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Location data from radio signal strength indication (RSSI) based wireless networks

has been used in various applications such as creating smart home behavioral mon-

itoring systems, tracking health care workers for the spread of hospital-associated

infections, and providing location-aware tour guide systems. Because RSSI-based

systems are inexpensive and can be used with most wireless devices without requir-

ing additional hardware, they are a popular choice for localization. Unfortunately,

multipath fading dramatically degrades the performance of an RSSI-based system's

ability to locate a target indoors. This thesis endeavors to reduce localization error

for RSSI-based �ngerprinting localization systems in an indoor environment through

frequency diversity by using multiple communication channels. By creating a mul-

tichannel �ngerprint of the environment using �ngerprinting calibration techniques,

�ne-grained, 5 centimeter, 2-dimensional localization accuracy is achieved in an in-

door environment under certain restrictions.
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Chapter 1

Introduction to Localization Methods

Since the dawn of civilization, humans have been localizing � localizing things with

hand-drawn maps, localizing each other with smoke signals, and localizing themselves

across the sea, guided by the stars in the sky. Localization is the process of �nding the

position or location of a speci�c target based on some observable phenomena. People

use localization for a glut of applications: localizing soldiers in combat, collecting

marketing data, tracking endangered turtles, navigating self-driving cars, and even

tracking battery packs on the international space station.

The most popular technology used for outdoor localization is the global position-

ing system (GPS). GPS is a space-based navigation system �rst implemented in 1973

that uses 31 satellites in orbit to provide location and time information in all weather

conditions across the globe. A GPS receiver listens for time-stamped signals trans-

mitted from the GPS satellites to compute propagation delay, then solves a set of

equations using the computed distances to determine its physical location on earth.

This is known as time-of-arrival (TOA) based localization.



2

GPS is freely available to anyone with a GPS receiver to use anywhere on or near

the Earth. Receivers are now commonly found in cars, airplanes, ships, and smart-

phones. In addition to its initial military purpose, GPS-enabled devices have been

used in many applications including physical activity tracking [49], transportation and

logistics [57, 99], and rehabilitating patients with GPS-enabled wearable sensors [89].

Although GPS is a reliable outdoor localization technology, it su�ers from dramatic

performance degradation indoors because the microwave radio signals used by GPS

are greatly attenuated by walls and ceilings [101]. Indoor GPS technology exists, but

this technology is extremely expensive due to signi�cant processing requirements [28].

For these reasons, indoor localization remains an active research �eld and a reliable

low-cost indoor localization solution still eludes the research community.

1.1 Indoor Localization Methods

The �ve most common indoor localization methods are acoustic, inertial/mechanical,

laser, computer vision, and radio frequency (RF) [74, 109]. RF methods include

timing-based, angle-of-arrival, and received signal strength indication (RSSI).

1.1.1 Active Versus Passive Systems

Active and passive systems must �rst be de�ned before delving into further discussion

on localization systems. A localization systems typically includes a target, i.e., the

object to be localized, anchors which are transceivers placed in the environment

with known �xed locations, a localization algorithm which makes locations estimate

based on data from the target and anchors, and a performance metric to measure the

system's prediction error. The terms passive and active refer to system characteristics

that are de�ned with respect to the target. In active systems, the target device
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is actively transmitting a signal that allows the system (composed of anchors) to

determine the target's location. In passive systems, the target listens for signals and

determines its own location.

1.1.2 Acoustic Methods

Acoustic-based localization systems typically use electrical devices that either trans-

mit or receive sonic waves, mechanical vibrations transmitted over a solid, liquid, or

gaseous medium [109]. Systems can indirectly determine the distance between com-

municating devices by computing the distance traveled by the sonic wave by record-

ing the time of transmission and taking into account the speed of sound. The most

popular acoustic methods are ultrasonic-based localization systems which use waves

typically above 20 kHz. Examples of ultrasonic systems include the Massachusetts In-

stitute of Technology's (MIT) Cricket system and Cambridge University's Bat system

[44]. In a passive con�guration, MIT's Cricket system employs anchors distributed

throughout a building that periodically transmit ultrasonic pulses. These pulses are

received by a mobile target that then computes its own location using trilateration.

