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Advisors:  James L. Van Etten and Jennifer E. Markham 

This thesis focuses on the sterol and sphingolipid composition in the unicellular, 

green alga Chlorella variabilis and the lipidomic changes that occur during viral 

infection.  Using lipid analysis by mass spectrometry, we have identified the 

major sterol, ergosterol and sphingolipid, glucosyl inositol phosphoceramide 

(GIPC) as constituents of C. variabilis cell membranes.  Sterols and sphingolipids 

have essential biological functions such as hormone-based signaling, plant 

defense, and apoptosis as well as critical roles in structural components of the 

cell and organelle membranes.  In chapters two and three, we focus on the 

characterization of sterol composition among both freshwater and marine alga 

and the GIPC structure among Chlorophytes, respectively, and the divergence of 

these lipids between fungi and plants.  It is evident, given the current research in 

pathogenic lipidomics, that lipids play significant roles at many junctures of host-

pathogen interactions.  Viruses have been shown to exploit host membranes and 

their components such as sterols and sphingolipids during their infection cycle 

including attachment and entry, replication, protein sorting, viral assembly, and 
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budding.  We conclude with chapter four, describing the lipid composition of the 

host-acquired PBCV-1 internal membrane and the effect of viral infection on lipid 

biogenesis in C. variabilis. 
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1.0 Introduction 

Using a lipidomics approach, this research sets out to define the virion lipidome 

of PBCV-1 as well as provide insight into algal lipid metabolic changes that occur 

during viral infection and viral acquisition of a host bilayer membrane to viral 

factories. 

1.1 Eukaryotic, unicellular algae.  Microalgae are unicellular, photosynthetic, 

eukaryotic organisms inhabiting both freshwater and marine ecosystems 

throughout the world.  Evolving from the primary endosymbiotic event of green-

algal-derived plastids, Chlorella variabilis, Chlorella sorokiniana, 

Chlamydomonas reinhardtii and Coccomyxa subellipsoidea, are examples of 

freshwater green microalgae (Kodner et al., 2008).  The marine algae Emiliania 

huxleyi, a coccolithophore, and Thalassiosira pseudonana, a diatom, have 

evolved from a secondary endosymbiotic event involving red-algal-derived 

plastids (Kodner et al., 2008).  Microalgae are of special interest in research 

involving novel metabolic pathways, biofuels, global net primary production and 

host-virus interactions.  Genomes from these 6 algal species and several other 

green-, red- and brown-algal species have been sequenced allowing insight into 

important cell structure and function as well as biosynthetic pathways.  

Green algae (Chlorophytes).  Chlorella variabilis is a unicellular green alga and 

normally exists as a photosynthetic endosymbiont in the unicellular protozoan 

Paramecium bursaria; P. bursaria and its symbiont can be found in freshwater 

around the world.  This symbiotic relationship affords C. variabilis protection 

against viral infection by the chloroviruses and it supplies sugar(s) to P. bursaria 
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(Van Etten, 2002; Van Etten, 2003; Hoshina et al., 2010; Yashchenko et al., 

2012).  C. variabilis (phylum Chlorophyta) has a single chloroplast and is ~ 6 µm 

in diameter.  Its characteristic rigid cell wall contains the glucosamine polymers, 

chitin and chitosan, instead of cellulose found in the cell walls of land plants 

(Kapaun and Reisser, 1995).  C. variabilis has a 46.2 Mb genome size with 9791 

protein-encoding genes (Blanc et al., 2010).  Homologs of receptors and 

biosynthetic enzymes of land plant hormones were identified (Blanc et al., 2010).   

The free-living Chlorella sorokiniana UTEX1230, isolated in 1953 by Sorokin and 

Myers, genome was recently sequenced and annotated (Cerutti et al., 

manuscript in preparation).  C. sorokiniana are free-living and range in diameter 

from 3 – 8 µm (Morita et al., 2000).   C. sorokiniana has become an important 

microalgae in the areas of CO2 conversion and more recently, generation of 

biofuels because of its ability to grow at higher temperatures (38° – 41°C) (Morita 

et al., 2000).  Coccomyxa subellipsoidea C-169 (hereafter Coccomyxa), a polar 

eukaryotic microalga, was originally classified as Chlorella vulgaris (Holm-

Hanson, 1964; Blanc et al., 2012).  Among the other sequenced algae, 

Coccomyxa is most closely related to C. variabilis and C. reinhardtii.  Although a 

free-living, small (3 – 9 µm), non-motile alga, Coccomyxa contains putative 

genes not present in other algae which are attributed to its ability to adapt to 

polar climates (Blanc et al., 2012).  C. reinhardtii (hereafter Chlamydomonas) is a 

unicellular soil algae with an alternate life cycle; possessing two flagella for 

motility and sensory transduction and a non-motile reproductive phase 

(Merchant, 2007; Miller, 2010).  Volvox carteri (hereafter Volvox), a close relative 
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of Chlamydomonas, evolved motility and reproduction into two distinct cell types 

becoming a multicellular green alga (Miller, 2010).   

Marine algae (Haptophyte).  Emiliania huxleyi (Lohmann) Hay & Mohler 

(Prymnesiophyceae, Haptophyta) and Thalassiosira pseudonana (Hustedt) Hasle 

et Heimdal (Coscinodiscophyceae, Heterokontophyta), a coccolithophore and 

centric diatom, respectively, are unicellular marine alga (Jordan and 

Chamberlain, 1997; Armbrust, 2004; Alverson et al., 2011).  These phytoplankton 

share commonalities in their evolutionary history and ecological importance and 

because their genomes have been sequenced they have become model algae in 

oceanographic research (Armbrust, 2004; Read et al., 2013).  Haptophytes and 

heterokonts are derived from a secondary endosymbiotic event (engulfment of 

red-algal-derived plastids), form the base of the ocean’s food web, and play an 

important role in biogeochemical cycles (Jordan and Chamberlain, 1997; 

Armbrust, 2004; von Dassow et al., 2009).  

1.2 Paramecium bursaria Chlorella Virus (PBCV-1) and Chlorella variabilis as a 

viral-host model system.  The Phycodnaviridae family of algal-infecting viruses 

encompass six genera; Chlorovirus, Coccolithovirus, Prasinovirus, 

Prymnesiovirus, Phaeovirus and Rhaphidovirus (ICTV, 2012).  The 

phycodnaviruses are proposed to share a common evolutionary ancestor with a 

group of viruses known as nucleocytoplasmic large DNA viruses (NCLDVs) 

(Koonin and Yutin, 2001).  The Chlorovirus PBCV-1 is probably the most studied 

phycodnavirus.  PBCV-1 is a large (190 nm), double-stranded (ds) DNA virus 

with a linear, 331-kb genome predicted to encode about 416 proteins (Dunigan et 
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al., 2012).  Its genome is enclosed in an internal lipid single bilayered membrane 

surrounded by an icosahedral, glycoprotein-containing outer capsid (Fig. 1) (Van 

Etten and Dunigan, 2012).  Microarray analysis of PBCV-1 transcription during 

virus replication was reported in 2010 (Yanai-Balser et al., 2010).  The functional 

characterization of gene expression delineated early, early-late and late viral 

transcripts as those disappearing prior to initiation of virus DNA synthesis, 

transcripts still detected after synthesis, and those detected only after viral DNA 

synthesis begins, respectively (Fig. 2) (Yanai-Balser et al., 2010).  In 2012, a 

newly revised PBCV-1 genome, annotation, and proteomic analyses was 

released highlighting capsid structure and viral lifecycle.  The major capsid 

protein (MCP) Vp54 complexes with itself to form homotrimeric capsomers 

responsible for the planar features of the capsid (Fig. 1) (Dunigan et al., 2012).   

 

Figure 1.  The five-fold-averaged cryoEM structure of PBCV-1 viewed down 
a quasi-2-fold axis.  A) Hexagonal arrays of major capsomers form 
trisymmetrons and pentasymmetrons (yellow).  The unique vertex with its spike 
structure is at the top. B) Central cross-section of the cryoEM density. (Scale bar: 
500 Å) C) The same view as in B but colored radially, with red density being 
within 680 Å, yellow between 680 and 745 Å, green between 745 and 810 Å, light 
blue between 810 and 880 Å, and dark blue greater than 880 Å.  Note the typical 
lipid low-density gap surrounding the red nucleocapsid density (Cherrier et al., 
2009). 
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At each of the 11 icosahedral vertices are pentameric capsomers and a twelfth 

vertex is unique with a 560-Å-long bacteriophage-like spike structure which 

protrudes 340 Å from the surface of the virus (Fig. 1) (Cherrier et al., 2009; 

Zhang et al., 2011; Van Etten and Dunigan, 2012).  PBCV-1 attaches specifically 

to its host C. variabilis which is thought to be mediated by the spike structure and 

external fibers extending from the surface of the virus.  

Immediately upon PBCV-1 attachment, the cell wall is degraded at the site of 

attachment.  PBCV-1 virions contain cell wall-degrading activity; the virus 

encodes two putative chitinase genes and one chitosanase gene, which degrade 

chitin (Sun et al., 1999; Chuchrid et al., 2001).  Within the first minutes of 

infection, following cell wall degradation, the viral internal membrane presumably 

fuses with the host membrane, causing depolarization of the cell membrane, 

potassium ion efflux and an increased cytoplasmic pH (Fig. 2) (Chuchrid et al., 

2001; Frohns et al., 2006; Blanc et al., 2014).  PBCV-1 was the first virus 

discovered to encode a functional potassium ion channel (Plugge et al., 2000).  

The viral potassium ion channel Kcv is present in the virion internal membrane 

(Romani et al., 2013) the virus membrane presumably fuses with the host plasma 

membrane during infection, which results in depolarization of the host membrane 

(Fig. 2A-B) (Frohns et al., 2006).  This 94 amino acid potassium ion channel 

protein is the smallest known potassium ion channel protein (Plugge et al., 2000) 

and it is essential for viral replication (Gazzarrini et al., 2003).  During infection 

viral DNA and virion-associated proteins are predicted to migrate to the nucleus 

where in the first 5 minutes of infection, host chromatin begins to be degraded 
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(Agarkova et al., 2006).  Synthesis of early viral transcripts begins at 5 – 10 min 

post infection (p.i) (Van Etten, 2003; Blanc et al., 2014).  Viral DNA replication 

begins 60 – 90 min p.i. (Van Etten et al., 1984) followed by transcription of late 

genes (Fig. 2) (Schuster et al., 1986; Yanai-Balser et al., 2010).  At about 2 – 3 h 

p.i. assembly of virus capsids begins in localized regions in the cytoplasm at viral 

assembly centers or viral factories, which become prominent by 3 – 4 h p.i. (Fig. 

2C) (Meints et al., 1986; Milrot et al., 2015).  

 

Figure 2.  Timeline representing the PBCV-1 life cycle in Chlorella strain 
NC64A.  Numbers represent minutes after infection.  CDSs expressed before 
viral DNA synthesis begins were classified as early (black arrow), CDSs 
expressed after DNA synthesis begins were classified as late (white arrow), and 
CDSs expressed before and after DNA synthesis begins were classified as 
early/late (arrow with diagonal lines) (Meints et al., 1984; Meints et al., 1986; 
Yanai-Balser et al., 2010). 

 

At 5 – 6 h after PBCV-1 infection, the cytoplasm fills with infectious progeny virus 

particles and localized lysis of the host cell releases progeny at 6 – 8 h p.i. (Fig. 

2D).  Typical burst sizes are about 1,000 virus particles/cell, of which ~25% of the 

particles form plaque (Van Etten and Dunigan, 2012; Blanc et al., 2014).   
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During the last phase of a lytic infection the products of DNA replication, 

procapsid assembly, and DNA packaging machinery converge at viral assembly 

centers to form infectious particles (Milrot et al., 2015).  However, how this is 

accomplished by the chloroviruses is unknown.  The viral DNA packaging 

machinery and mechanism for nucleic acid translocation into viral capsids has 

been described in detail for the bacteriophage PRD1, an internal-membrane 

containing dsDNA virus infecting bacteria (Bamford et al., 1995).  Mechanisms 

for viral DNA packaging through a portal protein aided by an ATPase motor are 

numerous and have been described in detail in bacteriophage (Bamford et al., 

1995; Rao and Feiss, 2008).  Key to successful viral progeny production in 

internal membrane containing viruses is the ability to package genomes into a 

membrane containing procapsid. The lipid composition of the viral internal 

membrane that surrounds the virus PBCV-1 dsDNA within the procapsid is 

unknown and is the subject of Chapter 4 in this thesis.  PBCV-1 viral assembly 

centers viewed by Cryo-Electron Microscopy (cryo-EM) show viral production 

occurring close to host organelles: nucleus, endoplasmic reticulum, and Golgi 

(Milrot et al., 2015).  Recent studies of the internal-membrane-containing 

Mimivirus, an evolutionary relative of PBCV-1, describe the acquisition of host 

lipid membrane sheets from the endoplasmic reticulum (ER) (Kuznetsov et al., 

2013; Mutsafi et al., 2013).  The acquisition of the PBCV-1 internal bilayered 

single membrane also is derived from the host ER (Milrot et al., 2015). 

1.3 Sterols 
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Sterols belong to a large family of over 30,000 known compounds classified as 

isoprenoids (Dhar et al., 2013).  This group of molecules, which also include 

dolichols, triterpenes and ubiquinone, have important biological functions such as 

hormone-based signaling, plant defense, apoptosis, meiosis, protein degradation 

and prenylated proteins as well as serve critical roles in structural components of 

the cell and organelle membranes  (Hunter, 2007; Dhar et al., 2013).  As major 

structural components of plasma membranes, sterols partner with sphingolipids 

to form lipid raft domains creating a platform for membrane-bound proteins 

functioning as receptors, channels, and in host cell defense (Mercer, 1993; 

Rahier and Taton, 1997; Porsbring et al., 2009).  

Sterols are synthesized from squalene which are cyclized to either lanosterol 

(fungi and animals) or cycloartenol (higher plants).  Eukaryotic membranes can 

be characterized by the presence of C28- to C30- steroidal compounds containing 

a variable C24-alkyl group side chain (Miller et al., 2012).  Three pathways for 

isoprenoid-sterol biosynthesis have been described in detail; cholesterol (C24-H) 

in animals, ergosterol (C24-β-methyl) in fungi, and phytosterols (C24-α-ethyl) in 

land plants (Miller et al., 2012).  Assembly of sterols can be divided into three 

stages:  production of isopentenyl diphosphate (IPP), IPP to squalene, and 

squalene conversion to an array of sterols.  In yeast, there are 11 enzymatic 

steps in the squalene to ergosterol pathway, known collectively as the ergosterol 

(ERG) genes (Rahier and Taton, 1997).  Ergosterol, also known as provitamin 

D2, is found in both fungal and protozoal cell membranes and is important in the 

formation and source of vitamin D2 with exposure to UV light (Veen et al., 2003).   
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Sterol biosynthetic pathways and effects of SBIs. Sterols are considered to be 

important in the regulation of biological processes, as well as in the formation 

and stabilization of the cell membrane.  The biosynthetic pathway for sterol 

synthesis can be divided into three stages:  1) isopentenyl pyrophosphate 

isomerase (IPP) production, 2) cyclization of squalene, and 3) squalene to final 

sterol composition.  In all eukaryotes, IPP is used as the precursor for all sterol 

biosynthesis.  This occurs utilizing the mevalonate or methylerythritol phosphate 

(MEP) pathway (Fig. 3).  The pathway from IPP to squalene cyclization is 

common to all sterol producing organisms with profound differences occurring 

after.   

 

Figure 3.  Compartmentalized biosynthesis of IPP and DMAPP.  (Left) Via 
the cytosolic mevalonate (MVA) pathway. HMGR, 3-hydroxy-3-methylglutaryl 
coenzyme A reductase; IDI, isopentenyl diphosphate isomerase. (Right) Via the 
plastidic MEP pathway. DXS, 1-deoxy-D-xylulose-5-phosphate synthase; DXR, 
1-deoxy-D-xylulose-5-phosphate reductoisomerase; HDS, hydroxy-2-methyl-2-
(E)-butenyl 4-diphosphate synthase; IDS, isopentenyl diphosphate:dimethylallyl 
diphosphate synthase; IDI, isopentenyl diphosphate isomerase. Dashed arrows 
indicate more than one step (Roberts, 2007). 

 

Mevalonate vs. non-mevalonate pathway. The universal precursors for all 

isoprenoids are isopentenyl diphosphate (IPP) and its isomer dimethylallyl 
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pyrophosphate (DMAPP) (Hunter, 2007).  The cytosolic, mevalonate (MVA) 

pathway of non-photosynthetic organisms and the plastidal, non-mevalonate or 

MEP pathway, found only in photosynthetic organisms, are two nonhomologous 

and independent pathways, yet both produce the homologous sterol precursors 

IPP and DMAPP (Suzuki and Muranaka, 2007). The major route of isoprenoid 

biosynthesis in eukaryotes and archaea is the MVA pathway. The MEP pathway 

is employed by photosynthetic eukaryotes and most bacteria; however, in plants 

genes exist for both pathways (Lombard and Moreira, 2011).  The presence of 

the MEP pathway in plastid containing eukaryotes are suggestive of a horizontal 

gene transfer (HGT) event having occurred from the first cyanobacterial plastidal 

endosymbiont (Lombard and Moreira, 2011). 

