
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Faculty Publications in Computer & Electronics 
Engineering (to 2015) 

Electrical & Computer Engineering, Department 
of 

2007 

A Bayesian Multilevel Modeling Approach for Data Query in A Bayesian Multilevel Modeling Approach for Data Query in 

Wireless Sensor Networks Wireless Sensor Networks 

Honggang Wang 
University of Nebraska-Lincoln, hwang@unlnotes.unl.edu 

Hua Fang 
University of Nebraska-Lincoln, jfang2@unl.edu 

Kimberly A. Espy 
University of Nebraska-Lincoln, kespy2@unl.edu 

Dongming Peng 
University of Nebraska-Lincoln, dpeng2@unl.edu 

Hamid Sharif 
University of Nebraska-Lincoln, hsharif@unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/computerelectronicfacpub 

 Part of the Computer Engineering Commons 

Wang, Honggang; Fang, Hua; Espy, Kimberly A.; Peng, Dongming; and Sharif, Hamid, "A Bayesian Multilevel 
Modeling Approach for Data Query in Wireless Sensor Networks" (2007). Faculty Publications in 
Computer & Electronics Engineering (to 2015). 66. 
https://digitalcommons.unl.edu/computerelectronicfacpub/66 

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in 
Computer & Electronics Engineering (to 2015) by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerelectronicfacpub
https://digitalcommons.unl.edu/computerelectronicfacpub
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/computerelectronicfacpub?utm_source=digitalcommons.unl.edu%2Fcomputerelectronicfacpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerelectronicfacpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerelectronicfacpub/66?utm_source=digitalcommons.unl.edu%2Fcomputerelectronicfacpub%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages


859

Published in Y. Shi et al. (eds.), Lecture Notes In Computer Science, Vol. 4489; Proceedings of the 7th In-
ternational Conference on Computational Science, Part III: ICCS 2007, Beijing, China (2007), pp. 859–
866 Copyright © 2007 Springer-Verlag Berlin Heidelberg. Used by permission.

A Bayesian Multilevel Modeling Approach 
for Data Query in Wireless Sensor Networks

Honggang Wang,1 Hua Fang,2 Kimberly Andrews Espy,2  
Dongming Peng,1 and Hamid Sharif 1 

1 Department of Computer and Electronics Engineering, University of Nebraska–Lincoln,  
Omaha, NE  USA, 68124 {hwang, dpeng, hsharif}@unlnotes.unl.edu 

2 Office of Research, University of Nebraska–Lincoln, Lincoln, USA, 68588 {jfang2, kespy2}@unl.edu 

Abstract
In power-limited Wireless Sensor Network (WSN), it is important to reduce the 
communication load in order to achieve energy savings. This paper applies a novel 
statistic method to estimate the parameters based on the real-time data measured 
by local sensors. Instead of transmitting large real-time data, we proposed to trans-
mit the small amount of dynamic parameters by exploiting both temporal and spa-
tial correlation within and between sensor clusters. The temporal correlation is 
built on the level-1 Bayesian model at each sensor to predict local readings. Each 
local sensor transmits their local parameters learned from historical measurement 
data to their cluster heads which account for the spatial correlation and summa-
rize the regional parameters based on level-2 Bayesian model. Finally, the cluster 
heads transmit the regional parameters to the sink node. By utilizing this statisti-
cal method, the sink node can predict the sensor measurements within a specified 
period without directly communicating with local sensors. We show that this ap-
proach can dramatically reduce the amount of communication load in data query 
applications and achieve significant energy savings. 

Keywords: Bayesian Multilevel Modeling, Wireless Sensor Network. 

1 Introduction 

In most WSN applications, the typical scenario is to collect and transmit the mea-
sured data from each sensor to the centralized sink where the data will be processed 
and analyzed. However, sensor nodes might be far away from the sink and have to 
send tremendous real-time data by multiple hops to the sink, which consume signifi-
cant energy resources. Therefore, to save energy is to reasonably reduce the commu-
nication load from the local sensors to the sink. 