Cambridge's Bat system is an active system where users wear small badges emit-

ting ultrasonic pulses. The network of anchors then computes the 3D position of

the badges through multilateration. These ultrasonic-based localization active sys-

tems are typically able to achieve sub-meter accuracy in an indoor environment under

certain conditions [106].

An ultrasonic-based localization system must have direct line-of-sight between the

anchors and mobile targets to avoid erroneous distance estimates due to computing

distances for non line-of-sight paths. Furniture can cause such obstructions in an

indoor environment. Sometimes anchors are placed on the ceiling of a room to help
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eliminate obstructions from furniture or other objects. Also, depending on the sys-

tem, the anchor and mobile target orientation is important. In the Cricket system,

ultrasonic transducers on the mobile targets must point in the general vicinity of the

anchor transducers. This becomes an issue when tracking a human because the per-

son may not always hold or wear the mobile transmitter/receiver in a position that

meets these ideal conditions. Another contributing factor to localization error is the

variation in the speed of sound for sonic wave propagation in air due to environmental

changes such as temperature, humidity, and atmospheric pressure [48, 58], because

the systems are dependent on the speed of sound to calculate the distance. Because

of this, sonic wave-based systems cannot localize well in environments with frequent

and drastic changes in temperature, humidity, and atmospheric pressure [109] unless

the system includes these factors in its prediction model and uses additional sensors

to measure them.

1.1.3 Inertial/Mechanical Methods

Inertial/Mechanical technologies can measure the mechanical movement energy that

is exerted on to them [109]. Systems can measure the energy of the direct application

of force on such technologies. For example, Orr et al. [85] have used metallic plates

with load cells in a project called �Smart Floor� where the plates were laid on the

ground and used to identify a person walking over them. Orr et al. performed tracking

by recording every instance that a person walked over the plates at di�erent locations.

In addition to localization, researchers have used pressure sensing �oor plates for fall

detection of the elderly [6].

Another approach to measuring mechanical movement energy is via inertial sen-

sors, typically accelerometers and gyroscopes. Thanks to advancements in microelec-
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tromechanical systems technology, small surface-mount sensor packages are commonly

found in phones, smartwatches, and other mobile devices. But, because inertial sen-

sors only yield relative positioning information and they produce noisy measurements

due to inherent drift and measurement quantization, they are usually part of a hy-

brid localization system. Hybrid systems combine di�erent technologies so that an

additional source of position information serves as an absolute reference. Algorithms

like the Kalman �lters and particle �lters [58] then use data fusion to make location

estimates by integrating the information from these various sources. For example,

activity data captured by accelerometer sensors has re�ned localization data from an

RF-based system in [34, 80].

The primary issue with inertial sensors is the presence of a bias o�set added to

the measured signal causing a drift in the sensor's relative position information. Even

in the absence of any input (including gravitational pull), inertial sensors output a

non-zero value. This o�set is dependent on time, temperature, and stochastic factors

that occurs due to inherent mechanical properties of the sensor. These factors cannot

be eliminated due to current limitations in manufacturing processes [39].

1.1.4 Photonic Methods

Photonic methods capture electromagnetic waves at a frequency within or near the

human visible spectrum. Photonic energy refers to the energy carried by the elec-

tromagnetic radiation within visible light or the nearby ultraviolet and infrared (IR)

spectra [109]. Several methods capture photonic energy and use it for localization,

including laser range �nders and cameras.

Laser range �nders emit concentrated beams of light and sense the re�ection that

comes o� of a wall or object to infer distance. There exist various techniques to infer
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distance from beam re�ection measurements including phase-shift conversion [92],

where laser systems modulate the emitted beam with either a square or sinusoidal

waveform to be compared with the re�ected wave which will have some small phase

shift due to the time delay of the light beam propagation. The systems then associate

the phase shift with a certain distance by considering the speed of light. High-end

laser range �nders like the Hokuyo UTM-30LX use this technique to yield up to

one centimeter of accuracy indoors [47]. Similar laser systems have been used for

simultaneous localization and mapping (SLAM) in robotic navigation [88, 104]. The

systems provide �ne grain localization and appear to be the best �t for active indoor

localization, but the hardware involved is bulky, extremely expensive, and requires

considerable data processing.