MVA pathway. The MVA pathway begins with condensation reactions of three 

molecules of acetyl-Coenzyme A (CoA) to form 3-hydroxy-3-methylglutaryl 

coenzyme A (HMG-CoA), the last reaction being catalyzed by HMG-CoA 

synthase (HMGS) (Hunter, 2007).  HMG-CoA reductase (HMGR), an NADPH-

dependent enzyme, subsequently reduces HMG-CoA to mevalonate (Dhar et al., 

2013).  Mevalonate is then phosphorylated and decarboxylated by ATP-driven 

enzymes to yield IPP (Lombard and Moreira, 2011).  Statins are a class of lipid-

lowering drugs used to inhibit HMGR in the mevalonate pathway resulting in a 

decrease in sterol production.  Therefore, statins are used to treat various human 

health diseases (i.e. fungal infections, high cholesterol, and cardiovascular 

disease) caused by non-photosynthetic pathogens (Istvan and Deisenhofer, 

2001a, b; Malhotra and Goa, 2001; Hunter, 2007).  Animals, fungi and higher 
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plants produce mevalonic acid from acetyl-CoA and acetoacetyl-CoA via the 

intermediate HMG-CoA  (Istvan and Deisenhofer, 2001b).  Therefore by targeting 

HMGR, statins competitively inhibit and block the first committed enzyme of 

isoprenoid precursor biosynthesis (Malhotra and Goa, 2001; Chugh et al., 2003).  

This study used the synthetic statin Atorvastatin, also known commercially as 

Lipitor (Pfizer), for the inhibition of HMGR.  On the molecular level, statins occupy 

the catalytic pocket of HMGR, blocking the ability of HMG-CoA to bind and 

reducing the rate of mevalonate production (Istvan and Deisenhofer, 2001b; 

Chugh et al., 2003). 

MEP pathway.  The plastidal, MEP pathway of photosynthetic organisms 

consists of 9 enzymatic steps to produce IPP.  Beginning with the condensation 

of pyruvate and glyceraldehyde-3-phosphate (GP3) by 1-deoxy-D-xylulose-5-

phosphate synthase (DXS) to produce 1-deoxy-D-xylulose-5-phosphate (DOXP), 

MEP is produced by the subsequent reductoisomerase reaction by 1-deoxy-D-

xylulose-5-phosphate-reductoisomerase (DXR)(Hunter, 2007; Roberts, 2007).  A 

further six reactions take MEP to the final product and the universal isoprenoid 

intermediate, IPP.   

The enzyme isopentenyl-diphosphate isomerase (IDI), present in both the MVA 

and MEP pathways is homologous, producing chemically identical molecules of 

IPP and its isomer DMAPP independent of the pathway used (Kuzuyama, 2002).  

Isomerization of the double carbon bond of IPP to create DMAPP provides 

downstream diversity for the vast isoprenoid biosynthetic routes branching off 

these two paths (Kuzuyama, 2002; Hunter, 2007).  IPP and DMAPP from the 
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cytosolic MVA pathway are used in the isoprenoid biosynthesis of primary 

metabolites such as triterpenoids, sterols, and ubiquinones where as those made 

in the chloroplast are involved in the synthesis of chlorophylls, phytols, and 

plastidic secondary metabolites (Dhar et al., 2013).   As the MEP pathway is 

present only in photosynthetic eukaryotes and many pathogenic bacteria, the 

enzymes of this pathway are therefore attractive targets in the development of 

sterol biosynthesis inhibitor drugs for treatment and prevention of serious human 

and plant diseases (Kuzuyama, 2002; Hunter, 2007). 
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Figure 4A-B.  Canonical pathways of sterol synthesis leading to land 
plants, fungi, and vertebrate sterols.  (A) Canonical pathways of sterol 
synthesis leading to land plants, fungi, and vertebrate sterols. Upstream of 
squalene, the mevalonate (MVA) and 2-C-methyl-D-erythrol 4-phosphate (MEP) 
ways leading to IPP are shown. Downstream of squalene, the bacterial pathway 
of hopanoid synthesis via SHC is also indicated. (B) Numbering of carbons and 
cycles of steroids.  

 

IPP to 2,3-oxidosqualene.  The sterol biosynthetic pathway from IPP to 2,3-

oxidosqualene (OS) is the same among all eukaryotes with significant differences 

occurring post-OS in both enzymatic steps and final sterol composition (Fig. 4) 

(Benveniste, 2004).  The enzyme farnesyl pyrophosphate synthase (FPPS) 

mediates the chain elongation reaction by the sequential condensation of two 

molecules of IPP (C5) to DMAPP (C5), resulting in 15-carbon farnesyl 

pyrophosphate (FPP) (Dhar et al., 2013).  Present in the chloroplast, cytoplasm, 

mitochondrion, and peroxisomes, FPPS is a key regulation enzyme of isoprenoid 

biosynthesis (Dhar et al., 2013).  The first committed step in sterol biosynthesis is 

the catalysis of FPP, which is shuttled to the ER and bound by squalene 

synthase (SS).  Through condensation of two molecules of FPP, SS catalyzes 

the formation of the 30 carbon, linear molecule squalene (Devarenne et al., 

2002).  Several studies have reported a drastic decrease in SS activity in the 

presence of pathogens or elicitor molecules thereby suppressing sterol 

biosynthesis, which supports a regulatory role of this key branch point in the 

isoprenoid pathway (Robinson et al., 1993; Kennedy and Bard, 2001; Devarenne 

et al., 2002; Rossard et al., 2010).  In yeast, the production of squalene marks 

the beginning of committed ergosterol (ERG) biosynthesis (Alcazar-Fuoli et al., 

2008).  The conversion of squalene to 2,3-oxidosqualene is catalyzed by the 
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secondary rate limiting enzyme squalene epoxidase (SQE; ERG1)  (Vago et al., 

1994; Chugh et al., 2003).  Terbinafine hydrochloride is a synthetic allylamine 

designed as a fungicidal drug which inhibits the activity of SQE (Ryder, 1992).  

The blocking of sterol biosynthesis at this stage in the pathway leads to an 

accumulation of squalene and a decrease in sterol production (Ryder, 1992; 

Chugh et al., 2003).  Although an increase in intracellular squalene is known to 

be stable and non-toxic, it is the deficiency in cell membrane sterols that is 

suggested as contributing to the cidal action of these compounds (Ryder, 1992). 

2,3-oxidosqualene to algal sterols.  2,3-oxidosqualene is a substrate for and 

cyclized by a wide range of oxidosqualene cyclases (OSC) including lanosterol 

synthase (LAS/ERG7) which produces lanosterol, a precursor for ergosterol in 

yeast and cholesterol in mammals and cycloartenol synthase (CAS), producing 

cycloartenol which enters the phytosterol pathway of plants (Benveniste, 2004; 

Abe, 2007).  The demethylation of C-14 of lanosterol by 14α-demethylase is 

immediately followed by the reduction of the resulting C-14 double bond to give 

the precursor 14-dimethllanosterol.  Present in all phyla, 14α-demethylases 

contain the conserved CYP450 domain, inhibition of which interferes with 

ergosterol production, which alters cell membrane production, fluidity and 

permeability leading to cell leakage and eventual cell death (Bodey, 1992; 

Porsbring et al., 2009; Crowley and Gallagher, 2014).  A structurally diverse and 

broad spectrum group of fungicidal drugs, the azoles block sterol synthesis 

through inhibition of the 14α-demethylases (Porsbring et al., 2009; Crowley and 
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Gallagher, 2014).  Clotrimazole and ketoconazole are both cytochrome P450 

(CYP450) dependent enzyme inhibitors.  

14-demethyllanosterol enters the two-cycle enzymatic process in which both C-4 

methyl groups are removed consisting of C-4 demethylation (ERG25), 

decarboxylation (ERG26) and 3-ketoreductase (ERG27), a complex bound to the 

ER membrane by a sterol scaffold protein (ERG28) (Mo and Bard, 2005).  

Recent studies in S. cerevisiae have shown protein-protein interactions between 

the OSC (ERG7) and 3-ketoreductase (ERG27) wherein the deletion of 3-

ketoreductase inactivates the OSC (Teske et al., 2008; Taramino et al., 2010).  

Although OSC is not considered a regulation enzyme of the pathway, indirectly it 

is thought to be regulated by enzymes within the complex as well as other 

enzymes within the pathway (Mo and Bard, 2005).   

The C24-side chain transmethylation reaction, catalyzed by sterol C24-methyl 

transferase (24-SMT/ERG6), requires the methyl donor S-adenosyl-L-methionine 

(SAM) giving 24-methylene-ergost-8,22-dienol (Miller et al., 2012).  This is 

followed by the isomerization of the delta8-delta7 bond (ERG2) and C-5 

desaturase (ERG3) resulting in the substrate 5,7,22,24-ergostatetraenol.  The 

last step in the production of ergosterol is the reduction of C-24 by a reductase 

(ERG4).  In animals and plants, a delta 7 reduction of the substrate is required by 

C-7 reductase (ERG5) as the last biosynthetic step, an enzyme not present in 

Saccharomyces cerevisiae or C. variabilis. 

Sterol biosynthesis inhibitors (SBIs) target enzymes in the sterol biosynthetic 

pathway.  Used commercially as fungicides in the field of agronomy and as 
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antimycotic drugs in human health, these compounds obstruct sterol production, 

disrupting the homeostasis of microbial pathogens (Burden et al., 1989; Song 

and Nes, 2007).   Fungicidal SBIs are designed to kill fungal pathogens whereas 

those that inhibit pathogenic growth are considered fungistatic drugs (Graybill et 

al., 1997; Lewis and Graybill, 2008).  Inhibition at various stages of the sterol 

pathway can elucidate the importance, functionality and different roles of sterols 

as well as a useful tool in the investigation of as yet undescribed eukaryotic sterol 

biosynthetic pathways (Burden et al., 1989; Rahier and Taton, 1997).   

1.4 Sphingolipids  

The site of structural lipid synthesis begins in the endoplasmic reticulum (ER); 

producing the majority of the sterols, phospholipids, and ceramide precursors for 

complex sphingolipids (Fig. 5) (Van Meer et al., 2008).  Ceramide precursors 

follow the secretory pathway to the Golgi where they are synthesized to glucosyl 

inositol phosphoceramide (GIPC) sphingolipids before joining their sterol partners 

in lipid raft formation at the plasma membrane (Fig. 5) (Xu et al., 2001; Van Meer 

et al., 2008; Guan et al., 2009; Gulati et al., 2010).  Sphingolipids can be 

distinguished by distinct classes: 1) Long chain sphingoid bases (LCBs) 2) 

ceramides and 3) glycosylated sphingolipids (Cacas et al., 2012).  Representing 

the conserved precursors for all other sphingolipid classes, LCBs are long chain 

aliphatic amines containing two or three hydroxyl groups and are either saturated 

or mono-unsaturated (Fig. 6) (Cacas et al., 2012).   
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Figure 5.  The major steps of sphingolipid metabolism in plants.  De novo 
ceramide synthesis occurs in the ER and synthesis of more complex 
sphingolipids occurs in the Golgi apparatus.  The metabolic steps genetically 
characterized to be critical for plant PCD regulation are enumerated 1 – 6;  Name 
of enzymes are in white boxes, and genetically characterized ones in gray boxes; 
Uncharacterized steps are linked with dashed lines (Berkey et al., 2012). 

 

Nomenclature is used to define these variations in LCBs and hydroxy fatty acids 

(see below); the prefix ‘d’ or ‘t’ denotes di- or trihydroxy bases and is followed by 

chain length and number of double bonds (Bure et al., 2014).  Major LCBs have 

been identified in all three kingdoms; fungi t18:0, plants t18:1 and animals d18:1 

(Markham et al., 2006; Bure et al., 2014).  Ceramides are composed of an LCB 

to which a fatty acyl chain has been amidified (Fig. 6) (Cacas et al., 2012)  The 

structural differences of ceramides – length, unsaturation, and degree of 



23 
 

 
 

hydroxylation of both the LCB and the fatty acyl chain – are recognized as 

determining the biophysical and biochemical effects of membrane properties 

(Marques et al., 2015).   

Glycosylated sphingolipids (GSLs) are considered the most diverse class of 

lipids.  The esterification of one or multiple sugar moieties either directly to 

ceramide or through an intermediate inositol phosphate (IP) group linked to the 

ceramide (IPC) via an ester bond results in glucosyl inositol phosphoceramides 

(GIPCs), found only in fungi and plants (Cacas et al., 2012; Han et al., 2015).   

 

Figure 6. The basic structure, building blocks, and sources for structural 
diversity of sphingolipids.  All the structural variables are highlighted in red and 
indicated by a number in a shaded circle.  Ceramide (Cer) is the fundamental unit 
of all complex sphingolipids.  The Cer core consists of two structural moieties:  
the sphingoid long-chain base (LCB) and the fatty acid (FA) chain linked via an 
amide bond.  The typical LCB has a chain length of 18 carbons, which may be 
hydroxylated at 4-position (1), or have a double bond at the 4 or 8 carbon (2).  
The FA chain may be hydroxylated at the α-position (3), and/or have a double 
bond at ω9-position (4).  The FA chain length may vary from 14 to 36 (if > 20, it is 
referred to as very long-chain FA, i.e., VLCFA) (5).  The structurally diverse 
ceramides can be converted to more complex sphingolipids via substitution of the 
head group designated R at the 1-position of the LCB (6).  Additional sugar 
residues may be further added to IPCs and GlcCERs, resulting in more complex 
sphingolipids (Berkey et al., 2012). 
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The addition of a hexuronic acid between the IPC and the sugar moieties has 

been described in plants, but not seen in fungi.  The head group modifications as 

well as the core ceramide structure of GSLs enable their diverse and unique 

functions in eukaryotic cells (Breslow and Weissman, 2010). 

1.5 Lipidomics 

Lipidomics among animals, plants, fungi and bacteria have been studied in detail; 

however, it is understudied in microalgal cells (Markham et al., 2006; Gross and 

Han, 2007; Kumari et al., 2012; Bure et al., 2014).  Development of biofuels and 

implications of algae as a renewable resource has triggered current algal 

lipidomic research.  The amphipathic nature of lipids are responsible for the 

creation of bilayer membranes and maintain the fluidity and selective 

permeability of cell membranes (Van Meer et al., 2008).  From the basic building 

blocks, ketoacyl and isoprene groups, the structural diversity of all possible 

combinations of lipid molecular species is estimated to be over 200,000 

(Seppanen-Laakso and Oresic, 2009).  Phospholipids (PL) make up 

approximately 10-20% of total lipids present in algal membranes; 

phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine 

(PE), phosphatidylinositol (PI), phosphatidylserine (PS), and phosphatidic acid 

(PA) (Kumari et al., 2012).  In addition to phospholipids are glycolipids; 

monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and 

sulfoquinovosyldiacylglycerol (SQDG) and the non-polar or neutral glycerolipids, 

diacylglycerol (DAG) and triacylglycerol (TAG).  Within algae, TAGs are the 

predominant neutral lipid.  Stored as lipid bodies within the cytosol as both a 
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product and energy reservoir, TAGs are reutilized for fatty acids (FAs) and acyl 

group donation for lipid biosynthesis under adverse conditions (Kumari et al., 

2012).  The use of mass spectrometric analytic techniques has furthered the field 

of lipidomics and the ability to classify organisms based on their lipid content. 

Mass spectrometry.  The aim of lipidomic research is to identify and quantitate 

the complete profile of lipid molecules in cells, tissues or organisms – the 

lipidome – as well as study their structure, function, interactions and cellular 

dynamics (Wenk, 2005; Seppanen-Laakso and Oresic, 2009).  Lipidomic 

analysis relies on mass spectrometry (MS), an analytical technique which allows 

the study of intact lipid species – quantitative (concentration or molecular mass) 

and qualitative (structure) (Han and Gross, 2005; Bou Khalil et al., 2010; Han 

and Christie, 2010).  Methods used to extract lipids from a sample are dependent 

on the class of lipids targeted or analytical method to be used.   
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Figure 7.  Scheme showing detection of a fatty acid by LC-MS/MS using a 
linear ion-trap instrument and an electrospray (ESI) ion source (Tandem ms 
by Lmaps). 

 

Gas Chromatography – Mass Spectrometry (GC-MS) is a common method used 

for the analysis of sterols and hydroxyl fatty acid methyl esters, whereas fatty 

acid analysis requires Liquid Chromatography – Mass Spectrometry (LC-MS) 

(Fig. 7). Total lipid extracts can be introduced to MS after separation by gas 

chromatography (GC), high performance liquid chromatography (HPLC or LC) or 

by direct infusion into the MS – “shotgun lipidomics” (Ho et al., 2003; Han and 

Gross, 2005; German et al., 2007).  Flame ionization detection (FID) is used to 

measure the concentration of organic species (i.e. hydrocarbons) of a sample in 

a gas stream and is most commonly used as a detector in gas chromatography 

(GC) (Ackman and Sipos, 1964).  HPLC is used extensively for lipid separation of 

extracts prior to mass analysis; separation of different lipid classes as groups 

such as sterol esters, fatty acids, free sterol, phospholipids, glycerolipids and 

ceramides (Seppanen-Laakso and Oresic, 2009).  For detection by MS, analytes 

require the acquisition of a positive or negative ionic charge.  Electrospray 

ionization (ESI), a common ionization technique, is a soft ionization method 

which does not cause extensive fragmentation prior to mass analysis and is 

applicable for complex solutions with the advantage of high accuracy, sensitivity, 

and reproducibility  (Fenn et al., 1989; Ho et al., 2003; Seppanen-Laakso and 

Oresic, 2009).  ESI can be used in positive ion mode (ESI+) enabling analysis of 

diverse lipid classes (i.e. sphingolipids, phospholipids, and acylglycerols) or in 

negative ion mode (ESI-) (i.e. phosphatidylinositol, phosphatidic acid, and 
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phosphatidylserine) (Seppanen-Laakso and Oresic, 2009; Brugger, 2014).  Ions 

arrive at a detector after traveling through a quadrupole mass analyzer, their 

ionic movement through a magnetic or electrical field is affected by their mass to 

charge ratio (m/z) (Fig. 7) (Ho et al., 2003).  Typically, a tandem quadrupole 

system has a series of three linear quadrupoles where the first (Q1) and third 

(Q3) are mass spectrometers where the second, center quadrupole (Q2) is a 

collision cell (Murphy et al., 2001).  Analyte ions entering the collision cell collide 

with a collision gas and undergo further fragmentation, a process called collision-

induced dissociation (CID).  The detector collects the data and displays the 

signals graphically as a mass spectrum, reflecting the relative abundance of the 

ion signals according to their m/z ratio (Ho et al., 2003; German et al., 2007).  

