental basis for machine 

learning in computer science. It captures dependencies and interactions between variables 

or features of interest. In the early 80s, the first fundamental form of RNN, Hopfield 

Networks [1], was published. Hopfield Networks is a recurrent neural network with a 

straightforward, directed cyclic graph structure. However, it is essential to note that this 

Hopfield-based RNN type has some constraints regarding its ability to handle large 

amounts of data and its potential for expansion. Thus, while Hopfield network theory has 

historically attributed significance to simpler models, the complexity of dealing with more 

complex applications has driven the need for more complex RNN models and new training 

algorithms.  

In 1990, Elman [3] introduced a trainable RNN. This new recurrent architecture could 

learn the network parameters and backpropagate throw times. Known as backpropagation, 

this new training algorithm helps the model tune its parameters by propagating the error 

from the output layer back into the input layer. Another mathematical model for the RNN 

is called the Jordan network [12]. However, most of these RNN models have some 

drawbacks, like exploding and vanishing problems, especially if they have an extended 

period to remember (long window size). In 1997, the Long Short-Term Memory LSTM [7] 

model was proposed to tackle those problems. From its name, this cell has different parts, 
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each with a different role. One focuses on the long memory part, the other focuses on the 

short memory part, and the last works on mixing those memory parts. While LSTM has 

shown significant improvement compared to the standard RNNs, a major limitation is each 

neuron has multiple parameters to learn compared to an RNN neuron. Thus, the LSTM has 

more parameters to train and tune. 

Around the same period, Randall Beer officially introduced Continuous Time Recurrent 

Neural Networks CTRNNs [3]. Beer focused on developing neural models that mimic 

biological neurons' dynamic behavior. CTRNNs use differential equations to simulate the 

continuous response of a human brain neuron. CTRNN has many field applications in 

robotics and signal processing due to its ability to capture the temporal behavior in the data.  

Training the CTRNN is currently not well explored. The differential equation of the 

CTRNN creates many difficulties using standard training algorithms such as 

backpropagation. For those reasons, scholars have trained the weights of CTRNN in 

different unconventional ways. These training methods include evolutionary algorithms 

approaches. For example, in [3], the authors use Differential Evolution (DE) algorithms to 

find the optimal parameters for CTRNN. The DE algorithm is based on the well-known 

Genetic algorithms [13]; those search algorithms aim to find a suitable solution in a 

reasonable time. It keeps developing more elite generations to solve the problem. In [8], 

CTRNNs were trained using the Genetic algorithm for generating music. This study 

showed that CTRNNs could capture intricate and continuous temporal structures in 

musical data, generating more natural and expressive music [8]. Besides trying different 

training algorithms, there has been a growing use of the CTRNN method for specific 

applications. For example, the work in [5] uses CTRNN to forecast the glucose level of 
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patients inside the ICU. The study was conducted on 200 patients; they compared the 

results with different models, such as a linear model and autoregressive gradient boosted 

trees. In the end, the CTRNN outperformed all other models. Another work used the 

CTRNN to learn how a bipedal robot stands without falling [4]. 

Despite the encouraging results of CTRNN, its implementation in real applications is 

very limited due to the difficulty of training its differential equation parameters. To 

overcome this challenge, in this thesis, we will develop a novel training algorithm for a 

CTRNN to train its parameters automatically. These parameters include the CTRNN time 

constants, which have been mostly assumed to be a constant value in the literature, thus 

limiting the CTRNN performance. Classifying different types of human activities is used 

as a case study to validate this new training algorithm.   

1.3 Thesis Objectives 

 

This thesis explores the feasibility and efficacy of training a Continuous Time Recurrent 

Neural Network (CTRNN) to classify human activity detection. It compares the 

performance of the CTRNN to the standard Recurrent Neural Network (RNN) algorithm. 

The CTRNN weights, including the time constant parameter, will be trained using the 

Adaptive Moment Estimation algorithm (ADAM) [19]. The results of both algorithms will 

be compared in terms of network size and other parameters.  
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1.4 Problem Statement 

 
The main challenge in this AI is the complexity of the algorithms and the computing 

resources needed to train the models. Any improvement to the building blocks of those 

algorithms would significantly impact the big building models. One of the most popular 

models is the sequence-based model. These models learn how to extract knowledge from 

sequential data. This thesis explores utilizing sequence-based continuous models that use 

data and emulate real-time applications. Specifically, we use the CTRNN mathematical 

model to address human activity classification and compare its performance with the 

standard RNN model regarding accuracy, stability, and parameter size. The RNN model 

encounters challenges such as exploding, vanishing, and cataphoric forgetting problems, 

which hinder its coverage capabilities. We will explore using CTRNN to avoid those 

problems with smaller network sizes and fewer parameters to be trained. An added benefit 

of the CTRNN mathematical paradigm is that it will enable physical devices to perform 

computing. Many physical systems, such as microelectromechanical systems (MEMS), 

were shown in the literature to have a similar equation to the CTRNN neuron equation 