A popular passive photonic indoor localization method uses computer vision through

mobile or �xed camera systems. High quality digital cameras have become ubiquitous

thanks to advancements in camera technology and smart phones. Researchers have

used mobile camera systems for SLAM assisted robotic navigation [3], user localiza-

tion with the use of a cell phone camera [98], and self localizing smart backpacks

for indoor environments [72]. There are typically two stages for localization with

a mobile camera: an o�ine stage where the system collects visual features of the

environment, such as structural features of the building or �ducial markers, and an

online stage where algorithms use these features as a reference to compute location.

Fixed camera systems take a di�erent approach. They are usually mounted in the

environment looking over an area. These camera systems can use feature extraction

techniques (such as facial recognition) to provide localization and tracking solutions

for security monitoring and surveillance [91].

The primary issues associated with camera based systems are that computer vision

algorithms require high processing demands, a large storage capacity is needed to store
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images or video, and cameras are often considered an invasion of privacy when used

for human tracking or localization.

1.1.5 Radio Frequency Methods

Indoor radio frequency (RF) localization methods estimate the location of a mobile

target by measuring one or more properties of RF signals [109]. These methods

typically rely on either timing measurements, angle-of-arrival (AOA), or radio signal

strength indication (RSSI) [105]. Unlike GPS that uses long range satellites, indoor

RF systems typically use short range local anchors that can be deployed indoors.

1.1.5.1 Radio Frequency Timing Methods

RF timing methods use measurements of the propagation delay of RF waves traveling

through a medium between two communicating devices. In air, RF waves travel at

the speed of light, i.e., three hundred million meters per second. Because of this, tim-

ing methods require expensive and complicated hardware for high timing resolution

down to 0.5 nanoseconds to measure the travel time of an RF wave for half a foot of

resolution [46]. Localization methods using RF timing use several such measurements

to compute 2-D or 3-D positions with techniques like trilateration. In practice, these

methods have inherent di�culties because precise clock synchronization across multi-

ple devices is a major issue [112]. RF timing based systems are mainly distinguishable

by their constraints on clock synchronization.

Three popular timing based systems are time-of-arrival (TOA), time-di�erence-

of-arrival (TDOA), and roundtrip time-of-�ight (RTOF) [68]. In active TOA based

systems, TOA is a time measurement of the one-way propagation delay between the

mobile target and the anchors. This requires precise time synchronization between
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the mobile target and all of the anchors, below 1 nanosecond for indoor localization

accuracy in the decimeter range. Active TDOA based systems use the TDOA of

received signals for localization. Here, TDOA is the di�erence in the times at which

the signal arrives at multiple anchors, unlike the absolute arrival time of TOA [119].

The bene�t of this is that only the anchors in the TDOA based systems require syn-

chronization amongst each other. Systems can replace the absolute synchronization

constraint with a less precise constraint than that of a RTOF based Systems [112].

Here, the mobile target transmits a signal then waits for the anchors to transmit it

back to complete the roundtrip propagation delay measurement. The synchroniza-

tion challenge for RTOF based systems is that the mobile target must know the exact

delay needed for the anchors to resend the packet. Even a delay o�set of 1 millisecond

can correspond to measurement deviations of several meters for some systems.

1.1.5.2 Radio Frequency Angle-of-Arrival

Angle-of-arrival refers to the angle between the received signal of an incident wave

and some reference direction [62]. The most common approach to identify the angular

direction of the signal is through antenna diversity. Typically, antenna arrays on the

receiving devices are used to determine the AOA for AOA-based localization systems.

Once the AOA is measured, AOA-based localization systems use various localization

methods like triangulation to identify the location of the target by solving a system

of direct equations for intersecting lines [71].

1.1.5.3 Radio Signal Strength Indication

Radio signal strength indication is the distance dependent measurement of a received

signal's power. RSSI presents itself at the front end of a receiver to determine ampli-

�cation levels needed for demodulation. Typically RSSI is measured in dBm, which
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is ten times the base ten logarithm of the ratio between the power at the receiving

end and the reference power [87]. Most radios oftentimes provide RSSI because it is

directly related to the performance of communication schemes: low RSSI corresponds

to poor wireless communication due to high bit-error-rate during the demodulation

process.

The availability of RSSI measurements on most o�-the-shelf radios helps stimulate

the interest in designing RSSI-based ranging techniques [13, 73]. In an active system,

local devices deployed in a room or building measure RSSI. Popular wireless network

platforms used in RSSI-based systems include WiFi [96, 110], Bluetooth [12, 97, 107],

and ZigBee [93].

