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A Method for Deriving Information from
Running R Code
by Mark P.J. van der Loo

Abstract It is often useful to tap information from a running R script. Obvious use cases include
monitoring the consumption of resources (time, memory) and logging. Perhaps less obvious cases
include tracking changes in R objects or collecting the output of unit tests. In this paper, we demonstrate
an approach that abstracts the collection and processing of such secondary information from the
running R script. Our approach is based on a combination of three elements. The first element is
to build a customized way to evaluate code. The second is labeled local masking and it involves
temporarily masking a user-facing function so an alternative version of it is called. The third element
we label local side effect. This refers to the fact that the masking function exports information to the
secondary information flow without altering a global state. The result is a method for building systems
in pure R that lets users create and control secondary flows of information with minimal impact on
their workflow and no global side effects.

Introduction

The R language provides a convenient language to read, manipulate, and write data in the form of
scripts. As with any other scripted language, an R script gives a description of data manipulation
activities, one after the other, when read from top to bottom. Alternatively, we can think of an R
script as a one-dimensional visualization of data flowing from one processing step to the next, where
intermediate variables or pipe operators carry data from one treatment to the next.

We run into limitations of this one-dimensional view when we want to produce data flows that
are somehow ‘orthogonal’ to the flow of the data being treated. For example, we may wish to follow
the state of a variable while a script is being executed, report on progress (logging), or keep track
of resource consumption. Indeed, the sequential (one-dimensional) nature of a script forces one to
introduce extra expressions between the data processing code.

As an example, consider a code fragment where the variable x is manipulated.

x[x > threshold] <- threshold
x[is.na(x)] <- median(x, na.rm=TRUE)

In the first statement, every value above a certain threshold is replaced with a fixed value, and next,
missing values are replaced with the median of the completed cases. It is interesting to know how an
aggregate of interest, say the mean of x, evolves as it gets processed. The instinctive way to do this is
to edit the code by adding statements to the script that collect the desired information.

meanx <- mean(x, na.rm=TRUE)
x[x > threshold] <- threshold
meanx <- c(meanx, mean(x, na.rm=TRUE))
x[is.na(x)] <- median(x, na.rm=TRUE)
meanx <- c(meanx, mean(x, na.rm=TRUE))

This solution clutters the script by inserting expressions that are not necessary for its main purpose.
Moreover, the tracking statements are repetitive, which validates some form of abstraction.

A more general picture of what we would like to achieve is given in Figure 1. The ‘primary data
flow’ is developed by a user as a script. In the previous example, this concerns processing x. When the
script runs, some kind of logging information, which we label the ‘secondary data flow’ is derived
implicitly by an abstraction layer.

Creating an abstraction layer means that concerns between primary and secondary data flows are
separated as much as possible. In particular, we want to prevent the abstraction layer from inspecting
or altering the user code that describes the primary data flow. Furthermore, we would like the user
to have some control over the secondary flow from within the script, for example, to start, stop, or
parameterize the secondary flow. This should be done with minimum editing of the original user
code, and it should not rely on global side effects. This means that neither the user nor the abstraction
layer for the secondary data flow should have to manipulate or read global variables, options, or other
environmental settings to convey information from one flow to the other. Finally, we want to treat
the availability of a secondary data flow as a normal situation. This means we wish to avoid using
signaling conditions (e.g., warnings or errors) to convey information between the flows unless there is
an actual exceptional condition such as an error.
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data process1 data’ process2 data”

data1 data2

Primary data flow

Secondary
data flow

Figure 1: Primary and secondary data flows in an R script. The primary flow follows the execution of
an R script, while in the background a secondary data flow (e.g. logging information) is created.

Prior art

There are several packages that generate a secondary data flow from a running script. One straightfor-
ward application concerns logging messages that report on the status of a running script. To create
a logging message, users edit their code by inserting logging expressions where desired. Logging
expressions are functions calls that help to build expressions, for example, by automatically adding
a timestamp. Configuration options usually include a measure of logging verbosity and setting
an output channel that controls where logging data will be sent. Changing these settings relies on
communication from the main script to the functionality that controls the flow of logging data. In
logger (Daróczi, 2021), this is done by manipulating a variable stored in the package namespace using
special helper functions. The logging package (Frasca, 2019) also uses an environment within the
namespace of the package to manage option settings, while futile.logger (Rowe, 2016) implements a
custom global option settings manager that is somewhat comparable to R’s own options() function.