[6][21]. Thus, as those tiny mechanical systems vibrate, they will naturally solve the 

CTRNN equation without needing a digital computer!  
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Chapter 2  
CTRNN MATHEMATICAL MODEL 

 
The CTRNN represents the dynamic behavior of neuroscience within a continuous time 

domain using a set of differential equations. The differential equations explain the temporal 

evolution of the neuron's state. The neuron’s states include the response rate of individual 

neurons as quantified by the time constant and the interplay between the dynamics of 

neighboring neurons. Additionally, they account for various activation functions that may 

be employed and how these functions integrate these variables with the external input. This 

chapter aims to comprehensively describe the continuous-time recurrent neural network 

(CTRNN) mathematical model. We also explain the proposed training algorithms to learn 

and optimize its parameters. 

2.1 CTRNN Model 

 
The CTRNN mathematical model consists mainly of six preliminary components, as 

shown in Figure 2.1 and Equation 2.1. The differential part in Equation 2.1 makes them 

intricately intertwined to mimic the behavior of human brain neuron cells [4]. 

𝜏𝑖
𝑑𝑦𝑖

𝑑𝑡
= −𝑦𝑖 + 𝑓𝑖(𝐵𝑖 + ∑ 𝑤𝑖𝑗. 𝑦𝑗)𝑛

𝑗=1 + 𝐼𝑖(𝑡) (2.1)  
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where,  

 𝜏𝑖: Time constant of neuron i, 

 𝑦𝑖: Neuron i current state, 

 𝑓𝑖: Activation function, the nonlinearity of neuron i. 

 𝑤𝑖𝑗: Weights vector for neuron i. 

 𝐵𝑖: Biase shift for neuron i, 

𝐼𝑖(𝑡): external Input at time t for neuron i. 

 

 

Figure 2.1 Continuous Time Recurrent Neuron (CTRNN) neuron structure.  
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The first part is the continuous state of the current neuron, represented by 𝑦𝑖. This state 

changes over time and depends on the previous state and all the other five parts. The second 

part is the activation or nonlinearity function, which is denoted 𝑓𝑖. Sigmoid, RELU, and 

hyperbolic tangent function (Tanh) are all examples of widely used functions. The behavior 

of a biological neuron inspires the activation function to capture the nonlinearity of a 

complex pattern. As a group of neurons activates together, signal propagation through them 

in a specific path. Different paths capture different patterns. Thus, another way to think 

about the activity is as a threshold for the neurons to capture complex patterns. The third 

part is the synaptic weights vector, represented in 𝑤𝑖𝑗 . It describes the strength of the 

connection between neuron j and neuron i. The fourth part is the external input, 𝐼𝑖(𝑡), which 

represents the continuous input signal from the sensors or other data sources. Usually, the 

ML model uses a weighted sum rather than the input itself. The fifth part is the time-

constant 𝜏𝑖, which controls how quickly the current cell reacts to any external input; high 

τ means the neuron needs more time to respond and change its status, while low time 

constant means this neuron has a rapid response to any change. The last part is the neuron 

dynamics [16], which is represented by the rate of change of the state (differential part), 

𝑑𝑦𝑖

𝑑𝑡
. CTRNN has a different structure than the RNN, as shown in the simple RNN structure 

in Figure 2.2.  
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Figure 2.2 RNN Neuron Structure, input from features and others neuron states. 

It is evident that while the CTRNN possesses one more parameter, it exhibits a higher 

level of complexity than the RNN, which is comparatively more straightforward. 

2.2 Time Constant (Tau) Effect  

 
To study the effect of the time constant on the CTRNN response, we represent the 

equation of CTRNN using the Euler method. The Euler method is recognized as one of the 

straightforward techniques for solving differential equations [22]. For better 

comprehension, assume that the variable h equals 1. 
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𝜏𝑖
𝑦𝑖+1 − 𝑦𝑖

ℎ
=

1

𝜏𝑖
∗ [−𝑦𝑖 + 𝑓𝑖(𝐵𝑖 + ∑ 𝑤𝑖𝑗. 𝑦𝑗)𝑛

𝑗=1 + 𝐼𝑖(𝑡)]  (2.2) 

𝑦𝑖+1 = [𝑦𝑖 +
1

𝜏𝑖
∗ [−𝑦𝑖 + 𝑓𝑖(𝐵𝑖 + ∑ 𝑤𝑖𝑗. 𝑦𝑗)𝑛

𝑗=1 + 𝐼𝑖(𝑡)]  (2.3) 

The above equations imply that as the value of 𝜏𝑖  approaches a large value, the 

subsequent state 𝑦𝑖+1 equals the current state 𝑦𝑖 (will not have much change). Conversely, 

when 𝜏𝑖 approaches zero, the next state will be strongly influenced by input changes or 

other neurons' status. 