Statistical modeling techniques have been applied to sensor network query sys-
tems [1-3]. However, these studies did not support data queries with specified error 
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bound or clustering structure. Also, they undergo a heavyweight learning phase. Au-
toregressive multilevel Bayesian models have been widely used outside the wireless 
sensor network domain as a way to approximate and summarize time series in many 
application domains such as finance, communication, weather prediction [1415]. In 
this paper, we applied the multilevel Bayesian statistical model to predict sensor val-
ues based on multilevel clustering architecture instead of transmitting the real time 
data directly to sink by each sensor. These techniques take advantages of the recent 
historical readings to predict the most likely future values. It can drastically reduce 
the amount of communication from sensors to the sink, detect the abnormal data, and 
accommodate missing sensor data. 

Clustering techniques have also been used in WSN. Many clustering techniques 
such as K-mean, C-mean, or hierarchical clustering [4-8] have been proposed to im-
prove network performance and save energy in WSN. We propose a query-based 
two-level clustering structure with consideration of both temporal and spatial corre-
lation, which matches the generic WSN topology. In the following sections, we first 
present two-level network architecture and discuss the data query in section II. A de-
tailed multilevel Bayesian modeling approach to WSN data query is discussed in sec-
tion III. We demonstrate the advantages of our approach by the simulation in section 
IV. Conclusions are reached in the last section. 

2 Two Level Network Architecture and Data Query 

Hierarchical (clustering) techniques can aid in reducing useful energy consump-
tion [4]. In our proposed hierarchical network structure, the sensor with the high-
est number of neighbors was selected as the temporary cluster center. Other sen-
sors within a defined radius are then removed and the algorithm looks for a new 
sensor with the highest number of neighbors. This continues until most sensors are 
clustered. In our algorithm, the sensor in the cluster with the highest remaining en-
ergy is selected as the cluster head. Once the selected cluster heads run out of bat-
tery, the new cluster heads will be selected. By this approach, the network is formed 
into a two-level network architecture. Each sensor joins a local cluster group, form-
ing the level-1(i.e., the sensor level) structure; all the cluster heads form the second 
tier multi-hop network structure at the cluster level. In this two-level clustering-
based network structure, the typical data query application scenario is described as 
follows: When users submit a query to the sink, each sensor at level-1 senses the lo-
cal phenomena, sending the sample data to the cluster head. At level-2, the clus-
ter heads summarize these local data, sending them to the sink by one hop or mul-
tiple hops. However, in our approach, local sensors and cluster heads only transmit 
Bayesian model parameters inferred from the historical data instead of transmit-
ting the real-time readings to the sink. All user queries can be answered at the sink 
within the specified time interval. 

Our two level WSN model consists of a dynamic set of sensors denoted by S, and 
one sink node. This set of sensors form different clusters {S1,S2......Sn} and all clusters 
have dynamic cluster heads { Cs1, Cs2......Csn} by the algorithm we discussed above. 
Each sensor senses and performs readings on M physical phenomena metrics {M1, 
M2……Mn} over time. We assume that each sensor performs a reading on each Mi ev-



 Ba y e s i a n Mu l t i l e v e l Mo d e l i n g Ap p r o a c h f o r Da t a Qu e r y    861

ery T time units. Queries are executed at the sink. The typical query forms are de-
signed as follows: 

SELECT  Sensors  WHERE R(M1, M2....Mn) ERROR X CONFIDENCE d% Where REGION =Region1

where RM(M1, M2....Mn) predicted the values of M1, M2....Mn based on the multi-
level modeling. X represents an error bound required by the user in the query. The 
d% is confidence ratio that denotes at least of d% the readings should be within X 
of their true value, and REGION gives geographical location restrictions of sensor 
groups. 

3 Bayesian Multilevel Modeling in WSN 

In this paper, the Bayesian multilevel modeling approach is applied for this two-
level generic WSN architecture. The time series measurement model is at level-1 and 
the Bayesian parameters are transmitted to its cluster head. All cluster heads collect 
these parameters, inferring the level-2 Bayesian parameters at the cluster level and 
transmitting them to the sink. When users submit a data query, the sink predictor can 
answer it within the specified time period. 