Packages bench (Hester, 2020b) and microbenchmark (Mersmann, 2019) provide time profiling
of single R expressions. The bench package also includes memory profiling. Their purpose is not
to derive a secondary data flow from a running production script as in Figure 1 but to compare the
performance of R expressions. Both packages export a function that accepts a sequence of expressions
to profile. These functions take control of expression execution and insert time and/or memory
measurements where necessary. Options, such as the number of times each expression is executed, are
passed directly to the respective function.

Unit testing frameworks provide another source of secondary data flows. Here, an R script is used
to prepare, set up, and compare test data, while the results of comparisons are tapped and reported.
Testing frameworks are provided by testthat (Wickham, 2011), RUnit, (Burger et al., 2018), testit Xie
(2021), unitizer (Gaslam, 2021), and tinytest (van der Loo, 2020). The first three packages (testthat,
RUnit, and testit) all export assertion functions that generate condition signals to convey information
about test results. Packages RUnit and testit use sys.source() to run a file containing unit test
assertions and exit on the first error while testthat uses eval() to run expressions, capture conditions,
and test results and reports afterward. The unitizer framework is different because it implements an
interactive prompt to run tests and explore their results. Rather than providing explicit assertions,
unitizer stores results of all expressions that return a visible result and compares their output at
subsequent runs. Interestingly, unitizer allows for optional monitoring of the testing environment.
This includes environment variables, options, and more. This is done by manipulating the code
of (base) R functions that manage these settings and masking the original functions temporarily.
These masking functions then provide parts of the secondary data flow (changes in the environment).
Finally, tinytest is based on the approach that is the topic of this paper, and it will be discussed as an
application below.

Finally, we note the covr package of Hester (2020a). This package is used to keep track of which
expressions of an R package are run (covered) by package tests or examples. In this case, the primary
data flow is a test script executing code (functions, methods) stored in another script, usually in the
context of a package. The secondary flow consists of counts of how often each expression in the
source is executed. The package works by parsing and altering the code in the source file, inserting
expressions that increase appropriate counters. These counters are stored in a variable that is part of
the package’s namespace.

Summarizing, we find that in logging packages, the secondary data flow is invoked explicitly
by users while configuration settings are communicated by manipulating a global state that may or
may not be directly accessible by the user. For benchmarking packages, the expressions are passed
explicitly to an ‘expression runner’ that monitors the effect on memory and passage of time. In
most test packages, the secondary flow is invoked explicitly using special assertions that throw
condition signals. Test files are run using functionality that captures and administrates signals where
necessary. Two of the discussed packages explicitly manipulate existing code before running it to
create a secondary data flow. The covr package does this to update expression counters and the
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unitizer package to monitor changes in the global state.

Contribution of this paper

The purpose of this paper is to first provide some insight into the problem of managing multiple
data flows, independent of specific applications. In the following section, we discuss managing a
secondary data stream from the point of view of changing the way in which expressions are combined
and executed by R.

Next, we highlight two programming patterns that allow one to derive a secondary data stream,
both in non-interactive (while executing a file) and in interactive circumstances. The methods discussed
here do not require explicit inspection or modification of the code that describes the primary data
flow. It is also not necessary to invoke signaling conditions to transport information from or to the
secondary data stream.

We also demonstrate a combination of techniques that allow users to parameterize the secondary
flow without resorting to global variables, global options, or variables within a package’s namespace.
We call this technique ‘local masking’ with ‘local side effects’. It is based on temporarily and locally
masking a user-facing function with a function that does exactly the same except for a side effect that
passes information to the secondary data flow.