 It is crucial to select the τ value greater than h [15], as if h>> τ equation 2.2 indicates 

that the second term of the equation will be multiplied by a value greater than 1, causing 

system instability. This instability arises from amplifying the other neurons' external input 

and output, leading to an unstable neuron state. As depicted in Figure 2.3, which shows the 

output of a single isolated neuron with external input, the selection of h further contributes 

to the coverage speed in the model. When h=2 and τ=1, the neuron's 

output oscillates around the external input value. Conversely, when h=2.5, the output 

diverges. Therefore, to ensure the stability of the neuron and the model, it is recommended 

to choose h<< τ [16]. 
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Figure 2.3 Effect of h vs τ on stability of isolated neurons τ =1, external input =0.5 [16]. 

2.3 Unfolding The Model  

 
CTRNN, like RNN, could be represented as a cyclic graph, where neurons are the nodes 

graph and edges represent the weights. Each node uses its previous state, external input, 

and other nodes' output to update its state in this representation. Unfolding refers to the 

sequential presentation of the cell state across time. In this context, X(t) represents the input 

at a time, 't', h(t) represents the internal state of the neuron at that moment, and O(t) 

represents the output at that time. The unfolding of a typical RNN is shown in Figure 2.4. 

For the CTRNN, it is essential to include the time constant parameter in the equation by 

creating an extra self-loop, as shown in Figure 2.5. 

 

Figure 2.4 RNN cell and RNN unfolding through time [17]. 
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Figure 2.5 CTRNN and CTRNN Unfolding through time. 

Figure 2.5 shows that every neuron needs the preceding state, external input, and output 

from the other neurons to evaluate the next state. Training the input weights, internal 

weights, and time constant is necessary to optimize the model's performance. In this work, 

we adapt the backpropagation and backpropagation to perform such training. Further 

details on those algorithms and optimizing the weights will be discussed in the subsequent 

sections. 

2.4 Backpropagation and Backpropagation Through Time 

 

The Universal approximation theorem states that a neural network with sufficient 

neurons and appropriate activation functions can approximate any continuous function 

[18]. The neural network is a set of interconnected layers containing a vector of neurons. 

The vision of machine learning is to approximate desired functions by learning the best 

weights that map the input to the output. For example, the function could classify cat vs. 

non-cat images. In this case, the output will be either Yes (if the image has a cat) or No 
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otherwise. Thinking of the image as a matrix of pixels, the input of the ML function would 

be a matrix of pixels and an array of weights; the output would be either Yes or No, 

F(image, Weights)→{Yes, No}.  

The main challenge is training those weights to optimize the function. The most popular 

technique is called backpropagation. In this technique, when data is fed into the network, 

it flows sequentially from the input layer to the hidden layer and finally to the output layer. 

The output is then compared to the ground truth (the true data). The loss is a function that 

mirrors the difference between our model expectation and the true data, is computed. The 

backpropagation adjusts the weight of the whole network starting from the output layer and 

propagates back into the input layer to reduce this loss function (reduce the error). As the 

training goes back through each layer and reaches the recurrent layer with a self-loop, the 

network should be unfolded, as discussed in section 2.3. Thus, the backpropagation method 

must go through every time step to train the inner weights. To achieve this, the CTRNN 

must use the Backpropagation Through Time (BPTT) concept to adjust the internal weights 

and the time constant. 

2.5 Optimizer Algorithm 

 

As discussed in the backpropagation section, to update the weights, the algorithm needs 

to backpropagate from the loss function to the output layer until it reaches the input layer. 

To do that, we need to take the partial derivation of the loss function to each weight 

parameter to know in which direction (opposite direction of the derivative) the weights 

should be adjusted to optimize our model (reduce the loss function). The learning rate is 
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how we adjust those weights [26]. The equation for an adaptive optimizer is shown in 

Equation 2.3. 