TOA and AOA based systems typically achieve higher localization accuracy than

RSSI-based systems. However, the amount of achievable accuracy also correlates with

the hardware complexity and device cost [90]. AOA systems require multiple anten-

nas that increases the size of the device [90]. TOA-based systems require high speed

signal processing and have high device costs with high energy consumption [77, 119].

In contrast, RSSI-based ranging techniques are low cost because oftentimes they do

not require additional hardware and they possess small computational requirements

that do not burden the on board circuitry [73]. Additionally, RSSI-based localization

systems are especially desirable because they are already available on most o�-the-

shelf commercial radios. For these reasons, people use RSSI-based systems for many

applications including navigation assisted tours, behavioral monitoring, studying the

spread of hospital related infections, tracking basketball players, navigation for un-

derground mining, and localizing people and equipment for construction job-sites

[22, 33, 50, 74, 93, 110].

Table 1.1 displays a summary of advantages and disadvantages for the aforemen-

tioned methods.
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Technology Advantages Disadvantages

Ultrasonic Sub-meter localization.

External synchronization. Speed 
of sound variations are 

dependent on temperature and 
other environmental conditions.

Inertial/Mechanical
Self-contained. Resilient to 
environmental conditions.

Inherent sensor drift. Relative 
localization. Requirement of 

initiation and calibration.

Laser
Location accuracy of about 3 

cm. 
Extremely expensive. High 
processing requirements

Computer Vision
High localization and 
orientation accuracy.

High processing requirements. 
Dependent on illumination 

conditions and environmental 
noise. Sensitive to obstructions 

and reflections.

RF Timing Methods Sub-meter localization.
Expensive hardware required 
for precise synchronization. 

High processing requirements

RF Angle-of-Arrival Meter localization. High processing requirements.

Radio Signal Strength 
Indication

Usage of readily deployed 
equipment; reduced cost.

Coarse localization. Sensitive to 
interference, signal propagation 

effects, and dynamic 
environmental change.

Table 1.1: Technologies used for indoor localization [109]

1.2 Factors A�ecting RSSI-Based Systems

All radio frequency waves undergo attenuation when they propagate through a medium.

Propagation in air results in path-loss, or reduction in power density, for electromag-

netic waves that is proportional to the distance traveled. In an active RSSI-based

localization system, this decrease also limits the transmission range of the mobile tar-

get. RSSI-based systems rely on the distance dependent attenuation nature of RSSI

to provide range information. The distance dependent line-of-sight path-loss model
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in air, or free space, is given by

RSSI(d) = RSSI0 − 10np log
d

d0
,

where d is the distance between the devices, RSSI0 is the RSSI measured at the ref-

erence distance d0, and np is the path-loss exponent. Using this path-loss model, one

can compute the distance between a transmitter and receiver if the RSSI is known. An

active localization system that collects three RSSI measurements from three anchors

could theoretically compute the 3-dimensional location coordinates for the mobile tar-

get using trilateration. Unfortunately there are various natural phenomena that alter

the path-loss model including RF wave re�ection and scattering. These phenomena

result in multiple copies of the signal being received at each anchor, otherwise widely

known as multipath propagation [4]. Multipath propagation causes rapid variations

in the RSSI when communicating devices move short distances relative to each other

due to constructive/destructive signal interference [43]. Multipath propagation is of-

ten seen in indoor environments where moving a small distance drastically changes

RSSI. Figure 1.2.1 illustrates how moving an anchor from one location, labeled with

the number one, to another location, labeled with the number two, changes the sig-

nal strength due to summing waves with di�erent phases. The varying phases occur

from signals traveling through multiple paths of di�erent lengths. For the sake of

simpli�cation, the illustration shows two paths, one blue and one green, neither of

which are non line-of-sight. In some cases where line-of-sight conditions cannot be

met, line-of-sight systems will fail at localizing the target. These cases are commonly

encountered indoors.

Other factors a�ecting RSSI and contributing to localization error include antenna

orientation and ambient temperature. If the radiation patterns for the antennas used
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Figure 1.2.1: Multipath propagation e�ect on RSSI

in the system are not omnidirectional, which is often the case, then the orientation of

the antenna will a�ect RSSI measurements [81]. Additionally, it has been observed

that ambient temperature in�uences hardware performance in WSNs, resulting in

altered RSSI measurements [17]. In particular, temperature changes can cause a

shift of crystal frequency, increased thermal noise of the transceiver, and saturated

ampli�ers.

