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Abstract
At high-altitude, small mammals are faced with the energetic
challenge of sustaining thermogenesis and aerobic exercise in

1

https://www.ncbi.nlm.nih.gov/pmc/
http://mbe.oxfordjournals.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMCPMC4833083


spite of the reduced O2 availability. Under conditions of hypoxic
cold stress, metabolic demands of shivering thermogenesis and
locomotion may require enhancements in the oxidative capacity
and O2 diffusion capacity of skeletal muscle to compensate for
the diminished tissue O2 supply. We used common-garden
experiments involving highland and lowland deer mice
(Peromyscus maniculatus) to investigate the transcriptional
underpinnings of genetically based population differences and
plasticity in muscle phenotype. We tested highland and lowland
mice that were sampled in their native environments as well as
lab-raised F1 progeny of wild-caught mice. Experiments
revealed that highland natives had consistently greater oxidative
fiber density and capillarity in the gastrocnemius muscle. RNA
sequencing analyses revealed population differences in
transcript abundance for 68 genes that clustered into two
discrete transcriptional modules, and a large suite of transcripts
(589 genes) with plastic expression patterns that clustered into
five modules. The expression of two transcriptional modules was
correlated with the oxidative phenotype and capillarity of the
muscle, and these phenotype-associated modules were
enriched for genes involved in energy metabolism, muscle
plasticity, vascular development, and cell stress response.
Although most of the individual transcripts that were differentially
expressed between populations were negatively correlated with
muscle phenotype, several genes involved in energy metabolism
(e.g., Ckmt1, Ehhadh, Acaa1a) and angiogenesis (Notch4)
were more highly expressed in highlanders, and the regulators
of mitochondrial biogenesis, PGC-1α (Ppargc1a) and
mitochondrial transcription factor A (Tfam), were positively
correlated with muscle oxidative phenotype. These results
suggest that evolved population differences in the oxidative
capacity and capillarity of skeletal muscle involved expression
changes in a small suite of coregulated genes.
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Introduction

High-altitude environments provide fertile ground for examining the
integrative physiological and genomic mechanisms of adaptation. Patterns
of animal diversity change substantially across elevational gradients
(Sánchez-Cordero 2001; McGuire et al. 2014), and a high degree of species
turnover occurs in part from adaptation to local environments (Jankowski et
al. 2012). The concurrent declines in temperature and oxygen tension with
elevation are a particular challenge to small highland mammals, which must
sustain high rates of aerobic metabolism to support thermogenesis and
locomotion in spite of a diminished oxygen supply (Hayes 1989). Both
genotypic specialization and phenotypic plasticity in the physiological
systems that mediate oxygen transport and utilization could be important for
meeting this challenge in highland natives, but we are just beginning to
understand the mechanisms involved (Storz, Scott, et al. 2010; Scott 2011;
Cheviron and Brumfield 2012).

Evolved changes in skeletal-muscle phenotype have occurred in several
highland vertebrate taxa. The locomotory muscle of high-altitude birds that
are sampled in their native environment (León-Velarde et al. 1993; Hepple
et al. 1998; Mathieu-Costello et al. 1998) or raised in captivity at sea level
(Scott, Egginton, et al. 2009; Scott, Richards, et al. 2009) is typically highly
capillarized and more oxidative than that of lowland birds. Highland
mammals also exhibit increased oxidative capacity in the locomotory,
respiratory, and/or cardiac muscles (Sheafor 2003; Cheviron et al. 2012,
2014; Schippers et al. 2012). These derived trait changes should increase the
capacities for oxygen diffusion and aerobic metabolism in the muscle, and
may therefore enhance fitness-related physiological performance under
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hypoxia.

Changes in gene regulation have been shown to contribute to evolved
differences in locomotory muscle phenotypes that are related to organismal
performance. For example, mice selected for high levels of voluntary wheel
running exhibit increased aerobic exercise performance and possess more
oxidative and capillarized gastrocnemius muscle (Audet et al. 2011;
Templeman et al. 2012), which is associated with differential expression of
many genes involved in muscle plasticity and calcium signaling (Burniston
et al. 2013). Similarly, rats selected for high running endurance exhibit
upregulation of several genes involved in lipid metabolism in comparison to
low capacity runners (Bye et al. 2008). In high-altitude populations of deer
mice, an enhanced thermogenic capacity in hypoxia is associated with
higher activities of oxidative enzymes as well as both constitutive and
plastic changes in gene expression in locomotory muscle compared with
lowland deer mice (Cheviron et al. 2012, 2014). Although changes in
capillarity and fiber composition of skeletal muscle have evolved in several
highland taxa (León-Velarde et al. 1993; Scott, Egginton, et al. 2009), the
transcriptomic underpinnings of these convergent changes in phenotype are
not known.

The deer mouse (Peromyscus maniculatus) has the broadest altitudinal
distribution of any North American mammal, stretching from below sea
level in Death Valley, California to over 4,300 m above sea level in
numerous mountain ranges (Hock 1964). Population genetic studies of deer
mice in western North America have demonstrated that highland mice are
often genetically distinct from lowland conspecifics, and estimates of gene
flow between highland and lowland populations are very low across the
interface between the western Great Plains and the Front Range of the
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Southern Rocky Mountains (<<0.01 migrants per generation) (Storz et al.
2012; Natarajan et al. 2015). Survivorship studies of high-altitude deer mice
have documented strong directional selection for increased thermogenic
capacity under hypoxia (Hayes and O’Connor 1999). Such selection is likely
to have influenced the metabolic capacities of skeletal muscle because
shivering thermogenesis requires high levels of muscle activity (Oufara et
al. 1987; Van Sant and Hammond 2008).

The objective of this study was to determine whether the evolved increases
in aerobic capacity and oxidative enzyme activities in the skeletal muscle of
highland deer mice (Cheviron et al. 2012, 2014) are associated with a more
capillarized and oxidative muscle phenotype. We then aimed to determine
the relationship between various phenotypic traits and gene expression
profiles in the skeletal muscle using whole transcriptome shotgun
sequencing (RNA sequencing [RNA-seq]) in order to elucidate the
regulatory changes that underlie adaptive modifications of muscle
physiology in high-altitude mice. Because induced changes in muscle
phenotype may occur at different ontogenetic stages, we used an
experimental design that allowed us to account for the combined effects of
developmental plasticity and physiological plasticity during adulthood. We
made comparisons between highland (Mt. Evans CO, 4,350 m) and lowland
(Lincoln NE, 430 m) mice that were sampled at their native elevations, and
we also compared F1 progeny of wild-caught mice that were born and reared
under common garden conditions at low elevation.

Results

Muscle Phenotype Differs between Highlanders and Lowlanders

High-altitude mice exhibited an enhanced oxidative phenotype of the
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locomotory (gastrocnemius) muscle (figs. 1 and 2). This result was reflected
in significant main effects of population altitude on several oxidative
phenotypes, including the areal and numerical densities of oxidative fibers.
In pairwise comparisons between populations, highlanders exhibited greater
areal and numerical densities of oxidative fibers (both slow oxidative fiber
density as well as total oxidative fiber density) when mice were sampled in
their native environment, and these differences were mirrored by
nonsignificant trends in the F1 progeny of wild-caught mice that were
reared in the common-garden lab environment. The total proportion of
oxidative fibers in the muscle was greater in highland deer mice by
approximately 14–25% as a proportion of the total transverse area of the
muscle and it was greater by approximately 5–14% as a proportion of total
fiber number (figs. 1 and 2). The main cause of these differences was a 23–
83% higher abundance by area of slow oxidative (type I) muscle fibers (figs.
1 and 2) with no change in the abundance of fast oxidative (type IIa) muscle
fibers (table 1). The population differences in areal density were generally
greater than the differences in numerical density because slow oxidative
fibers were larger in highland deer mice. There were no differences in the
size of fast oxidative and fast glycolytic fibers between highland and
lowland mice (table 1).