𝑊𝑢𝑝𝑑𝑡𝑒𝑑 = 𝑊𝑜𝑙𝑑 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗
𝑑𝐿𝑜𝑠𝑠

𝑑𝑤
 (2.3) 

Figure 2.6 shows a schematic of how the ADAM Optimizer works. Typically, it begins 

with random weights, symbolized by the red point in the Figure. If the derivative of the 

loss function to the weight is negative, then this will increase the weight by the learning 

rate multiplied by the derivative amount. The yellow one will be the new weight. Vice 

versa, if the solution begins with the green point, the derivative will be positive, and the 

weights will be decreased. 

 

Figure 2.6 ADAM Optimizer algorithms, how it works, and convergence. 

The ADAM Optimizer employs adaptive learning rates to accelerate the convergence of the 

model. During the initial learning phase of the model, it commences with a random initialization. 

The ADAM optimizer leverages a movement's momentum to accelerate the progression consistently, 
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leading to smooth convergences [19]. Its ability to quickly converge and handle noisy or sparse data 

makes it a vital training tool for deep neural networks [19].  

  

2.6 SoftMax layer 

   

SoftMax layer is the output layer widely used with multiclass problems [28], like identifying 

human activity. Usually, this layer has neuron numbers equal to the number of classes. If we have an 

image containing digits from 0 to 9, we need one neuron for each digit fired when the model classifies 

the image to this number. In the human activities problem, we have six activities, which means six 

neurons. It normalizes the score between the neurons to have a sum of one. Thus, Using the SoftMax 

layer in the model will add the capability to compute the probability of how the model is undoubtedly 

about its answer. Some real-world applications take critical action and consider the model's 

confidence above a certain threshold [28]. 

 

Figure 2.7 Understanding the Function of a SoftMax Layer in Classifying Six Distinct Activities. 
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2.7 Limitation on Time Constant Parameter (Tau) 

 

The field of machine learning focuses on recognizing and evaluating complex patterns 

present in data. This pattern is a mathematical function of the input features and the 

trainable parameters. Machine learning usually focuses on extracting those patterns 

without considering the parameters' values. Training the time constant in the CTRNN is 

different as this parameter has a physical meaning and has some restrictions, like it should 

be a positive number. One could use the regularization technique to add a limitation on 

training the time constant to account for this constraint. In this method, the parameter of 

interest, the time constant here, will be added to the loss function to force the training to 

minimize those parameters [30]. But this method will not always guarantee a parameter 

not to exceed a specific value.  

Alternatively, TensorFlow has non-popular functionality to override the constraints of 

the parameters of each cell to have values from a specific distribution [35]. In this work, 

we adapt this method to limit the time constant value during the training.  
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Chapter 3 METHODOLOGY 

 
This chapter discusses the essential steps associated with implementing CTRNN. These 

include selecting the training data and the employed libraries, evaluating the performance 

of the CTRNN models, and performing a comparative analysis compared to RNN models. 

Furthermore, this chapter explores the operational principles of the CTRNN network using 

different time constant values.   

3.1 Implementing CTRNN Model 

 

To simulate the CTRNNs, it is necessary to solve the associated ordinary differential 

equations (ODEs). One commonly used numerical method for solving ODEs is the Euler 

method [22], derived from the Taylor series. This method is discussed in equation (2.3). 

CTRNN was implemented using the TensorFlow library, widely considered a top-tier 

machine-learning framework developed by researchers at Google. TensorFlow is esteemed 

for its trendy nature, reliability, and adaptability [23]. The proposed approach involves 

constructing a CTRNN cell capable of solving the underlying differential equation and 

simultaneously learning the weights and time constant. To facilitate the implementation of 

backpropagation through time (BPTT), the auto-differentiation technique [24] and the 

built-in ADAM optimizer in TensorFlow are used. As stated before, the built-in ADAM 

optimizer will be utilized with some modifications to tune the time constant. 
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3.2 Validating CTRNN MODEL 

 
To validate the CTRNN model, we start testing it on the small and well-known MNST dataset. 

MNST is a benchmark dataset set comprising handwritten numerical digits ranging from 0 to 9. The 

dataset has 60 thousand training and 10 thousand test instances, each representing a grayscale digit 

image with dimensions of 28x28 pixels. The initial findings displayed encouraging results, 

indicating that the CTRNN exhibited a better learning capability than the RNN. The accuracy of the 

CTRNN reached 0.714 compared to 0.680 with RNN, as shown in Figure 3.1 for the CTRNN an 

example. Both networks use 8 recurrent cells in the first layer, another 8 cells in the second layer, 

and a SoftMax (one neuron for each class) to classify the images. 

 

 

Figure 3.1 Convergence a of CTRNN,8-8-10, running ten epochs accuracy 72%. 

After validating our model, the next step is to test it on the human activity dataset and 

compare it with the naïve RNN model. 

