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npcure: An R Package for Nonparametric
Inference in Mixture Cure Models
by Ana López-Cheda, M. Amalia Jácome, Ignacio López-de-Ullibarri

Abstract Mixture cure models have been widely used to analyze survival data with a cure fraction.
They assume that a subgroup of the individuals under study will never experience the event (cured
subjects). So, the goal is twofold: to study both the cure probability and the failure time of the
uncured individuals through a proper survival function (latency). The R package npcure implements a
completely nonparametric approach for estimating these functions in mixture cure models, considering
right-censored survival times. Nonparametric estimators for the cure probability and the latency as
functions of a covariate are provided. Bootstrap bandwidth selectors for the estimators are included.
The package also implements a nonparametric covariate significance test for the cure probability,
which can be applied with a continuous, discrete, or qualitative covariate.

Introduction

In classical survival analysis, it is assumed that all the individuals will eventually experience the
event of interest. However, there are many contexts in which this assumption might not be true.
Noticeable examples are the lifetime of cancer patients after treatment, time to infection in a risk
population, or time to default in credit scoring, among many others. Cure models are a stream of
methods recently developed in survival analysis that take into account the possibility that subjects
could never experience the event of interest. See Maller and Zhou (1996) for early references and
Amico and Van Keilegom (2018) for an updated review.

Let X be a set of covariates and Y the time to the event of interest with conditional survival
function S (t|x) = P (Y > t|X = x). Mixture cure models, initially proposed by Boag (1949), consider
the population as a mixture of two types of subjects: the susceptible of experiencing the event if
followed for long enough (Y < ∞) and the cured ones (Y = ∞). Hence, the survival function of Y can
be written as

S (t|x) = 1 − p (x) + p (x) S0 (t|x) ,

where 1 − p (x) = P (Y = ∞|X = x) = limt→∞ S (t|x) is the cure probability, and the (proper) survival
function of the uncured subjects or latency is S0 (t|x) = P (Y > t|Y < ∞, X = x). A major advantage of
these models over the non-mixture approach is that they allow the covariates to have different effect
on cured and uncured individuals.

The cure probability, 1 − p (x), is usually estimated parametrically by assuming a logistic form
log (p (x) / (1 − p (x))) = β′x, with β a parameter vector. Estimation of S0 (t|x) can be done by
assuming a particular parametric distribution for the failure time of the uncured subjects, or more
generally, by applying, e.g., proportional hazards (PH) or accelerated failure time (AFT) assumptions.
These two approaches lead to parametric (see, e.g., Farewell, 1982, 1986; Denham et al., 1996) or
semiparametric (see, e.g., Kuk and Chen, 1992; Peng et al., 1998; Peng and Dear, 2000; Li and Taylor,
2002) mixture cure models.

An attractive feature of parametric and semiparametric models is that they provide close expres-
sions for relevant parameters and functions. On the other hand, the sound inference is guaranteed
only if the chosen model fits the data suitably. A problem with these methods is that the parametric
assumptions may be incorrect. For example, regarding the cure rate 1 − p (x), there is no reason to
believe that the cure rate is monotone in x, let alone that it follows a logistic model. To solve this hassle,
Müller and Van Keilegom (2019) propose a test statistic to assess whether the cure rate, as a function
of X, satisfies a certain parametric model. As for the latency function, S0 (t|x), it is difficult to verify
the distributional assumptions of the model. The goodness of fit for the latency function has only
been addressed in settings without covariates and in an informal way (Maller and Zhou, 1996). The
challenge of developing procedures for testing the parametric form of the conditional survival function
of the uncured with covariates is even more ambitious. It would lead to curse-of-dimensionality
problems and remains an open question.

As a result of the increasing demand for the use of cure models, the number of packages in R
accounting for the possibility of cure in survival analysis has grown significantly over the last decade:
see the CRAN task view on survival analysis (https://CRAN.R-project.org/view=Survival). The
smcure package (Cai et al., 2012) fits the semiparametric PH and AFT mixture cure models (see
Kalbfleisch and Prentice, 2002). Besides, the NPHMC package (Cai et al., 2013) allows to calculate
the sample size of a survival trial with or without cure fractions. More recently, the flexsurvcure
package (Amdahl, 2017) provides flexible parametric mixture and non-mixture cure models for time-
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to-event data, and the rcure package (Han et al., 2017) incorporates methods related to robust cure
models for survival data which include a weakly informative prior in the logistic part. The geecure
package (Niu and Peng, 2018) features the marginal parametric and semiparametric PH mixture
cure models for analyzing clustered survival data with a possible cure fraction. Furthermore, the
miCoPTCM package (Bertrand et al., 2020) fits semiparametric promotion time cure models with
possibly mis-measured covariates, while the mixcure package (Peng, 2020) implements parametric and
semiparametric mixture cure models based on existing R packages. For interval-censored data with a
cure fraction, the GORcure package (Zhou et al., 2017) implements the generalized odds rate mixture
cure model, including the PH mixture cure model and the proportional odds mixture cure model as
special cases. The intercure package (Brettas, 2016) provides an implementation of semiparametric
cure rate estimators for interval-censored data using bounded cumulative hazard and frailty models.

In contrast with (semi)parametric procedures, nonparametric methods do not rely on data belong-
ing to any particular parametric family or fulfilling any parametric assumption. They estimate the goal
functions without making any assumptions about its shape, so they have much wider applicability
than alternative parametric methods. A completely nonparametric mixture cure model must consider
purely nonparametric estimators for both the cure rate, 1 − p(x), and latency function, S0 (t|x). Unlike
the (semi)parametric approach, nonparametric mixture cure models have been under study only
in recent years. Laska and Meisner (1992), building on the Kaplan-Meier (KM) product-limit (PL)
estimator of the survival function S (t) = P (Y > t) (Kaplan and Meier, 1958), derive nonparametric
estimators of the cure rate and latency function, but their model does not allow for covariates. More
recently, Xu and Peng (2014) propose a nonparametric estimator of the cure rate with one or more
covariates, showing its consistency and asymptotic normality. This estimator was further studied by
López-Cheda et al. (2017a), who, besides proving that it is the maximum likelihood nonparametric
estimator of the cure probability, also obtain an i.i.d. representation and proposed a bootstrap-based
bandwidth selector. As for the latency function, López-Cheda et al. (2017b) introduce a completely
nonparametric estimator, studied some theoretical properties, and proposed a bandwidth selector
based on the bootstrap.

Although some of the aforementioned packages have a nonparametric flavor, their approach to
mixture cure modeling is not completely nonparametric. Our R package npcure (López-de-Ullibarri
et al., 2020) fills the gap by providing implementations of the nonparametric estimator of the cure rate
function proposed by Xu and Peng (2014) (further studied by López-Cheda et al., 2017a) and of the
nonparametric estimator of the latency function proposed by López-Cheda et al. (2017b).