Several modes of data acquisition are used: 1) precursor scan (parent scan) 

where ions are scanned in Q1 over a range of precursor ions and Q3 focuses on 

one product ion resulting from CID of a lipid class, 2) product scan (daughter 

scan) in which an ion of specific m/z ratio is allowed to pass through and Q3 

scans the product ions from CID, and 3) neutral loss where both Q1 and Q3 scan 

at a constant difference in m/z ratio in conjunction to monitor the loss of a neutral 

fragment after CID for a class of lipids (Fig. 7) (Ho et al., 2003). 

1.6 Summary   

Sterols are essential molecules found in nearly every eukaryotic cell 

membrane.  Having the unique ability to partner with sphingolipids, together they 

maintain the integrity, fluidity and permeability of cell membranes through the 

formation of detergent-resistant lipid rafts.  Most eukaryotes and some 
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prokaryotes encode the enzymatic genes required for sterol biosynthesis.  Non-

photosynthetic eukaryotes, animals and fungi, follow a different biosynthetic 

pathway than that found in plants or photosynthetic eukaryotes.  The major 

sterols produced in non-photosynthetic organisms are cholesterol and ergosterol, 

animals and fungi, respectively.  The phytosterols stigmasterol, campesterol, and 

beta (β)-sitosterol have been reported in various combinations and 

concentrations in plants.  Prior studies on the unicellular, photosynthetic alga C. 

reinhardtii have reported a combination of both a phytosterol and ergosterol as 

sterol components within its cellular membranes; their production has been 

proposed to use the classical phytosterol biosynthetic pathway.  Belonging to the 

same phylum as C. reinhardtii, our research goal was to identify and characterize 

the sterol genes and sterol biosynthetic pathway in the genus Chlorella. Through 

the use of gene gazing, targeted inhibition of the sterol biosynthetic pathway with 

sterol biosynthesis inhibitors (SBIs) – statin, terbinafine, and azoles – and 

GC/MS analysis, we identified ergosterol as the major sterol in C. variabilis cell 

membranes. Moreover, we describe a hybrid ergosterol biosynthetic pathway 

that is unique to this unicellular, photosynthetic alga.  In Chapter 2 of this thesis 

we illustrate the use of the photosynthetic, non-mevalonate, sterol precursor 

pathway by C. variabilis in the formation of isopentenyl disphosphate (IPP), 

which then crosses over and is fed into the non-photosynthetic, fungal-like, sterol 

pathway to produce ergosterol. 

The identification and characterization of glycosyl inositol 

phosphoceramides (GPICs) in plants is a current topic of interest in lipid 
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research; however, little information exists on the prevalence of this sphingolipid 

class in algae.  Advances in mass spectrometric methods provides the tools for 

the structural analysis of GIPCs.  The main goal of this research focuses on the 

characterization and structure analysis of the major sphingolipid, GIPCs, of the 

unicellular green algae (division Chlorophyta).  Given the ecological and 

evolutionary divergence among algae we anticipated variances in their overall 

GIPC structure.  In chapter 3 of this thesis, Liquid Chromatography- and Gas 

Chromatography-Mass Spectrometry was used in the analysis of long chain base 

(LCB) and fatty acid (FA) composition, respectively, to identify the major 

ceramide structure of Chlorophytes as having a trihydroxylated, 18-carbon LCB 

(t18:0) and a 24-carbon hydroxy FA (h24:0), both either saturated or 

monounsaturated. GIPC profiling was performed for C. variabilis, C. sorokiniana, 

C. reinhardtii, and C. subellipsoidea.  Complete structure analysis of the major 

GIPCs was successfully determined using HPLC-ESI-MS.  GIPC-fragment ions 

were detected and, based on fragmentation patterns, final structures were 

characterized regarding fatty acyl chain, long chain base and polar head groups. 

Variance among the Chlorophytes was observed in the presence or absence of 

hexuronic acid in their GIPCs. This research will provide the foundation for future 

research in elucidating the role of algal GIPC sphingolipids as components of 

specialized microdomains, or lipid rafts, in the cell membrane.  Enriched in GIPC 

sphingolipids, sterols and membrane-associated proteins, substantial evidence 

supports these specialized microdomains play a central role in regulating cellular 

processes, stress response and viral infection.  To date, little is known on the role 
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sphingolipids play in unicellular algae, the characterization of which is integral to 

understanding the vast array of cell dynamics, which is the main focus of Chapter 

3 of this thesis. 

PBCV-1 is the type member of the Chlorovirus genus.  PBCV-1 is a lytic, 

double-strand (ds) DNA virus with a 331-kb genome enclosed in an internal, 

single bilayered membrane surrounded by an icosahedral outer capsid 

containing a spike structure at one vertex.  Its fresh-water host, C. variabilis, is a 

unicellular, eukaryotic green alga and an endosymbiont of Paramecium bursaria.  

PBCV-1 has a 6 to 8 h life cycle with DNA synthesis starting at 60 – 90 min p.i.  

Virus assembly centers are visible in the cytoplasm at 2 to 5 h p.i. followed by 

localized lysis and release of infectious progeny at 6 to 8 h p.i.  Viral DNA 

packaging is the culminating step in virion assembly leading to the production of 

infectious progeny inside the cell.  In this study we describe the lipid composition 

of the PBCV-1 internal membrane and the effect of viral infection on lipid 

biogenesis in C. variabilis.  The increased levels of ergosterol, long chain bases 

and hydroxy fatty acid methyl esters change very little during viral infection.  

There is an increase in mRNAs involved in sphingolipid biosynthesis and a 

decrease in sterol biosynthetic mRNAs during PBCV-1 replication.  Electrospray 

Ionization-Mass Spectrometry of the PBCV-1 internal membrane detected 

diacylglycerol, ceramide, phospholipids, cardiolipin, and several unidentified 

peaks indicating that new lipid species were present in the virion that might result 

from viral lipid-modification proteins.  Chapter 4 of this thesis is a culmination of 
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our research on sterol and sphingolipid metabolism in C.variabilis and its 

application in pathogenic lipidomics. 
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1.8 Appendix:  acronyms 
 

CAS  Cycloartenol synthase 

CL  Cardiolipin 

DAG  Diacylglycerol 

ER  Endoplasmic reticulum 

ERG  Ergosterol 

ESI-MS Electrospray Ionization-Mass Spectrometry 

FA  Fatty acid 

GC-MS Gas Chromatography-Mass Spectrometry 

GIPC  Glucosylinositolphosphorylceramide 

Hex  Hexose 

HexA  Hexuronic acid 

hFAME Hydroxy fatty acid methyl ester 

IPC  Inositolphosphorylceramide 

LAS  Lanosterol synthase 

LCB  Long chain base 

LC-MS Liquid Chromatography-Mass Spectrometry 

MS  Mass Spectrometry 

m/z  Mass to charge 

PC  Phosphatidylcholine 

PI  Phosphatidylinositol 

PM  Plasma membrane 

SBI  Sterol biosynthesis inhibitor 

TAG  Triacylglycerol 

VF  Viral factory 
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Abstract 

Sterols are essential molecules found in nearly every eukaryotic cell membrane.  

Having the unique ability to partner with sphingolipids, together they maintain the 

integrity, fluidity and permeability of cell membranes through the formation of 

detergent-resistant lipid rafts.  Most eukaryotes and some prokaryotes encode 

the enzymatic genes required for sterol biosynthesis.  Non-photosynthetic 

eukaryotes, animals and fungi, follow a different biosynthetic pathway than that 

found in plants or photosynthetic eukaryotes.  The major sterols produced in non-

photosynthetic organisms are cholesterol and ergosterol, in animals and fungi, 

respectively.  The phytosterols stigmasterol, campesterol, and β-sitosterol have 

been reported in various combinations and concentrations in plants.  Prior 

studies on the unicellular, photosynthetic alga Chlamydomonas reinhardtii have 

reported a combination of both a phytosterol and ergosterol as sterol 

components within its cellular membranes; their production has been proposed to 

use the classical phytosterol biosynthetic pathway.  Belonging to the same 

phylum as C. reinhardtii, our research goal was to identify and characterize the 

sterol genes and sterol biosynthetic pathway in the genus Chlorella.  Through the 

use of gene gazing, targeted inhibition of the sterol biosynthetic pathway with 

sterol biosynthesis inhibitors (SBIs) – statin, terbinafine, and azoles – and 

GC/MS analysis, we identified ergosterol as the major sterol in C. variabilis cell 

membranes. Moreover, we describe a hybrid ergosterol biosynthetic pathway 

that is unique to this unicellular, photosynthetic alga.  C. variabilis uses the 

photosynthetic, non-mevalonate, sterol precursor pathway to form isopentenyl 
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disphosphate (IPP), which then crosses over into the non-photosynthetic, fungal-

like, sterol pathway to produce ergosterol. 

Introduction 

Lipids, essential biological compounds present in all organisms, play key roles in 

cellular functions and membrane stability (He et al., 2003).  Within the class of 

lipids, sterols are critical to and present in distinctly different compositions within 

cell membranes among animals, fungi and plants; cholesterol, ergosterol and 

phytosterols, respectively.  Sterol biosynthesis occurs in the endoplasmic 

reticulum (ER) through a functional complex of enzymes that display specific 

protein-protein interactions.  This complex of enzymes, described as the 

ergosterol (ERG) proteins in fungi, has been coined the “ergosome” (Mo and 

Bard, 2005).  The sterol biosynthetic pathway present in plants differs from fungi 

and animals in its production of a wide variety of phytosterols and intermediates 

in the phytosterol pathway.  Sterols are found in many forms; free sterols, sterol 

esters (acylated), sterol alkyl ethers (alkylated), sterol sulfate (sulfated) or linked 

to a glycoside moiety, steryl glycosides (Benveniste, 2004).  As integral 

components of the cell membrane, free sterols are crucial for the integrity, fluidity 

and permeability of the lipid bilayer (Benveniste, 2004).  In addition to their 

importance for cell membrane stability, they affect membrane-bound protein 

composition and influence the functionality of enzymes, receptors and channels 

(Porsbring et al., 2009).  Inhibitors of the sterol biosynthetic pathway, sterol 

biosynthetic inhibitors (SBIs) – statins, allylamines, and azoles – are known 

inhibitors which block sterol production, lead to accumulation of sterol precursors, 
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or create a different suite of sterols changing the composition, stability, and the 

integrity of the lipid cell membrane.   

In addition to having key regulatory roles in membrane fluidity and permeability, 

sterols play an important role in host defense during viral infection.  Therefore, it 

is important to understand the sterol biosynthetic pathway and sterol composition 

of eukaryotic, unicellular algae, which until now has been understudied.  In our 

attempt to identify and characterize the sterol composition and the sterol 

biosynthetic pathway in C. variabilis, we employed genome gazing, phylogenetic 

analysis, inhibition of sterol biosynthesis, and GC/MS analysis.  The sterol 

biosynthetic pathways and identified enzymes of Arabidopsis thaliana and 

Saccharomyces cerevisiae were used as representative plant and fungi models, 

respectively.   Here we report that ergosterol, an ergosterol derivative, and 

stigmasterol are the major sterols in most freshwater green algae, in the 

coccolithophore Emiliania huxlyei, and in the diatom Thalassiosira pseudonana, 

respectively.  Using Gas Chromatography-Mass Spectrometry (GC-MS) analysis 

of sterol biosynthetic inhibited algal cultures and bioinformatics we describe a 

unique ergosterol biosynthetic pathway that is present in C. variabilis and distinct 

from that found in fungi and plants. 

Materials and Methods 

Cell cultures and growth conditions.  Chlorella variabilis and Coccomyxa 

subellipsoidea cultures were grown in Modified Basal Broth Medium (MBBM) 

under constant shaking of 100 RPM, 22°C and light intensity [30 µmol m-2s-1 

(µE)].  Chlorella sorokiniana UTEX 1230 was obtained from the University of 
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Texas Culture Collection.  C. sorokiniana cultures were grown in liquid Basal 

Broth Medium (BBM) media, shaken at 115 RPM, 25°C, and a light intensity of 

58 uE.  Chlamydomonas reinhardtii CC124, obtained from Dr. Don Weeks’ 

laboratory, was grown in Tris-Acetate-Phosphate (TAP) media, under constant 

shaking of 100 RPM, 22°C and light intensity (30 µE). 

Sequence retrieval. The completed C. variabilis genome assembly 

[http://genome.jgi.psf.org/ChlNC64A_1/ChlNC64A_1.home.html;v1.0; (Blanc et 

al., 2010)] was used to search and identify sterol biosynthetic pathway genes.   

The recently sequenced and annotated Chlorella sorokiniana UTEX 1230 

genome was accessed (Cerutti et al., manuscript in preparation). The 

Arabidopsis thaliana (NCBI taxon ID: 3702), Chlamydomonas reinhardtii (NCBI 

taxon ID: 3055) and Coccomyxa subellipsoidea (NCBI taxon ID: 574566) 

genomes were accessed through the National Center for Biotechnology 

Information (http://www.ncbi.nlm.nih.gov/).  Saccharomyces cerevisiae (NCBI 

taxon ID:  4932) ergosterol (ERG) genes were used to identify homologues and 

elucidate the ergosterol pathway in C. variabilis.   

Phylogenetic analysis.  The 2,3-oxidosqualene cyclase sequences used for the 

phylogenetic analyses were taken from the results of a BLASTp search (version 

2.2.30) against the non-redundant protein database using default settings 

(Altschul et al., 1990).  Sequences from lanosterol producing vertebrates and 

fungi, cycloartenol producing plants, and algae capable of producing both 

lanosterol and cycloartenol were chosen to represent a broad representation of 

each lineage and to have a roughly equal representation of lanosterol and 

http://www.ncbi.nlm.nih.gov/
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cycloartenol producing proteins.  The squalene-hopene cyclase from Acetobacter 

tropicalis was included as an out-group.  The protein sequences were globally 

aligned using version 7.215 of MAFFT, with a maxiumum of 1000 iterations 

(Katoh and Standley, 2013).  The maximum likelihood phylogenic tree was 

produced with version 20120412 of PhyML with 1000 bootstrap replicates 

(Guindon et al., 2010).   

Sterol Standards and Inhibitors.  Plant sterols kit (cat. #1123) was used (Matreya, 

Pleasant Gap, PA) and kept at -20C.  Cholestanol (1 mg/ml) was used as the 

sterol internal standard for GC-MS analysis.   Antifungal inhibitors:  Atorvastatin 

(A7658), Terbinafine (T1672), Clotrimazole (C4657), Ketoconazole (K1676), and 

Fluconazole (F4682) were purchased from LKT Laboratories (St. Paul, MN).   

Inhibitory Concentration Kill Curve.   To determine the inhibitory concentrations of 

Terbinafine and the azole drugs, a range of stock methanol (MeOH) solutions 

with drug concentrations ranging from 0 – 50 mM was made.  A culture of C. 

sorokiniana was diluted with fresh BBM to a final cell density of 1x106 cells/ml.  

The culture was partitioned into 5 mL volumes and treated with 5 µL of a given 

stock solution, which resulted in a 1:1000 dilution of the stock drug solution.  

Other samples were treated with 5 µL of MeOH as solvent controls.  Trials were 

run in duplicate.  After six days, the absorbance of light at 750 nm was measured 

via a Biotek Synergy H1 Hybrid reader (Winooski, VT).  Inhibitory concentrations 

were determined by graphing absorbance vs. drug concentration and identifying 

the lowest concentrations at which growth was minimal. 
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Growth Curves.  Growth curves were prepared similar to the above inhibitory 

concentration curves, however, absorbance of each sample trial was read every 

day and plotted over time (data not shown). 

Sterol Inhibition Assays.  Algal cultures were grown to mid-log phase (ca. 1x106 

cells/ml).  Sterol inhibitor solutions were added to each culture in a final 

concentration equal to that of the inhibitory concentration; 100 µM statin, 4 µM 

terbinafine, 30 µM ketoconazole, and 5 µM clotrimazole.  A concentration of 

0.1% MeOH was added to control cultures.   Algal cultures were incubated for 48 

h before cells were harvested via centrifugation.  Pelleted algal cells were freeze 

dried and stored at -80°C for further analysis. 