As examples, we discuss two applications where these techniques have been implemented. The
first is the lumberjack package (van der Loo, 2021), which allows for tracking changes in R objects as
they are manipulated expression by expression. The second is tinytest (van der Loo, 2020), a compact
and extensible unit testing framework.

Finally, we discuss some advantages and limitations to the techniques proposed.

Concepts

In this section we give a high-level overview of the problem of adding a second data flow to an existing
one, and general way to think about a solution. The general approach was inspired by a discussion of
Milewski (2018) and is related to what is sometimes called a bind operator in functional programming.

Consider as an example the following two expressions, labeled e1 and e2.

e1: x <- 10
e2: y <- 2*x

We would like to implement some kind of monitoring as these expressions are evaluated. For this
purpose, it is useful to think of e1 and e2 as functions that accept a set of key-value pairs, possibly alter
the set’s contents, and return it. In R this set of key-value pairs is an environment, and usually, it is the
global environment (the user’s workspace). Starting with an empty environment {} we get:

e1({}) = {("x", 10)}
e2(e1({})) = {("x", 10), ("y", 20)}

In this representation, we can write the result of executing the above script in terms of the function
composition operator ◦:

e2(e1({})) = (e2 ◦ e1)({}).

And in general, we can express the final state U of any environment after executing a sequence of
expressions e1, e2, · · · , ek as:

U = (ek ◦ ek−1 ◦ · · · ◦ e1)({}), (1)

where we assumed without loss of generality that we start with an empty environment. We will refer
to the sequence e1 . . . ek as the ‘primary expressions’ since they define a user’s main data flow.

We now wish to introduce some kind of logging. For example, we want to count the number of
evaluated expressions, not counting the expressions that will perform the count. The naive way to do
this is to introduce a new expression, say n:

n: if (!exists("N")) N <- 1 else N <- N + 1

And we insert this into the original sequence of expressions. This amounts to the cumbersome solution:

U ∪ {("N", k)} = (n ◦ ek ◦ n ◦ ek−1 ◦ n ◦ · · · n ◦ e1)({}), (2)
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where the number of executed expressions is stored in N. We shall refer to n as a ‘secondary expression’,
as it does not contribute to the user’s primary data flow.

The above procedure can be simplified if we define a new function composition operator ◦n as
follows:

a ◦n b = a ◦ n ◦ b.

One may verify the associativity property a ◦n (b ◦n c) = (a ◦n b) ◦n c for expressions a, b, and c, so ◦n
can, indeed, be interpreted as a new function composition operator. Using this operator we get

U ∪ {("N", k − 1)} = (ek ◦n ek−1 ◦n · · · ◦n e1)({}), (3)

which gives the same result as Equation 2 up to a constant.

If we are able to alter function composition, then this mechanism can be used to track all sorts of
useful information during the execution of e1, . . . , ek. For example, a simple profiler is set up by timing
the expressions and adding the following expression to the function composition operator.

s: if (!exists("S")) S <- Sys.time() else S <- c(S, Sys.time())

After running ek ◦s · · · ◦s e1, diff(S) gives the timings of individual statements. A simple memory
profiler is defined as follows.

m: if (!exists("M")) M <- sum(memory.profile()) else M <- c(M, sum(memory.profile()))

After running ek ◦m · · · ◦m e1, M gives the amount of memory used by R after each expression.

We can also track changes in data, but it requires that the composition operator knows the name of
the R object that is being tracked. As an example, consider the following primary expressions.

e1: x <- rnorm(10)
e2: x[x<0] <- 0
e3: print(x)

We can define the following expression for our modified function composition operator.

v: {
if (!exists("V")){
V <- logical(0)
x0 <- x

}
if (identical(x0,x)) V <- c(V, FALSE)
else V <- c(V, TRUE)
x0 <- x

}

After running e3 ◦v e2 ◦v e1, the variable V equals c(TRUE,FALSE), indicating that e2 changed x, and e3
did not.