3.3 WISDM Dataset 

 
WISDM stands for wireless sensor data mining [20]. The data contains six attributes 

extracted from smartphones for various groups of people while carrying those devices, 
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and the data has acceleration features. Number of examples: 1,098,207 records; the. It 

contains six different activities: jogging, walking, upstairs-downstairs, sitting, and 

standing. Here are snapshots of the dataset: user ID, activity type, timestamp to formulate 

a sequence, and accelerometer in X, Y, and Z directions. 

Table 3.1 Sample Data from the WISDM Dataset, with X, Y, and Z Representing Different Acceleration Directions 

ID  Activity Timestamp 

(ms) 
x Y Z 

33 Jogging 491059623 -0.69 1.27E+01 0.50 

33 Jogging 491060623 5.01 1.13E+01 0.95 

33 Jogging 491061122 4.90 1.09E+01 -0.08 

33 Jogging 491062223 -0.61 1.85E+01 3.02 

 

Table 3.2 Exploring Statistical Features and Characteristics of the WISDM Dataset 

 X Y Z 

count 1085360 1085360 1085360 

mean 0.670708 7.34148 0.415928 

std 6.889081 6.739406 4.781942 

min -19.61 -19.61 -19.8 

25% -2.96 3.34 -2.26 

50% 0.34 8.01 -0.04 

75% 4.48 11.65 2.76 

 

 

Figure 3.2 WISDM dataset Activities counts walking and jogging represent more than 50% of data. 
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3.4 Preparing the data for training 

 
The proposed approach systematically traverses the dataset. We used well-known 

algorithms called sliding windows [33]. The algorithm employs a predetermined window 

size and constant sliding steps. The purpose is to group subsequent records into one entity. 

As illustrated in Figure 3.5 we picked the window size to be fifty records, and that should 

be option based on the literature [34]. To maintain data integrity, we include instances 

where the dominating activity constitutes at least 70% of the observations. Including this 

percentage will ensure a higher degree of activity purity.0 

 

Figure 3.3 Utilizing a sliding windows algorithm to preprocess the WISDM dataset for training. 

The data was divided into three distinct portions. Precisely 10% was allocated for testing. while 

90% was left for training. From the training data 10% was reserving as a validation dataset to 

evaluate the model's performance while training. Cross-validation [25] techniques were employed 

to assess the model's behavior. Cross-validation could help the model to avoid problems like 

overfitting. Overfitting is a scenario where the model performs well during training but poorly 

when applied to testing data [26].  
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3.5 Network Architecture 

 

The network consists of a set of consecutive connected layers. The first layer has 16 

recurrent cells. The first layer is fully connected with the second layer, which has 10 cells. 

The final layer has six cells, one for each human activity. 

  

Figure 3.4 WISDM dataset Model CTRNN Network Architecture 
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Chapter 4 Results 

 
This chapter presents the results of using the CTRNN for human activity classification. 

We Built the CTRNN and compared it to the standard RNN. The results of this study offer 

significant insights into CTRNN's capabilities and behavior. Furthermore, we investigated 

the effect of the time-constant parameter on the training of CTRNN. We conducted a study 

to examine different scenarios for the time constant. The results reveal the significant 

influence of this parameter on the training process.  

4.1 Training CTRNN on WISDM dataset 

 
To verify that the model converges on the WISDM dataset, we train the model for a 

limited number of iterations using a small portion of the dataset. In this analysis, the 

CTRNN model was initially trained for only five epochs, using ten percent of the dataset. 

The model exhibited promising signs of learning and achieved an accuracy of 

approximately 65%, as shown in Figure 4.1. In comparison, the RNN took 20 epochs to 

reach close to that accuracy, as shown in Figure 4.2.  
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Figure 4.1 Convergence and accuracy curves of CTRNN run for five epochs; the model reaches an accuracy of around 65%. 

 

 

Figure 4.2 Convergence and accuracy curves of RNN Running 20 epochs; the model reaches an accuracy of around 62%. 

Subsequently, the model was further trained for 20 epochs on the whole dataset, 

resulting in an accuracy of 74%, as shown in Figure 4.3. The RNN model accuracy is 

around 65% in similar conditions, as shown in Figure 4.4. 
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Figure 4.3 Convergence and accuracy curves of CTRNN Running 20 epochs, the model reaches an accuracy of around 74%. 

 

Figure 4.4 Convergence and accuracy curves of RNN Running 20 epochs, the model reaches an accuracy of around 65%. 