Sterol Extraction and Analysis by Gas Chromatography – Mass Spectrometry 

(GC-MS).  Sterol extraction followed a modified version of the Bligh and Dyer 

(1959) chloroform-methanol protocol followed by GC/MS analysis of membrane 

sterol composition (Bligh and Dyer, 1959).  One mg/ml of cholestanol standard 

(Matreya, Pleasant Gap, PA) was added to freeze dried algal pellets.  Total 

sterols were extracted three times with chloroform:methanol (1:1, v:v), loaded 

onto silica SPE columns and eluted with 30% 2-propanol.  Purified sterol extracts 

were dried under nitrogen at 37°C and then converted to trimethylsilyl ether 

(TMS-ether) derivatives using bis (trimethylsilyl) trifluoracetamide (BSFTA-TMCS 

99:1) (Sigma, St. Louis, MO).  Dried sterol samples were suspended in 100 µl 

hexane for GC/MS analysis.  Initial gas chromatographic analysis was carried out 

using the Agilent 6890 Series Gas Chromatograph System equipped with a DB-

5ms capillary column (30.0 m x 250.00 µm, 0.25 µm, J&W 122-5532, J&W 
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Scientific, Inc., Folsom, USA).   Helium was used as the carrier gas at a linear 

velocity of 48 cm/sec and constant flow of 1.5 mL min-1.   A dual ramp 

temperature program was used with the oven heated from 250 to 270°C for 30 

min and then from 270 – 280°C for 3.30 min.  A detector temperature of 270°C 

was used. Sterols were initially identified using the NIST98 library (Scientific 

Instrument Services, Inc., Ringoes, USA) followed by comparisons based on 

their mass fragmentation pattern and retention time.  Peak areas of identified 

sterols were quantified relative to the cholestanol standard. 

Resuspensions.  To determine if a given drug was algicidal (permanently and 

irreversibly killed the algal cultures) or algistatic (arresting cell growth and 

development without killing the algae), cultures in which growth had been 

inhibited were spun down at 4200 RPM for three minutes and transferred into 5 

mL of fresh BBM media and allowed to grow.  Absorbance was measured as 

mentioned above. 

Results 

The major sterols were identified in six species of microalgae, four freshwater 

and two marine, by GC/MS (Table 1).  The major sterol found among the 

unicellular, green algae studied was ergosterol with the exception of Coccomyxa.  

The highest percentage of total sterols being ergosterol was found in both 

species of Chlorella, C. variabilis (97.6%) and C. sorokiniana (82%) (Table 1).  

Present only in both Chlorella species was the relatively uncharacterized sterol 

ergosta-5,8-dienol.  Interestingly, only during azole inhibition of Chlamydomonas 

does ergosta-5,8-dienol appear as an intermediate (Table 5).  C. sorokiniana 
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also contained two other minor sterols, stellasterol (ergosta-7,22-dienol) and 

ergost-7-ene (Table 1).  Coccomyxa more closely resembled a plant rather than 

algae because it only had phytosterols – campesterol (45.2%), β-sitosterol 

(34%), and stigmasterol (20.8%) (Table 1). The similarity of sterol composition in 

Chlamydomonas and Volvox, ergosterol (62.1% and 68.4%) and the phytosterol 

7-dehydroporiferasterol (35.5% and 31.6%), respectively, supported the idea that 

having an alternating life cycle or having two distinct cell types to carry out 

different functions requires sterol biosynthesis using both lanosterol and 

cycloartenol precursors (Table1).  Even though one alga is a unicellular, soil alga 

and the other a multicellular, freshwater alga, Chlamydomonas and Volvox are 

phylogenetically closely related which we also found during comparision of the 

oxidosqualene cyclase enzyme (Fig. 2).  E. huxleyi contained stellasterol, a 

derivative of ergosterol, whereas T. pseudonana produced the phytosterol, 

stigmasterol (Table 1). 

Bioinformatics.  Gene mining with the Arabidopsis thaliana sterol biosynthetic 

genes and S. cerevisiae ergosterol (ERG) pathway genes was used to blast 

against the C. variabilis genome in order to identify sterol gene homologs (Table 

2).  We further blasted these enzymatic genes against the recently sequenced C. 

sorokiniana genome.  Both sets of homologs were then blasted back against the 

NCBI database for affirmation.   Bioinformatic analysis of the C. variabilis NC64A 

annotated proteome revealed the absence of the last four enzymes (HMGR, MK, 

PMK, MVD) of the Stage I cytosolic MVA pathway (Table 2).  The genes 

encoding these four enzymes were also absent in C. sorokiniana.  However, 
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homologous genes for the complete plastidal MEP pathway were present in both 

Chlorella species, with high sequence identity to those of A. thaliana (Table 2).  

Stage II of sterol biosynthesis – IPP conversion to squalene – has three 

enzymatic steps of which homologous genes were present in Chlorella.  Of the 

Stage III sterol biosynthesis genes, the conversion of squalene to the final sterol 

composition, homology to both A. thaliana and S. cerevisiae genes were 

detected.  We identified one OSC within the Chlorella genome, CHLNCDRAFT 

22200, which is homologous to both the CAS (At2g07050) and LAS (At3g45130) 

genes found in Arabidopsis thaliana with 60% and 54% identity, respectively, and 

99% coverage (Table 2).  One gene homologous to both cycloartenol and 

lanosterol synthase was present in Chlorella with a high sequence identity to 

both genes (Table 2).  Interestingly, two sets of the desaturase and demethylase 

genes, ERG 5/11 and ERG 3/25, within the ergosterol pathway of S. cerevisiae 

and the corresponding functional genes in A. thaliana, 14DM1/2 and 

SMO/DWF7, exist as one, multi-domain gene in Chlorella for each of these gene 

pairs (Fig.1).  Also notable was the absence of the delta 24 reductase (ERG24) 

in both Chlorella species (Table 2). 

Minimal Inhibitory Concentration (MIC).  Minimal inhibitory concentrations (MICs) 

were determined in C. sorokiniana cultures (1x106 cell/ml) subjected to various 

drug concentrations of the allylamine terbinafine, two imidazoles – ketoconazole 

and clotrimazole, and the triazole fluconazole.  Absorbance, to track growth, was 

measured after six days.  Terbinafine and both imidazoles inhibited C. 

sorokiniana growth.  Cell cultures with a final concentration of 2 µM terbinafine 
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had an average absorbance of 0.42, but at 3 µM the average dropped to 0.11.  

Likewise, cultures exposed to 2 µM clotrimazole had an average absorbance of 

0.28, while at 3 µM the average was 0.03.  Ketoconazole’s MIC was much higher 

at a final concentration of 25 µM, the culture’s absorbance averaged 0.08, 

whereas at a final concentration of 20 µM the cells reached 0.57 absorbance.  

Fluconazole did not inhibit cell growth at any concentration.  Cultures exposed to 

a final concentration of 50 µM fluconazole averaged an absorption of 0.70 

compared to the control average of 0.84.  Therefore, fluconazole was not used 

for further study. 

Sterol Biosynthesis Inhibition.  Using antifungal inhibitors of the sterol 

biosynthetic pathway, statin (ST), terbinafine (TB), ketoconazole (KC) and 

clotrimazole (CT), we analyzed the accumulation of sterol intermediates in C. 

variabilis and C. sorokiniana (Tables 3-4) and azole inhibitors (KC and CT) in C. 

reinhardtii and Coccomyxa (Tables 5-6) by gas chromatography/mass 

spectrometry (GC/MS).  Compared to controls (MeOH), C. variabilis and C. 

sorokiniana cultures showed no significant change in ergosterol abundance in 

the presence of statin (ST) (Tables 3-4).  Terbinafine resulted in decreased 

ergosterol levels.  Inhibition of the pathway with two different azoles, 

ketoconazole and clotrimazole resulted in a further decrease in ergosterol and 

the appearance of the intermediate lanosterol (Tables 3-4).  Two major peaks 

appeared with azole inhibition, one of which had the same retention time and MS 

fragmentation as lanosterol (data not shown).  The intermediate 4,4-

dimethylcholesta-8, 22, 24-trienol was also present in C. variabilis (Table 3).  An 
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uncommon sterol, ergosta-5,8-dienol, was present in C. variabilis as a minor 

sterol which increased in abundance in the presence of both azoles, whereas, it 

was not detected until azole inhibition in C. sorokiniana (Table 3-4).  In the 

presence of azoles, abundance levels of the two major sterols in 

Chlamydomonas, ergosterol and 7-dehydroporiferasterol, were reduced with the 

appearance of intermediates from both the lanosterol-cyclase pathway – 

lanosterol, ergost-7-ene, lanost-8-ene and ergosta-5,8,22-trienol – and the 

cycloartenol-cyclase pathway – stigma-4,7,22-trienol and stigmasterol (Table 5).  

In the presence of azoles, Coccomyxa, which only synthesizes the phytosterols 

campesterol, stigmasterol, and β-sitosterol, had intermediates appear from 

mainly the cycloartenol pathway however, small amounts of lanosterol 

intermediates were detected, lanosterol, 24-methylenelanost-8-ene, 

cycloaudenol and 24-methylene-cycloartenol (Table 6). 

Phylogenetic Analysis of 2,3-Oxidosqualene Cyclases (OSC). OSCs with 

specificity to produce either lanosterol, cycloartenol, or both were used to 

construct a phylogenetic tree (Fig. 2).  OSCs that produce the sterol precursor 

cycloartenol form the branch of higher plants whereas those producing the 

lanosterol precursor constitute the Metazoa/Fungi group.  The microalgae cluster 

represents a group of organisms with an OSC that is thought to have a lower 

specificity for producing one precursor over another and therefore is capable of 

producing either or both lanosterol or cycloartenol.  Coccomyxa only has 

phytosterols, which suggests that cycloartenol is the preferred product (Table 6).  

Chlamydomonas and Volvox, group together with its OSC as they both produce 
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the same sterol composition requiring both sterol OSC precursors (Fig.2).  

Chlorella with its major sterol composition of ergosterol and exclusively lanosterol 

intermediates suggests an OSC with lanosterol specificity.   

Discussion  

The biosynthesis of sterols differs among animals, fungi, and plants in 

precursors, enzymatic steps, and final sterol composition.  It is widely accepted 

that the major sterol in animals is cholesterol and ergosterol in fungi and that 

both employ the MVA pathway leading to the precursor lanosterol and that they 

share the first few enzymatic steps.  After lanosterol, a bifurcated pathway 

produces their distinct sterols (Fig.3).  Plants, with its sterol precursor 

cycloartenol, follow a separate pathway to produce a wide array of phytosterols. 

The goals of this research focused on 1) the characterization and comparison of 

sterol compositions in microalgae and 2) the identification of the sterol 

biosynthetic pathway and enzymes employed by Chlorella species.  

Determination of algal sterol composition was achieved by GC/MS analysis. For 

characterization and comparison analysis we selected four unicellular, freshwater 

algae C. variabilis, C. sorokiniana, Chlamydomonas, and Coccomyxa; two 

unicellular, marine algae, the coccolithophore E. huxleyi and diatom T. 

pseudonana; and the multicellular Volvox alga species (Table 1).  Previous 

studies of sterol biosynthesis in Chlamydomonas reported the presence of 

ergosterol and 7-deydroporiferasterol as the major sterols (Miller et al., 2012), 

which agree with our results.  Interestingly, this sterol composition is identical to 

what we detected in the multicellular alga, Volvox (Table 1).   
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To elucidate the enzymatic pathway of C. variabilis ergosterol biosynthesis, the 

sequenced and well-studied Chlamydomonas and the sequenced, plant-like alga 

Coccomyxa, were selected for bioinformatic and GC/MS analysis of sterol 

biosynthesis inhibition studies.  The recently sequenced and annotated genome 

of C. sorokiniana (Ceruitti et al., manuscript in preparation) was used for a 

species-specific comparison and the fungal ergosterol biosynthetic model of the 

ergosome provided a beneficial framework (Mo and Bard, 2005).  We identified, 

through inhibition of key enzymes, the precursors involved in sterol biosynthesis 

allowing the generation of a putative ergosterol biosynthetic pathway in C. 

variabilis (Table 2; Fig.1).    

Through gene mining we noticed the lack of a homologous HMGR 

enzyme in both C. variabilis and C. sorokiniana genomes (Table 2).  Insignificant 

decreases in final sterol production in atorvastatin inhibited cultures substantiates 

the absence of a complete MVA pathway, suggesting that Chlorella only employs 

the plastidic MEP pathway to produce IPP (Table 2-3).  The complete MVA 

pathway has either been lost or nonhomologous replacement enzymes have yet 

to be discovered in Chlorella species.  As expected, inhibiting cell cultures with 

terbinafine led to a significant decrease in ergosterol levels in both Chlorella 

species (Table 3-4).   

Prior studies have shown that in non-photosynthetic eukaryotes, the cyclization 

of 2,3-oxidosqualene by LAS/ERG7 produces lanosterol; however, single 

mutations in the CAS of the photosynthetic eukaryote A. thaliana have been 

reported to produce lanosterol instead of cycloartenol as the major product 
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(Segura et al., 2002; Benveniste, 2004).  Considering ergosterol is the major 

sterol with the complete absence of phytosterols, having one gene homologous 

to both CAS and LAS, and the presence of lanosterol pathway intermediates, we 

predict the high probability of the C. variabilis OSC to preferentially produce 

lanosterol (Table 3; Fig.2).   

With both ketoconazole and clotrimazole inhibition of the 14α-demethylase 

enzyme in C. variabilis cultures, we see a reduction of ergosterol and the 

appearance of the intermediate lanosterol (Table 3).  Interestingly, 14-

demethyllanosterol (4,4-dimethyl-5α-cholesta-8,24-dienol), a metabolite of 

lanosterol, was also detected as an intermediate with azole inhibition (Table 3) 

(Leonardsen et al., 2000; Chemler et al., 2006).  The presence of the P450 

superfamily domain, targeted by azole inhibitors, is present both as a CYP51 

domain in 14α-demethylase (ERG11) and a CYPX domain in C22-desaturase 

(ERG5).   Through gene mining and protein alignments we report a C. variabilis 

protein (CHLNCDRAFT 56217) as being a multi-domain protein having the dual 

activity of ERG11 and 5 (Table 2; Fig.1).  We suggest the demethylase and 

desaturase activity occurs in tandem; therefore, incomplete inhibition of the 

demethylase is followed by further inhibition of the desaturase which would 

account for the presence of both intermediates (Table 3; Fig. 1).   

The rapid removal of a C-14 methyl from 4,4-dimethylcholesta-8,14,22-trienol by 

a sterol reductase would be required before desaturation of C-22 in order for the 

intermediate 14-dimethyllanosterol to accumulate during azole inhibition. 

However, gene mining found no homologs for the C-14 sterol reductase 
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(ERG24), C-24 sterol reductase (ERG4), or C-7 sterol reductase.  Although there 

are approximately 150 reductases coded by C. variabilis, no sterol specific 

reductases were identified; however, we suggest a possible reductase 

(CHLNCDRAFT 136479) for C-14 and C-24 reduction, but having a low 

percentage of both query coverage and percent identity with known homologs, its 

function will require further study (Table 2).  Therefore, we hypothesize that the 

reductase functioning in the C. variabilis sterol pathway would have non-specific 

enzymatic activity for the reduction of C-14 and C-24, the final enzymatic step of 

ergosterol synthesis (Fig.1).  The C-7 double bond is retained in ergosterol and a 

homologous reductase is absent in both fungi and C. variabilis. 

Azoles are a useful tool to inhibit key enzymes, leading to accumulation 

and detection of intermediates, and the determination of sterol biosynthesis.  The 

initial class of azoles, which includes clotrimazole, along with second generation 

azoles, such as ketoconazole, are capable of inhibition at additional steps during 

sterol biosynthesis resulting in an accumulation of Δ5 sterols (Berg et al., 1988).  

The accumulation and appearance of the Δ5 sterol ergosta-5,8-dienol was seen 

during azole inhibition of all four algal species (Tables 3-6).  Fluconazole, a third 

generation of azoles, had no effect on the growth of C. sorokiniana (Berg et al., 

1988).  Clotrimazole inhibited both fungal and Chlorella growth by replacing 

ergosterol with the accumulation of lanosterol intermediates and it is also a 

potent inhibitor of many different forms of cytochrome P450 enzymes in plants 

and animals as well (Burden et al., 1989).  We surmise that the inability to 

desaturate C-22 blocks the activity of C-24 methyltransferase, and in turn 
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delta8/delta7 isomerase possibly through steric hindrance; therefore, blocking the 

formation of ergosterol.  The substrate 14-dimethyllanosterol is still able to 

undergo two cycles of C-4 demethylation, decarboxylation and removal of each 

C-4 methyl group. The final action of C-5 desaturase and delta 24 reductase 

would result in the synthesis of ergosta-5,8-dienol. 

Both lanosterol and 14-demethyllanosterol are intermediates of the fungal 

and Chlorella ergosterol pathway and not present in the cylcoartenol to 

phytosterol pathway in plants, further suggesting that Chlorella sterol 

biosynthesis more closely resembles fungi instead of plants (Fig.1).  However, a 

key distinction between the ergosterol pathway of fungi and Chlorella is the 

presence of two multi-domain Chlorella genes (CHLNCDRAFT 56217 and 

37407) that are homologous to the four fungal ERG genes (ERG11/5 and 

ERG3/25); therefore, we predict a change in the order of the enzymatic steps 

and presence of different intermediates not commonly found in fungi (Fig. 3).  

The erogsterol biosynthetic pathway is composed of membrane-associated 

enzymes assembled as a multi-enzyme complex.  In yeast, the non-catalytic 

protein ERG28 functions as a scaffold, anchoring enzymes and creating a “hub” 

for enzymatic interactions with substrates (Mo and Bard, 2005; Winkel, 2009).  

We have identified the ERG28 homolog in Chlorella (CHLNCDRAFT 59539) as 

well as in other algae; however, no homolog was present in A. thaliana.  Given 

that the enzymes of the sterol biosynthetic pathway form a membrane bound 

complex, and not physically arranged linearly, may explain the diversity of sterols 

produced by various algae and other organisms (Winkel, 2009).  Currently, algae 
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have been grouped with plants as producing the precursor cycloartenol and 

utilizing the phytosterol biosynthetic pathway.  Employing azole inhibitors, 

GC/MS analysis, gene mining and bioinformatics, we propose that a unique 

sterol biosynthetic pathway exists in Chlorella and other lanosterol-producing, 

unicellular alga (Fig. 1-3).  