1.2.1 Multichannel RSSI-Based Localization for Multipath

E�ect Mitigation

One approach to improve localization accuracy for RSSI-based systems is to simulta-

neously measure RSSI data for di�erent frequencies. The RSSI measured at a single

location is a�ected by destructive or constructive interference from the superposition

of RF waves from multipath propagation. When waves travel through multiple paths

and meet at a single point, they will sum with varying attenuations and phases. The
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phases are frequency dependent, so varying the frequency will vary the observed RSSI

for that single point. In complex indoor environments, this phenomenon is virtually

unpredictable and too complicated to model. Thus, researchers often modify the

path-loss model of RSSI in multipath environments as

RSSI(d) = RSSI0 − 10np log
d

d0
+Xσ,

where Xσ is a random variable representing the erratic behavior of RSSI due to

multipath propagation [13]. The random variable Xσ is assumed to have a Gaussian

distribution with zero mean. In an attempt to eliminate the e�ect of this random vari-

able Xσ, various measurements can be recorded on multiple communication channels

and averaged. In this model, averaging mitigates the e�ect of multipath propagation

on the RSSI. Various groups have shown that multichannel frequency averaging im-

proves RSSI-based localization results [5, 13, 18, 66, 93]. Frequency averaging is just

one of many frequency diversity methods.

1.2.2 Fingerprinting in RSSI-Based Localization

Fingerprinting is a technique of machine leaning that evolved from the study of pat-

tern recognition and computational learning theory in arti�cial intelligence [37]. Ma-

chine learning explores the study and construction of algorithms that can learn from

and make predictions on data [35]. In RSSI-based localization, �ngerprinting algo-

rithms infer location information of RF devices based on previously collected RSSI

measurements. There are several reasons why people use �ngerprinting algorithms

in RSSI-based localization systems [11, 54, 86]. First, they can provide a solution to

localization problems where traditional methods fail to deal with multipath propa-

gation. Second, it is relatively easy to obtain an RSSI dataset that can be used by
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the �ngerprinting algorithms. Third, low complexity �ngerprinting algorithms like

k-nearest neighbor perform well in practice [18].

Fingerprinting can prove advantageous when used with multichannel data. These

techniques are able to treat input RSSI data separately, rather than simply averag-

ing values. This is the motivation behind using �ngerprinting is this work. RSSI

�ngerprinting is well documented in the subsequent chapters.

1.3 Problem Statement

RSSI-based localization systems are good candidates for indoor environments be-

cause they are low cost and do not require additional hardware. The disadvantage of

using RSSI-based systems are the di�culties associated with unpredictable position-

dependent RSSI measurements caused by multipath propagation. Traditional ap-

proaches [5, 13, 18, 66, 93] attempt to mitigate multipath propagation e�ects to

improve localization accuracy through frequency averaging where RSSI is recorded

over multiple communication channels and averaged for each position to approximate

the RSSI of an environment without multipath propagation.

Unlike traditional methods that attempt to mitigate multipath propagation ef-

fects, here multipath propagation is used to advantage by creating a multichannel

�ngerprint of the environment. By sampling at a high enough spatial resolution,

the system captures variations in the position-dependent RSSI. Since RSSI is fre-

quency dependent in the indoor environment, the �ngerprints will also be di�erent

for each frequency. It is hypothesized that capturing �ngerprints of multiple frequen-

cies will provide more information regarding the mobile target's location, which can

be exploited to mitigate localization errors that a�ect single-frequency �ngerprinting

methods through frequency diversity.
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This work uses three distinct algorithms to show that 2-dimensional localization

accuracy is improved when using multiple frequencies for �ngerprinting. The three

methods are the k-nearest neighbor algorithm due to its low complexity, the state-of-

the-art neural network as it is a method of choice in modern research [35], and the

particle �lter because it introduces a temporal component and allows for a problem

de�nition using state-space and sampling of hypothesized error distributions. This

work tests the algorithms on real RSSI data collected from a custom wireless sensor

network using a single target and anchor. The results demonstrate that performance

increases for all three algorithms as the number of frequencies is increased. The

comparison determines which algorithm works best for indoor localization.
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Chapter 2

Review of RSSI-Based Localization

Methods

People have been researching and developing RSSI-based localization methods for two

decades. The ability to measure RSSI with o�-the-shelf radios � and its associated

low cost � makes the technique desirable. This chapter serves as an introduction to

various RSSI-based localization methods; it presents current work in the �eld while

illustrating the most prominent challenges for this type of system. First, multipath

propagation, the most prominent challenge in RSSI-based localization, is explained.