Furthermore, the generalized PL estimator of the conditional survival function, S (t|x), proposed
by Beran (1981), is implemented. Note that the estimators of the cure rate and latency implemented in
npcure relate strongly to Beran estimator. In any case, Beran estimator is of outstanding importance by
its own, as evidenced by the variety of R packages with functions for computing it, like, e.g., Beran() in
package condSURV (Meira-Machado and Sestelo, 2016), prodlim() in package prodlim (Gerds, 2018)
and Beran() in package survidm (Meira-Machado et al., 2019). The function in our package compares
advantageously with the aforementioned functions with respect to the issue of bandwidth selection.
This smoothing parameter plays an essential role in the bias-variance tradeoff of every nonparametric
smoothing method. In Dabrowska (1992), an expression for the bandwidth minimizing the asymptotic
mean squared error (MSE) of this estimator was obtained, and a plug-in bandwidth selector was
proposed based on suitable estimators of the unknown functions in that expression. However, the
performance of this bandwidth selector is unsatisfying for small sample sizes, and a cross-validation
(CV) procedure is usually preferred (see Iglesias-Pérez, 2009; Gannoun et al., 2007, among others).
Recently, Geerdens et al. (2017) propose an improved CV bandwidth selector, especially with a high
censoring rate. To the best of our knowledge, there are not any R packages allowing to compute Beran
estimator with a suitable bandwidth selector: while the condSURV and survidm packages do not
consider any bandwidth selectors, the prodlim package uses nearest neighborhoods as the smoothing
parameter. The npcure package, available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=npcure, fulfills this need with the implementation of the CV
bandwidth selector for the Beran estimator in Geerdens et al. (2017).

In this paper, we explain how the npcure package can be used in the context of nonparametric
mixture cure models with right-censored data. The main objective is to estimate the cure probability
and latency functions, as well as to perform covariate significance tests for the cure rate. In the
next section, we describe our approach to nonparametric estimation in mixture cure models. The
methodology applied in the covariate significance tests is presented in another section. Two sections
follow, devoted respectively to explain the package functions and to illustrate their use with an
application to a medical dataset.
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Nonparametric estimation in mixture cure models

One of the specificities of time-to-event data is related to the presence of individuals that have not
experienced the event by the end of the study. The observed survival times of these individuals are
said to be right-censored and underestimate the true unknown time to the occurrence of the event.
This situation is usually modeled by considering a censoring variable C, with distribution function
G, which is conditionally independent of Y given the covariate X. The observed data are then
{(Xi, Ti, δi) : i = 1, . . . , n}, where T = min (Y, C) is the observed lifetime and δ = 1 (Y ≤ C) is the
uncensoring indicator. For a one-dimensional continuous covariate X, Xu and Peng (2014) propose
the following nonparametric kernel-type estimator of the cure rate:

1 − p̂h (x) =
n

∏
i=1

(
1 −

δ[i]Bh[i](x)

∑n
r=i Bh[r](x)

)
= Ŝh(T

1
max|x), (1)

where, for i = 1, . . . , n, δ[i] and X[i] are the concomitant status indicator and covariate corresponding
to the ith ordered time T(i), and

Bh[i](x) =
Kh

(
x − X[i]

)
∑n

j=1 Kh

(
x − X[j]

) (2)

are the Nadaraya-Watson weights, where Kh(·) = 1
h K
( ·

h
)

is a rescaled kernel with bandwidth h → 0.
Although some different kernel functions could be considered, the Epanechnikov kernel, defined as

K(u) =
3
4
(1 − u2)1(|u| ≤ 1),

is the one implemented in the npcure package. Moreover, Ŝh is the estimator of the conditional survival
function S in Beran (1981), and T1

max = max{i:δi=1} Ti is the largest uncensored failure time. Xu and
Peng (2014) prove the consistency and asymptotic normality of the estimator in (1), and López-Cheda
et al. (2017a) show that it is the local maximum likelihood estimator of the cure rate, and obtained an
i.i.d. representation and an asymptotic expression for the MSE.

The nonparametric latency estimator proposed by López-Cheda et al. (2017a), and further studied
in López-Cheda et al. (2017b), is:

Ŝ0,b (t|x) =
Ŝb (t|x)− (1 − p̂b(x))

p̂b (x)
, (3)

where Ŝb is the PL estimator of the conditional survival function S (Beran, 1981) and p̂b is the estimator
in (1). As in the case of the cure rate estimator, a smoothing parameter b, not necessarily equal to h, is
needed to compute Ŝ0,b in (3).

Consistency of the nonparametric estimators

The proposed nonparametric estimators of both the cure rate and latency are consistent under the
general condition (see Laska and Meisner, 1992; Maller and Zhou, 1992; López-Cheda et al., 2017a,b)

τ0 ≤ τG(x), (4)

where τ0 = supx τ0(x), and τ0(x) = sup{t ≥ 0 : S0 (t|x) > 0} and τG(x) = sup{t ≥ 0 : G (t|x) < 1}
are the right endpoints of the support of the conditional distribution of the uncures and the censoring
variable, respectively.

The condition in (4) ensures 1 − p (x) and S0 (t|x) to be consistently estimated when there is zero
probability that a susceptible individual survives beyond the largest possible censoring time, τG (x).
Since T1

max converges to τ0 in probability (see Xu and Peng, 2014), assumption (4) guarantees that,
asymptotically, all times observed after the largest uncensored survival time, T1

max, can be assumed to
correspond to cures.

Under condition (4), S0 (τG(x)|x) = 0 and, for large n, the cure rate estimator in (1) tends to a
nonparametric estimator of S (τG (x) |x) = 1 − p(x) + p(x)S0 (τG(x)|x) = 1 − p(x). However, if there
could be uncured individuals surviving beyond τG(x), then S0 (τG(x)|x) > 0 and the estimator in
(1) would estimate S (τG(x)|x) = 1 − p(x) + p(x)S0 (τG(x)|x) > 1 − p(x). This might happen, for
example, in a clinical trial with fixed maximum follow-up time.

These comments emphasize that care must be exercised in choosing the length of follow-up if

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 24

cures might be present since too much censoring or insufficient follow-up time could lead to erroneous
conclusions. For example, if the last observation is uncensored, then, even if there is considerable late
censoring, the estimated cure rate is 0. To avoid these difficulties, particularly with heavy censoring,
reasonably long follow-up times and large sample sizes may be required. In this way, S0 (τG(x)|x) is
sufficiently small for the cure rate estimator in (1) to be close enough to 1 − p(x).

Thus, when estimating 1 − p(x) and S (t|x) for a given x with a data set, it is important to be
confident that τ0 ≤ τG(x). In any case, if the censoring distribution G(t|x) has a heavier tail than
S0 (t|x), the cure rate estimates computed with the nonparametric estimator in (1) will tend to have
smaller biases regardless of the value of τ0(x) (see Xu and Peng, 2014). Maller and Zhou (1992) propose
a simple nonparametric test to assess condition (4). The procedure is based on the length of the interval
(T1

max, T(n)], i.e., the right tail of the KM estimate where it has a constant value. A long plateau with
heavy censoring at the right tail of the KM curve is interpreted as evidence that follow-up time has
been long enough to conclude that condition (4) holds.

Bandwidth selection

The nonparametric estimators in (1) and (3) depend on two smoothing parameters, h and b, respectively.
Bootstrap-based selectors for the bandwidth h of the cure rate estimator and the bandwidth b of
the latency estimator are proposed by López-Cheda et al. (2017a) and López-Cheda et al. (2017b),
respectively. The bandwidths are locally chosen so that the selected bandwidths hx and bx depend on
the point x of estimation. Using locally adaptive bandwidths instead of global ones is advantageous
because they adapt to the structure of the underlying function, differentially smoothing its flat and
peaky parts.