Conclusions 

In our comparison of the sterols present in freshwater and marine algae, we 

speculate that factors influencing the differences among species in their sterol 

content are both ecological and evolutionary based.   One such factor, specific 

water composition (i.e. temperature, salinity, nutrient and ionic composition) is 

highly variable among and between freshwater and marine ecosystems 

(Porsbring et al., 2009).  Adaptation to changing environmental conditions, such 

as light and day length, has been shown to change the ratio of sterols to other 

membrane lipids and the percentages of sterols present (Rahier and Taton, 

1997).  As C. sorokiniana can grow at warmer temperatures and Coccomyxa at 

extreme polar temperatures we see distinct differences in the final sterol 

composition when compared to C. variabilis (Table 1).  Unraveling the 

determining factors in the sterol composition in phytoplankton, E. huxleyi and T. 

pseudonana, may include a more complex combination of factors.  E. huxleyi and 

T. pseudonana have evolved from a secondary, red plastid endosymbiotic event.  

The primary vs. secondary plastid endosymbiotic events along with obvious 

ecological differences between marine and freshwater algae may explain the 

differences in sterol composition.   
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Primitive orders of algae within the Class Chlorophyceae have many species that 

contain the major sterol ergosterol or other Δ5, 7- sterols not found in higher 

orders of algae and land plants (Patterson, 1991).  The evolution from cell 

membrane Δ5, 7- sterols to Δ5 - or Δ7-sterols as major constituents is suggested to 

have taken place as earth’s ozone developed, as Δ5, 7- sterols are more 

beneficial in the absorption of UV radiation (Patterson, 1991).  With an increase 

in atmospheric oxygen, it has been hypothesized as the trigger for sterol 

evolution, providing an early defense mechanism against molecular oxygen, 

which in turn facilitated the appearance of eukaryotes (Chen et al., 2007; Brown 

and Galea, 2010).  Hence, in the presence of ozone, these primitive sterols are 

thought to have become inferior to the phytosterols of higher plants.  Research of 

other Chlorella species have been identified as having either Δ5 or Δ7 sterols 

which allows for the evolution within this genus to unfold and be characterized.  

Higher plants contain a cocktail of three Δ5 sterols – campesterol (24-methyl), 

stigmasterol (24-ethyl) and β-sitosterol (24-ethyl) – in place of a single major 

sterol (Mercer, 1993; Holmberg et al., 2002).  Surprisingly, we see this 

phytosterol composition in the unicellular alga Coccomyxa (Table 1).  A 

phylogenetic marker in the evolution of sterol biosynthesis occurs during the C-

24 methylation step.  The size and direction of the 24-alkyl group placed by the 

sterol methyltransferase is indicative of either a primitive (24β-methyl) or 

advanced (24α-ethyl) organism (Nes and New, 1980; Zhou et al., 2006).  As C. 

variabilis sterols are wholly 24β-methyl, this corroborates with other phylogenetic 

evidence of Chlorella having a primitive sterol biosynthetic pathway. 
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Due to an exclusively lanosterol-based pathway in C. variabilis, it is hypothesized 

its sterol biosynthetic pathway origin evolved from a non-photosynthetic lineage, 

has lost the capability to produce a wide range of sterols through enzyme 

mutations, or as a natural endosymbiont of Paramecium bursaria the benefit of 

synthesizing one sterol, ergosterol, outweighs the cost of the sterol complexity of 

higher plants.  In algae, the intricate roles and functions of sterols are not 

completely understood; however, the composition and characterization of algal 

sterols is essential in the study of phylogenetic comparisons, inter- and 

intraspecies interactions, viral-host interactions, and ecological and 

environmental issues (Patterson, 1991).  Here we have characterized intra- and 

interspecies-specific composition of cell membrane sterols among unicellular 

algae and propose a unique sterol biosynthetic pathway in C. variabilis. 
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Table 1.  Percentage* of major sterol composition in fresh water and marine 
microalgae.  
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Table 2.  Sterol biosynthetic pathway genes 
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Table 3.  Antifungal inhibition of Chlorella variabilis sterol biosynthetic pathway. 
Methanol (MeOH), statin (ST), terbinafine (TB), ketoconazole (KC), and 
clotrimazole (CT). 
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Table 4.  Antifungal inhibition of Chlorella sorokiniana sterol biosynthetic 
pathway.  Methanol (MeOH), statin (ST), terbinafine (TB), ketoconazole (KC), 
and clotrimazole (CT). 
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Table 5.  Antifungal inhibition of Chlamydomonas reinhardtii sterol biosynthetic 
pathway.  Methanol (MeOH), ketoconazole (KC), and clotrimazole (CT). 
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Table 6.  Antifungal inhibition of Coccomyxa sterol biosynthetic pathway.  
Methanol (MeOH), ketoconazole (KC), and clotrimazole (CT). 
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Figure 1.  Ergosterol biosynthetic pathway in Chlorella variabilis. 
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Figure 2.  Oxidosqualene Cyclase (OSC) phylogenetic tree. 
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Figure 3.  Deduced pathway of sterol biosynthesis from squalene epoxide in C. 
variabilis in comparison with mammals, fungi, algae and higher plants.  Numbers 
represent enzymatic steps of pathway as nomenclature due to different names 
and abbreviations between species.  Enzymes present in each pathway catalyze 
equivalent reactions.  Chlorella contains the same number of enzymatic steps in 
ergosterol biosynthesis as fungi; however, the order of the enzymatic steps differ.  
In mammals, fungi and Chlorella, step 3 is a combination of ERG 25-27 enzymes 
which is a C4 demethylation complex and cycles twice, whereas in other algae 
and higher plants each C4 methyl group removal occurs at different stages of 
synthesis.  Lanosterol synthase (LAS) is present in higher plants but has a minor 
role.  Enzyme abbreviations and function:  LAS, lanosterol synthase; CAS, 
cycloartenol synthase 1) CYP51, ERG11, Sterol 14α-demethylase 2) FK, Fackel, 
ERG24, Sterol C-14 reductase 3) SMO, ERG 25-27, Sterol C4 demethylation 
complex 4) SMT1, ERG6, Sterol C-24 methyl-transferase 5) HYD1, ERG2, 
delta8, delta7 isomerase 6) DWF7, ERG3, delta7 sterol C5 desaturase 7) 
CYP710A, ERG5, Sterol C-22 desaturase 8) ERG4, sterol delta 24(28) reductase 
9) DWF5, sterol C7 reductase 10) DHCR24/DWF1, dihydrocholesterol reductase/ 
sterol C24(28) isomerase-reductase 11) CPI, cycloeucanol cycloisomerase. 
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Abstract 

The identification and characterization of glycosyl inositol phosphoceramides 

(GPICs) in plants is a current topic of interest in lipid research; however, little 

information exists on the prevalence of this sphingolipid class in algae.  

Advances in mass spectrometric methods provide the tools for the structural 

analysis of GIPCs.  The goal of this research focuses on the characterization and 

structure analysis of the major sphingolipid, GIPCs, of the unicellular green algae 

(division Chlorophyta).  Given the ecological and evolutionary divergence among 

algae we anticipated variances in their overall GIPC structure.  Liquid 

Chromatography- and Gas Chromatography-Mass Spectrometry analysis of long 

chain base (LCB) and fatty acid (FA) composition, respectively, identified the 

major ceramide structure of Chlorophytes as having a trihydroxylated, 18-carbon 

LCB (t18:0) and a 24-carbon hydroxy FA (h24:0), both either saturated or 

monounsaturated. GIPC profiling was performed for Chlorella variabilis, 

Chlorellea sorokiniana, Chlamydomonas reinhardtii, and Coccomyxa 

subellipsoidea c-169.  Complete structure analysis of the major GIPCs was 

successfully determined using HPLC-ESI-MS.  GIPC-fragment ions were 

detected and based on fragmentation patterns final structures were characterized 

regarding fatty acyl chain, long chain base and polar head groups. Variance 

among the Chlorophytes was observed in the presence or absence of hexuronic 

acid (HexA) in their GIPCs. This research will provide the foundation for future 

research in elucidating the role of algal GIPC sphingolipids as components of 

specialized microdomains, or lipid rafts, in the cell membrane.  Enriched in GIPC 
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sphingolipids, sterols and membrane-associated proteins, substantial evidence 

supports these specialized microdomains play a central role in regulating cellular 

processes, stress response and viral infection. 

Introduction 

In eukaryotic organisms, the major structural lipids in cell membranes belong to 

the class sphingolipids.  Together with sterols and glycerolipids, sphingolipids are 

essential for the formation, stability, and fluidity of cell membranes (Breslow and 

Weissman, 2010; Blaas and Humpf, 2013). With essential additional functions as 

signaling molecules and components of lipid rafts, they also play a crucial role in 

programmed cell death (PCD) and determining cell fate during viral infection 

(Breslow and Weissman, 2010; Cacas et al., 2013; Rennie et al., 2014).   

The unique and complex functions of sphingolipids rely on the remarkably 

diverse modifications to their core structure.  The key lipid building blocks, long-

chain bases (LCBs) and fatty acids (FAs), are attached to a serine backbone 

creating the core structure ceramide, to which head-group modifications can be 

added (Breslow and Weissman, 2010).  Glycosyl inositol phosphoceramides 

(GIPCs) represent the most abundant class of sphingolipids in higher plants, 

making up to 25% of the plasma membrane and having the general structure (N-

acetyl) glucosamine-glucuronic acid-inositolphosphoceramide where either at the 

inositol or glucosamine residues diverse saccharides can be added (Markham et 

al., 2006; Cacas et al., 2013; Rennie et al., 2014).   
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The prevalence and occurrence of these inositol-containing glycosphingolipids, 

GIPCs in unicellular algae is relatively understudied.  The focus of this 

comparative study is to: 1) Identify sphingolipid biosynthetic genes involved in 

synthesis, homeostasis and regulation of algal sphingolipids, 2) characterize the 

major GIPC structures among Chlorophytes and 3) compare their functional role 

in lipid raft formation.  The freshwater, unicellular green algae Chlorella variabilis, 

Chlorella sorokiniana, Chlamydomonas reinhardtii, and Coccomyxa 

subellipsoidea were chosen to address these issues because of their 

Chlorophyta classification, the availability of sequenced genomes, and their 

status as model organisms used by the scientific community in research involving 

cell and molecular biology, ecology, evolutionary biology, pharmacology, and 

most recently biofuels. 

Structural information regarding GIPC sphingolipids and their polar head groups 

in algae is scarce and remains poorly characterized.  With advances in 

methodology, our mass spectrometry analysis of algal GIPCs was an attempt to 

characterize this branch of the plant kingdom. In addition, two unanswered 

questions will be addressed.  How diverse are GIPCs within algae? Are there any 

significant differences in GIPC polar head’s between algae, fungi and higher 

plants?  The proposed GIPC structures in Saccharomyces cerevisiae are oligo-α-

mannose GIPCs with the core structure mannose-inositolphosphoceramide 

(Man-IPC) and ceramide structure t18:0/h24:0 (Bennion et al., 2003; Cacas et 

al., 2013; Bure et al., 2014).  In comparision, GIPCs in Arabidopsis thaliana are 

slightly more complex having a ceramide structure of t18:1/h24:0 with a polar 
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head group with glycan moieties attached to a hexuronic acid-

inositolphosphoceramide (Hex-HexA-IPC) (Markham, 2013; Bure et al., 2014).  

Here we report variability in GIPC composition among algae in the division 

Chlorophyta, wherein Chlorella species contain fungal-like GIPCs and 

Chlamydomonas reinhardtii and Coccomyxa subellipsoidea resemble plant 

GIPCs. 

Materials and Methods 

Algal cell cultures and growth conditions.   

Chlorella variabilis NC64A and Coccomyxa cultures were obtained from James 

Van Etten.  Cultures were grown in Modified Basal Broth Medium (MBBM) under 

constant shaking of 100 RPM, 22°C and light intensity 30 µmol m-2s-1 (µE).  

Chlorella sorokiniana UTEX 1230 was obtained from the University of Texas 

Culture Collection.  C. sorokiniana cultures were grown in liquid Basal Broth 

Medium (BBM) media, shaken at 115 RPM, 25°C, and light intensity of 58 uE.  

Chlamydomonas reinhardtii was obtained from Don Weeks and grown in Tris-

Acetate-Phosphate (TAP) media, under constant shaking of 100 RPM, 22°C and 

light intensity 30 µE. 

Bioinformatics:  sequence retrieval and alignment.   

The identified sphingolipid biosynthetic enzymes from A. thaliana (taxid: 3702) 

were used for the identification of homologs in the genomes of the four algal 

species; Chlorella variabilis (taxid: 554065), Chlorella sorokiniana, 

Chlamydomonas reinhardtii (taxid: 3055), and Coccomyxa sp. C-169 (taxid: 
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574566).  The completed Chlorella variabilis NC64A genome assembly 

[http://genome.jgi-psf.org/ChlNC64A_1/ChlNC64A_1.home.html; v1.0; (Blanc et 

al., 2010)] was used to search and identify sterol biosynthetic pathway genes.   

The newly sequenced and annotated Chlorella sorokiniana UTEX 1230 genome 

was accessed (Cerutti et al., manuscript in preparation). The Arabidopsis 

thaliana (NCBI taxon ID: 3702), Chlamydomonas reinhardtii (NCBI taxon ID: 

3055) and Coccomyxa (NCBI taxon ID: 574566) genomes were accessed 

through the National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/). The Arabidopsis thaliana (NCBI taxon ID: 3702) 

sphingolipid biosynthesis genes were used to identify homologues and elucidate 

the pathway in Chlorella varaibilis.   

LCB purification and analysis by LC-MS.   

Long chain base samples were obtained through sphingolipid hydrolysis.  To 

freeze dried pellets (mentioned above), 0.1 nmol/µL of the d16:0 standard, 1 ml 

dioxane and 1 ml Ba(OH)2 was added and hydrolysis allowed to proceed 

overnight at 110°C.  To cooled samples, 2 ml of both 2% ammonium sulphate 

and diethylether was added, vortexed then centrifuged at 500 x g for 10 min.  

The upper phase was collected in a glass tube and dried under N2.  The samples 

were allowed to derivatize at room temperature for 20 min following the addition 

of o-phthalaldehyde (OPA) reagent.  OPA diluent was added and samples were 

run on HPLC/MS (C18 HPLC column).  Sphingolipid hydrolysis and LCB analysis 

was run in triplicate for each time point. 

hFAME purification and analysis by GC-MS.   

http://www.ncbi.nlm.nih.gov/
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Analysis of 2-hydroxy fatty acids was achieved through the production of TMS-

derivatives of hydroxy fatty acid methyl esters for GC/MS.  Hydrolysis with 2 ml 

methanolic HCL (Fluka 17935) added to freeze dried pellets was allowed to 

proceed overnight at 75°C.  Hexane extractions of the cooled hydrolysis reaction 

were done in triplicate, the upper phase from each collected and combined into a 

clean tube and dried under N2.  Extracts were purified on a silica acid column 

and hFAMEs eluted with hexane:ethyl acetate (6:1, v:v).  TMS-derivatives of 

hFAMEs, using BSFTA +TMCS 99:1 (Supelco, 33154-U), were analyzed by 

GC/MS.  Hydrolysis and production of hFAMEs were run in triplicate for each 

time point.   

Sphingolipid extraction, preparative HPLC, and ESI-MS of algal GIPCs.    

All chemicals were of high performance liquid chromatography (HPLC) grade 

from Sigma.  Hexanes were optima grade, propan-2-ol was HPLC grade, both 

from Fisher.  Tetrahydrofuran and methanol were Omnisolv grade and obtained 

from EMD Biosciences (San Diego, CA).  Methods were adapted after Dr. J.E. 

Markham (Markham et al., 2006). 

Micro-isolation of algal sphingolipids.  

In a 10 mL glass centrifuge tube, 300 mg dry weight (dw) of freeze dried algal 

sample was placed with 1 mL beads and 3 mL extraction solvent – lower phase 

(Propan-2-ol/hexane/water, 55:20:25 v:v:v).  Samples were vortexed followed by 

incubation at 60°C for 15 min.  After centrifugation at 500 x g for 10 min., the 

supernatant was collected in a second 10 mL glass tube and the pellet was 
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extracted twice more with 3 mL extraction solvent, incubated for 15 min at 60°C 

each time.  The supernatants from each extraction were combined and dried 

under nitrogen. 

Solid phase extraction of sphingolipid extract.    

The dried lipid extract was dissolved with 3 mL tetrahydrofuran/methanol/water 

(1:1:1 v:v:v).  Sonication and vortexing was used for effective solubilization.   A 

200-µl aliquot was removed for hydrolysis and analysis (Total Extract).  A 

SepPak Plus C18 cartridge (Waters, Milford, MA) was prepared by fitting a glass 

6-ml luer lock syringe with Teflon frit (Supelco, Bellefonte, PA) to the inlet, 

followed by 500 mg of C18 silica, passing 2 mL of methanol followed by 2 mL of 

methanol:water (1:1 v:v) through the cartridge, and the addition of an upper frit. 

To the sample, 2 mL of water was added, vortexed and centrifuged at 500 x g for 

10 min.  The supernatant was rapidly poured onto the cartridge and allowed to 

drain by gravity flow.  The column was rinsed twice with 2 mL of methanol:water 

(1:1 v:v).  The sample was eluted with 4 mL chloroform:methanol:water (16:16:5 

v:v:v) into clean 10 ml glass centrifuge tubes and eluate was dried under 

nitrogen.   