View larger version

FIG. 1. Histological analysis of fiber type and capillarity in the
gastrocnemius muscle of deer mice. Representative images from
individuals sampled in their native environment are shown. Oxidative
muscle fibers were identified by staining for succinate
dehydrogenase activity, slow oxidative (type I) muscle fibers were

identified by staining for slow myosin ATPase protein using immunohistochemistry,
and capillaries were identified by staining for alkaline phosphatase activity. There
were clear differences in staining intensity between highland and lowland deer mice.
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View larger version

FIG. 2. The gastrocnemius muscle has a more oxidative
phenotype in highland deer mice. There were significant effects
of population altitude on the areal density of oxidative fibers

(AA(ox,m); area of oxidative fibers relative to the total transverse area of the muscle)
(F[1,37] = 13.37, P < 0.001), the numerical density of oxidative fibers (NN(ox,m);
number of oxidative fibers relative to the total number of fibers) (F[1,37] = 5.143, P =
0.029), and the areal (AA(type I,m); F[1,37] = 9.329, P = 0.004) and numerical (NN(type
I,m); F[1,37] = 6.379, P = 0.016) densities of slow oxidative fibers. The effects of
rearing environment (native vs. common-garden F1 raised in the lab) were not
significant (AA(ox,m) F[1,37] = 1.168, P = 0.287; NN(ox,m) F[1,37] = 1.708, P = 0.199;
AA(type I,m) F[1,37] = 0.133, P = 0.718; NN(type I,m) F[1,37] < 0.001, P = 0.990). The
interactions between population and rearing environment were also not significant
(AA(ox,m) F[1,37] = 0.694, P = 0.410; NN(ox,m) F[1,37] = 1.032, P = 0.316; AA(type I,m)
F[1,37] = 2.259, P = 0.141; NN(type I,m) F[1,37] = 0.724, P = 0.400). *Significant
pairwise difference between highlanders and lowlanders within an experimental group
(native vs. F1). Native lowlanders, n = 12; F1 lowlanders, n = 9; native highlanders, n =
9; F1 highlanders, n = 11.

See full table

Table 1. Fiber Types in the Gastrocnemius Muscle
of Deer Mice.

Highland mice also had an increased capillarity in the gastrocnemius muscle
in comparisons involving both native and captive-reared individuals. Many
indices of capillarity were higher in highland mice compared with lowland
mice, including capillary surface density (∼23–37% higher), capillary
density (∼10–21% higher), the ratio of capillary surface to muscle fiber
surface (∼19–36% higher), and the capillary to fiber ratio (∼8–17% higher)
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(figs. 1 and 3). There was also a noticeably higher vessel tortuosity in the
highland mice, as reflected by the greater discrepancy in capillary surface
density than in capillary density and the qualitative difference in the pattern
of capillary staining (fig. 3). The overall difference in capillarity between
highland and lowland mice was greater than the difference between native
and F1 mice with the same population-of-origin, indicating that the
observed population difference is not attributable to phenotypic plasticity.

View larger version

FIG. 3. The gastrocnemius muscle has a higher capillarity in
highland deer mice than in lowland deer mice. There were
significant effects of population altitude on capillary surface

density (CSD, μm of capillary surface per μm2 of transverse muscle area) (F[1,35] =
18.92, P < 0.001), the ratio of capillary surface to fiber surface (CS:FS) (F[1,35] =
19.20, P < 0.001), the density of capillaries (CD, capillaries per mm2 of transverse
muscle area) (F[1,35] = 4.525, P = 0.041), and the number of capillaries per muscle
fiber (C:F) (F[1,35] = 4.223, P = 0.0474). The effects of rearing environment (native vs.
common-garden F1 raised in the lab) were not significant (CSD F[1,35] = 0.781, P =
0.383; CS:FS F[1,35] = 0.071, P = 0.792; CD F[1,35] = 1.688, P = 0.202; C:F F[1,35] =
0.517, P = 0.477). The interactions between population and rearing environment were
also not significant (CSD F[1,35] = 0.942, P = 0.339; CS:FS F[1,35] = 1.337, P = 0.255;
CD F[1,35] = 0.321, P = 0.575; C:F F[1,35] = 0.430, P = 0.516). *Significant pairwise
difference between highlanders and lowlanders within an experimental group (native
vs. F1). Native lowlanders, n = 12; F1 lowlanders, n = 9; native highlanders, n = 8; F1
highlanders, n = 10.

There was a positive correlation between capillary surface density and the
areal density of oxidative fibers (fig. 4A). Thus, the increase in capillarity in
highland deer mice could have resulted solely from the greater oxygen
demands imposed by the increase in oxidative fibers in highland mice, and
not to provide an additional improvement of oxygen diffusion capacity
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under hypoxia. To explore this possibility, we used the residuals from the
regression of capillary surface density against the areal density of oxidative
fibers to test for differences in capillarity while controlling for the
difference in fiber composition between highland and lowland deer mice.
Residuals from this regression were significantly greater in highlanders than
in lowlanders (fig. 4B), suggesting that the enhanced capillarity of highland
mice should increase oxygen diffusion capacity in hypoxia.

View larger version

FIG. 4. Capillarity in the gastrocnemius muscle is greater in
highland deer mice than expected from the variation in muscle
oxidative phenotype. (A) There was a strong linear correlation
between capillary surface density (CSD) and the areal density of
oxidative fibers (AA(ox,m)) (CSD = 0.0540 AA(ox,m) + 0.0133, P <
0.001). Dashed lines represent the 95% confidence intervals of the
regression. Symbols are as follows: F1 lab-raised lowlanders, black
upwards triangles; native lowlanders, white upwards triangles; F1

lab-raised highlanders, dark gray downwards triangles; native highlanders, light gray
downwards triangles. (B) There was a significant effect of population altitude on the
residual CSD from the regression in (A) (*F[1,35] = 5.558, P = 0.024), but there was no
significant effect of rearing environment (F[1,35] = 2.453, P = 0.126) and no significant
interaction between population and rearing environment (F[1,35] = 0.337, P = 0.566).

Population Differences and Plasticity in the Muscle Transcriptome

We used a general linear model to identify genes that exhibited persistent
expression differences between highland and lowland populations across
rearing environments and those that exhibited significant plasticity (as
revealed by within-population comparisons between mice sampled in their
native environment vs. F1 progeny of wild-caught mice). In total, 657 genes
(5.4% of measured transcripts) exhibited significant expression differences
between populations (highland vs. lowland) and/or between rearing
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environments (native vs. lab F1). Of these variable transcripts, the vast
majority exhibited significant plasticity in expression as indicated by
differences between rearing environments, without a significant population
effect (89.7%—589 genes). A smaller number of genes were differentially
expressed between populations, without significant effects of rearing
environment (10.3%—68 genes). Twenty-nine genes (4.4% of variable
transcripts) exhibited significant expression differences between
populations and between rearing environments. We focused on this subset of
657 variable transcripts to investigate the transcriptomic basis of population
differences in muscle phenotypes (supplementary tables S1 and S2,
Supplementary Material online).

We calculated correlation coefficients for all pairwise comparisons of
transcript abundance and we then used modulated modularity clustering
(MMC) (Stone and Ayroles 2009) to identify transcriptional modules of
coregulated genes (Rockman 2008; Ayroles et al. 2009). This analysis
revealed a high degree of correlational structure among differentially
expressed transcripts (fig. 5). The 68 genes with significant population
effects clustered into two modules, the largest of which (module P2)
contained 50 genes (fig. 5A). We recovered a similar pattern for the genes
with significant differences in expression between rearing environments
(i.e., native vs. lab F1) (fig. 5B). The 589 genes with significant effects of
rearing environment clustered into a total of five modules, the largest of
which (module T5) contained nearly 38% of the environmentally sensitive
transcripts (224 genes).
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View larger version

FIG. 5. Correlated transcriptional modules. (A) Clustering of the 68
transcripts with significant population effects into two transcriptional
modules. (B) Clustering of 589 transcripts with significant effects of
rearing environment into five transcriptional modules.