For a fixed value x, the bootstrap bandwidth of the cure estimator, h∗x, was introduced by López-
Cheda et al. (2017a) as the minimizer of the bootstrap MSE, approximated with B resamples as follows:

MSE∗
x(hx) ≃

1
B

B

∑
b=1

(
p̂∗b

hx
(x)− p̂gx (x)

)2
, (5)

where p̂∗b
hx
(x) is the estimator of p(x) in (1) computed with

{(
X∗b

i , T∗b
i , δ∗b

i

)
: i = 1, . . . , n

}
(the bth

bootstrap resample), and using the local bandwidth hx, and p̂gx (x) is computed with the original
sample {(Xi, Ti, δi) : i = 1, . . . , n}, and the local pilot bandwidth gx.

With respect to the latency estimator in (3), López-Cheda et al. (2017b) propose to choose the
bandwidth bx locally with a bootstrap bandwidth selector. The bootstrap bandwidth of the latency
estimator, b∗x , is taken as the minimizer of the bootstrap mean integrated squared error (MISE):

MISE∗
x(bx) ≃

1
B

B

∑
b=1

∫ u

0

(
Ŝ∗b

0,bx
(t|x)− Ŝ0,gx (t|x)

)2
dt, (6)

where Ŝ∗b
0,bx

(t|x) is the nonparametric estimator of S0 (t|x) in (3) computed with the bth bootstrap
resample and local bandwidth bx, Ŝ0,gx (t|x) is the same estimator obtained using the original sample
and a local pilot bandwidth gx, and u is an adequately chosen upper bound of the integral.

For a fixed covariate value x, the procedure for obtaining the bootstrap bandwidth selector of hx
for p̂hx (x) (respectively, bx for Ŝ0,bx (t|x)) is as follows:

1. Generate B bootstrap resamples
{(

X∗b
i , T∗b

i , δ∗b
i

)
: i = 1, . . . , n

}
, for b = 1, . . . , B.

2. Consider a search grid of bandwidths hl ∈ {h1, . . . , hL}. For b = 1, . . . , B and l = 1, . . . , L,
compute the nonparametric estimator p̂∗b

hl
(x) (respectively, the nonparametric latency estimator,

Ŝ∗b
0,hl

(t|x)) with the bth bootstrap resample and bandwidth hl .

3. Compute the nonparametric estimator p̂gx (x) (respectively, the nonparametric latency estimator
Ŝ0,gx (t|x)) with the original sample and pilot bandwidth gx.

4. For each bandwidth hl ∈ {h1, . . . , hL}, compute the Monte Carlo approximation of MSE∗
x(hl) in

(5), (respectively, the Monte Carlo approximation of MISE∗
x(hl) in (6)).

5. The bootstrap bandwidth h∗x for the cure rate estimator (respectively, b∗x for the latency estimator)
is the minimizer of the Monte Carlo approximation of MSE∗

x(hl) (respectively, MISE∗
x(hl)) over

the grid of bandwidths {h1, . . . , hL}.

Following López-Cheda et al. (2017a) and López-Cheda et al. (2017b), the bootstrap resamples in
Step 1 are generated considering the following procedure, which is equivalent to the simple weighted
bootstrap proposed by Li and Datta (2001) without resampling the covariate X:
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I. Generate X∗
1 , . . . , X∗

n by fixing X∗
i = Xi, i = 1, . . . , n.

II. For each i, compute the weighted empirical distribution F̂gX∗
i

(
t, δ|X∗

i
)

with the original sample,

where F̂gx (t, δ|x) = ∑n
i=1 Bgx i(x)1 (Ti ≤ t, δi ≤ δ) and Bgx i(x) is computed with a local pilot

bandwidth gx (see (7) below).

III. For each i, generate the pair
(
T∗

i , δ∗i
)

from the weighted empirical estimator F̂gX∗
i

(
t, δ|X∗

i
)

of the
conditional distribution.

López-Cheda et al. (2017a) and López-Cheda et al. (2017b) show that the effect of the pilot
bandwidth on the bootstrap bandwidth selectors of hx and bx is considerably low. Consequently, the
same expression for the pilot bandwidth, gx, is used in Step II of the bootstrap resampling procedure
and in the approximation of the MSE∗

x in (5) for the selection of the bandwidth hx of the cure rate
estimator (respectively, in the approximation of the MISE∗

x in (6) for the bandwidth bx of the latency
estimator):

gx =
d+k (x) + d−k (x)

2
1001/9n−1/9, (7)

where d+k (x) (respectively, d−k (x)) is the distance from x to the kth nearest neighbor on the right
(respectively, on the left). If there are not at least k neighbors on the right (or left), we use d+k (x) =
d−k (x). López-Cheda et al. (2017a) show that a good choice for the parameter k is to consider k = n/4.
The order n−1/9 satisfies the conditions in Theorem 1 of Li and Datta (2001) and coincides with the
optimal order for the pilot bandwidth obtained by Cao and González-Manteiga (1993) in the case
without censoring.

When selecting locally adaptive bandwidths, the results might look a little bit spiky due to its local
nature (see, e.g., Brockmann et al., 1993, on local bandwidth selection for kernel regression estimators).
That could be the case for the bootstrap bandwidths for both the cure rate and latency functions. To
get rid of the fluctuation of these local bandwidths, hx and bx can be further smoothed, for example,
by computing a centered moving average of the unsmoothed vector of bandwidths as in López-Cheda
et al. (2017a).

Covariate significance tests

In medical studies, it is usually important to assess whether the cure probability depends on a specific
covariate, X. Noting that the cure rate can be interpreted as the regression function E (ν|X = x) =
1 − p(x), where ν is the indicator of cure, the question can be cast in the form of a hypothesis test:{

H0 : E (ν|X) = 1 − p
H1 : E (ν|X) = 1 − p(X)

. (8)

Although there are some parametric approaches to deal with this hypothesis testing problem (see
Müller and Van Keilegom, 2019, among others), the only completely nonparametric method was
introduced by López-Cheda et al. (2020). Their procedure is based on the test for selecting explanatory
variables in nonparametric regression described by Delgado and González-Manteiga (2001). The
greatest advantage of the proposed significance test for the cure rate is that although the test is
completely nonparametric, no smoothing parameters are required to test (8).

The main challenge when testing (8) is that the cure indicator, ν, is only partially known due to
censoring: complete observations are known to be uncured (ν = 0), but censored observations might
be either cured or uncured (i.e., ν is unknown). Under right censoring, all of the cured individuals
and some of the uncured ones will be censored. This makes it difficult to guess whether a censored
observation belongs to the cured or uncured subpopulation. López-Cheda et al. (2020) solved this
situation by replacing the unknown and inestimable response variable ν in (8) by an unknown but
estimable response η with the same conditional expectation as ν:

η =
ν (1 − 1(δ = 0, T ≤ τ))

1 − G (τ|X)
, (9)

where τ is an unknown time beyond which a lifetime might be assumed to be cured. López-Cheda
et al. (2020) propose to estimate η by replacing G and τ with suitable nonparametric estimators. The
censoring distribution is estimated with the generalized PL estimator by Beran (1981) computed with
the cross-validation (CV) bandwidth selector in Geerdens et al. (2017) when X is continuous and with
the stratified KM estimator with the same bandwidth selector otherwise. The cure threshold, τ, is
estimated as τ̂ = T1

max, the largest uncensored observed time. The expression of η in (9) avoids the
need for an estimator of the unknown cure indicator, ν, since if δi = 1 or (δi = 0, Ti < τ̂) then η̂i = 0,
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whereas if (δi = 0, Ti ≥ τ̂) then η̂i = 1/
(
1 − Ĝ(τ̂|Xi)

)
. It is easy to check that E (ν|X) = E (η|X) if the

conditional censoring distribution G (t|x) is independent of the cure status.