The C18 eluate was dissolved in 2.9 mL chloroform:methanol:water (16:16:5 

v:v:v) and applied to 2 mL of AG4X-X4 acetate resin (Bio-Rad) supported in a 6-

ml glass luer lock syringe with lower and upper Teflon frit and allowed to flow by 

gravity.  The column was first washed with 4 mL methanol and 4 mL 

chloroform:methanol:water (16:16:5 v:v:v).  The column flow-through (neutral 

fraction) was dried under nitrogen and re-dissolved in 2.8 mL chloroform:acetic 
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acid (99:1) and a 100 µl aliquot was removed for analysis.  The anionic charged 

lipids were eluted from the column with 7 mL 

chloroform/methanol/water/ammonia (16:16:4:1 v:v:v:v) containing 0.1% 

triethylamine.  The eluate (anionic lipids) was dried under nitrogen and re-

dissolved in 280 µl of propan-2-ol:hexane:water (3:1:1 v:v:v) and 100 µl was 

removed for analysis.  The re-dissolved neutral fraction (above) was applied to a 

SepPak Silica cartridge equilibrated with chloroform:acetic acid (99:1 v:v) and 

allowed to drain by gravity flow.  The cartridge was washed with 15 mL 

chloroform:acetic acid (99:1 v:v).  Neutral sphingolipids were eluted from the 

cartridge with 4 mL acetone and 4 mL methanol, dried under nitrogen, and 

redissolved in 270 µl chloroform.  Samples were stored at -20°C for HPLC 

analysis.   

Electrospray Ionization and Mass Spectrometry.   

The charged (anionic) lipid fraction was dried under N2 and re-suspended in 270 

µl of 50% Solvent B (Propan-2-ol:water:formic acid, 60:40:0.1) + 50 mM 

ammonium formate. Charged lipid extracts were then introduced by direct 

infusion into the TurboV electrospray source of an API 4000 Q TRAP LC/MS/MS 

Mass Spectrometer (Applied Biosystems, Foster City, CA) using the flow from a 

KDS100 syringe pump (KD Scientific Inc., Holliston, MA),  at 10 µl/min with a 

source temperature of 650°C and collision energy (CE) of 60.  All data were 

collected and analyzed using Analyst 1.6.1 (AB Sciex Instruments).   Following 

data acquisition, the highest signal from the mass spectrum was taken as 100% 
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abundance and other signals are represented as a percentage of total 

abundance. 

Results  

Choice of plant material.  Four algal species from the division Chlorophyta were 

selected in order to assess GIPC structural diversity among unicellular, 

freshwater algae.  Algal model organisms used by the scientific community were 

chosen:  C. variabilis, a well-known algal model for viral-host interactions as both 

host and viral genomes have been sequenced (Blanc et al., 2010; Van Etten and 

Dunigan, 2012); C. sorokiniana, recently sequenced and annotated (Cerutti et al., 

manuscript in preparation), is currently a prime model for the utilization of 

microalgae biomass for biotechnological studies in the development of biofuel 

production.  The high productivity, high lipid content, and resistance to high light 

conditions of C. sorokiniana make it a suitable candidate for the advancement of 

increasing algal biomass in photobioreactors (Cazzaniga et al., 2014); 

Chlamydomonas is a haploid, motile organism and has proved to be an excellent 

system in the study of mutations, as well as flagellar assembly (Harris, 2001; 

Siaut et al., 2011); Coccomyxa, used in pioneering studies on green algal 

chromosomal architecture is still widely used in current research on chromosome 

repair (Darienko et al., 2015).  Due to its morphological and physiological 

plasticity, Coccomyxa is an ecological and evolutionary complex alga applicable 

for a wide array of biological research (Blanc et al., 2012). 

Bioinformatics and identification of sphingolipid biosynthetic genes.  The 

enzymatic genes involved in sphingolipid biosynthesis in Arabidopsis thaliana 
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were used to identify homologs in the genomes of the four algal Chlorophytes.  

A. thaliana (Brassicaceae, Cruciferae) is a model organism for the study of 

different aspects of plant biology and has been used for more than 50 years to 

study plant mutations and classical genetic analysis (Rhee et al., 2003).  Here we 

have listed the A. thaliana gene specific abbreviation, gene identification (ID) 

number, the predicted or characterized function and subcellular location of each 

enzyme (Table 1).  Our initial search was against the C. variabilis genome and 

along with gene ID, we included percent (%) query coverage, e-value, and 

percent (%) identity.  As the C. sorokiniana genome has not been released with 

gene IDs, we have used the available and corresponding scaffold numbers.  E-

values are reported for homologs found in C. sorokiniana, Chlamydomonas, and 

Coccomyxa (Table 1).  Homologs of the major enzymes involved in sphingolipid 

biosynthesis were identified in Chlorella with the exception of the long-chain base 

(LCB) delta 8 desaturase, putative condensing enzyme for very long chain fatty 

acid (VLCFA) synthesis and the omega 9 desaturase (Table 1).  Interestingly, the 

VLCFA condensing enzyme was identified in Coccomyxa exclusively.  Several 

enzymes have yet to be identified in many species of the plant kingdom and have 

been listed as unknowns (Table 1).  Several homologs within the C. sorokiniana 

genome were unidentified which we contribute to the relatively new annotation 

and our pre-release genome blast.  Two genes of interest were present in 

Chlorella, Inositol phosphorylceramide glucuronosyl transferase 1 (IPUT1) and 

the Long-Chain Base (LCB)-1-phosphate phosphatase, which were not found in 

the genomes of either Chlamydomonas or Coccomyxa (Table 1).   
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Characterization and comparison of Chlorophyte LCB and FA.   

Through sphingolipid hydrolysis and LC-MS analysis we were able to 

characterize the algal long-chain base (LCB).  The major LCB composition 

among the Chlorophytes in this study were tri-hydroxylated, 18-carbon (C), 

saturated (t18:0) and monounsaturated (t18:1) phytosphingosine.  In C. variabilis, 

the LCB t18:0 was present at almost 100%, C. sorokiniana at 55%, 

Chlamydomonas at 70%  of total LCB (Fig. 1A). In Coccomyxa, both t18:0 and 

t18:1, at 55% and 40%, respectively, were identified (Fig. 1A). Fatty acid analysis 

by GC-MS was achieved through TMS-deriativization of hydroxyl fatty acid 

methyl esters (hFAMEs).  Each algal species had a composition of very long 

chain fatty acids (VLCFAs), which were hydroxylated at position 2.  In C. 

variabilis, the major hFAME, present at 95%, consisted of a 24-C chain with a 

monounsaturation (h24:1) (Fig. 1B).  C. sorokiniana and Chlamydomonas 

contained a mixture of the saturated hFAMEs 24:0 and 26:0 in roughly the same 

amounts, 40% and 50%, respectively (Fig. 1B).  The major hFAME in 

Coccomyxa, present at 75%, was the saturated hFAME 24:0 (Fig. 1B).  The 

major LCB and hFA composition from each of the algae was used to characterize 

and compare the major phytoceramides present among the Chlorophytes as well 

as a comparison with the major ceramide structure found in fungi and higher 

plants (Table 2).  

Electrospray Ionization-Mass Spectrometry of algal GIPCs.   

GIPCs were detected in m/z 1200 - 1800 mass range.  In C. variabilis and C. 

sorokiniana, the major parent ions detected were m/z 1249 [M + H]+ and m/z 
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1251 [M + H]+, respectively (Fig. 2-3 ).  Product ion scans of these ions created 

the major product ions of m/z 665.0, with lesser fragments of m/z 925.2 and m/z 

1087.0 in C. variabilis and m/z 667.2, with fragments of m/z 927.0 and m/z 

1089.4 in C. sorokiniana.  The fragmentation of m/z 1249.0 to m/z 665.0 

represents a neutral loss of 584 Daltons (Da) in C. variabilis which corresponds 

to the molecular weight of t18:0/h24:1 phytoceramide (Fig. 1A-B; Fig. 2).  In C. 

sorokiniana a neutral loss of 586 Da results from the fragmentation of m/z 1251 

to m/z 667 corresponding to the molecular weight of t18:0/h24:0 phytoceramide 

(Fig. 1A-B; Fig. 3).  The m/z 2 difference between these two species is explained 

by the unsaturated hFA (h24:1) of C. variabilis compared to the saturated hFA 

(h24:0) of C. sorokiniana (Fig. 1B).  This pattern difference in m/z 2 is seen 

among each fragment in both Chlorella mass spectra.  Additional fragments in 

the product ion scan of C. sorokiniana, m/z 1848.4, m/z 761.1 and m/z 576.0, will 

require further analysis for characterization (Fig. 3).  Having an exact mass of 

260.03 Da, inositol phosphate groups were detected as fragments of m/z 925 

and m/z 927 from m/z 1249 and m/z 1251 in C. variabilis and C. sorokiniana, 

respectively (Fig. 2-3).  The loss of m/z 162 is representative of a hexose which 

we identified as occurring twice from each of the species GIPC exact masses 

(Fig. 2-3).  Hexuronic acid (HexA), having an exact mass of 194.04 Da and m/z 

176, was not detected as a fragment in either product or precursor ion scans; 

therefore, we suggest Chlorella lacks HexA in its GIPC composition.  Thus, the 

combination of the GC-MS, LC-MS and ESI-MS (direct infusion) allowed us to 

elucidate the chemical composition of the ceramide backbone and polar head 
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group of the major GIPC in the Chlorella species as having the structure Hex(2)-

IPC (Fig. 2). 

 Mass spectrometry analysis of the algae Chlamydomonas and 

Coccomyxa revealed that the major GIPC differs from Chlorella.  In 

Chlamydomonas, the major peak of the precursor scan was at m/z 1802 [M + 

H]+.  A product ion scan showed a major product ion at m/z 695.3 which 

corresponds with the molecular weight of the phytoceramide t18:0/h26:0 (Fig. 

1A-B; Fig. 4).  A precursor ion scan of m/z 695.5 detected an inositol 

phosphoceramide (IPC) group at m/z 977 as a Na+ adduct (Fig. 4).  The neutral 

loss of m/z 176 from m/z 1153.5 identified the presence of HexA in the final GIPC 

structure (Fig. 4).  The fragmentation pattern of four 162 Da hexoses from m/z 

1802 was identified at m/z 1639.9, m/z 1477.4, m/z 1315.5 and m/z 1153.5 (Fig. 

4).  A complete GIPC structure for Chlamydomonas is proposed as Hex(4)-HexA-

IPC (Fig. 4).  GIPC characterization in Coccomyxa was more complex with 

several major peaks of the precursor scan at m/z 1956.2, m/z 1623.8, m/z 1161, 

m/z 665 and m/z 552 (Fig. 5).  Previous analysis by LC- and GC-MS, identified 

the Coccomyxa LCB t18:1 and hFA 24:0, respectively (Fig. 1A-B).  A precursor 

ion scan of m/z 665, the molecular weight of the phytoceramide t18:1/h24:0, 

allowed the identification of the IPC at m/z 926.  Lesser peaks at m/z 1102, m/z 

1264, and m/z 1426 reflected the loss of HexA and two hexoses, respectively.  

We, therefore, propose the major GIPC structure in Coccomyxa as Hex(2)-HexA-

IPC (Fig. 5).  Conclusive identification of additional hexoses to the polar head 

group of Coccomyxa will require further analysis.   Using the information provided 
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from mass spectrometry analysis, the proposed molecular structure of the major 

GIPC in C. variabilis and C. sorokiniana as Hex(2)-IPC, in contrast to that of 

Chlamydomonas and Coccomyxa as Hex(n)-HexA-IPC (where n = number of 

hexose moieties) (Fig. 2-5).  The exact identity of the hexoses could not be 

assigned based on the mass spectrum.  The GIPC composition of the 

Chlorophytes in this study were then compared with the major GIPC structure 

found in fungi and higher plants (Table 2). 

Biosynthetic pathway of the atypical GIPC in Chlorella variabilis.   

Chlorella contains an unusual GIPC not common to most algae or plants and 

more similar to fungi in its lack of a HexA (Fig. 2; Table 2).  Through the use of 

bioinformatics, i.e. gene mining, blasts, and alignments, within the C. variabilis 

genome we identified the enzyme, IPUT1, thought to be responsible for the 

addition of HexA; however, its function will require further research (Table 1).  

Based on identification of biosynthetic enzymes involved and complete GIPC 

structure, we propose a sphingolipid biosynthetic pathway for the GIPC dihexose 

inositol-phosphate found in Chlorella (Fig. 6). 

Discussion  

In comparing the phytoceramide portion of GIPCs among the Chlorophytes in 

this study, we found slight variations in long chain base and fatty acid acyl 

chains.   Long chain bases from all four algae were found to be trihydroxylated 

and 18 carbons (C) in length; however, only Coccomyxa LCBs (t18:1) were 

monounsaturated compared to the saturated LCBs (t18:0) of C. variabilis, C. 
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sorokiniana, Chlamydomonas (Fig. 1A-B; Table 2).   Algal fatty acids were 

composed of 2-hydroxy Very Long Chain Fatty Acids (hVLCFA) with slight 

variation in number of carbons and saturation;  C. variabilis having a 

monounsaturated, 24 C hVLCFA (h24:1) and Chlamydomonas with a saturated, 

26 C hVLCFA (h26:0), C. sorokiniana and Coccomyxa both having saturated 24 

C hVLCFA (Fig. 1A-B; Table 2).  The major composition of phytoceramides found 

in fungi and plants are t18:0/h24:0 and t18:1/h24:0, respectively (Markham et al., 

2006; Blaas and Humpf, 2013; Bure et al., 2014).  Based on these results, algal 

phytoceramide structures of Chlorella and Chlamydomonas are more similar to 

fungi whereas Coccomyxa has a composition similar to plants (Table 2). 

GIPC structure among Chlorophytes is similar with respect to acyl chain length 

and degree of saturation; however, differences between Chlorella species and 

the other algae are notable i.e., the presence or absence of HexA in the polar 

head groups.  Until recently, a glucuronosyl transferase involved in the addition 

of glucuronic acid to the IPC acceptor for GIPC synthesis was difficult to identify 

due to the variability of glycosylation patterns between kingdoms (Rennie et al., 

2014).  Current research has identified the plant protein inositol 

phosphorylceramide glucuronosyl-transferase 1 (IPUT1), showing IPC 

glucuronosyl transferase activity and is associated with this activity in A. thaliana 

(Rennie et al., 2014).  Interestingly, we have identified the IPUT1 homolog within 

the Chlorella genomes; however, our research has shown the absence of a 

glucuronic acid in the GIPC sphingolipids of this species (Table1; Fig. 2-3).  More 

intriguing, is the absence of IPUT1 homologs in the genomes of Chlamydomonas 
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and Coccomyxa which we have shown to synthesize glucuronic acid-containing 

GIPCs (Table 1; Fig. 4-5).  In Saccharomyces cerevisiae, the mannosyl 

transferase protein SUR1 is responsible for the addition of the mannose to the 

IPC acceptor in the GIPC biosynthesis (Bennion et al., 2003).  Given the 

similarity of sterol composition between Chlorella and fungi, we included a Blastp 

of SUR1 (GenBank: AAA68909) to the Chlorella genomes.  A homolog within C. 

variabilis was identified (CHLNCDRAFT 10358) with a greater percent query 

coverage (57%), e-value (2 e-59), and percent identity (45%) than that of IPUT1 

(Table 1).  As mentioned previously, the exact identity of the hexoses of the 

GIPCs could not be assigned, this along with the lack of HexA, we speculate 

whether the GIPCs in the species Chlorella may contain mannose as its sugar 

moieties using SUR1 for the glycosylation of its GIPCs.   

With previous characterization of GIPC structures, ceramide and polar head 

groups, in fungi and plants along with our comparison within the Chlorophytes, 

we suggest that Chlorella species have a fungal-like membrane and the algae 

Chlamydomonas and Coccomyxa more closely resemble those of higher plants.  