Relationships between Muscle Phenotype and Transcriptomic
Variation

Population-specific differences in gene expression were significantly
associated with the observed differences in muscle phenotype. We used a
combination of principal components analysis (PCA) and regression
analysis to determine which transcriptional modules were most strongly
associated with muscle phenotypes. Because genes within transcriptional
modules are, by definition, highly correlated, PCA can be used to
summarize expression patterns of particular transcriptional modules
(Cheviron et al. 2014; Stager et al. 2015). For each of the transcriptional
modules, the first principal component (PC1) accounted for 32.4–99.7% of
the variance in gene expression among individuals (supplementary table S3,
Supplementary Material online). Therefore, we used PC1 scores as an index
of overall module expression to identify transcriptional modules that were
significantly associated with muscle phenotypes. Of the two modules
composed of genes with significant population effects, only one (P2) was
significantly associated with any of the measured phenotypic traits. Module

P2 expression scores were negatively associated with the total areal (R2 =

0.51, P = 0.00026) and numerical (R2 = 0.29, P = 0.0081) densities of

oxidative fibers, capillary density (R2 = 0.23, P = 0.0223), capillary surface

density (R2 = 0.46, P = 0.0009), and the ratio of capillary surface area to
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fiber surface area (R2 = 0.51, P = 0.0004) (table 2). The relationship
between module P2 expression scores and capillary to fiber ratio were

marginally significant (R2 = 0.16, P = 0.0513). Correspondingly, highland
mice exhibited significantly lower module P2 expression scores than
lowland mice, regardless of rearing environment (fig. 6). PC2 scores for
module P1 were associated with several phenotypic traits, but this axis
accounted for a trivial amount of the gene expression variance within this
module (0.2%) (supplementary table S3, Supplementary Material online).

View larger version

FIG. 6. Altitudinal variation in the expression of transcriptional
modules that are statistically associated with muscle phenotypic
traits. Module expression was summarized using PCA and PC1
scores are shown. There were significant effects of population
altitude on modules P2 (F[1,17] = 238.0, P < 0.001) and T5 (F[1,17] =
10.19, P = 0.005). There was also a significant effect of rearing

environment (native vs. common-garden F1 raised in the lab) on module T5 (F[1,17] =
29.64, P < 0.001) but not module P2 (F[1,17] = 0.937, P = 0.347). Transcriptional
modules are shown in figure 5, and the genes that compose each module are
presented in supplementary tables S1 and S2, Supplementary Material online.
*Significant pairwise difference between highlanders and lowlanders within an
experimental group (native vs. F1). Native lowlanders, n = 6; F1 lowlanders, n = 5;
native highlanders, n = 5; F1 highlanders, n = 5.

See full table

Table 2. Transcriptomic Modules Associated with
Muscle Phenotypes.
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Of the five environmentally sensitive transcriptional modules (i.e., those
composed of genes exhibiting a significant effect of rearing environment),
only one was statistically associated with several phenotypic traits. Module

T5 expression was positively associated with the areal (R2 = 0.30, P =

0.007) and numerical (R2 = 0.32, P = 0.005) densities of slow oxidative
fibers (table 2), and expression differences were highly significant in the
comparison between highland and lowland mice in their native
environments (fig. 6). PC2 scores for modules T1 and T2 were associated
with several phenotypic traits, but again, this axis accounted for little of the
explained variance in gene expression within modules (3.3% and 5.6%,
respectively) (supplementary table S3, Supplementary Material online).

Enrichment analyses revealed that the transcriptional modules associated
with muscle phenotypes contain a diverse assemblage of genes with a
variety of molecular functions, many of which are relevant for metabolism,
muscle fiber-type differentiation, and angiogenesis (supplementary table S4,
Supplementary Material online). Module P2—the larger module comprising
genes that were differentially expressed between populations regardless of
rearing environment—was enriched (at a P value corrected for the false
discovery rate [FDR], q < 0.10) for genes annotated with four gene ontology
(GO) terms associated with metabolic processes, “secondary metabolic
process” (q = 0.034), “oxidation–reduction process” (q = 0.064), “toxin
metabolic process” (q = 0.016), and “organic acid metabolic process” (q =
0.094). Module T5 was significantly enriched for genes annotated with
several GO terms related to muscle phenotype and oxygen transport,
including “blood vessel development” (q = 0.016), “muscle structure
development” (q = 0.020), “vascular development” (q = 0.028), and
“negative regulation of vascular permeability” (q = 0.045). Module T5 was
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also enriched for many genes involved in energy metabolism, cell signaling,
cell migration, and cell turnover. Modules T2, T3, and T4 were significantly
enriched for genes that participate in immune function, apoptosis, and cell
stress response, but these modules were not significantly associated with
any of the measured muscle phenotypes.

Expression levels of 27 individual genes within modules P1 and P2 were
greater in highlanders than in lowlanders, corresponding with the observed
differences in muscle phenotype (fig. 7 and supplementary table S1,
Supplementary Material online). Highland deer mice exhibited higher
expression of several genes that are associated with oxidative energy
metabolism, including enoyl-coA hydratase (Ehhadh) and acetyl-coenzyme
A acyltransferase (Acaa1a) (enzymes involved in β-oxidation),
mitochondrial creatine kinase (Ckmt1), a mitochondrial ribosomal protein
(Mrpl22), and mannose receptor C type 1 (Mrc1). Expression of the latter is
positively associated with mitochondrial gene expression in the muscle of
humans (Moreno-Navarrete et al. 2013). Highlanders also exhibited higher
expression of two aldehyde dehydrogenase paralogs (Aldh1a1 and Aldh1a7),
which encode enzymes that can protect against ischemia-reperfusion injury
by reducing oxidative stress, autophagy, and apoptosis during hypoxia (Ma
et al. 2011; Contractor et al. 2013; Zhang et al. 2013). The expression of two
genes that have been associated with angiogenesis, cadherin-7 (Cdh7)
(Hayward et al. 2011) and Notch-4 (Notch4) (Lv et al. 2013), was also more
highly expressed in highlanders. Most of the remaining genes with high
expression in highlanders are uncharacterized (supplementary table S1,
Supplementary Material online).
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View larger version

FIG. 7. Some individual genes involved in
metabolism and angiogenesis were more highly
expressed in highlanders than in lowlanders. Reaction

norms for gene expression are shown with native environment on the left and lab
environment on the right, and data are shown relative to the average normalized read
count for native lowlanders. There was a statistically significant effect of population
altitude on all genes shown (see supplementary table S1, Supplementary Material
online). The mean normalized read counts (cpm) for native lowlanders were as follows:
enoyl-CoA hydratase (Ehhadh), 3.7; acetyl-Coenzyme A acyltransferase 1A (Acaa1a),
4.5; mitochondrial creatine kinase 1 (Ckmt1), 2.9; mitochondrial ribosomal protein
L22 (Mrpl22), 8.5; aldehyde dehydrogenase 1A1 (Aldh1a1), 41.8; aldehyde
dehydrogenase 1A7 (Aldh1a7), 20.2; mannose receptor C type 1 (Mrc1), 23.7;
cadherin-7 (Cdh7), 3.8; and Notch-4 (Notch4), 45.8. There were also significant
effects of rearing environment on Aldh1a1 and Cdh7 (†) (see supplementary table S2,
Supplementary Material online). n = 6 for all groups.