Finally, building on Delgado and González-Manteiga (2001) and using the estimated values of η in
(9), the significance test proposed by López-Cheda et al. (2020) is based on the process:

Un(x) =
1
n

n

∑
i=1

η̂i −
1
n

n

∑
j=1

η̂j

 1 (Xi ≤ x) . (10)

Cramér-von Mises (CM) or Kolmogorov-Smirnov (KS) test statistics can be used:

CMn =
n

∑
i=1

U2
n(Xi),

KSn = max
i=1,...,n

n1/2|Un(Xi)|. (11)

Note that if X is a nominal variable, it is impossible to compute the indicator function in (10). In this
case, López-Cheda et al. (2020) propose to consider all the possible ‘ordered’ permutations of the
values of X and to compute Un(x) according to the ‘ordering’ of each permutation. The values of the
CM and KS test statistics are given by the maximum of the values CMn and KSn computed along with
all the permutations.

The distribution of the CM and KS statistics under the null hypothesis is approximated by boot-
strap, according to the following steps:

A. Obtain X∗
i , i = 1, . . . , n, by randomly resampling with replacement from {X1, . . . , Xn}.

B. Estimate the probability of cure under H0 as 1 − p̂ = ŜKM
n
(
T1

max
)
, with ŜKM

n the KM estimator
of the survival function S(t) = P (Y > t). For i = 1, . . . , n:

B.1. Compute Ŝ0,b
(
t|X∗

i
)
, a nonparametric estimator of the latency S0

(
t|X∗

i
)
, with the original

sample. Set Y∗
i = ∞ with probability 1 − p̂, and draw Y∗

i from Ŝ0,b(t|X∗
i ) with probability

p̂.

B.2. Generate C∗
i from a nonparametric estimator of G

(
t|X∗

i
)

with the original sample.

B.3. Compute T∗
i = min

(
Y∗

i , C∗
i
)

and δ∗i = 1
(
Y∗

i ≤ C∗
i
)
.

C. With the bootstrap resample
{(

X∗
i , T∗

i , δ∗i
)

: i = 1, . . . , n
}

compute η̂∗
i for i = 1, . . . , n.

D. With
{(

η̂∗
i , X∗

i
)

: i = 1, . . . , n
}

, compute the bootstrap versions of Un in (10) and the correspond-
ing CM and KS statistics, CM∗

n and KS∗
n.

E. Repeat Steps A-D above B times in order to generate B values of the CM and KS statistics,{
CM∗1

n , . . . , CM∗B
n
}

and
{

KS∗1
n , . . . , KS∗B

n
}

.

F. The p-value of the CM (respectively, KS) test is approximated as the proportion of values{
CM∗1

n , . . . , CM∗B
n
}

larger than CMn (respectively,
{

KS∗1
n , . . . , KS∗B

n
}

larger than KSn).

Note that nonparametric estimators of the conditional functions S0 (t|x) and G (t|x) are required in
Step B. Following López-Cheda et al. (2020), if X is continuous, then S0 (t|x) and G (t|x) are estimated
with the nonparametric estimator in (3) and the generalized PL estimator in Beran (1981), respectively,
and with the corresponding stratified unconditional estimators otherwise.

The npcure package: structure and functionality

The npcure package provides several functions to model nonparametrically survival data with a
possibility of cure. Table 1 contains a compact summary of the available functions. The estimators of
the cure rate and latency functions, discussed in the section "Nonparametric estimation in mixture cure
models", are implemented by probcure() and latency(), respectively. The functions probcurehboot()
and latencyhboot() compute bootstrap bandwidths for these estimators. Another function deserving
mention in this context is beran(), which computes the generalized PL estimator of the conditional
survival function S (t|x). A CV bandwidth for use with beran() is returned by berancv(). Given the
computational burden of the procedures implemented by the aforementioned functions, all of them
make extensive use of compiled C code. The significance test introduced in the previous section is
carried out by testcov(), and testmz() performs the nonparametric test of Maller and Zhou (1992).
Next, a detailed account of the usage of all these functions is provided.

The estimation functions in npcure are restricted to one-dimensional continuous covariates. The
Epanechnikov kernel is used in the smoothing procedures. Nonparametric estimation with discrete or
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Function Description

beran Computes Beran’s estimator of the conditional survival function.
berancv Computes the CV bandwidth for Beran’s estimator of the conditional

survival function.
controlpars Sets the control parameters of the latencyhboot() and

probcurehboot() functions.
hpilot Computes pilot bandwidths for the nonparametric estimators of the

cure rate and the latency.
latency Computes the nonparametric estimator of the latency.
latencyhboot Computes the bootstrap bandwidth for the nonparametric estimator

of the latency.
print.npcure Method of the generic function print for ‘npcure’ objects.
probcure Computes the nonparametric estimator of the cure rate.
probcurehboot Computes the bootstrap bandwidth for the nonparametric estimator

of the cure rate.
summary.npcure Method of the generic function summary for ‘npcure’ objects.
testcov Performs covariate significance tests for the cure rate.
testmz Performs the nonparametric test of Maller and Zhou (1992).

Table 1: Summary of the functions in the npcure package.

categorical variables could be dealt with as in other kernel smoothing procedures. A simple approach
is to split the sample into a number of subsets according to the covariate values. When the size of the
subsamples is not too small, valid unconditional estimates of the cure probability and latency can be
computed. Another alternative is the use of special kernels that can handle any covariate types (see
Racine and Li, 2004).

Several features are shared by the functions in the package. All functions return an object of S3
class ‘npcure’, formally a list of components. Among these components are the primary outputs of the
functions, like the computed estimates for probcure() and latency(), the selected bandwidths for
probcurehboot() and latencyhboot(), or the p-values of the tests for testcov() and testmz(). The
covariate values, observed times, and uncensoring indicators are passed to the functions via the x, t,
and d arguments, respectively. Typically, a set of names is passed, which are interpreted as column
names of a data frame specified by the dataset argument. However, dataset may also be left as NULL,
the default, in which case the objects named in x, t, and d must live in the working directory. More
details on these and other arguments are given in the following.

Estimation of the cure rate

The estimation of the cure rate using the nonparametric estimator in (1) is implemented in the
probcure() function:

probcure(x, t, d, dataset = NULL, x0, h, local = TRUE, conflevel = 0L,
bootpars = if (conflevel == 0 && !missing(h)) NULL else controlpars())

The x0 argument specifies the covariate values where conditional estimates of the cure rate are to
be computed. The bandwidths required by the estimator are passed to the h argument. The local
argument is a logical value determining whether the bandwidths are interpreted as local (local =
TRUE) or global (local = FALSE) bandwidths. Notice that if local = TRUE, then h and x0 must have the
same length. Actually, the h argument may be missing, in which case the local bootstrap bandwidth
computed by the probcurehboot() function is used. This last function implements the procedure for
selecting the bandwidth h∗x described in the section "Bandwidth selection", and its usage is:

probcurehboot(x, t, d, dataset, x0, bootpars = controlpars())

The bootpars argument controls the details of the computation of the bootstrap bandwidth (see section
"Bandwidth selection"). In typical use, it is intended to receive the list returned by the controlpars()
function. The components of this list are described in Table 2.