These differences were also found and described in our current research on 

sterol composition of algal membranes; Chlorella have the fungal sterol 

ergosterol, Chlamydomonas has ergosterol and a phytosterol, and Coccomyxa 

has the plant-specific phytosterols.  We suggest a possible sphingolipid-sterol 

interaction between these two lipid species. The characterization and comparison 

of Chlorophyta GIPCs provides insight to and framework for a more detailed 

evolutionary distinction within all branches of algae.   
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Conclusions 

The biological lipid membrane and its complexity in composition, structure and 

functional roles is a major area of research.  Studies of eukaryotic model 

membranes, fungi and plants, have shown the presence of liquid-ordered (Lo) 

domains rich in lipids with relatively saturated acyl chains (i.e. GIPCs) (Xu et al., 

2001).  These domains, described as lipid rafts, are stabilized through their 

association with sterols and are enriched with proteins that interact and anchor to 

saturated acyl chain lipids (Guan et al., 2009).  The formation of these lipid rafts 

is dependent on the ability to tightly-pack with their natural sterol partners leading 

to their detergent-resistant, insoluble characteristic (Eisenkolb et al., 2002; Guan 

et al., 2009).  Given the prevalence of GIPCs having saturated acyl chains within 

the Chlorophytes and our current characterization of sterol composition in algae, 

we suggest the presence of lipid rafts within algal membranes.   Relatively 

understudied, the functional roles and the protein composition of these domains 

among algae is an important area of research.  Here we have provided 

substantial evidence for the presence of lipids with the composition required for 

lipid raft formation in algae; however, the differences in GIPC polar head groups 

and their subsequent functions and roles in lipid rafts will require further 

research. 
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Table 1.  Putative and characterized sphingolipid biosynthetic genes among 

Chlorophyta. (NF = not found, PM = plasma membrane, ER = endoplasmic 

reticulum) 
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Figure 1 A-B.  Characterization and comparison of ceramide components among 

Chlorophytes.  A) Long chain base (LCB) and B) hydroxyl fatty acid methyl esters 

(hFAME) profiles of four unicellular algae. 
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Figure 2.  ESI-MS analysis of Chlorella variabilis GIPC.  The +MS2 scan of the 

phytoceramide m/z 665 shows the fragmentation pattern of the major GIPC 

structure Hex(2)-IPC with exact mass of 1249 Daltons (Da).  Panel insert of the 

complete GIPC with its phytoceramide t18:0/h24:1.  Hex = hexose, IPC = 

inositolphosphorylceramide. 
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Figure 3. ESI-MS analysis of Chlorella sorokiniana GIPC.  The +MS2 scan of the 

phytoceramide m/z 667 shows the fragmentation pattern of the major GIPC 

structure Hex(2)-IPC with exact mass of 1251 Daltons (Da).  Panel insert of the 

complete GIPC with its phytoceramide t18:0/h24:0.  Hex = hexose, IPC = 

inositolphosphorylceramide. 
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Figure 4.   Figure 3.  ESI-MS analysis of Chlamydomonas reinhardtii GIPC.  The 

+MS2 scan of the phytoceramide m/z 695 shows the fragmentation pattern of the 

major GIPC structure Hex(4)-HexA-IPC with exact mass of 1802 Daltons (Da).  

Panel insert of the complete GIPC with its phytoceramide t18:0/h26:0.  Hex = 

hexose, HexA = hexuronic acid, IPC = inositolphosphorylceramide. 
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Figure 5.  ESI-MS analysis of Coccomyxa subellipsoidea C-169 GIPC.  The 

precursor scan of the phytoceramide m/z 665 shows the fragmentation pattern of 

the major GIPC structure Hex(n)-HexA-IPC with exact mass of 1426 Daltons 

(Da).  Panel insert of the complete GIPC with its phytoceramide t18:0/h24:1.  Hex 

= hexose, HexA = hexuronic acid, IPC = inositolphosphorylceramide. 
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Table 2.  Characterization and comparison of ceramide backbone and GIPC 

structure among algae, fungi and plants.  (f = fungi, a = algae, p = plant; n = 

variable number of hexoses, Hex = hexose, HexA = hexuronic acid, IPC = 

inositolphosphoceramide) 
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Figure 6.  GIPC sphingolipid biosynthetic pathway in Chlorella variabilis of 

dihexose inositol phosphoceramide (t18:0/h24:1). 
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Abstract 

Paramecium bursaria chlorella virus 1 (PBCV-1) is the type member of the 

Chlorovirus genus.  PBCV-1 is a lytic, double-strand (ds) DNA virus with a 331-

kb genome enclosed in an internal, single bilayered membrane surrounded by an 

icosahedral outer capsid containing a spike structure at one vertex.  Its fresh-

water host, Chlorella variabilis, is a unicellular, eukaryotic green alga and an 

endosymbiont of Paramecium bursaria.  PBCV-1 has a 6 to 8 h life cycle with 

DNA synthesis starting at 60 – 90 min post infection (p.i.).  Virus assembly 

centers are visible in the cytoplasm at 2 to 5 h p.i. followed by localized lysis and 

release of infectious progeny at 6 to 8 h p.i.  Viral DNA packaging is the 

culminating step in virion assembly leading to the production of infectious 

progeny inside the cell.  In this study we describe the lipid composition of the 

PBCV-1 internal membrane and the effect of viral infection on lipid biogenesis in 

C. variabilis.  The increased levels of ergosterol, long chain bases and hydroxy 

fatty acid methyl esters change very little during viral infection.  There is an 

increase in mRNAs involved in sphingolipid biosynthesis and a decrease in sterol 

biosynthetic mRNAs during PBCV-1 replication.  Electrospray Ionization-Mass 

Spectrometry of the PBCV-1 internal membrane detected diacylglycerol, 

ceramide, phospholipids, cardiolipin, and several unidentified peaks indicating 

that new lipid species were present in the virion that might result from viral lipid-

modification proteins. 
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Introduction 

The compositional changes of lipids during viral infection are relatively under 

studied.  To further algal lipidomic research and elucidate the host-derived 

cellular origin and composition of the viral internal bilayered membrane of 

Paramecium bursaria Chlorella Virus (PBCV-1), we determined the sterol and 

sphingolipid composition, metabolic lipid biosynthetic pathways, and the relevant 

genes and enzymes during PBCV-1 infection of Chlorella variabilis.  Previously, 

we identified the major sterol ergosterol and characterized the sphingolipid 

glycosylinositolphosphorylceramide (GIPC) in uninfected C. variabilis (Rose et 

al., manuscript in preparation).  GIPC was formed from 

inositolphosphorylceramide (IPC) and contained palmitic acid – 

phytosphinganine (t18:0) in its acyl chains, monounsaturated hydroxyl fatty acids 

(MUFAs) (h24:1) and a head group consisting of two sugars – 

dihexoseinositolphosphoceramide (Rose et al., manuscript in preparation).  

Interestingly, C. variabilis lacks the glucuronic acid that is typically present in 

GIPCs of other algae and higher plants.  

Lipids are essential components of many viruses, the majority of which are found 

in viral membranes (Roine and Bamford, 2012).  Viruses in the family 

Phycodnaviridae have an internal membrane, underneath an icosahedral protein 

capsid, and one representative the marine coccolithovirus Emiliania huxleyi virus 

– 86 (EhV86), also has an external envelope (Table 1) (Castberg et al., 2002; 

Wilson et al., 2009).  Viruses containing internal membranes are usually lytic in 

nature, whereas external enveloped viruses usually obtain their membrane 
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through budding during release from their host (Roine and Bamford, 2012).  Host 

cytoplasmic membranes are the primary source of viral internal membranes and 

at least some membranes serve as a scaffold for capsid protein assembly (Roine 

and Bamford, 2012; Milrot et al., 2015). 

Viruses with internal membranes are not limited to the Phycodnaviridae family; 

e.g., the Tectiviridae archaeal Sulfolubus Turreted Icosahedral Virus (STIV), the 

eukaryotic Mimiviridae Acanthamoeba polyphaga mimivirus, and the 

Bacteriophage PRD1 all have internal membranes (Bamford et al., 1995; Rice et 

al., 2004; Raoult et al., 2007; Roine and Bamford, 2012).  These viruses share 

common features: an icosahedral protein capsid structure, an internal lipid 

membrane, dsDNA genomes, and the presence of cytoplasmic viral factories 

(VF) during replication in their hosts.  The fact that these 3 viruses infect 

members of all 3 domains of life, Archaea, Eukarya, and Bacteria, suggests a 

deep-rooted evolutionary relationship in which a common viral ancestor might 

have preceded the divergence of the domains more than 3 billion years ago 

(Rice et al., 2004). 

As host membrane acquisition is central to the production of successful viral 

progeny, recent research has focused on the generation, structure and functional 

features of cytoplasmic VFs among internal membrane containing viruses.  To-

date VFs have been described as coordinating the spatial and temporal 

assembly of viral progeny; however, the lipid composition of the internal viral 

bilayered membrane is relatively unstudied among the Phycodnaviridae (Wilson 

et al., 2009; Milrot et al., 2015).   Belonging to the nucleocytoplasmic large DNA 
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viruses (NCLDV) group (Iyer et al., 2006), both PBCV-1 and Mimivirus VFs and 

virion assembly have recently been investigated and found to differ (Mutsafi et 

al., 2013; Milrot et al., 2015).  In contrast to Mimivirus VFs, where replicated and 

transcribed genomes are located in the factory center with membrane 

accumulation and capsid assembly occurring at the boundary, PBCV-1 viral 

genomes are localized at the boundary with the membrane and capsid region 

located in the factory center (Kuznetsov et al., 2013; Milrot et al., 2015).  PBCV-1 

VFs first appear in the host cytoplasm at ~2 h p.i. and  their appearance is 

associated with significant accumulation of host membrane cisternae which bud 

from the rough endoplasmic reticulum (ER) located near the outer membrane of 

host nuclei (Milrot et al., 2015).  As cisternae are translocated into the VF center 

the double membrane bilayers are converted into open single-bilayer sheets 

which then act as templates for the formation of the outer icosahedral capsid 

structures (Milrot et al., 2015). Our research takes a closer look into membrane 

biogenesis during PBCV-1 infection of C. variabilis by characterizing the lipid 

composition of the viral internal membrane. 

Materials and Methods 

Viral preparation and purification of PBCV-1.   

C. variabilis cultures were grown in Modified Basal Broth Medium (MBBM) under 

constant shaking at 100 RPM, 22°C and light intensity of 30 µmol m-2s-1 (µE).  

Cells were grown to mid-log phase (2 x 107 cells/ml), inoculated with PBCV-1 at 

an MOI of 0.01 and allowed to lyse for two days.  Trition X-100 was added to the 

lysates at a final concentration of 0.1% and the lysates were centrifuged in a 
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Sorvall GSA rotor at 5,000 rpm for 5 min at 4°C to remove debris.  The viral-

containing supernatant was centrifuged in a Beckman Type 19 rotor for 50 min at 

17,000 rpm at 4°C to pellet virus.  The virus pellets were re-suspended in 50 mM 

Tris, pH 7.8 and 10 mM MgCl2 and then layered on 10-40% sucrose gradients.  

Gradients were centrifuged in a Beckman SW-32 rotor at 20,000 rpm for 20 min 

at 4°C.  The band containing virus was collected, slowly diluted with 50 mM Tris, 

pH 7.8 and 10 mM MgCl2 and pelleted in the GSA rotor for 60 min at 17,000 rpm.  

To obtain purer preparations, the virus was subjected to a second sucrose 

density gradient and pelleted.  The final virus pellet was re-suspended in 50 mM 

Tris, pH 7.8 and 10 mM MgCl2.  Viral concentrations were determined by 

measuring absorbance at 260 nm and virus titer was determined by plaque 

assay (Van Etten et al., 1983). 

Algal culture conditions and PBCV-1 infection of C. variabilis.   

C. variabilis cultures were grown as described above and purified PBCV-1 was 

added to actively growing cultures (2 x 107 cells/ml) at a MOI of 5.  A control 

culture of C. variabilis was harvested at time = 0 h p.i (T=0) and then at every h 

for six h p.i. (T=1, 2, 3, 4, 5, 6).  Harvested cultures were centrifuged at 4,000 x g 

for 10 min at 4°C, the pellet washed with fresh MBBM and centrifuged again 

before placing in the freeze dryer overnight.  Freeze dried pellets were stored at -

80°C until used for sterol, LCB and hFAME analyses. 

Data analysis of mRNA transcription levels during viral infection.   
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The C. variabilis genome (taxid: 554065 ) [http://genome.jgi-psf.org/NC64A; 

(Blanc et al., 2010)] used to identify and characterize the sterol and sphingolipid 

biosynthetic pathway genes has been described (Rose et al., manuscript in 

preparation).  Genes involved in sterol and sphingolipid biosynthesis were used 

to characterize up- or down-regulation of these pathways during virus infection 

(Rowe et al., 2014).  The PBCV-1 genome (taxid: 10506) was accessed through 

the National Center for Biotechnology Information (NCBI; www.ncbi.nlm.nih.gov).  

Messenger RNA sequence data from PBCV-1 infected C. variabilis was obtained 

from Rowe et al (2014).  Messenger RNA transcription levels at 0 min p.i (T=0) 

were standardized to 0% and mRNA transcripts at T= 7, 14, 20, 40, 60 min p.i. 

were calculated as a percentage of up- or down-regulation using the equation 

(v[tX]/v[t0]-1)*100; v= number of transcripts, tX = time. 

Sterol analysis of PBCV-1 infected C. variabilis.   

Sterol extraction followed a modified version of the Bligh and Dyer (1959) 

chloroform-methanol.  One mg/ml of cholestanol standard (Matreya, Pleasant 

Gap, PA) was added to freeze dried algal pellets.  Total sterols were extracted 

three times with chloroform:methanol (1:1, v:v), loaded onto silica SPE columns 

and eluted with 30% 2-propanol.  Purified sterol extracts were dried under 

nitrogen at 37°C and then converted to trimethylsilyl ether (TMS-ether) 

derivatives using bis (trimethylsilyl) trifluoracetamide (BSFTA-TMCS 99:1) 

(Sigma, St. Louis, MO).  Dried sterol samples were suspended in 100 µl hexane 

for GC/MS analysis.  Initial gas chromatographic analysis was carried out using 

the Agilent 6890 Series Gas Chromatograph System equipped with a DB-5ms 

http://www.ncbi.nlm.nih.gov/
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capillary column (30.0 m x 250.00 µm, 0.25 µm, J&W 122-5532, J&W Scientific, 

Inc., Folsom, USA).   Helium was used as the carrier gas at a linear velocity of 48 

cm/sec and constant flow of 1.5 mL min-1.   A dual ramp temperature program 

was used with the oven heated from 250 to 270°C for 30 min and then from 270 

– 280°C for 3.30 min.  A detector temperature of 270°C was used. Sterols were 

initially identified using the NIST98 library (Scientific Instrument Services, Inc., 

Ringoes, USA) followed by comparisons based on their mass fragmentation 

patterns and retention times.  Peak areas of identified sterols were quantified 

relative to the cholestanol standard.  Sterol extraction and analyses were run in 

triplicate for each time point. 

LCB analysis of C. variabilis during PBCV-1 infection by HPLC/MS.   

Long chain base samples were obtained by sphingolipid hydrolysis.  To freeze 

dried pellets (mentioned above), 0.1 nmol/µL of the d16:0 standard, 1 ml dioxane 

and 1 ml Ba(OH)2 was added and hydrolysis allowed to proceed overnight at 

110°C.  To cooled samples, 2 ml of both 2%-ammonium sulphate and 

diethylether were added, vortexed and then centrifuged at 500 x g for 10 min.  

The upper phase was collected in a glass tube and dried under N2.  The samples 

were allowed to derivatize at room temperature for 20 min following the addition 

of o-phthalaldehyde (OPA) reagent.  OPA diluent was added and samples were 

run on HPLC/MS (C18 HPLC column).  Sphingolipid hydrolysis and LCB analysis 

were run in triplicate for each time point. 

hFAME analysis of C. variabilis during PBCV-1 infection.   
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Analysis of 2-hydroxy fatty acids was achieved by producing TMS-derivatives of 

hydroxy fatty acid methyl esters for GC/MS.  Hydrolysis with 2 ml methanolic 

HCL (Fluka 17935) added to freeze dried pellets was allowed to proceed 

overnight at 75°C.  Hexane extractions of the cooled hydrolysis reaction were 

done in triplicate and the upper phase from each collected, combined into a tube 

and dried under N2.  Extracts were purified on a silica acid column and hFAMEs 

eluted with hexane:ethyl acetate (6:1, v:v).  TMS-derivatives of hFAMEs, using 

BSFTA +TMCS 99:1 (Supelco, 33154-U), were analyzed by GC/MS.  Hydrolysis 

and production of hFAMEs were run in triplicate for each time point.   

Lipid extraction of the PBCV-1 internal membrane.   

Methanol was added to the purified PBCV-1 sample (1.3 x 1012 pfu/ml) in a 1:1 

(v:v)  and vortexed.  To this suspension, 5 mL of MTBE was added and 

incubated for 60 min at 60°C with intermittent vortexing every 15 min.  The viral 

suspension was then centrifuged at 1,000 x g for 10 min and the upper (organic) 

phase was collected in a glass tube.  The lower phase was re-extracted with 2 

mL of MTBE: MeOH: H20 (10:3:2.5 v:v:v), vortexed and centrifuged at 1,000 x g 

for 10 min.  The upper phase was collected, combined with the previously 

collected upper phase and dried under N2.  Extracted viral lipids were dissolved in 

200 µl of chloroform: MeOH: H20 (60:30:4.5 v:v:v) and stored at -20°C. 

Gas chromatography-Flame Ionization Detection (GC-FID) analysis of the PBCV-

1 internal membrane.  Five µl of the dissolved extracted viral lipid (described 

above) was placed in a glass tube together with 2 µg of the standard, 

heptadecanoic acid (17:0) (NU-CHEK Prep Inc., Elysian, MN) and dried under 
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N2.  Two mL methanolic HCL (Fluka #17935) was added to the dried sample and 

refluxed overnight at 75°C.  To the cooled hydrolysis reaction, 2 mL of MilliQ H20 

and 2 mL of hexane was added, vortexed and centrifuged at 3,000 x g for 5 min.  

The upper hexane phase was removed and placed in a glass tube, and the lower 

phase was washed twice with hexane, and the upper phases were combined.  

The hexane extract was then dried under N2 followed by resuspension in 100 µl 

fresh hexane.  Injection of 5 µl of sample was used for detection of hFAMES and 

quantitation of total lipid by running on an Agilent 7890A GC system.  The 

sample was injected and maintained at 185°C for 1 min and then at 7°C/min to 

235°C for 4 min for a total run time of 12.14 min.  Peaks were analyzed and viral 

fatty acids were calculated by area percent in relation to the internal standard.  

Electrospray ionization and mass spectrometry.   

A 200 µl aliquot of PBCV-1 extracted lipids (described above) was dried under N2 

and re-suspended in 200 µl THF: MeOH: H2O (5:2:3 v:v:v) plus 0.1% formic acid. 