Most of the genes that were differentially expressed between populations
were expressed at a lower level in the highland mice (supplementary table
S1, Supplementary Material online). Individual genes that encode proteins
involved in the sarcomere (Actn1), peptide transport (Slc15a2), and muscle
growth (Trf) were expressed at lower levels in highland mice, possibly
because expression of these genes is more prevalent in fast glycolytic fibers
(which are less abundant in the gastrocnemius of highlanders; figs. 1 and 2).
Several transcripts for genes involved in cellular protection from reactive
O2 species or xenobiotics were also lower in highlanders, such as transferrin
(Trf), ceruloplasmin (CP), glutathione S-transferase (Gstt3), cytochrome
P450 enzymes (9030605E09Rik), and flavin-containing monooxygenase
(Fmo1). Curiously, some genes involved in oxidative energy metabolism
(Atp6, ND3, ND4, Ndr1, and Pank1) as well as a potent vasodilator of
arteries (urocortin, Ucn) (Diaz and Smani 2013) were also expressed at
lower levels in highlanders.
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Relationships between Muscle Phenotype and the Expression of
Candidate Genes

In addition to the discovery-driven analyses of transcriptional variation, we
tested for associations between muscle phenotype and expression level for a
number of candidate genes involved in regulating energy metabolism,
mitochondrial biogenesis, and/or angiogenesis (Lin et al. 2005; Lanza and
Sreekumaran Nair 2010; Gustafsson 2011) (see Materials and Methods).
There were functional similarities between our set of candidate genes and
the set of genes that were overrepresented in the enrichment analyses, which
is not surprising given that both sets of genes are associated with
metabolism, muscle fiber-type differentiation, and angiogenesis. Six of the
candidate genes exhibited positive associations with at least one phenotypic
trait. Expression of the peroxisome proliferator-activated receptors (PPAR)
γ coactivator 1α (PGC-1α) gene Ppargc1a, a purported master regulator of
mitochondrial biogenesis, was associated with the numerical density of

oxidative fibers in the muscle (R2 = 0.203, P = 0.046) and the ratio of

capillary surface to fiber surface (R2 = 0.239, P = 0.034) (table 3). The
association between Tfam, a key activator of mitochondrial gene expression,

and the areal density of oxidative fibers was marginally significant (R2 =
0.197, P = 0.050). Several of the growth factors (Angpt1, Pdgfa, Pdgfd, and
Vegfc) were positively associated with the size of a particular fiber type
(table 3) (although only slow oxidative fiber area differed between
populations; table 1).
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See full table

Table 3. Candidate Genes that Were Associated
with Muscle Phenotypes.

The majority of significant associations between candidate gene expression
and muscle phenotype was negative (table 3). Fifteen of the 43 candidate
genes showed significant negative associations with at least one phenotypic
trait (Fgf12, Fgf13, Fgf14, Fgfr2, Mmp2, Mmp13, Mmp14, Pdgfc, Pdgfra,
Ppara, Pparg, Tie1, Vegfa, Vegfb, and Vegfc). The strongest negative

association was between Fgfr2 and the numerical (R2 = 0.574, P = 0.0001)

and areal (R2 = 0.446, P = 0.0013) densities of slow oxidative fibers in the
muscle (fig. 8).

View larger version

FIG. 8. There was a strong negative association between the
expression of fibroblast growth factor receptor 2 (Fgfr2) and the
abundance of slow oxidative fibers. There was a significant linear
correlation between Fgfr2 transcript abundance and both the
numerical (R2 = 0.574, P = 0.0001) and areal (R2 = 0.446, P =
0.0013) densities of slow oxidative fibers in the gastrocnemius
muscle. Dashed lines represent the 95% confidence intervals of the
regression. Symbols are as follows: F1 lab-raised lowlanders, black
upwards triangles; native lowlanders, white upwards triangles; F1

lab-raised highlanders, dark gray downwards triangles; native highlanders, light gray
downwards triangles.

Discussion
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Deer mice at high altitudes sustain high metabolic rates to support
locomotion and thermogenesis (Hayes 1989) and enhanced performance
capacities appear to be adaptive (Hayes and O’Connor 1999). Highland deer
mice have therefore evolved an elevated aerobic capacity in hypoxia relative
to their lowland counterparts (Cheviron et al. 2012, 2014). Here, we show
that this is partly due to a substantial increase in capillarity and oxidative
fiber abundance in the skeletal muscle. We also show that the derived
muscle phenotype of highland deer mice is associated with significant
variation in gene expression across the skeletal muscle transcriptome. For
several candidate genes, population differences in expression levels were
associated with specific muscle phenotypes, and many of the differentially
expressed genes are known to play a role in energy metabolism, muscle
fiber composition, and vascular development.

High-Altitude Adaptation and Muscle Phenotype

The highly oxidative phenotype of skeletal muscle in highland deer mice
(figs. 1 and 2), which occurs in conjunction with an increase in the activity
of several oxidative enzymes (Cheviron et al. 2012, 2014), could have
multiple potential benefits at high altitudes. Highland animals must cope
with cold temperatures, so the evolution of a more oxidative muscle
phenotype could enhance the capacity for shivering and possibly
nonshivering thermogenesis (Mineo et al. 2012). A highly oxidative muscle
phenotype should also increase the total mitochondrial respiration of an
entire muscle when intracellular O2 tensions fall (Hochachka 1985; Scott,
Richards, et al. 2009). This is because mitochondrial respiration can be
limited by O2 during intracellular hypoxia (Gnaiger 2001), which would
reduce the maximum attainable respiration of individual muscle fibers.
Therefore, having more oxidative fibers should counterbalance the
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inhibitory effects of hypoxia on individual muscle fibers. The adaptive
significance of having a more oxidative phenotype could involve one or
both of these mechanisms in highland taxa that have evolved this derived
trait (León-Velarde et al. 1993; Mathieu-Costello et al. 1998; Scott,
Egginton, et al. 2009).

The augmented capillarity in the locomotory muscle of highland mice (figs.
1 and 3) should increase the diffusion capacity for oxygen from the blood
and should therefore confer an advantage for sustaining aerobic
performance in hypoxia (Wagner 1996; Scott and Milsom 2006; Cano et al.
2013). There is generally a strong relationship between the mitochondrial
oxygen demands of a tissue and the capacity for oxygen supply from the
microcirculation (Hepple 2000). Interestingly, the magnitude of the increase
in capillarity in highlanders appears to be greater than the increase in
oxidative capacity (fig. 4). This suggests that oxygen diffusion capacity is
further enhanced in highlanders to improve oxygen transport in hypoxia.
This should also be advantageous in highland deer mice given that they have
evolved an increased hemoglobin-O2 affinity (Chappell and Snyder 1984;
Storz et al. 2009; Storz, Runck, et al. 2010; Natarajan et al. 2013, 2015), as
the increased muscle diffusion capacity mitigates the trade-off between
pulmonary O2 loading (which is important for safeguarding arterial O2
saturation under hypoxia) and O2 unloading in the peripheral circulation.

Despite considerable differences in a range of environmental factors
between the two rearing environments (e.g., temperature, ambient partial
pressure of O2, humidity, food type, food availability, and biotic
interactions), population differences in capillarity persisted in comparisons
of both native and lab-reared F1 individuals. Similarly, the difference in the
proportional abundance of oxidative fibers was generally more pronounced
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in comparisons between highland and lowland deer mice than in
comparisons between native versus lab-reared F1 individuals with the same
population-of-origin, although this trait may have also been affected by
rearing environment (as revealed by a lack of significant pairwise
differences between populations in the F1 mice). Although we cannot
entirely rule out transgenerational epigenetic effects, these results suggest
that genetic differences between highland and lowland deer mice may
underlie adaptive variation in muscle phenotype. It remains possible that
these traits can be further modified by phenotypic plasticity; however, the
effects of cold acclimation on oxidative capacity are not consistent across
studies of domestic mice. Increases in the activity of oxidative enzymes in
the muscle occur in response to cold acclimation in some studies (Mineo et
al. 2012) but not others (Beaudry and McClelland 2010), and the respiratory
capacity of isolated mitochondria does not seem to be altered by cold
acclimation (Meyer et al. 2010; Mineo et al. 2012). Likewise, combining
cold and hypoxia has no effect on the activity of oxidative enzymes in the
gastrocnemius muscle in domestic mice (Beaudry and McClelland 2010).
Furthermore, muscle capillarity and oxidative capacity often do not change
or even decrease in response to high-altitude hypoxia exposure in lowland
humans and other mammals (Mathieu-Costello 2001; Levett et al. 2012;
Jacobs et al. 2013). Although muscle disuse (e.g., limb immobilization) is
associated with substantial changes in muscle phenotype (Clark 2009), some
wild rodents experience minimal changes in muscle form and function in
response to large seasonal variations in activity during hibernation or torpor
(Cotton and Harlow 2010). Therefore, evolved genotypic specializations
may play a more important role than phenotypic plasticity in creating the
muscle phenotype of native highlanders.