These examples demonstrate that redefining function composition yields a powerful method
for extracting logging information with (almost) no intrusion on the user’s common workflow. The
simple model shown here does have some obvious setbacks: first, the expressions inserted by the
composition operator manipulate the same environment as the user expressions. The user- and
secondary expressions can therefore interfere with each other’s results. Second, there is no direct
control from the primary sequence over the secondary sequence: the user has no explicit control over
starting, stopping, or parametrizing the secondary data stream. We demonstrate in the next section
how these setbacks can be avoided by evaluating secondary expressions in a separate environment
and by using techniques we call ‘local masking’ and ‘local side-effect’.

Creating a secondary data flow with R

R executes expressions one by one in a read-evaluate-print loop (REPL). In order to tap information
from this running loop, it is necessary to catch the user’s expressions and interweave them with our
own expressions. One way to do this is to develop an alternative to R’s native source() function. Recall
that source() reads an R script and executes all expressions in the global environment. Applications
include non-interactive sessions or interactive sessions with repetitive tasks such as running test
scripts while developing functions. A second way to intervene with a user’s code is to develop a
special ‘forward pipe’ operator, akin to R’s |> pipe, the magrittr pipe of Bache and Wickham (2014), or
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the ‘dot-pipe’ of Mount and Zumel (2018). Since a user inserts a pipe between expressions, it is an
obvious place to insert code that generates a secondary data flow.

In the following two subsections we will develop both approaches. As a running example, we will
implement a secondary data stream that counts expressions.

Build your own source()

The source() function reads an R script and executes all expressions in the global environment. A
simple variant of source() that counts expressions as they get evaluated can be built using parse()
and eval().

run <- function(file){
expressions <- parse(file)
runtime <- new.env(parent=.GlobalEnv)

n <- 0
for (e in expressions){
eval(e, envir=runtime)
n <- n + 1

}
message(sprintf("Counted %d expressions",n))
runtime

}

Here, parse() reads the R file and returns a list of expressions (technically, an object of class ‘expression’).
The eval() function executes the expression while all variables created by or needed for execution are
sought in a newly created environment called runtime. We make sure that variables and functions in
the global environment are found by setting the parent of runtime equal to .GlobalEnv. Now, given a
file "script.R".

# contents of script.R
x <- 10
y <- 2*x

An interactive session would look like this.

> e <- run("script.R")
Counted 2 expressions
> e$x
[1] 10

So, contrary to the default behavior of source(), variables are assigned in a new environment. This
difference in behavior can be avoided by evaluating expressions in .GlobalEnv. However, for the next
step, it is important to have a separate runtime environment.

We now wish to give the user some control over the secondary data stream. In particular, we want
the user to be able to choose when run() starts counting expressions. Recall that we demand that
this is done by direct communication to run(). This means that side-effects such as setting a special
variable in the global environment or a global option is out of the question. Furthermore, we want to
avoid code inspection: the run() function should be unaware of what expressions it is running exactly.
We start by writing a function for the user that returns TRUE.

start_counting <- function() TRUE

Our task is to capture this output from run() when start_counting() is called. We do this by masking
this function with another function that does exactly the same, except that it also copies the output
value to a place where run() can find it. To achieve this, we use the following helper function.

capture <- function(fun, envir){
function(...){
out <- fun(...)
envir$counting <- out
out

}
}

This function accepts a function (fun) and an environment (envir). It returns a function that first
executes fun(...), copies its output value to envir, and then returns the output to the user. In an
interactive session, we would see the following.
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> store <- new.env()
> f <- capture(start_counting, store)
> f()
[1] TRUE
> store$counting
[1] TRUE

Observe that our call to f() returns TRUE as expected but also exported a copy of TRUE into store.
The reason this works is that an R function ‘remembers’ where it is created. The function f() was
created inside capture(), and the variable envir is present there. We say that this ‘capturing’ version
of start_counting has a local side-effect: it writes outside of its own scope but the place where it writes
is controlled.

We now need to make sure that run() executes the captured version of start_counting(). This is
done by locally masking the user-facing version of start_counting(). That is, we make sure that the
captured version is found by eval() and not the original version. A new version of run() now looks
as follows.

run <- function(file){
expressions <- parse(file)
store <- new.env()
runtime <- new.env(parent=.GlobalEnv)
runtime$start_counting <- capture(start_counting, store)
n <- 0
for (e in expressions){
eval(e, envir=runtime)
if ( isTRUE(store$counting) ) n <- n + 1

}
message(sprintf("Counted %d expressions",n))
runtime

}

Now, consider the following code, stored in script1.R.