The function probcure() also allows constructing point confidence intervals (CI) for the cure rate.
These CIs exploit the asymptotic normality of the estimator (Xu and Peng, 2014), using the bootstrap
to obtain an estimate of the standard error of the estimated cure rate. The bootstrap resamples are
generated by the same procedure described in the section "Bandwidth selection". Denoting by z1−α/2
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Argument Description

B Number of bootstrap resamples (by default, 999).
hbound A vector giving the minimum and maximum, respectively, of the initial grid

of bandwidths as multiples of the standardized interquartile range (IQR) of
the covariate values (by default, c(0.1,3)).

hl Length of the initial grid of bandwidths (by default, 100).
hsave A logical specifying if the grid of bandwidths is saved (by default FALSE).
nnfrac Fraction of the sample size determining the order k of the nearest neighbor

used when computing the pilot bandwidth gx in (7) (by default, 0.25).
fpilot Either NULL, the default, or a function name. If NULL, the pilot bandwith is

computed by the package function hpilot(). If not NULL, it is the name of
an alternative, user-defined function for computing the pilot.

qt In bandwidth selection with latencyhboot(), order of the quantile of the
observed times specifying the upper bound of the integral in the computa-
tion of the MISE∗ in (6) (by default, 0.75).

hsmooth Order of a moving average computed to optionally smooth the selected
bandwidths. By default is 1, meaning that no smoothing is done.

Table 2: Summary of the arguments of the controlpars() function.

the 1 − α/2 quantile of a standard normal and by ŝeB (1 − p̂h(x)) the estimate of the standard error of
1 − p̂h(x) with B bootstrap resamples, a (1 − α) 100% CI for 1 − p(x) is computed as:

1 − p̂h(x)∓ z1− α
2
ŝeB (1 − p̂h(x)) . (12)

The confidence level of the CI is specified through the conflevel argument as a number between
0 and 1. With the special value 0, the default, no CI is computed. Other parameters related to the
bootstrap CIs can be passed to the bootpars argument, typically via the output of the controlpars()
function. These parameters relate to the number of bootstrap resamples and the computation of the
pilot bandwidth, and are specified, respectively, by the B and nnfrac arguments described in Table 2.

The usage of these functions is illustrated with a simulated dataset generated from a model where
the cure probability is a logistic function of the covariate:

library("npcure")
n <- 50
x <- runif(n, -2, 2)
y <- rweibull(n, shape = 0.5 * (x + 4), scale = 1)
c <- rexp(n, rate = 1)
p <- exp(2 * x)/(1 + exp(2 * x))
u <- runif(n)
t <- ifelse(u < p, pmin(y, c), c)
d <- ifelse(u < p, ifelse(y < c, 1, 0), 0)
data <- data.frame(x = x, t = t, d = d)

In the next code example, point and 95% CI estimates of the cure probability are obtained with
probcure() at a grid of covariate values ranging from −1.5 to 1.5. For the estimation, the local
bootstrap bandwidths previously computed by probcurehboot() are passed to the h argument. The
bandwidths, which have been further smoothed with a moving average of 15 bandwidths, are
contained in the hsmooth component of the output of probcurehboot(). For the bootstrap, 2000
resamples are generated.

x0 <- seq(-1.5, 1.5, by = 0.1)
hb <- probcurehboot(x, t, d, data, x0 = x0,

bootpars = controlpars(B = 2000, hsmooth = 15))
q1 <- probcure(x, t, d, data, x0 = x0, h = hb$hsmooth, conflevel = 0.95,

bootpars = controlpars(B = 2000))
q1

#> Bandwidth type: local
#>
#> Conditional cure estimate:
#> h x0 cure lower 95% CI upper 95% CI
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#> 0.6212329 -1.5 1.000000000 0.98450759 1.00000000
#> 0.6523881 -1.4 1.000000000 0.87087244 1.00000000
#> 0.6533320 -1.3 1.000000000 0.86080078 1.00000000
#> 0.6606362 -1.2 1.000000000 0.83135572 1.00000000
#> 0.6710717 -1.1 1.000000000 0.82267310 1.00000000
#> 0.6912311 -1.0 0.972213147 0.78259082 1.00000000
#> ...

More compactly, the same bootstrap bandwidths would be selected and the same estimates
obtained if h were left unset when calling probcure():

q2 <- probcure(x, t, d, data, x0 = x0, conflevel = 0.95,
bootpars = controlpars(B = 2000, hsmooth = 15))

Figure 1 shows a plot of the true cure rate function and its point and 95% CI estimates at the
covariate values saved in x0. The plot can be reproduced by executing the next code. The components
of the q1 object accessed by the code are x0, keeping the vector of covariate values, q, containing
the point estimates of the cure rate, and conf, a list with the lower (component lower) and upper
(component upper) limits of the CIs for the cure rate.

plot(q1$x0, q1$q, type = "l", ylim = c(0, 1), xlab = "Covariate X",
ylab = "Cure probability")

lines(q1$x0, q1$conf$lower, lty = 2)
lines(q1$x0, q1$conf$upper, lty = 2)
lines(q1$x0, 1 - exp(2 * q1$x0)/(1 + exp(2 * q1$x0)), col = 2)
legend("topright", c("Estimate", "95% CI limits", "True"),

lty = c(1, 2, 1), col = c(1, 1, 2))
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Figure 1: Left panel: estimation of the cure rate. Right panel: estimation of the latency for x = 0.

Estimation of the latency function

The latency estimator in (3) is implemented in the latency() function:

latency(x, t, d, dataset = NULL, x0, h, local = TRUE, testimate = NULL,
conflevel = 0L, bootpars = if (conflevel == 0) NULL else controlpars(),
save = TRUE)

The function’s interface is similar to that of probcure(), with all the arguments, except for
testimate, having exactly the same interpretation. The testimate argument determines the times
t at which the function S0 (t|x) is estimated. It defaults to NULL, which results in the latency being
estimated at times given by the t argument.

Also, as was the case for probcure(), latency() allows getting bootstrap CIs for the latency
function by specifying their level with the conflevel argument. These CIs also rely on the asymptotic
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normality of the latency estimator Ŝ0,b (t|x) in (3) (López-Cheda et al., 2017b). A (1 − α) 100% CI for
S0,b (t|x) is computed as:

Ŝ0,b (t|x)∓ z1− α
2
ŝeB
(
Ŝ0,b (t|x)

)
, (13)

where ŝeB
(
Ŝ0,b (t|x)

)
is a bootstrap estimate of the standard error of Ŝ0,b (t|x), the bootstrap resamples

being generated as described in the section "Bandwidth selection".