In both models, it became evident that the model needed further time to converge. Next, we 

let the model complete an extensive training session of 50 epochs. At this stage, the model 

attained an approximate accuracy of up to 82% for the CTRNN model, as shown in Figure 4.5. 
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In this model, we also train the time constant, as explained in the next section. 

 

Figure 4.5 Convergence and accuracy curves of CTRNN Running 50 epochs, the model reaches an accuracy of around 82%. 

 

CTRNN demonstrates a smooth convergence process without facing any significant 

difficulties. Moreover, the validation and training convergence curves come above each 

other, which is a good sign of smooth learning. In contrast, the convergence behavior of 

the classic RNN displays significant variability, and the accuracy is less than 73%, as 

shown in Figure 4.6. 

 
Figure 4.6 Convergence and accuracy curves of RNN Running 50 epochs, the model reaches an accuracy of around 73%. 
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Figure 4.7 Convergence and accuracy curves of RNN Running 50 epochs, the model reaches an accuracy of around 68%. 

 In another RNN training episode, as shown in Figure 4.7, the convergence of the RNN 

is rugged, and it suffers from catastrophic forgetting. Catastrophic forgetting happens when 

the network forgets what it learned while training. In this case, the loss increases as shown 

around epoch number 20. Thus, the accuracy goes down from 67% to 47%. In summary, 

CTRNN did a better job than RNN in human activity classification problems in terms of 

accuracy and avoiding catastrophic forgetting. 

4.2 Time constant Training Effects 

 
In machine learning, one of the most crucial goals frequently revolves around attaining 

substantial accuracy in predictive models. The accuracy of a model is greatly influenced 

by training and fine-tuning of different parameters. The time constant parameter (tau) in 

CTRNN is identified as a crucial parameter. In Figure 4.5, we present the results when, for 

the first time, the time constant of each cell in CTRNN is trained. The accuracy reaches 

82%. This section examines the importance of training the time constant parameter and its 

significant impact on the accuracy of the CTRNN model. Toward this objective, we 
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conducted different experiments. The initial investigation involved training the model by 

setting a time constant value equal to a constant value of one in all 16 cells of the first layer, 

which is the standard practice in the literature. The time constant values were next 

initialized in the subsequent experiment using a uniform random distribution from [0,2]. 

In all scenarios, the models were trained for 50 epochs.  

The findings of the initial experiment, where the time constant is set to one, are 

presented in Figure 4.8. The accuracy dropped to 68%, and the model successfully 

converged throughout 50 epochs. In contrast, the model had a better learning opportunity 

when the time constant was randomly initialized (resulting in varying time constant values 

for each cell). This is because different time constant  values imply different response 

speeds for each cell, which is needed when dealing with sequence data. This clarifies why 

the random initialization of time constant parameters outperformed static initialization with 

ones, allowing the model to attend to distinct temporal segments. The accuracy in this 

scenario improved to 76%, as depicted in Figure 4.9, which is still less than 82% when the 

CTRNN time constants are included in the training. Table 1 summarizes our findings with 

respect to the different time-constant scenarios.  
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Figure 4.8 Convergence and accuracy curves of CTRNN with a time constant equals to ones, running 50 epochs, the model reaches an 

accuracy of around 68%. 

 

Figure 4.9 Convergence and accuracy curves of CTRNN without constant equals training and random initialization, running 50 

epochs, the model reaches an accuracy of around 76%. 

Table 4.1 Time constant effect on the CTRNN training 

CTRNN Model Accuracy (%) 

Static time constant equals one 68 

Random Initialization time constant  76 

Training the time-constant 82 
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4.3 Parameter size Comparison between RNN and CTRNN  

 

The model is a sequence of layers. Each layer is a set of cells, and each cell has different 

parameters that control the behavior of those cells. This section will compare the module 

regarding parameter count and accuracy. We will answer different questions, starting with 

the question of how many parameters the RNN needs to reach the same accuracy as the 

CTRNN. 

CTRNN reached 82% with a total number of 572 parameters. The RNN reaches 73%, 

using almost the same number of parameters. To reach an accuracy close to the RNN 

accuracy, Figure 4.10 shows a CTRNN with only 4 neurons in the first layer. The number 

of the CTRNN parameters in this case is only 152 parameters, which is about 0.27% of the 

RNN parameters (less than One-third of the parameters!). 

 

 

Figure 4.10 Convergence and accuracy curves of CTRNN with 156 parameters, only 4 cells in the first layer, accuracy:71.8%. 

The subsequent inquiry in the investigation pertains to determining the requisite number 

of parameters for the RNN to achieve an accuracy of 82%. In this investigation and as 

shown in Figure 4.11 an RNN with a parameter count of 1,548, achieved an accuracy of 
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81.4%, which falls short of the performance exhibited by the CTRNN with only 572 

parameters. Therefore, the CTRNN, again while having just 38% of the parameters, showed 

superior performance compared to the RNN. Table 2 summarizes our findings in this 

section.  