# contents of script1.R
x <- 10
start_counting()
y <- 2*x

In an interactive session, we would see this.

> e <- run("script1.R")
Counted 1 expressions
> e$x
[1] 10
> e$y
[1] 20

Let us go through the most important parts of the new run() function. After parsing the R file, a
new environment is created that will store the output of calls to start_counting().

store <- new.env()

The runtime environment is created as before, but now we add the capturing version of start_counting().

runtime <- new.env(parent=.GlobalEnv)
runtime$start_counting <- capture(start_counting, store)

This ensures that when the user calls start_counting(), the capturing version is executed. We call
this technique local masking since the start_counting() function is only masked during the execution
of run(). The captured version of start_counting()as a side effect stores its output in store. We
call this a ‘local side-effect’ because store is never seen by the user: it is created inside run() and
destroyed when run() is finished.

Finally, all expressions are executed in the runtime environment and counted conditional on the
value of store$counting.

for (e in expressions){
eval(e, envir=runtime)
if ( isTRUE(store$counting) ) n <- n + 1

}
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Summarizing, with this construction, we are able to create a file runner akin to source() that can
gather and communicate useful process metadata while executing a script. Moreover, the user of
the script can convey information directly to the file runner, while it runs, without relying on global
side-effects. This is achieved by first creating a user-facing function that returns the information to be
sent to the file runner. The file runner locally masks the user-facing version with a version that copies
the output to an environment local to the file runner before returning the output to the user.

The approach just described can be generalized to more realistic use cases. All examples mentioned
in the ‘Context’ section —time or memory profiling, or logging changes in data, merely need some
extra administration. Furthermore, the current example emits the secondary data flow as a ‘message’.
In practical use cases, it may make more sense to write the output to a file connection or database
or the make the secondary data stream output of the file runner. In the Applications section, both
applications are discussed.

Build your own pipe operator

Pipe operators have become a popular tool for R users over the last years, and R currently has a pipe
operator (|>) built-in. This pipe operator is intended as a form of ‘syntactic sugar’ that, in some cases,
makes code a little easier to write. A pipe operator behaves somewhat like a left-to-right ‘expression
composition operator’. This, in the sense that a sequence of expressions that are joined by a pipe
operator are interpreted by R’s parser as a single expression. Pipe operators also offer an opportunity
to derive information from a running sequence of expressions.

It is possible to implement a basic pipe operator as follows.

`%p>%` <- function(lhs, rhs) rhs(lhs)

Here, the rhs (right-hand side) argument must be a single-argument function, which is applied to lhs.
In an interactive session we could see this.

> 3 %p>% sin %p>% cos
[1] 0.9900591

To build our expression counter, we need to have a place to store the counter value hidden from
the user. In contrast to the implementation of the file runner in the previous section, each use of %p>%
is disconnected from the other, and there seems to be no shared space to increase the counter at each
call. The solution is to let the secondary data flow travel with the primary flow by adding an attribute
to the data. We create two user-facing functions that start or stop logging as follows.

start_counting <- function(data){
attr(data, "n") <- 0
data

}
end_counting <- function(data){
message(sprintf("Counted %d expressions", attr(data,"n")-1))
attr(data, "n") <- NULL
data

}

Here, the first function attaches a counter to the data and initializes it to zero. The second function
reports its value, decreased by one, so the stop function itself is not included in the count. We also
alter the pipe operator to increase the counter if it exists.

`%p>%` <- function(lhs, rhs){
if ( !is.null(attr(lhs,"n")) ){
attr(lhs,"n") <- attr(lhs,"n") + 1

}
rhs(lhs)

}

In an interactive session, we could now see the following.