Also, as with probcure(), the user can specify a local or global bandwidth with the combined use
of the h and local arguments. When h is left unspecified, a local bootstrap bandwidth is indirectly
computed by the latencyhboot() function:

latencyhboot(x, t, d, dataset = NULL, x0, bootpars = controlpars())

This function provides an implementation of the bandwidth selector b∗x introduced in the section
"Bandwidth selection". It is homologous to probcurehboot(), with which it shares a common interface.
The only noticeable difference is that now the qt argument of controlpars() (see Table 2) can be used
to set u, the upper bound of the integral that must be calculated when computing the bootstrap MISE
in (6).

Using the same simulated data as before, the next code illustrates the computation of point and
95% CI estimates (based on 500 bootstrap resamples) of the latency for covariate values 0 and 0.5, and
with local bandwidths equal to 0.8 and 0.5, respectively. Notice that, since the testim argument is
unset, the estimates are computed at the times t:

S0 <- latency(x, t, d, data, x0 = c(0, 0.5), h = c(0.8, 0.5),
conflevel = 0.95, bootpars = controlpars(B = 500))

To estimate the latency using the bootstrap bandwidth selector, latencyhbooot() can be called
before calling latency(). In the following code, the component h of the output of latencyhbooot(),
where the selected local bandwidths are contained, is passed to the h argument of latency():

b <- latencyhboot(x, t, d, data, x0 = c(0, 0.5))
S0 <- latency(x, t, d, data, x0 = c(0, 0.5), h = b$h, conflevel = 0.95)
S0

#> Bandwidth type: local
#>
#> Covariate (x0): 0.0 0.5
#> Bandwidth (h): 4.531978 2.527206
#>
#> Conditional latency estimate:
#>
#> x0 = 0
#> time latency lower 95% CI upper 95% CI
#> 0.004599127 1.0000000 1.00000000 1.0000000
#> 0.042088293 1.0000000 1.00000000 1.0000000
#> 0.042271452 1.0000000 1.00000000 1.0000000
#> 0.059671372 1.0000000 1.00000000 1.0000000
#> 0.067375891 1.0000000 1.00000000 1.0000000
#> 0.098569312 1.0000000 1.00000000 1.0000000
#> ...
#>
#> x0 = 0.5
#> time latency lower 95% CI upper 95% CI
#> 0.004599127 1.0000000 1.00000000 1.0000000
#> 0.042088293 1.0000000 1.00000000 1.0000000
#> 0.042271452 1.0000000 1.00000000 1.0000000
#> 0.059671372 1.0000000 1.00000000 1.0000000
#> 0.067375891 1.0000000 1.00000000 1.0000000
#> 0.098569312 1.0000000 1.00000000 1.0000000
#> ...

An alternative, more succinct way to proceed is to leave h unset, since in that case, latencyhboot()
is indirectly called:

S0 <- latency(x, t, d, data, x0 = c(0, 0.5), conflevel = 0.95)

Figure 1 shows the estimated and true latencies for covariate value x = 0. Next, the code to
obtain the plot is reproduced, and it is helpful in illustrating the structure of the output list returned
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by latency(). The testim component has the times at which the estimates are computed. The S
component is a list having a named item for each covariate value. Each element contains the latency
estimates for a covariate value, and the name is constructed from the covariate value by prefixing it
with an x. The conf component is also a named list, the names being constructed as those of the S
component. Each one of these items contains, structured as a list, the lower (lower component) and
upper (upper component) limits of the CIs. Finally, x0 keeps the covariate values as a separate element.

plot(S0$testim, S0$S$x0, type = "s", xlab = "Time", ylab = "Latency",
ylim = c(0, 1))

lines(S0$testim, S0$conf$x0$lower, type = "s", lty = 2)
lines(S0$testim, S0$conf$x0$upper, type = "s", lty = 2)
lines(S0$testim, pweibull(S0$testim, shape = 0.5 * (S0$x0[1] + 4),

scale = 1, lower.tail = FALSE), col = 2)
legend("topright", c("Estimate", "95% CI limits", "True"),

lty = c(1, 2, 1), col = c(1, 1, 2))

Significance test for the cure rate

The npcure package also provides an implementation of the nonparametric covariate significance tests
for the cure rate discussed in the section "Covariate significance tests":

testcov(x, t, d, dataset = NULL, bootpars = controlpars(), save = FALSE)

The x argument is the covariate whose effect on the cure rate is to be tested. The function’s output
is a list whose main components are CM and KS. Each of them, in turn, is a list containing the test
statistic (stat) and p-value (pvalue) of the CM and KS tests, respectively.

The result of the test carried out with our simulated data and 2500 bootstrap resamples is:

testcov(x, t, d, data, bootpars = controlpars(B = 2500))

#> Covariate test
#>
#> Covariate: x
#> test statistic p.value
#> Cramer-von Mises 0.4537077 0.0592
#> Kolmogorov-Smirnov 1.2456568 0.0708

Non-numeric covariates can also be tested. For example, for z, a nominal covariate added to the
simulated data, the result is:

data$z <- rep(factor(letters[1:5]), each = 10)
testcov(z, t, d, data, bootpars = controlpars(B = 2500))

#> Covariate test
#>
#> Covariate: z
#> test statistic p.value
#> Cramer-von Mises 0.2513218 0.6356
#> Kolmogorov-Smirnov 0.7626470 0.5340

Estimation of the conditional survival function

The npcure package also includes the beran() function, which computes the generalized PL estimator
of the conditional survival function, S (t|x), by Beran (1981). The beran() function in our package
may be used together with the berancv() function:

berancv(x, t, d, dataset, x0, cvpars = controlpars())

This function computes the local CV bandwidth selector of Geerdens et al. (2017). It can be directly
called by the user, but in practical work should be more usual an indirect call from the beran()
function, which, as said before, computes the generalized PL estimator of S (t|x):

beran(x, t, d, dataset, x0, h, local = TRUE, testimate = NULL, conflevel = 0L,
cvbootpars = if (conflevel == 0 && !missing(h)) NULL else controlpars())

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 32

The arguments of these two functions have the same meaning as their homonyms in the latency()
and latencyhboot() functions, cvpars and cvbootpars playing the role of bootpars in these last
functions. As in latency(), if no bandwidth is provided by the user via h, then the local CV bandwidth
in Geerdens et al. (2017) is computed by berancv().

For example, the code below computes the Beran estimator for the covariate values 0 and 0.5
using local CV bandwidths. The default behavior of berancv() is modified by the auxiliary function
controlpars(). In detail, the local CV bandwidth search is performed in a grid of bandwidths, which
is saved (hsave = TRUE) and consists of 200 bandwidths (hl = 200) ranging from 0.2 to 2 times the
standardized IQR of the covariate (hbound = c(0.2,2)). Point and 95% CI estimates of the conditional
survival function S (t|x) are computed by beran() with the selected bandwidths:

x0 <- c(0, 0.5)
hcv <- berancv(x, t, d, data, x0 = x0,

cvpars = controlpars(hbound = c(0.2, 2), hl = 200, hsave = TRUE))
S <- beran(x, t, d, data, x0 = x0, h = hcv$h, conflevel = 0.95)
S

#> Bandwidth type: local
#>
#> Covariate (x0): 0.0 0.5
#> Bandwidth (h): 1.598875 1.104106
#>
#> Beran's conditional survival estimate:
#>
#> x0 = 0
#> time survival lower 95% CI upper 95% CI
#> 0.004599127 1.0000000 1.0000000 1.0000000
#> 0.042088293 1.0000000 1.0000000 1.0000000
#> 0.042271452 1.0000000 1.0000000 1.0000000
#> 0.059671372 1.0000000 1.0000000 1.0000000
#> 0.067375891 1.0000000 1.0000000 1.0000000
#> 0.098569312 1.0000000 1.0000000 1.0000000
#> ...
#>
#> x0 = 0.5
#> time survival lower 95% CI upper 95% CI
#> 0.004599127 1.0000000 1.0000000 1.0000000
#> 0.042088293 1.0000000 1.0000000 1.0000000
#> 0.042271452 1.0000000 1.0000000 1.0000000
#> 0.059671372 1.0000000 1.0000000 1.0000000
#> 0.067375891 1.0000000 1.0000000 1.0000000
#> 0.098569312 1.0000000 1.0000000 1.0000000
#> ...