 

Figure 4.11 Convergence and accuracy curves RNN accuracy 81.4%, 1548 parameters. 

 
Table 4.2 CTRNN vs. RNN parameters size 

Model (number of 

recurrent cells) 

Number of parameters  Accuracy% 

CTRNN (16) 572 82 

RNN (32) 1,548 81.4 

CTRNN (4) 156 71.8 

RNN (16) 556 73 

4.4 Evaluate the Models 

 

As mentioned in the previous section, The CTRNN models demonstrated a high level 

of ability by achieving an accuracy above 80% with a small network. This section is 

directed towards understanding the factors contributing to the remaining 20% inaccuracy. 

Where does it happen? Moreover, why this could happen? Furthermore, how do we solve 

it?. For evaluation and illustration purposes, we are using the confusion matrix. Confusion 

matrix is a tabular form to evaluate the model [29], showing the number of correctly 
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classified items vs incorrectly classified. For those incorrectly classified, the metric also 

indicates the classes they were erroneously assigned. The confusion matrix has four entries: 

True Positive (correctly classified as positive), True Negative (correctly classified as 

positive), False Positive (incorrectly classified as positive), and False Negatives 

(incorrectly classified as negative). The confusion matrix will help to detect if the model 

has a problem distinguishing between different activities. Figure 4.12 is the confusion 

matrix for the CTRNN model after 50 epochs.  

 

Figure 4. 12 Confusion matrix of CTRNN model run for 50 epochs, network architecture 16-10-6. 
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Figure 4.12 shows that the model encounters difficulties distinguishing between 

multiple activities, such as distinguishing "downstairs" from "upstairs" and “walking”, 

from “upstairs” activities. Next, we investigate those cases very closely.  

Distinguishing "downstairs" from "upstairs” 

The models confuse "downstairs" and "upstairs," as shown in the confusion matrix 

Figure 4.12. To better understand this issue, next, we will examine the characteristics of 

these activities and check the X, Y, and Z accelerations as shown in Figure 4.13. The 

conflict between the downstairs and upstairs yields valuable insights into the CTRNN 

model. The Figure shows that downstairs and upstairs movements exhibit similar bodily 

oscillations. This similarity could pose challenges for the model, as these sequences 

mirror each other in different directions. Employing a bidirectional CTRNN can be a 

viable solution to address this issue. Alternatively, we might use an attention model to 

concentrate on specific channels like the 'Z' direction. Additionally, since we employ a 

window size of 50, this window might encompass only a tiny portion of an ascent or 

descent, where their characteristics resemble each other. Hence, incorporating attention 

layers could further enhance our model's performance. 
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Figure 4.13 Upstairs vs Downstair activities acceleration data in three directions, X, Y and Z. 
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Distinguishing " walking " from "upstairs” 

The second model's challenge is in distinguishing between walking and upstairs 

activities. This differentiation is based on analyzing the acceleration of these activities, as 

depicted in Figure 4.14. Both walking and going upstairs exhibit comparable movement 

patterns characterized by rhythmic and repetitive motions. When an individual walks 

downstairs, they frequently exhibit step-like motions resembling walking on flat ground, 

posing difficulty for the model to discern between the two activities merely based on 

motion patterns. One potential option to address this issue is to increase the model's size. 

This is demonstrated in Figure 4.15, where the model successfully differentiates between 

"downstairs" and "walking" activities. Such problems could come from the sensor noise 

and imbalanced training data in machine learning, which is the case in our data. 
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Figure 4. 14 Walking vs Upstairs activities acceleration data in three directions, X, Y and Z. 

. 
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Figure 4. 15 Confusion Matrix of CTRNN model run for 50 epochs, network architecture 32-10-6. 

4.5 CTRNN Drawbacks  

 
In this chapter, we showed that CTRNN achieved better accuracy and capability to 

capture the temporal behavior in data than RNN. Moreover, CTRNN showed smooth 

converges with fewer parameters to train. However, CTRNN has some drawbacks, making 

it less popular. The first drawback is the model complexity, which comes from the fact that 

CTRNN uses a differential equation to mimic the real neuron's continuous time (real-time) 

behaviors [27]. Those equations are expensive to solve using digital computers. The second 

drawback is that CTRNN is not widespread, and there is a lack of resources and support. In 

this next chapter, we discuss some future work to reduce some of these challenges.  
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Chapter 5  
THESIS SUMMARY AND FUTURE WORK 