Transcriptomic Basis of the High-Altitude Phenotype
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The evolved differences in gene expression between highland and lowland
populations suggest that regulatory changes in genes involved in aerobic
metabolism have contributed to high-altitude adaptation (fig. 7). Expression
of the transcriptional coactivator PGC-1α (Ppargc1a), which activates the
expression of genes involved in mitochondrial metabolism (Lin et al. 2005;
Lanza and Sreekumaran Nair 2010), was positively associated with the
abundance of oxidative fibers in the muscle (table 3), and was expressed at
higher levels in highlanders than lowlanders. Mitochondrial creatine kinase
(Ckmt1), which is prevalent in slow oxidative fibers and is important for
controlling oxidative phosphorylation to promote energy supply-demand
coupling and metabolite stability (Hochachka 1993; Ventura-Clapier et al.
1998), was expressed at higher levels in highlanders than lowlanders. The
potential importance of this enzyme in regulating mitochondrial respiration
under hypoxia is supported by experimental studies in humans (Ponsot et al.
2006), rats (Walsh et al. 2006), and birds (Scott, Richards, et al. 2009). The
mitochondrial isoform of creatine kinase is associated with mitochondria
and is highly expressed in tissues with high ATP demands (Wallimann et al.
1992), so its upregulation in highlanders could be associated with the
observed variation in expression of Ppargc1a and Tfam. Genes that encode
the metabolic enzymes acetyl-coenzyme A acyltransferase (Acaa1a) and
aldehyde dehydrogenase 1A1 (Aldh1a1), which are upregulated in mice
selected for high levels of voluntary wheel running (Burniston et al. 2013),
were also more highly expressed in highlanders than in lowlanders.
Expression of Acaa1 is known to be induced by PPAR transcription factors
(Guo et al. 2007), for which PGC-1α is a coactivator, suggesting a potential
relationship between the patterns of variation in expression of Ppargc1a and
Acaa1a. However, not all genes involved in oxidative energy metabolism
were upregulated. Some mitochondrially encoded transcripts, including two
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of complex I of the electron transport system (ND3 and ND4, transcripts of
two of the 44 subunits of NADH dehydrogenase) and one of ATP synthase
(Atp6, one of nine subunits of the FO region of ATP synthase), were
downregulated in highlanders. The meaning of these changes in expression
is unclear, because NADH dehydrogenase and ATP synthase are
multisubunit enzymes whose functions require coordinated expression of all
polypeptide subunits (Duggan et al. 2011; Suarez and Moyes 2012).
Nevertheless, our findings suggest that high-altitude adaptation involves
substantial transcriptomic restructuring in association with a more oxidative
muscle phenotype.

Changes in the expression of genes involved in regulating the capillary
network also appear to have contributed to evolved phenotypic differences
between highland and lowland populations. Cadherin-7 and Notch-4 in
particular are expressed at higher levels in highlanders than in lowlanders.
Although cadherin-7 is a N-type cadherin that is found primarily in neural
tissue (Faulkner-Jones et al. 1999), its expression increases in association
with angiogenesis in response to ischemia in the brain (Hayward et al. 2011)
and E-type cadherins are known to be extremely important cell adhesion
molecules in angiogenesis. The Notch signaling pathway is important for
coordinating cell behaviors that lead to the creation of stable and patent
blood vessels during angiogenesis, and the notch-4 receptor is restricted to
the vascular system (Sainson and Harris 2008; Lv et al. 2013). When notch-
4 is bound by its ligand (delta-like 4), signaling by the receptor inhibits
vascular endothelial growth factors (VEGF) expression as well as
endothelial cell proliferation and migration (Williams et al. 2005). This is
notable in light of the negative association we observed between capillarity
and the expression of Vegfa and other growth factors involved in promoting
the proliferative and migratory stages of angiogenesis (table 3). It is

22



possible that the highly capillarized phenotype of skeletal muscle in
highlanders is initiated by growth factor signaling at an earlier stage of
development, and that it is maintained during adulthood by an upregulation
of notch-4 expression to stabilize the mature capillary network.

There was a negative association between muscle phenotypes and the
expression of many genes. PC1 scores of module P2 expression were lower
in highlanders than in lowlanders (fig. 6) (corresponding to lower abundance
in highlanders for roughly half of the transcripts in module P2) and were
negatively associated with several of the oxidative and capillarity
phenotypes. A similar observation was made for PC1 of module T5
expression. Collectively, these modules are enriched for genes assigned to
several GO processes involved in metabolism, muscle plasticity, and
vascular development. The majority of significant associations between
muscle phenotypes and the expression of candidate genes involved in energy
metabolism, mitochondrial biogenesis, or angiogenesis was also negative
(table 3). These results were surprising and unexpected because the protein
products of many of the genes that were expressed at lower levels in
highlanders have been shown to contribute positively to capillarity or
oxidative capacity in rodents and other mammals (Lin et al. 2005; Lanza
and Sreekumaran Nair 2010; Gustafsson 2011). These seemingly
paradoxical results may result from the effects that differences in muscle
phenotype should have on intracellular signals of oxygen and energy
homeostasis. For example, differential expression of a small number of
other genes (such as Notch-4) could maintain the highly capillarized
phenotype of highlanders, which would increase cellular O2 supply relative
to lowlanders and would presumably dampen signaling by the factors that
drive the responses to oxygen limitation (such as hypoxia-inducible factors
and VEGF). A negative association between muscle phenotypes and
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expression could thus result for genes that do not cause the differences in
muscle phenotype but are sensitive to its effects.

As the increased oxidative capacity and capillarity of skeletal muscle in
highland mice were not primarily attributable to phenotypic plasticity, we
reasoned that the underlying genes would not exhibit plasticity in
expression. Nevertheless, a large number of genes were differentially
expressed between mice in the native and lab environments (figs. 5 and 6).
Most of the expression differences were not associated with any muscle
phenotypes, and may instead reflect transcriptomic changes associated with
different aspects of natural and lab environments (table 2). Indeed,
environmentally sensitive modules that were not associated with muscle
phenotype were enriched for genes involved in signaling, cell migration,
cell turnover, immune function, and cell stress, which may reflect the
substantial differences between native and lab environments in features such
as food access, diet quality, exposure to pathogens, and a range of other
factors in addition to differences in O2 tension. Determining which of these
environmentally sensitive genes are responding to changes in elevation will
require controlled reciprocal acclimation experiments.