The level-1 model is expressed as 

	 (1) 

where Ytij
L1 denotes the level-1 (L1) measurement outcomes (e.g., temperature or hu-

midity) at time t for senor i in cluster j; β0i j is the initial status of sensor i of cluster j; 
β1ij and β2ij denote the change rates and acceleration rates associated with time T and 
quadratic term T2, respectively. The level-1 errors, etij, are normally distributed with 
mean of 0 and covariance matrix ∑ under first-autoregressive assumption (AR(1)) 
which consists of variance, 2, and covariance of 

	 (2)

where |t – t’| is the lag between two time points; ρ is the auto-correlation and 2 is 
the level-1 variance at each time point. In Bayesian notation, the observer data, Y are 
distributed according to f (Y| B, Σ ) , where f is the normal density, B denotes the β pa-
rameters. The outcomes Ytij

L1 are assumed independently normally distributed with 
mean of 

	 (3)

and the covariance matrix Σ. The level-2 model is expressed as 
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(4)

In Bayesian notation, this specifies the prior p(BL2| Λ, G) where BL2 are the level-
2 (L2) outcomes, containing the same β parameters (3×1) as shown in level-1 model, 
representing the initial status, linear change rate and acceleration (or deceleration) 
rate of individual sensor i of cluster j; Λ is a (3×q) matrix of γ parameters, represent-
ing the average initial status (e.g., the initial temperature or humidity) (γ00 j), linear 
change rates (γ10j) and the acceleration rates (γ20j) of cluster j, as well as other γ pa-
rameters associated with level-2 q×1 predictors (X) , collected by cluster head j; u de-
notes level-2 random effects (or random errors), multivariately and normally distrib-
uted with a mean vector of 0 and G covariance matrix.

The Bayesian method requires to know the joint distribution of the data Y and un-
known parameters, θ, which denotes both fixed coefficients γ and covariance matrix ψ 
(including G and Σ) in our study. The joint distribution can be written as: 

	 (5)

where P (θ) is called the prior and P (Y|θ) is called the likelihood. As we observed the 
data Y, Bayes’ Theorem was used to get the posterior distribution as follows: 

	 (6)

specifically,

	 (7)

As the parameters γ are of primary interest, we have 

	 (8)

In general, analytically performing the above integration has been a source of dif-
ficulty in application of Bayesian inference and often Markov Chain Monte Carlo 
(MCMC) simulation is one way to evaluate the integrals. In this study, we used one of 
MCMC procedures, Metropolis-Hastings sampling procedure, to implement this ap-
proximation [16-18]. 
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4 Simulation and Analysis 

We used SAS software [10] to simulate and test our approach. Our simulation 
was based on 50 random deployed sensors. With our clustering algorithm, all sensors 
form Cluster A and B. Cluster A has 20 sensors deployed while Cluster B has 30 sen-
sors. The temperature data were collected at different clusters across different areas 
with a significant temperature difference. In our simulation, we used the first order 
radio model presented in [4]. In the specified radio model, the radio dissipates Eelec = 
50 nJ/bit to run the transmitter or receiver circuitry and Eamp = 100 pJ/bit/m2 for the 
transmit amplifier. To transmit a k-bit message a distance d meters, ETx was used by 
sensors. To receive a message, the sensors spent ER . 

	
(9)

	
(10)

After the clusters were formed and cluster heads were selected, the sink calcu-
lated the routing hops among cluster heads. In addition, an index matrix was created 
for time, area and sensor IDs. The two measured areas represented by the two sensor 
class heads were coded as 0 and 1, respectively. Individual sensors (IDs) were consid-
ered nested within each cluster represented by corresponding cluster heads, for in-
stance, sensor IDs ranged from 1 to 20 for Class Head 1, and 21 to 50 for Class Head 
2. Time started from 0 and extended to the assumed 14.5 hours with 0.5 hour interval. 
Based on Model (4), a univariate response vector of yti was created. For example, each 
sensor might have had 30 half-hour time points and one cluster had 20 sensors while 
the other had 30 sensors. The data generator [11-12] was validated with parameter es-
timates from Potthoff and Roy’s data[13]. Table 1 presents partial local parameters 
generated by each sensor at level-1, to be transmitted to the cluster heads. 