The viral lipid extract was then introduced by continuous infusion into the TurboV 

electrospray source of an API 4000 Q Trap Mass Spectrometer (Applied 

Biosystems, Foster City, CA) using the flow from a KDS100 syringe pump (KD 

Scientific Inc., Holliston, MA), source temperature of 550°C and collision energy 

(CE) of 60.  After data acquisition the highest signal from the mass spectrum was 

taken as 100% abundance and other signals are represented as a percentage of 

this value. 
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Results 

Sterol levels during viral infection.  Cultures of infected C. variabilis were 

harvested every hour over the course of six h followed by sterol analysis by GC-

MS.  Compared to the control, ergosterol levels increased about 50% during the 

first h of infection and then decreased to near control levels between 4 and 5 h 

p.i. followed by a slight increase at 6 h p.i. (Fig. 1).  Ergosta-5,8-dienol levels 

steadily increased over the course of the infection cycle (Fig. 1). 

LCB and hFAME levels during viral infection.  Analysis of long chain bases 

(LCBs) (t18:0) by LC-MS and 2-hydroxy fatty acid methyl esters (hFAMEs) 

(h24:1) by GC-MS were determined at 2 h and 6 h p.i.  Compared to uninfected 

C. variabilis, no significant change occurred in either LCB or hFAME levels (Fig. 

2).   

Expression of sterol and sphingolipid biosynthetic genes during viral infection.  

Host genes involved in the biosynthesis of sterol and sphingolipids were 

previously identified and reported (Rose et al., manuscript in preparation).   A 

study identifying gene transcript levels during the first 60 min p.i. of PBCV-1 

infected C. variabilis was recently published (Rowe et al., 2014).  Therefore, we 

examined the mRNA levels of both the identified sterol (Table 2) and sphingolipid 

(Table 3) biosynthetic genes in order to characterize the regulation of lipids 

involved in membrane biogenesis.  mRNA levels were standardized to 

percentages where at time 0 min p.i (T=0) transcription levels were 0% (Fig. 3).  

At 7 min p.i (T=7), transcripts involved in sterol biosynthesis were similar to those 

at T=0 and then they decreased about 2 fold by 60 min p.i. (T=60) (Table 2; Fig. 
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3A).  There were several exceptions, acetoacetyl-CoA thiolase and HMGS 

transcripts, which by 60 min p.i (T=60) were up-regulated ~2 fold and Delta-14, 

24-reductase ~3 fold from T=0 (Table 2; Fig. 3A).  In contrast, genes involved in 

sphingolipid biosynthesis were up-regulated 2 to 3 fold at 7 min p.i (T=7) and 

then slowly decreased by T=60, yet remained at levels above T=0 (Table 3; Fig. 

3B).  Three transcripts slowly increased during infection, GONST1, ORM, and 

neutral ceramidase, and were present at 1 to 3 fold higher levels by T=60 (Table 

3; Fig. 3B).  Both sphingobase-C4-hydroxylases and LCB-1-phosphate lyase 

mRNA transcripts were below control levels at 60 min p.i. (Table 3; Fig. 3B).   

Total viral fatty acids.   

The PBCV-1 fatty acid composition was determined by GC-FID and peaks 

calculated by area percent in relation to an internal standard (IS) (Fig.4).  Four 

peaks of unknown fatty acid chain lengths were identified with chain lengths 

shorter than the 17:0 IS and two peaks occurred between 18:2 and 18:3 of 

unknown length.  Both 18:0 and 18:1 fatty acids were identified and comprised 

about 12% and 15% of the total fatty acids, respectively. Total viral lipid fatty acid 

were calculated at 12 µg of lipid fatty acid/1ml virus (1x1012 pfu/ml). 

PBCV-1 lipidome.   

PBCV-1 total lipid extract, directly infused by ESI/MS, was analyzed with an initial 

Q1 scan (Fig. 5).  Diacylglycerol (DAG) at 576 m/z, Da, ceramide at 664 m/z, Da, 

phosphatidylcholine (PC) at 780 m/z, Da, phosphatidylinositol (PI) at 835 m/z, 

Da, and cardiolipin at 1510 m/z, Da were identified (Fig. 5).  Unidentified lipids 
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were present between 1160 and 1200 m/z, Da and at 1300 m/z, Da. (Fig.5).  A 

+MS2 scan of the fragment at 576 m/z, Da showed the fragmentation pattern of 

DAG 18:3-18:3 into its constitutive acyl m/z and glycerol m/z, Da fragments (Fig. 

6).  A precursor ion scan of host t18:1/h24:0 ceramide m/z 665 identified the 

major GIPC found in C. variabilis in the viral membrane (Fig. 7).  The 

fragmentation pattern of host GIPC dihexose-inositolphosphoceramide 1248 m/z 

shows loss of two hexose at 1088 and 924 m/z.   The loss of the 

inositolphosphate fragment of 260 Da from 924 m/z results in the precursor ion of 

665 m/z (Fig. 7).  The most abundant signal of the Q1 scan lies between 725 and 

825 m/z (Fig. 5).  Precursor ion scans were run for the phosphoglycerides 

phosphatidylcholine (PC) 184 m/z and phosphatidylinositol (PI) 261 m/z (Fig. 8).  

A +MS2 scan of 1510 m/z identified the phosphoglyceride cardiolipin (Fig. 9).  In 

an effort to identify unknown lipids, a +MS2 ion scan of the prominent peak1171 

m/z was run (Fig. 10).  Fragmentation of this peak is complex and further mass 

spectrometry research on the unknown lipids will need to be carried out. The host 

sterol ergosterol 396 m/z was not detected in the PBCV-1 virion. 

Discussion   

Sterol and sphingolipid distribution and levels during PBCV-1 infection.   

The sterol and sphingolipid pathways each have a unique set of enzymatic steps; 

however, they both use the endoplasmic reticulum (ER) for initial biosynthesis.  

Synthesis and concentration of these lipids typically increase along the secretory 

pathway; they begin with a low concentration in the ER, are modified and 

increase in abundance in the Golgi, and then they are shuttled to the plasma 
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membrane where they reach their highest concentrations (Gulati et al., 2010; 

Hannich et al., 2011).    The presence and co-affinity of sterols and sphingolipids 

as binding partners in the plasma membrane are essential for cell homeostasis 

and an imbalance of one disrupts the specialized lipid microdomains, lipid rafts, 

and cell membrane stability (Gulati et al., 2010).  Biosynthetic co-regulation of 

sterol and sphingolipid metabolism in algae is not well known and the master 

regulator of sterol transcription found in most eukaryotes, sterol regulatory 

element binding protein (SREBP), is absent in C. variabilis.  Of interest is the 

down-regulation of the sterol MEP pathway in the chloroplast and an up-

regulation of the first two genes in the MVA pathway in the cytosol.  Lacking the 

complete biosynthetic pathway for IPP production via the MVA pathway in the 

cytosol, C. variabilis mRNA transcripts for the first two enzymes in the pathway, 

acetoacetyl-CoA thiolase and HMGS, increased 2-fold during viral infection 

(Table 2).   Down-regulation of sterol biosynthesis as a host defense mechanism 

during viral infection has been reported in many host-viral systems (Blanc et al., 

2011).  Given the down-regulation of sterol mRNAs within the first 7 min of 

infection and the inability to detect sterols in PBCV-1, we conclude that sterols 

are nonessential components in the PBCV-1 internal membrane.  The presence 

of an intricate, yet unknown innate immune response to viral infection involving 

sterol down-regulation in C. variabilis is hypothesized.  

In contrast, sphingolipid biosynthesis gene transcripts are up-regulated 2- to 3-

fold within minutes of PBCV-1 infection and remain above control levels over the 

course of 60 min (Table 3).  This up-regulation along with the presence of 
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phospholipids, glycerolipids, GIPCs, and DAGs as components of the viral 

internal membrane suggests the relative importance of these lipids in an effort to 

maintain cell membrane and organelle stability and an innate defense response.   

PBCV-1 internal membrane lipid composition and VFs. 

Initial analysis of the purified PBCV-1 lipid extract by GC-FID revealed six lipid 

fatty acid species with unknown chain lengths, four of which were shorter than 

the 17:0 internal standard (Fig.4).  One unknown was the highest detected fatty 

acid, 40% of the total fatty acids, with a chain length shorter than 16:0 (Fig. 4).   

For analysis of viral membrane we employed “Shotgun lipidomics”, developed by 

Han and Gross (2005), an ESI-MS method involving direct infusion of total lipid 

extract into an ESI source, separation of lipids based on electrical properties, and 

detection according to their mass to charge ratio (m/z) (Han and Gross, 2005; 

Gross and Han, 2007).  Data acquisition using Q1, precursor ion, product ion and 

neutral loss ion scans of the viral lipid extract allowed the identification of groups 

of lipid classes. 

 Diacylglycerols (DAGs) are glycerides with two covalently bonded fatty acid 

chains to a glycerol molecule through ester linkages.  As a product or precursor 

of triacylglycerol (TAG) metabolism and synthesis, DAGs function as second 

messengers, initiating components of intracellular signal transduction cascades 

involved in proliferation, migration, survival and apoptosis. DAG 18:3-18:3 (two 

linolenic fatty acid chains) was an abundant component of the viral internal 

membrane (Fig.6).  C. variabilis TAG lipase (CHLNCDRAFT 142167) mRNA 
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transcription levels increased during PBCV-1 infection and was 2-fold higher than 

the control at 60 min p.i.   As a membrane-associated, hydrophobic molecule and 

intermediate in phospholipid biosynthesis along with undetectable levels of TAG 

and an increase in TAG lipase mRNA transcripts, we predict that the conversion 

of TAG to DAG is a critical part of the cell response to viral infection, membrane 

biosynthesis and the role of DAG in triggering apoptosis as a second messenger, 

respectively. 

Sphingolipids are essential components of all eukaryotic cell membranes.  The 

most abundant class of sphingolipids in plants are GIPCs.  Currently sphingolipid 

research in algae is limited.  In an effort to characterize sphingolipid structures 

and their biodiversity in microalgae, we previously reported the GIPC 

composition - phytoceramide structure and polar head group - of four, freshwater 

algal species, including C. variabilis (Rose et al., manuscript in preparation).   

The major GIPC in C. variabilis, dihexoseinositolphosphate, has a phytoceramide 

structure consisting of a LCB t18:0 and 2-hydroxy fatty acid h24:1.  Previous 

research shows VFs sequestering a single bilayered membrane from the rough 

ER located near the nuclear membrane; since, sphingolipid biosynthesis begins 

in the ER, we expected the GIPC precursor phytoceramide to be present in the 

viral membrane.  Unexpectedly, host GIPC, which is produced in the Golgi, was 

in the viral membrane, suggesting that the virus membrane also has some 

association with the smooth ER and Golgi or transport lipid vesicles.  

Phospholipids, the main constituents of all cellular membranes are synthesized in 

localized regions of the ER.  Phospholipids consist of a hydrophobic region – two 
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fatty acids attached to a glycerol unit – and a hydrophilic region – a phosphate 

group and a polar molecule (Lagace and Ridgway, 2013).  The properties of 

these regions are responsible for the orientation of phospholipids into the lipid 

bilayered membrane.  In our analysis of the viral internal membrane, we 

expected phospholipids to be the most abundant lipid; therefore, a precursor ion 

scan of the choline polar head group of phosphatidylcholine (PC), 184 m/z was 

run (Fig. 8A).  PC was identified as having 18:3/18:3 fatty acid chains with a 780 

m/z (Fig. 8A).  Phosphatidylinositol (PI), with an inositol headgroup, forms a 

minor component of the cell membrane; however, its ability to be phosphorylated 

to phosphatidylinositol phosphate (PIP), phosphatidylinositol biphosphate (PIP2), 

and phosphatidylinositol triphosphate (PIP3), and their subsequent role(s) in the 

activation of cell signal cascades make it a prominent molecule involved in cell 

stress and the defense response (Gamper and Shapiro, 2007).  Specifically, 

membrane bound PIP2 is cleaved by phospholipase C (PLC) into the products 

IP3 and DAG, both functioning as second messengers in cell signal cascades 

(Weernink et al., 2007). DAG remains membrane-bound, activating protein 

kinase C (PKC), whereas IP3 is released into the cytosol which binds to IP3 

receptors on the smooth ER, opening calcium channels and allowing the release 

of Ca2+ into the cytosol (Gamper and Shapiro, 2007; Weernink et al., 2007).  We 

found PLC mRNA transcription levels in C. variabilis (CHLNCDRAFT 143477) 

were 2-fold higher during viral infection by 60 min p.i. Relatively low levels of PI 

were detected in the viral membrane as expected, supporting current findings 
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that most PI is phosphorylated and present as PIP2 in the plasma membrane and 

its hydrolysis results in increased levels of membrane DAG (Fig. 6,8B).    

Cardiolipin (CL), also known as diphosphatidylglycerol, is found predominantly in 

the inner mitochondrial membrane (IMM), is a unique phospholipid that plays a 

crucial role in mitochondrial bioenergetics and as a launch site for programmed 

cell death, or apoptosis, of host cells (Schug and Gottlieb, 2009).  CL is a highly 

acidic phospholipid in which two phosphatidic acid moieties connect to a central 

glycerol backbone resulting in four distinct alkyl groups allowing for a high 

complexity molecule (Paradies et al., 2014).  It has been reported that CL also 

resides in the outer mitochondrial membrane (OMM) and is enriched at sites 

where the IMM and OMM are connected (Schug and Gottlieb, 2009; Paradies et 

al., 2014).  CL plays a major role in the production of ATP through its known 

association with energy-transducing membranes, as well as a signaling platform 

for various death-inducing proteins involved in PCD processes – the release of 

cytochrome c, autoprocessing of caspases, cristae remodeling and mitochondrial 

fragmentation (Schug and Gottlieb, 2009; Paradies et al., 2014).  Apoptosis is 

known to occur during viral infection as a defense mechanism. The presence of 

this anionic mitochondrial phospholipid in the viral internal membrane suggests 

the possible sequestration of lipid membrane fragments from various other 

organelles to the VF during viral DNA packaging.  Surprisingly, we detected 

glycerolipid CL in the PBCV-1 membrane. 
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Conclusions 

A recent study on VFs formed during PBCV-1 replication along with our lipid 

analyses indicates that the viral internal membrane is derived from host 

cytoplasmic membranes (Milrot et al., 2015). Given the current model on PBCV-1 

VFs, where in the PBCV-1 genome is located throughout the cytoplasm, along 

with our findings of some putative organelle-specific lipids suggest that the 

internal bilayered PBCV-1 membrane is acquired not only from the rough ER but 

components also come from other organelle membranes (Milrot et al., 2015).  

This conclusion would explain the presence of CL from the mitochondrial 

membrane and GIPCs from the Golgi and smooth ER in the viral membrane.  

The normally low abundance of sterols in the ER and the reported down-

regulation of sterol biosynthesis during viral infection is consistent with the 

inability to detect sterols in the viral internal membrane.  Lipid analysis by ESI/MS 

and GC/FID of the highly purified virions detected several unknown lipid species, 

suggestive of possible viral-encoded lipid modification mechanism of host lipids 

or acquisition of other classes of lipids required for viral assembly.  Given the 

structure of PBCV-1 icosahedral capsid, with both planar tri- and vertex penta-

symmetrons, constraints of the inner membrane curvature at the vertices may 

require lipid selectivity from available host membranes (Zhang et al., 2011; Roine 

and Bamford, 2012).  Lipids are known to vary widely in structure – hydrocarbon 

chain length, degree of saturation and head group structure – therefore, 

sequestration by viral proteins which attract certain types of lipids for different 
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positions in the curved internal membrane may explain the presence of unknown 

compounds in the PBCV-1 lipid membrane. 
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Table 1.  Type species of known membrane-containing Phycodnaviridae viruses 

from each of the six genera, their exit strategies and presence of internal 

membrane or outer lipid envelope. Paramecium bursaria virus 1 (PBCV-1), 

Emiliania huxleyi virus 86 (EhV-86), Micromonas pusilla virus (MpV-SP1), 

Phaeocystis pouchetti virus (PPV01), Ectocarpus siliculousus (EsV-1), 

Heterosigma akashiwo virus (HaV-01). 
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Figure 1.  Ergosterol levels in host Chlorella variabilis during PBCV-1 viral 

infection. 
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Figure 2 A-B.  A) Long chain base (LCB) and B) hydroxy fatty acid methyl ester 

(hFAMEs) levels during PBCV-1 infection of Chlorella variabilis. 
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Table 2.  Host mRNA transcription levels of genes involved in sterol biosynthesis 

during PBCV-1 infection. 
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Table 3.  Host mRNA transcription levels of genes involved in sphingolipid 

biosynthesis during PBCV-1 infection. 
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                                       mRNA transcript levels (%) 

Figure 3A-B.   Messenger RNA transcription levels during PBCV-1 infection A) 

Sterol biosynthesis mRNA transcripts and B) Sphingolipid biosynthesis mRNA 

transcripts. 
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Figure 4.  GC-FID analysis of fatty acid chain lengths present in highly purified 

PBCV-1 total lipid extract. *U denotes unknown fatty acid chain length.  
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Figure 5.  Q1 scan of PBCV-1 internal membrane lipid extraction by ESI/MS. 
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Figure 6.  MS2 ion scan of diacylglycerol (DAG). 
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Figure 7.  Precursor ion scan of GIPC 
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Figure 8A-B.  Phospholilpids A. Precursor ion scan of phosphatidylcholine B. 

Precursor ion scan of phosphatidylinositol 



148 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  MS2 ion scan of cardiolipin 
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Figure 10.  MS2 ion scan of unknown lipids. 
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