Conclusions

One of the goals of evolutionary physiology is to elucidate the mechanistic
basis of adaptive variation in organismal performance (Garland and Carter
1994; Dalziel et al. 2009). Populations and species that have diverged across
altitudinal gradients are well suited to this endeavor. They provide an
opportunity to elucidate how genotypic specialization, phenotypic plasticity,
and their interaction can contribute to adaptive enhancements of
physiological performance in challenging environments, particularly as cold
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and hypoxia have well-defined impacts on the physiological systems
important for exercise and thermogenesis. In this study, we show that
highland deer mice have a highly oxidative and capillarized muscle
phenotype that is associated with population differences in expression for a
small suite of genes involved in metabolism, muscle plasticity, and vascular
development. The capacity for oxygen transport and utilization in the
muscle is extremely important for thermogenesis (Oufara et al. 1987; Van
Sant and Hammond 2008)—an organismal performance trait with
demonstrated fitness benefits in high-altitude deer mice (Hayes and
O’Connor 1999)—suggesting that the unique muscle phenotype and
transcriptional profile of highland deer mice are adaptive. Consistent with
previous work in deer mice (Cheviron et al. 2012, 2014), these results
suggest that differences in both evolved and plastic gene expression patterns
contribute to fitness-related variation in physiological performance at high
altitudes by altering phenotypic traits at several levels of biological
organization.

Materials and Methods

Populations of Highland and Lowland Deer Mice

Adult deer mice were live trapped on the summit of Mount Evans (Clear
Creek County, CO at 39 °35′18″N, 105 °38′38″W, 4,350 m above sea level)
(P. m. rufinus) and at low altitude in the Great Plains (Nine Mile Prairie,
Lancaster County, NE at 40 °52′12″N, 96 °48′20.3″W, 430 m above sea
level) (P. m. nebracensis) as previously described (Cheviron et al. 2013,
2014). One set of mice, the in situ group, from each locality was sampled on
the day of capture at their native elevation for histology and
transcriptomics. Another set of mice was transported to a common-garden
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lab environment at the University of Nebraska (elevation 360m) and used as
a parental stock to establish captive bred highland and lowland lines. From
each of these lines, we sampled full-sibling F1 progeny from one highland
and one lowland breeding pair. All F1 mice were born and raised to
adulthood in a common normoxic environment, and were then sampled for
histology and transcriptomics. Lab-raised mice were held in standard
holding conditions at 25 °C with unlimited access to mouse chow and water
(12 h light:12 h dark photoperiod). All experimental protocols were
approved by the University of Nebraska Institutional Animal Care and Use
Committee (IACUC no. 522).

Muscle Histology

Muscle capillarity and oxidative phenotype were assessed as previously
described (Scott, Egginton, et al. 2009; Scott and Johnston 2012). An entire
gastrocnemius muscle was dissected, coated in embedding medium, frozen
in liquid N2-cooled isopentane, and stored at −80 °C. The muscle was
sectioned (10 μm) transverse to muscle fiber length in a cryostat at −20 °C.
Alkaline phosphatase activity was used to identify capillaries by staining in
assay buffer (concentrations in mM: 1.0 nitroblue tetrazolium, 0.5 5-bromo-
4-chloro-3-indoxyl phosphate, 28 NaBO2, 7 MgSO4; pH 9.3) for 1 h at room
temperature. Succinate dehydrogenase activity was used to identify
oxidative muscle fibers (both slow and fast), also by staining for 1 h at room
temperature (assay buffer concentrations in mM: 0.6 nitroblue tetrazolium,
2.0 KH2PO4, 15.4 Na2HPO4, 16.7 sodium succinate). Slow myosin
immunoreactivity using the S58 antibody was used to identify oxidative
muscle fibers (Developmental Studies Hybridoma Bank, Iowa City, IA) as
follows. After an initial fixation in acetone for 10 min, sections were
blocked in 10% normal goat serum (made up in phosphate-buffered saline
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[PBS] [0.15 mol l−1, pH 7.4] containing 1% Triton X-100 and 1.5% BSA
[PBS/TX/BSA]) for 1 h. They were then incubated overnight at 2 °C in S58
antibody solution (1:10 dilution in PBS/TX/BSA). The next morning,
sections were treated for 10 min with Peroxidase Blocking Reagent (Dako,
Burlington, ON, Canada), incubated in secondary antibody (antimouse
biotin IgA; Southern Biotech, Birmingham, AL) solution (1:20 dilution in
PBS/TX/BSA) for 1 h, incubated in ExtrAvidin-Peroxidase solution (1:50
dilution in PBS/TX/BSA; Sigma-Aldrich, Oakville, ON, Canada) for 30 min,

and finally developed in 0.4 mg ml−1 3-amino-9-ethyl-carbazole solution
(containing 0.02% H2O2 in 0.05 M sodium acetate buffer, pH 5.0) for
approximately 5 min. Sections were well rinsed in PBS between each of the
above steps. Images were collected using light microscopy, and
stereological quantification methods were used to make unbiased
measurements (Weibel 1979; Egginton 1990). We analyzed a sufficient
number of images for each sample to account for heterogeneity, determined
by the number required to yield a stable mean value.

There is generally a strong relationship between the capacity for oxygen
diffusion from capillaries and the mitochondrial oxygen demands they are
meant to support (Hepple 2000). Therefore, our expectation was that
differences in muscle oxidative capacity would be associated with
corresponding differences in muscle capillarity. If increases in muscle
capillarity arose in highland mice to enhance O2 transport in hypoxia, then
capillarity would be greater in highland mice than predicted by the normal
relationship between capillarity and oxidative capacity. To assess whether
there was variation in capillarity that was independent of the variation in
muscle oxidative phenotype we first regressed capillary surface density to
the areal density of oxidative fibers, and we then used residuals from this
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regression for all subsequent statistical comparisons (see below).

Histology data are generally reported as means ± standard error (except
when data points from individual samples are shown). Two-factor analysis
of variance and Bonferroni multiple comparisons tests were used as
appropriate to assess the main effects and interactions of population and
acclimation environment, and significance level of P < 0.05 was used.

Muscle Transcriptomics

We utilized previously published gastrocnemius RNA-seq data (Cheviron et
al. 2014) to quantify genome-wide patterns of gene expression for 24
individuals that were also used for muscle phenotyping to determine the
transcriptomic basis of variation in muscle phenotypes (native elevation
group: Highland mice, n = 6; lowland mice, n = 6; Lab F1 group: Highland
mice, n = 6; lowland mice, n = 6) (NCBI SRA accession number
SRA091630). These data were originally used to identify the genomic basis
of thermogenic performance differences between high and low elevation
populations. In this study, we present a reanalysis of a subset of these data
to test for associations between transcriptomic profiles and muscle
phenotypes (see supplementary table S5, Supplementary Material online, for
the individuals that were used from this larger data set). We isolated mRNA
from gastrocnemis muscle using a micro PolyA purist kit (Ambion), and
generated Illumina sequencing libraries following standard protocols
(available upon request). Libraries were sequenced as 76 nt single-end reads
on the Illumina Genome Analyzer IIx, five individuals were multiplexed
using Illumina index primers, and were sequenced in a single lane of a flow
cell. Image analysis and base calling were performed using Illumina
pipeline software. Our sequencing strategy produced an average of 5.9
million reads per individual (range = 1.05–15.7 million reads/individual).
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Read Mapping, Normalization, and Statistical Analysis of RNA-seq
Data

We performed a series of sequential filtering steps to remove low-quality
reads and base calls as well as technical artifacts stemming from library
preparation. First, reads with mean Phred quality scores less than 30 were
removed from the data set. Second, low-quality bases (Phred score < 30)
were trimmed from these remaining high-quality sequences using the “Trim
Sequences” tool in CLC Genomics Workbench 6.0.4 (Trimming settings:
Trim using quality scores limit: 0.001). Finally, reads were scanned for
exact matches to the known Illumina adaptor sequences using the “Trim
Adaptors” tool in CLC Genomics Workbench, and if detected, they were
trimmed from the sequence read. We estimated transcript abundance by
mapping sequence reads to the Mus musculus genome, build 36.1, using
CLC Genomics workbench (mapping settings: minimum length fraction =
0.9, minimum similarity fraction = 0.8, and maximum number of hits for a
read = 10). We chose to use the well-annotated and established Mus genome
as reference instead of the draft P. maniculatus genome to avoid issues
associated with poor assembly and annotations that are common in draft
genome assemblies (Denton et al. 2014), but this may have prevented us
from estimating expression of rapidly evolving genes that are highly
divergent between Mus and Peromyscus. Finally, we excluded genes with
less than an average of five reads per individual because genes with low
count values are typically subject to increased measurement error and
reduced power to detect differential expression (Robinson and Smyth 2007).
Filtering low coverage transcripts has the benefit of increasing statistical
power to detect differential expression for well-sampled (i.e., high
coverage) genes by reducing the number of independent tests that are
performed. This filtering strategy could potentially result in bias against
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short, lowly transcribed genes, but we are unlikely have sufficient power to
detect differential expression of such genes anyway because of their low
sequence coverage. These trimming and filtering steps resulted in a final
data set of 12,175 detected genes and an average of 2.6 million sequence
reads per individual (range of 0.5–6.7 million reads).