> out <- 3 %p>%
+ start_counting %p>%
+ sin %p>%
+ cos %p>%
+ end_counting
Counted 2 expressions
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> out
[1] 0.9900591

Summarizing, for small interactive tasks, a secondary data flow can be added to the primary one
by using a special kind of pipe operator. Communication between the user and the secondary data
flow is implemented by adding or altering attributes attached to the R object.

Generalizations of this technique come with a few caveats. First, the current pipe operator only
allows right-hand side expressions that accept a single argument. Extension to a more general case
involves inspection and manipulation of the right-hand side’s abstract syntax tree and is out of scope
for the current work. Second, the current implementation relies on the right-hand side expressions to
preserve attributes. A general implementation will have to test that the output of rhs(lhs) still has the
logging attribute attached (if there was any) and re-attach it if necessary.

Application 1: tracking changes in data

The lumberjack package (van der Loo, 2021) implements a logging framework to track changes in
R objects as they get processed. The package implements both a pipe operator, denoted %L>%, and a
file runner called run_file(). The main communication devices for the user are two functions called
start_log() and dump_log().

We will first demonstrate working with the lumberjack pipe operator. The function start_log()
accepts an R object and a logger object. It attaches the logger to the R object and returns the augmented
R object. A logger is a reference object1 that exposes at least an $add() method and a $dump() method.
If a logger is present, the pipe operator stores a copy of the left-hand side. Next, it executes the
expression on the right-hand side with the left-hand side as an argument and stores the output. It
then calls the add() method of the logger with the input and output so that the logger can compute
and store the difference. The dump_log() function accepts an R object, calls the $dump() method on
the attached logger (if there is any), removes the logger from the object and returns the object. An
interactive session could look as follows.

> library(lumberjack)
> out <- women %L>%
> start_log(simple$new()) %L>%
> transform(height = height * 2.54) %L>%
> identity() %L>%
> dump_log()
Dumped a log at /home/mark/simple.csv
> read.csv("simple.csv")
step time expression changed

1 1 2019-08-09 11:29:06 transform(height = height * 2.54) TRUE
2 2 2019-08-09 11:29:06 identity() FALSE

Here, simple$new() creates a logger object that registers whether an R object has changed or not.
There are other loggers that compute more involved differences between in- and output. The $dump()
method of the logger writes the logging output to a csv file.

For larger scripts, a file runner called run_file() is available in lumberjack. As an example,
consider the following script. It converts columns of the built-in women data set to SI units (meters and
kilogram) and then computes the body-mass index of each case.

# contents of script2.R
start_log(women, simple$new())
women$height <- women$height * 2.54/100
women$weight <- women$weight * 0.453592
women$bmi <- women$weight/(women$height)^2

In an interactive session, we can run the script and access both the logging information and retrieve
the output of the script.

> e <- run_file("script2.R")
Dumped a log at /home/mark/women_simple.csv
> read.csv("women_simple.csv")
step time expression changed

1 1 2019-08-09 13:11:25 start_log(women, simple$new()) FALSE

1A native R Reference Class, an ‘R6’ object (Chang, 2020), or any other reference type object implementing the
proper API.
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2 2 2019-08-09 13:11:25 women$height <- women$height * 2.54/100 TRUE
3 3 2019-08-09 13:11:25 women$weight <- women$weight * 0.453592 TRUE
4 4 2019-08-09 13:11:25 women$bmi <- women$weight/(women$height)^2 TRUE
> head(e$women,3)
height weight bmi

1 1.4732 52.16308 24.03476
2 1.4986 53.07026 23.63087
3 1.5240 54.43104 23.43563

The lumberjack file runner locally masks start_log() with a function that stores the logger and
the name of the tracked R object in a local environment. A copy of the tracked object is stored locally
as well. Expressions in the script are executed one by one. After each expression, the object in the
runtime environment is compared with the stored object. If it has changed, the $add() method of the
logger is called, and a copy of the changed object is stored. After all expressions have been executed,
the $dump() method is called, so the user does not have to do this explicitly.

A user can add multiple loggers for each R object and track multiple objects. It is also possible
to dump specific logs for specific objects during the script. All communication necessary for these
operations runs via the mechanism explained in the ‘build your own source()’ section.