Table 1. Selected Model Parameters at Sensor Level 

	 Sensor	 Sensor
Parameters	 ID	 Estimates	 Parameters	 ID	 Estimates

Intercept	 5	 669.59662	 Intercept	 23	 79.86074

Slope	 5	 0.307631	 Slope	 23	 0.590479

Acceleration/	 5	 -0.00325	 Acceleration/	 23	 -0.00355
Deceleration			   Deceleration

Intercept	 6	 69.50936	 Intercept	 24	 80.6984

Slope	 6	 0.403908	 Slope	 24	 0.348969

Acceleration/	 6	 -0.00203	 Acceleration/	 24	 -0.00375
Deceleration			   Deceleration
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Similarly, Table 2 shows the level-2 Bayesian model parameters based on the lo-
cal colleted data, to be transmitted to the sink. The parameters β0, βs, and βa represent 
the initial temperature, linear change rate and deceleration rate at the two areas, re-
spectively. Based on these parameters, the sink predicts the next half hour tempera-
ture value. 

Table 3 gives partial predicted temperatures at the sink with error bound and con-
fidential interval, which responds to the queries submitted by the user at the sink. 

Figure 1 (a) indicates the predicted temperature values of 20 sensors at each .5 
hour in Cluster A and the solid red line represents the estimated temperature by Clus-
ter Head A over 14.5 hours. Figure 1(b) presents the predicted temperature of each 
sensor and the green line is the temperature trajectory estimated at the correspond-
ing cluster head in Cluster B within the same time interval. To show the significant 
temperature difference in the two areas, we compare the estimated temperature of the 
two areas in Figure 1 (c). 

Figure 1(d) presents the residuals of the predicted values of each sensor. We 
found that all the predicted values were controlled within the ± 1.5 standard devia-
tion. This simulation shows that our approach can satisfy the user controllable error 
bound requirements. We also compared the energy consumption with the general ap-
proach based on 50 random deployed sensors based on equation (9) and (10) within 
14.5 hours time interval. We compared the general data aggregation approach with 
our multilevel Bayesian approach in the same WSN topology and found that our ap-
proach has slightly higher energy consumption than General Data aggregation ap-
proach in the initial 1.5 hour time window. That is because the Bayesian model needs 

Table 2. Model Parameters at Cluster Level 

                                       Cluster Head 1	                                                  Cluster Head 2 

	 β	 SE	 95% CI	 β	 SE	 95% CI

β0	 69.980	 0.128	 (69.729, 70.231)	 80.187	 0.109	 (79.973, 80.401)
βs	 0.307	 0.025	 (0.258, 0.356)	 0.448	 0.024	 (0.401, 0.495)
βa	 -0.003	 0.001	 (-0.00496, -0.00104)	 0.003	 0.001	 (0.001, 0.005)

Table 3. Selected Predicted Values with Error Bounds at Sink

	 95% Confidence
	 Interval
	 Time		  Predicted		  Lower	 Higher
Region	 (hour)	 Cluster	 Temperature	 SE	 Bound	 Bound

0	 8	 1	 74.15	 0.0773	 74.00	 74.30 
0	 8.5	 1	 74.30	 0.1164	 74.08	 74.53 
0	 9	 1	 74.56	 0.1432	 74.28	 74.84 
0	 9.5	 1	 74.65	 0.1492	 74.36	 74.95 
0	 10	 1	 74.73	 0.1578	 74.42	 75.04 
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to transmit more parameters than real temperature data at the beginning, however, 
with longer time period (1.5-14.5 hours), our approach has achieved significantly less 
energy consumption than the linear-increasing energy consumption of the General 
Data Aggregation approach when no parameters update is needed. 

5 Conclusions 

In this paper, we proposed a multilevel Bayesian modeling approach to the query 
application in the WSN multilevel architecture, utilizing both temporal and spatial 
correlation to predict parameters at different levels. Our approach relies mostly on lo-
cal Bayesian models computed and maintained at each sensor. In order to adapt the 
local model to variations in the data distribution, each sensor continuously maintains 
its local model, and notifies the sink only of significant changes. As we showed, our 

Figure 1. Predicted values of each sensor against estimated value by each cluster head in two ar-
eas over 14.5 hours
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approach can provide a significant reduction in communication load over the existing 
general data aggregation approach, and can also effectively predict future values with 
controllable error bounds. By using this approach, significant energy consumption is 
saved in typical data query applications. 
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