We used the function calcNormFactors in the program edgeR (Robinson et
al. 2010; Robinson and Oshlack 2010) to normalize read counts among
individuals, and to control for differences in the total library size (number
of total reads) among individuals. Following this normalization procedure,
we tested for differences in transcript abundance between populations
(highland vs. lowland), and rearing environments (in situ and F1) using a
generalized linear model approach in edgeR. Population and rearing
environment were included as the main effects, and we included a term for
their interaction. We estimated model dispersion for each gene separately
using the function estimateTagwiseDisp in edgeR (McCarthy et al. 2012),
and tested for genes that exhibited significant expression differences
between populations and/or rearing environments using a general linear
model (GLM) likelihood ratio test implemented in edgeR. We controlled for
multiple tests by enforcing a genome-wide FDR of 0.05 (Benjamini and
Hochberg 1995).

We assessed the degree of correlation in transcript abundance among the
genes with significant population or environment effects (FDR < 0.05; n =
657 genes; see Results) to define putative transcriptional modules of
coexpressed genes (Ayroles et al. 2009). To do this, we calculated Pearson
correlation coefficients for all pairwise gene expression values, and then
used MMC to group genes according to their pairwise correlation
coefficients (Ayroles et al. 2009; Stone and Ayroles 2009). To determine
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which of these transcriptional modules were most strongly associated with
muscle phenotypes, we used PCA to summarize overall module expression.
Because the first two principal component axes (PC1 and PC2) accounted
for 47–100% of the explained gene expression variance within modules, PC1
and PC2 scores were used as a proxy measure to summarize overall module
expression. Module-specific PC1 and PC2 scores were then used in linear
regression analyses to test for associations between module expression and
each of the measured phenotypes. PCA and linear regressions were
performed in R (ver. 3.1.1; R Development Core Team 2014), and we
corrected for multiple tests using Bonferroni adjusted P values.

Once trait-associated modules were identified, we used a suite of functional
annotation tools to identify specific “biological process” GO terms
associated with each module. First, we used MGI GO Term Mapper
(http://www.informatics.jax.org/tools.shtml, last accessed March 25, 2015)
to identify GO Slim terms associated with each gene in a given module, then
we used the MGI GO Term Mapper and GOrilla (Eden et al. 2009) to test for
functional enrichment of specific terms within modules, and we visualized
the GOrilla output using the program REViGO (Supek et al. 2011).

In addition to these discovery-driven enrichment analyses, we tested for
associations between muscle phenotype and expression level for a number
of candidate genes (using linear regression analyses, as described above).
We considered gene families involved in regulating energy metabolism
and/or mitochondrial biogenesis, including the PPAR (Ppara, Ppard, and
Pparg), the PPARγ coactivators (PGC; Ppargc1a, Ppargc1b, and Pprc1),
nuclear respiratory factors 1 (Nrf1) and 2 (Nfe2l2), and mitochondrial
transcription factor A (Tfam) (Lin et al. 2005; Lanza and Sreekumaran Nair
2010). We also considered a number of gene families in which one or more
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members are involved in angiogenesis, including VEGF (Vegfa, Vegfb, and
Vegfc) and their receptors (VEGFR1, Flt1, and VEGFR2, Kdr),
angiopoietins (Angpt1, Angptl2, and Angptl4) and their receptors (Tie1 and
Tek), fibroblast growth factors (FGF; Fgf1, Fgf6, Fgf7, Fgf10, Fgf12, Fgf13,
and Fgf14) and their receptors (FGFR; Fgfr1, Fgfr2, Fgfr3, and Fgfrl1),
platelet-derived growth factors (PDGF; Pdgfa, Pdgfb, Pdgfc, and Pdgfd) and
their receptors (PDGFR; Pdgfra, Pdgfrb, and Pdgfrl), and matrix
metalloproteinases (MMP; Mmp2, Mmp9, Mmp13, Mmp14, Mmp15, and
Mmp24) (Gustafsson 2011). We targeted all members of each particular
family that were expressed in the muscle, including genes whose influence
on muscle phenotype has not been previously documented.
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FIG. 1.
Histological analysis of fiber type and capillarity in the gastrocnemius muscle of deer
mice. Representative images from individuals sampled in their native environment
are shown. Oxidative muscle fibers were identified by staining for succinate
dehydrogenase activity, slow oxidative (type I) muscle fibers were identified by
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staining for slow myosin ATPase protein using immunohistochemistry, and
capillaries were identified by staining for alkaline phosphatase activity. There were
clear differences in staining intensity between highland and lowland deer mice.
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FIG. 2.
The gastrocnemius muscle has a more oxidative phenotype in highland deer mice.
There were significant effects of population altitude on the areal density of oxidative
fibers (AA(ox,m); area of oxidative fibers relative to the total transverse area of the
muscle) (F[1,37] = 13.37, P < 0.001), the numerical density of oxidative fibers
(NN(ox,m); number of oxidative fibers relative to the total number of fibers) (F[1,37] =
5.143, P = 0.029), and the areal (AA(type I,m); F[1,37] = 9.329, P = 0.004) and
numerical (NN(type I,m); F[1,37] = 6.379, P = 0.016) densities of slow oxidative fibers.
The effects of rearing environment (native vs. common-garden F1 raised in the lab)
were not significant (AA(ox,m) F[1,37] = 1.168, P = 0.287; NN(ox,m) F[1,37] = 1.708, P
= 0.199; AA(type I,m) F[1,37] = 0.133, P = 0.718; NN(type I,m) F[1,37] < 0.001, P =
0.990). The interactions between population and rearing environment were also not
significant (AA(ox,m) F[1,37] = 0.694, P = 0.410; NN(ox,m) F[1,37] = 1.032, P = 0.316;
AA(type I,m) F[1,37] = 2.259, P = 0.141; NN(type I,m) F[1,37] = 0.724, P = 0.400).
*Significant pairwise difference between highlanders and lowlanders within an
experimental group (native vs. F1). Native lowlanders, n = 12; F1 lowlanders, n = 9;
native highlanders, n = 9; F1 highlanders, n = 11.

[Back]

43



[Back]

Table 1.
Fiber Types in the Gastrocnemius Muscle of Deer Mice.

Variable Tr. Lowlanders Highlanders F P

AA(type
IIa,m)

Native
0.299 ±
0.024

0.288 ±
0.041

Pop 0.042 0.838

Lab
F1

0.316 ±
0.027

0.340 ±
0.029

RE 1.308 0.260

NN(type
IIa,m)

Native
0.353 ±
0.030

0.328 ±
0.044

Pop 0.556 0.461

Lab
F1

0.383 ±
0.023

0.359 ±
0.032

RE 0.885 0.353

Type I area

Native 1,082 ± 114
1,503 ±
127*

Pop 5.092 0.030

Lab
F1

1,329 ± 65 1,436 ± 136 RE 0.593 0.446

Type IIa
area

Native 1,448 ± 114 1,574 ± 134 Pop 0.948 0.337

Lab
F1

1,491 ± 115 1,598 ± 110 RE 0.077 0.783

Type IIb
area

Native 2,277 ± 178 2,404 ± 130 Pop 0.152 0.699

Lab
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F1

NOTE.—Transverse area of each fiber type (slow oxidative, type I; fast oxidative, type IIa; fast

glycolytic, type IIb) is reported in μm2. AA(IIa,m), areal density of fast oxidative fibers; NN(IIa,m),
numerical density of fast oxidative fibers; one degree of freedom for each main effect variable
(Pop, population altitude; RE, rearing environment) and 36 for the residual.