The next code shows an equivalent way of obtaining the same estimates:

S <- beran(x, t, d, data, x0 = x0, conflevel = 0.95,
cvbootpars = controlpars(hbound = c(0.2, 2), hl = 200, hsave = TRUE))

Figure 2 displays point and 95% CI estimates of the survival curve for covariate value 0.5. It has
been obtained by executing:

plot(S$testim, S$S$x0.5, type = "s", xlab = "Time", ylab = "Survival",
ylim = c(0, 1))

lines(S$testim, S$conf$x0.5$lower, type = "s", lty = 2)
lines(S$testim, S$conf$x0.5$upper, type = "s", lty = 2)
p0 <- exp(2 * x0[2])/(1 + exp(2 * x0[2]))
lines(S$testim, 1 - p0 + p0 * pweibull(S$testim,

shape = 0.5 * (x0[2] + 4), scale = 1, lower.tail = FALSE), col = 2)
legend("topright", c("Estimate", "95% CI limits", "True"),

lty = c(1, 2, 1), col = c(1, 1, 2))

Test for enough follow-up

The nonparametric estimators of the cure rate and latency functions given in (1) and (3), respectively,
require assumption (4) for their consistency. In other words, the follow-up must be long enough for
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Figure 2: Beran’s estimate of the conditional survival function for x = 0.5.

cures to happen so that the censored times after the largest uncensored observation can be assumed to
correspond to cured subjects.

The procedure to test the hypothesis (4) proposed by Maller and Zhou (1992) is performed by the
testmz() function:

testmz(t, d, dataset)

The function returns a list (with class attribute ‘npcure’) whose main component, containing the
p-value of the test, is pvalue. The further component aux is, in turn, a list of components statistic,
which contains the test statistic, n, the sample size, delta, giving the difference between the largest
observed time T(n) and the largest uncensored time T1

max, and interval, which has the range between
max(0, T1

max− delta) and T1
max.

With our simulated data, the result of the test is:

testmz(t, d, data)

#> Maller-Zhou test
#>
#> statistic n p.value
#> 43 50 2.024892e-43

Example

To illustrate the nonparametric modeling of the mixture cure model with the npcure package, we
consider the bone marrow transplantation data in Klein and Moeschberger (2005), available as the bmt
dataset of the R package KMsurv (Klein et al., 2012). The data comes from a multi-center study carried
out between 1984 and 1989, involving 137 patients with acute myelocytic leukemia (AML) or acute
lymphoblastic leukemia (ALL), aged from 7 to 52. Bone marrow transplant (BMT) is the standard
treatment for acute leukemia. Transplantation can be considered a failure when leukemia recurs or
the patient dies. Consequently, the failure time is defined as the time (days) to relapse or death. The
variables collecting this information are:

t2 Disease-free survival time in days (time to relapse, death, or end of study)
d3 Disease-free survival indicator (1: Dead or relapsed, 0: Alive and disease-free)

The probability of cure after BMT is high, especially if BMT is performed while the patient remains
in the chronic phase (Devergie et al., 1987). Recovery after BMT is a complex process depending on a
large set of risk factors, whose status is coded by the following variables:
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ta Time to acute graft-versus-host disease (GVHD).
tc Time to chronic GVHD.
tp Time to return of platelets to normal levels.
z1 Patient age (years).
z2 Donor age (years).
z7 Waiting time to transplant (days).
group Disease group (1: ALL, 2: AML low risk, 3: AML high risk).
da Acute GVHD indicator (1: Developed, 0: Never developed).
dc Chronic GVHD indicator (1: Developed, 0: Never developed).
dp Platelet recovery indicator (1: Returned to normal, 0: Never returned to normal).
z3 Patient gender (1: Male, 0: Female).
z4 Donor gender (1: Male, 0: Female).
z5 Patient cytomegalovirus (CMV) status (1: Positive, 0: Negative).
z6 Donor CMV status (1: Positive, 0: Negative).
z8 FAB (1: FAB grade 4 or 5 and AML, 0: Otherwise).
z9 Hospital (1: Ohio State University, 2: Alferd, 3: St. Vincent, 4: Hahnemann).
z10 Methotrexate (MTX) used for prophylaxis of GVHD (1: Yes, 0: No).

Before applying the estimation methods of the npcure package, it should be checked whether the
follow-up time was long enough to make it sure that condition (4) holds. This can be subjectively
assessed by visualizing a plot of the KM estimate of the unconditional survival function, S(t). The
estimated survival curve in Figure 3 suggests the existence of a non-zero asymptote at the right tail.
The test of Maller and Zhou (1992) confirms that the follow-up period is adequate to ensure the validity
of the nonparametric estimation procedures available in the package:

data("bmt", package = "KMsurv")
testmz(t2, d3, bmt)

#> Maller-Zhou test
#>
#> statistic n p.value
#> 11 137 1.047242e-05
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Figure 3: Estimated disease-free survival.

Estimation of the probability of cure

We start by estimating the cure probability as a function of age (z1) and waiting time to transplant
(z7), respectively. Cure probabilities are estimated at a grid of 100 values between the 5th and 95th
quantiles of the values of z1 and z7. The code for z1 is (for z7, it is similar):

x0 <- seq(quantile(bmt$z1, 0.05), quantile(bmt$z1, 0.95), length.out = 100)
q.age <- probcure(z1, t2, d3, bmt, x0 = x0, conflevel = 0.95,

bootpars = controlpars(hsmooth = 10))
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Both estimated cure rates are displayed in Figure 4, where a kernel estimate of the covariate density
has been added for reference:

par(mar = c(5, 4, 4, 5) + 0.1)
plot(q.age$x0, q.age$q, type = "l", ylim = c(0, 1),

xlab = "Patient age (years)", ylab = "Cure probability")
lines(q.age$x0, q.age$conf$lower, lty = 2)
lines(q.age$x0, q.age$conf$upper, lty = 2)
par(new = TRUE)
d.age <- density(bmt$z1)
plot(d.age, xaxt = "n", yaxt = "n", xlab = "", ylab = "", col = 2,

main = "", zero.line = FALSE)
mtext("Density", side = 4, col = 2, line = 3)
axis(4, ylim = c(0, max(d.age$y)), col = 2, col.axis = 2)
legend("topright", c("Estimate", "95% CI limits", "Covariate density"),

lty = c(1, 2, 1), col = c(1, 1, 2), cex = 0.8)

The cure probability seems to be nearly constant or, at most, to decrease slightly with patient age
and as the waiting time to transplant increases.
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Figure 4: Estimation of the cure probability conditional on age (left panel) and waiting time to
transplant (right panel). Nonparametric estimates of the covariate density are plotted for reference.