 

5.1  Thesis Summary and Conclusions 

 
This thesis investigates the potential of implementing the CTRNN network for human 

activity detection. CTRNN uses differential equations to represent their neuron cell instead 

of the difference equation for the standard RNN. This novel implementation opens 

opportunities for analog computing that solves such differential equations. This thesis 

focused on implementing CTRNN using TensorFlow, a well-known machine learning 

framework, to optimize the cell’s parameters and make it trainable. Then, we tested the 

network on a small dataset and used it to solve an actual application of human activity 

detection. The CTRNN shows a high capability to capture temporal behavior in the data 

with smooth convergences, considering that some parameters have constraints to meet their 

physical meaning, like the time constant. Our work showed that CTRNN achieved better 

performance and recognized human activities with less network size (parameters size), with 

the ability to avoid problems that RNN might face, like disaster forgetting. 

Training the CTRNN time constant significantly affected the trained model’s 

performance. We conducted different experiments: one with initializing time constants to 

ones, a second with random initialization, and a third with training time constant. Of these, 

training the time constant had the best accuracy, random initialization had the second-best 

result, and constant initialization was the worst. Evaluating the CTRNN model in depth 

proves its ability to learn but with difficulty differentiating between some activities with 

similar behavior. Increasing the model size solves some of those problems. Finally, we 



44  

 
 

discussed some drawbacks of CTRNN, like the complexity that comes from the differential 

equations, scalability, and low popularity. 

5.2 Future Work 

 
To solve the complexity of solving the equations of CTRNN, we plan to implement the 

MEMS as a learnable CTRNN cell in future work. MEMS are microstructural devices that 

consist of stationary and moving elements. The dynamic position of the MEMS moving 

element is governed by a second-order differential equation driven by an input signal [31]. 

This equation is similar to the CTRNN equation. Thus, we plan to use MEMS to solve the 

CTRNN equations. Specifically, as the movement of the MEMS is the solution to the 

differential equation, we do not need to solve the differential equation in the physical 

hardware, and this will solve the main drawback of the CTRNN. Besides the wide-

spreading, MEMS offers a considerable advantage of allowing simultaneous sensing and 

computational functions at the same level [32], Thereby addressing various issues such as 

edge computing and providing efficient, low-power solutions for machine learning. 

Another potential avenue for future research involves utilizing the CTRNN framework to 

address various challenges, such as the control of robotic systems. 
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APPENDIX A 

Appendix A offers a comprehensive analysis of the diverse case studies presented in the 

current research, accompanied by supplementary simulation results. 

 
Figure A.1 Convergence and accuracy curves of RNN run for 50 epochs, different runs show catastrophic forgetting. 

RNN training does not run smoothly, and it suffers from catastrophic forgetting A.2, the model accuracy 

goes down from 74% to 43%. 

 

 
Figure A.2 Convergence and accuracy curves of RNN run for 50 epochs, different runs #2 show catastrophic forgetting. 
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Figure A.3 Convergence and accuracy curves of CTRNN run for 50 epochs, different run, the model reaches an accuracy of around 82%. 

 

 
Figure A.4 CTRNN Architecture TensorFlow Information. 
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Figure A.5 Walking acceleration data in three directions, X, Y and Z. 

. 
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Figure A.6 Jogging acceleration data in three directions, X, Y and Z. 
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Figure A.7 Sitting acceleration data in three directions, X, Y and Z. 
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Figure A.8 Standing acceleration data in three directions, X, Y and Z 

. 
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Figure A.9 Upstairs acceleration data in three directions, X, Y and Z 

. 
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Figure A.10 Downstair acceleration data in three directions, X, Y and Z. 

 

 



58  

 
 

 
Figure A.11 Confusion matrix of CTRNN model run for 50 epochs, network architecture 16-10-6, accuracy 82%. 

 

 
Figure A.12 Confusion matrix of CTRNN model run for 50 epochs, network architecture 4-10-6, 71.6%. 
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Figure A.13 Confusion matrix of RNN model run for 50 epochs, network architecture 16-10-6, accuracy 68%. 

 
Figure A.14 Confusion matrix of RNN model run for 50 epochs, network architecture 32-10-6, accuracy 81.2%. 
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Figure A.15 Confusion matrix of RNN model run for 50 epochs, network architecture 16-10-6, accuracy 68%. 

 

Figure A.16 Confusion matrix of CTRNN model run for 50 epochs, network architecture 16-10-6, accuracy 68.5% no time constant 

training, tau=Ones. 


	Continuous Time Recurrent Network for Human Activity Detection
	

	tmp.1701185627.pdf.tn7kO