Application 2: unit testing

The tinytest package (van der Loo, 2020) implements a unit testing framework. Its core function is a
file runner that uses local masking and local side effects to capture the output of assertions that are
inserted explicitly by the user. As an example, we create tests for the following function.

# contents of bmi.R
bmi <- function(weight, height) weight/(height^2)

A simple tinytest test file could look like this.

# contents of test_script.R
data(women)
women$height <- women$height * 2.54/100
women$weight <- women$weight * 0.453592
BMI <- with(women, bmi(weight,height) )

expect_true( all(BMI >= 10) )
expect_true( all(BMI <= 30) )

The first four lines prepare some data, while the last two lines check whether the prepared data meets
our expectations. In an interactive session, we can run the test file after loading the bmi() function.

> source("bmi.R")
> library(tinytest)
> out <- run_test_file('test_script.R')
Running test_script.R................. 2 tests OK
> print(out, passes=TRUE)
----- PASSED : test_script.R<7--7>
call| expect_true(all(BMI >= 10))

----- PASSED : test_script.R<8--8>
call| expect_true(all(BMI <= 30))

In this application, the file runner locally masks the expect_*() functions and captures their
result through a local side effect. As we are only interested in the test results, the output of all other
expressions is discarded.

Compared to the basic version described in the ‘build your own source()’ section, this file runner
keeps some extra administration, such as the line numbers of each masked expression. These can be
extracted from the output of parse(). The package comes with a number of assertions in the form of
expect_*() functions. It is possible to extend tinytest by registering new assertions. These are then
automatically masked by the file runner. The only requirement on the new assertions is that they
return an object of the same type as the built-in assertions (an object of class ‘tinytest’).
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Discussion

The techniques demonstrated here have two major advantages. First, it allows for a clean and side-
effect free separation between the primary and secondary data flows. As a result, the secondary data
flow is composed with the primary data flow. In other words: a user that wants to add a secondary
data flow to an existing script does not have to edit any existing code. Instead, it is only necessary
to add a bit of code to specify and initialize the secondary stream, which is a big advantage for
maintainability. Second, the current mechanisms avoid the use of condition signals. This also leads to
code that is easier to understand and navigate because all code associated with the secondary flow
can be limited to the scope of a single function (here: either a file runner or a pipe operator). Since
the secondary data flow is not treated as an unusual condition (exception), the exception signaling
channel is free for transmitting truly unusual conditions such as errors and warnings.

There are also some limitations inherent to these techniques. Although the code for the secondary
data flow is easy to compose with code for the primary data flow, it is not as easy to compose different
secondary data flows. For example, one can use only one file runner to run an R script and only a
single pipe operator to combine two expressions.

A second limitation is that this approach does not recurse into the primary expressions. For
example, the expression counters we developed only count user-defined expressions. They can not
count expressions that are called by functions called by the user. This means that something like a
code coverage tool such as covr is out of scope.

A third and related limitation is that the resolution of expressions may be too low for certain
applications. For example in R, ‘if’ is an expression (it returns a value when evaluated) rather than a
statement (like for). This means that parse() interprets a block such as

if ( x > 0 ){
x <- 10
y <- 2*x

}

as a single expression. If higher resolution is needed, this requires explicit manipulation of the user
code.

Finally, the local masking mechanism excludes the use of the namespace resolution operator. For
example, in lumberjack, it is not possible to use lumberjack::start_log() since, in that case, the
user-facing function from the package is executed and not the masked function with the desired local
side-effect.

Conclusion

In this paper we demonstrated a set of techniques that allow one to add a secondary data flow to an
existing user-defined R script. The core idea is that we manipulate way expressions are combined
before they are executed. In practice, we use R’s parse() and eval() to add secondary data stream
to user code, or build a special ‘pipe’ operator. Local masking and local side effects allow a user to
control the secondary data flow without global side-effects. The result is a clean separation of concerns
between the primary and secondary data flow, that does not rely on condition handling, is void of
global side-effects, and that is implemented in pure R.
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