Testing the effect of one covariate on the probability of cure

The significance of the effect of patient age (z1) and waiting time to transplant (z7) on the probability
of cure can be tested with the testcov() function:

testcov(z1, t2, d3, bmt, bootpars = controlpars(B = 2500))

#> Covariate test
#>
#> Covariate: z1
#> test statistic p.value
#> Cramer-von Mises 0.1103200 0.8204
#> Kolmogorov-Smirnov 0.7308477 0.7900

testcov(z7, t2, d3, bmt, bootpars = controlpars(B = 2500))

#> Covariate test
#>
#> Covariate: z7
#> test statistic p.value
#> Cramer-von Mises 0.7921912 0.0968
#> Kolmogorov-Smirnov 1.6116129 0.1008
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The effect of age on the cure probability is not statistically significant with neither the CM nor the
KS tests (pCM = 0.820 and pKS = 0.790, where the subscripts identify the p-value in an obvious way).
As for the effect of waiting time to transplant, it reaches a borderline significance (pCM = 0.097 and
pKS = 0.101).

Cure probability can also be compared between groups defined by a categorical covariate. We
illustrate this case by considering gender (z3) and the use of MTX for prophylaxis of GVHD (z10). For
improving readability, we first label the groups:

bmt$z3 <- factor(bmt$z3, labels = c("Male", "Female"))
bmt$z10 <- factor(bmt$z10, labels = c("MTX", "No MTX"))
summary(bmt[, c("z3", "z10")])

#> z3 z10
#> Male :57 MTX :97
#> Female:80 No MTX:40

The estimated survival functions are displayed in Figure 5. The code for gender (z3) is:

library("survival")
Sgender <- survfit(Surv(t2, d3) ~ z3, data = bmt)
Sgender

#> Call: survfit(formula = Surv(t2, d3) ~ z3, data = bmt)
#>
#> n events median 0.95LCL 0.95UCL
#> z3=Male 57 36 318 172 NA
#> z3=Female 80 47 606 418 NA

plot(Sgender, col = 1:2, mark.time = FALSE, xlab = "Time (days)",
ylab = "Disease-free survival")

legend("topright", legend = c("Male", "Female"), title = "Gender",
lty = 1, col = 1:2)
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Figure 5: Survival curves of patients conditional on gender (left panel) and use of MTX for prophylaxis
of GVHD (right panel).

The estimated probability of cure for each group defined by gender (z3) is obtained by computing
for each stratum the unconditional cure rate estimator of Laska and Meisner (1992). This estimator of
the probability of cure is the value of the KM curve at T1

max (i.e., it is the minimum of the KM estimate):

qgender <- c(min(Sgender[1]$surv), min(Sgender[2]$surv))
qgender

#> [1] 0.1899671 0.4065833

The estimated probability of cure is 19.0% for males and 40.7% for females. The cure probabilities
according to the use or not of MTX as GVHD prophylactic (z10) are:
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Smtx <- survfit(Surv(t2, d3) ~ z10, data = bmt)
qmtx <- c(min(Smtx[1]$surv), min(Smtx[2]$surv))
qmtx

#> [1] 0.3679977 0.3482143

The cure rate of patients treated with MTX is estimated to be 36.8%, slightly higher than 34.8%, the
estimate for patients not treated with MTX.

The effect of these two binary variables on the cure probability is tested with the testcov()
function similarly as it was done with continuous covariates:

testcov(z3, t2, d3, bmt, bootpars = controlpars(B = 2500))

#> Covariate test
#>
#> Covariate: z3
#> test statistic p.value
#> Cramer-von Mises 0.5947305 0.0900
#> Kolmogorov-Smirnov 1.1955919 0.0892

testcov(z10, t2, d3, bmt, bootpars = controlpars(B = 2500))

#> Covariate test
#>
#> Covariate: z10
#> test statistic p.value
#> Cramer-von Mises 1.018441 0.0692
#> Kolmogorov-Smirnov 1.199340 0.0668

The differences in the probability of cure between males and females, and between patients with
and without MTX treatment are not statistically significant, although a borderline effect is evidenced
(pCM = 0.090 and pKS = 0.089 for gender, pCM = 0.069 and pKS = 0.067 for MTX).

Estimation of the latency function

The survival of the uncured patients (latency) is estimated for patient age (z1) 25 and 40 years as
follows:

S0 <- latency(z1, t2, d3, bmt, x0 = c(25, 40), conflevel = 0.95,
bootpars = controlpars(B = 500))

Figure 6 displays the survival functions for the two ages, obtained by executing:

plot(S0$testim, S0$S$x25, type = "s", ylim = c(0, 1),
xlab = "Time (days)", ylab = "Latency")

lines(S0$testim, S0$conf$x25$lower, type = "s", lty = 2)
lines(S0$testim, S0$conf$x25$upper, type = "s", lty = 2)
lines(S0$testim, S0$S$x40, type = "s", col = 2)
lines(S0$testim, S0$conf$x40$lower, type = "s", lty = 2, col = 2)
lines(S0$testim, S0$conf$x40$upper, type = "s", lty = 2, col = 2)
legend("topright", c("Age 25: Estimate", "Age 25: 95% CI limits",

"Age 40: Estimate", "Age 40: 95% CI limits"), lty = 1:2,
col = c(1, 1, 2, 2))

An increased survival of younger patients can be observed, but the survival advantage vanishes
after approximately 6 years.

Summary

This paper introduces the npcure package. It provides an R implementation of a completely non-
parametric approach for estimation in mixture cure models, along with a nonparametric covariate
significance test for the cure probability. Moreover, the generalized PL estimator of the conditional
survival function with a CV bandwidth selection function is included. Furthermore, the theory under-
lying the implemented methods, presented in Xu and Peng (2014), López-Cheda et al. (2017a), and
López-Cheda et al. (2017b), has been compiled.
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Figure 6: Latency curves of uncured patients 25 and 40 years old.

The npcure package has some limitations. Firstly, it only handles right-censored survival times.
Left-censored data, truncation, or interval-censored data have not been considered in this approach,
and it remains an open problem to be dealt with in the future. Secondly, a conditional estimation can
be performed when only one covariate is involved. The same restriction applies to the implemented
covariate significance test for the cure rate. An important extension would be the development of
estimation and test procedures for the cure rate and latency functions when they depend on a set of
covariates. A major challenge is the way the covariates are handled. In that case, the analysis of a large
number of covariates would suffer from the curse of dimensionality. Dimension reduction techniques
would be required, which leads to a demanding approach that has not been addressed yet, and we
leave for further research.

There is an interesting issue that remains an open problem to be dealt with in future versions of
the package. Traditional cure rate models implicitly assume that there is no additional information
on the cure status of the patients. So, the cure indicator is modeled as a latent variable. However,
examples contradicting this assumption can be found. For instance, in some clinical settings, subjects
who are followed up beyond a threshold period without experiencing the event can be considered as
cured. In other cases, complementary diagnostic tests providing further information about a patient’s
cure status may be available. We aim to develop improved non-parametric methods of estimation and
hypothesis testing that take into account this additional information.
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