*Significant pairwise difference between highlanders and lowlanders within an environment.
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FIG. 3.
The gastrocnemius muscle has a higher capillarity in highland deer mice than in
lowland deer mice. There were significant effects of population altitude on capillary
surface density (CSD, μm of capillary surface per μm2 of transverse muscle area)
(F[1,35] = 18.92, P < 0.001), the ratio of capillary surface to fiber surface (CS:FS)
(F[1,35] = 19.20, P < 0.001), the density of capillaries (CD, capillaries per mm2 of
transverse muscle area) (F[1,35] = 4.525, P = 0.041), and the number of capillaries
per muscle fiber (C:F) (F[1,35] = 4.223, P = 0.0474). The effects of rearing
environment (native vs. common-garden F1 raised in the lab) were not significant
(CSD F[1,35] = 0.781, P = 0.383; CS:FS F[1,35] = 0.071, P = 0.792; CD F[1,35] =
1.688, P = 0.202; C:F F[1,35] = 0.517, P = 0.477). The interactions between
population and rearing environment were also not significant (CSD F[1,35] = 0.942, P
= 0.339; CS:FS F[1,35] = 1.337, P = 0.255; CD F[1,35] = 0.321, P = 0.575; C:F F[1,35]
= 0.430, P = 0.516). *Significant pairwise difference between highlanders and
lowlanders within an experimental group (native vs. F1). Native lowlanders, n = 12;
F1 lowlanders, n = 9; native highlanders, n = 8; F1 highlanders, n = 10.
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FIG. 4.
Capillarity in the gastrocnemius muscle is greater in highland deer mice than
expected from the variation in muscle oxidative phenotype. (A) There was a strong
linear correlation between capillary surface density (CSD) and the areal density of
oxidative fibers (AA(ox,m)) (CSD = 0.0540 AA(ox,m) + 0.0133, P < 0.001). Dashed
lines represent the 95% confidence intervals of the regression. Symbols are as
follows: F1 lab-raised lowlanders, black upwards triangles; native lowlanders, white
upwards triangles; F1 lab-raised highlanders, dark gray downwards triangles; native
highlanders, light gray downwards triangles. (B) There was a significant effect of
population altitude on the residual CSD from the regression in (A) (*F[1,35] = 5.558,
P = 0.024), but there was no significant effect of rearing environment (F[1,35] = 2.453,
P = 0.126) and no significant interaction between population and rearing
environment (F[1,35] = 0.337, P = 0.566).
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FIG. 5.

Correlated transcriptional modules. (A) Clustering of the 68 transcripts with
significant population effects into two transcriptional modules. (B) Clustering of 589
transcripts with significant effects of rearing environment into five transcriptional
modules.
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FIG. 6.
Altitudinal variation in the expression of transcriptional modules that are statistically
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associated with muscle phenotypic traits. Module expression was summarized using
PCA and PC1 scores are shown. There were significant effects of population altitude
on modules P2 (F[1,17] = 238.0, P < 0.001) and T5 (F[1,17] = 10.19, P = 0.005).
There was also a significant effect of rearing environment (native vs. common-
garden F1 raised in the lab) on module T5 (F[1,17] = 29.64, P < 0.001) but not
module P2 (F[1,17] = 0.937, P = 0.347). Transcriptional modules are shown in figure
5, and the genes that compose each module are presented in supplementary tables
S1 and S2, Supplementary Material online. *Significant pairwise difference between
highlanders and lowlanders within an experimental group (native vs. F1). Native
lowlanders, n = 6; F1 lowlanders, n = 5; native highlanders, n = 5; F1 highlanders, n =
5.
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Table 2.
Transcriptomic Modules Associated with Muscle Phenotypes.

Trait Associated modules

Total areal density of oxidative fibers P2*, T5

Total numerical density of oxidative fibers P2, T5

Areal density of fast oxidative fibers T5

Numerical density of fast oxidative fibers T5

Capillary density P2

Capillary surface density P2

Capillary surface per fiber surface P2*

NOTE.—The genes that comprise each module are presented in supplementary tables S1 and S2,
Supplementary Material online.

*Module phenotype associations that remain significant after Bonferroni correction for multiple
tests (P < 0.00045).
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FIG. 7.
Some individual genes involved in metabolism and angiogenesis were more highly
expressed in highlanders than in lowlanders. Reaction norms for gene expression
are shown with native environment on the left and lab environment on the right, and
data are shown relative to the average normalized read count for native lowlanders.
There was a statistically significant effect of population altitude on all genes shown
(see supplementary table S1, Supplementary Material online). The mean normalized
read counts (cpm) for native lowlanders were as follows: enoyl-CoA hydratase
(Ehhadh), 3.7; acetyl-Coenzyme A acyltransferase 1A (Acaa1a), 4.5; mitochondrial
creatine kinase 1 (Ckmt1), 2.9; mitochondrial ribosomal protein L22 (Mrpl22), 8.5;
aldehyde dehydrogenase 1A1 (Aldh1a1), 41.8; aldehyde dehydrogenase 1A7
(Aldh1a7), 20.2; mannose receptor C type 1 (Mrc1), 23.7; cadherin-7 (Cdh7), 3.8;
and Notch-4 (Notch4), 45.8. There were also significant effects of rearing
environment on Aldh1a1 and Cdh7 (†) (see supplementary table S2, Supplementary
Material online). n = 6 for all groups.
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Table 3.
Candidate Genes that Were Associated with Muscle Phenotypes.

Trait
Positive
Association

Negative Association

Areal density of oxidative
fibers

Tfam Fgf12, Pdgfra, Vegfc

Numerical density of
oxidative fibers

Ppargc1a Fgf12, Mmp2, Pdgfra, Pparg

Areal density of slow
oxidative fibers

Fgfr2, Mmp2, Mmp14,
Pdgfra, Tie1

Numerical density of slow
oxidative fibers

Fgfr2 * , Mmp2, Mmp13,
Mmp14, Pdgfra, Tie1

Type I fiber area Angpt1

Type IIa fiber area Pdgfa Fgf13, Fgf14

Type IIb fiber area
Pdgfd,
Vegfc

Fgf14

Capillary density Pdgfc, Ppara, Vegfa

Capillary to fiber ratio
Fgfr2, Mmp2, Mmp14,
Pdgfra,

Capillary surface density
Fgfr2, Ppara, Vegfb
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(CSD) Fgfr2, Ppara, Vegfb

Capillary surface per fiber
surface

Ppargc1a Fgfr2

Residual CSD Ppara, Vegfa, Vegfb

NOTE.—Residual CSDs are those calculated in figure 4.

*Association that remained significant after Bonferroni correction for multiple comparisons (P <
0.0001).
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FIG. 8.
There was a strong negative association between the expression of fibroblast growth
factor receptor 2 (Fgfr2) and the abundance of slow oxidative fibers. There was a
significant linear correlation between Fgfr2 transcript abundance and both the
numerical (R2 = 0.574, P = 0.0001) and areal (R2 = 0.446, P = 0.0013) densities of
slow oxidative fibers in the gastrocnemius muscle. Dashed lines represent the 95%
confidence intervals of the regression. Symbols are as follows: F1 lab-raised
lowlanders, black upwards triangles; native lowlanders, white upwards triangles; F1
lab-raised highlanders, dark gray downwards triangles; native highlanders, light gray
downwards triangles.
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