Second, terminology for RSSI-based localization, is introduced. This includes a dis-

cussion on popular RSSI-based localization methods. Finally, the chapter concludes

with a discussion of frequency diversity for error mitigation in RSSI-based localiza-

tion.
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2.1 The Multipath Propagation Model

Multipath propagation is a natural phenomenon of RF wave propagation that occurs

when a transmitted RF signal re�ects from objects in an environment and arrives at

a destination via multiple paths. The re�ections can originate from furniture, walls,

people and other objects in an environment. From a receiver's point of view, the

received signal is the superposition of all the signals traveling via the multiple paths

[95]. Each signal varies in amplitude and phase depending on the distance traveled

and number of re�ections. The superposition of the multiple signals may result in

constructive or destructive interference.

Multipath propagation is especially apparent indoors and di�cult to model due to

the presence of objects and furniture in the room. Additionally, varying room shape

and size creates various unpredictable signal propagation paths. Other factors such

as absorption coe�cients and scattering e�ects add more complexity to the model.

Bardella et al. [13] state that an extremely accurate channel model would require

perfect knowledge of the environment, and further mentions that such a model would

lack generality and reusability. For this reason, it is not practical to create a complete

model of multipath propagation experienced in a RSSI-based localization systems to

mitigate the localization error.

To better understand multipath propagation, consider the case where a receiver

(RX) and transmitter (TX) are placed in the same environment at the same height

as shown in Figure 2.1.1. In an active system, the mobile target is the transmitter

and the anchor is the receiver. The mobile target is continuously sending a signal

with a �xed frequency and amplitude, while the anchor receives the signal and makes

an RSSI measurement. The anchor is set to a �xed location but the mobile target

moves freely to or from the anchor while maintaining the same height. Now assume
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Figure 2.1.1: Two path RF propagation between a mobile transmitter (TX) and a
�xed receiver (RX).

there are no walls or objects in the environment, so the ground is the only source of

re�ection.

The RSSI of the signal at the anchor is a function of the distance, d, between the

anchor and mobile target. The average power of a sinusoid is given by

P =
1

T0

� T0/2

−T0/2
(A sin(2πf0t))

2dt =
A2

2
,

where A is the amplitude of the signal and f0 is the frequency. In the case of Figure

2.1.1, the signal at the anchor is the sum of two signals, one from the direct line-of-

sight path and the other from the ground re�ection path. Thus, the received signal

may be written as

r(t) = Aα sin(2πf0t+ φα) + Aβ sin(2πf0t+ φβ),

where Aα and φα are the amplitude and phase delay of the line-of-sight signal, and

Aβ and φβ are the amplitude and phase delay of the ground re�ection. This may be
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rewritten as

r(t) =
√

[Aα cos(φα) + Aβ cos(φβ)]2 + [Aα sin(φα) + Aβ sin(φβ)]2

× sin
(

2πf0t+ tan−1
[
Aαsin(φα)+Aβsin(φβ)

Aαcos(φα)+Aβcos(φβ)

])
.

RSSI is only a function of the amplitude,

Ar =
√

[Aα cos(φα) + Aβ cos(φβ)]2 + [Aα sin(φα) + Aβ sin(φβ)]2. (2.1.1)

To compute this, the values of Aα , Aβ , φα , and φβ are needed, and they can be

derived from Figure 2.1.1. The amplitudes are given by

Aα = d
(−n)
1

and

Aβ = d
(−n)
2 ,

where n is the distance power law exponent, d1 is the line-of-sight distance between

the mobile target and anchor, and d2 is the total distance of the ground re�ected

signal path. The distance d1 is known, but we must compute d2 from d1 and the

height h of the devices as

d2 = 2×
√
h2 +

(d1)2

4
.

The phase delays φα and φβ are given by

φα =
2πd1
λ0
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Figure 2.1.2: The plot shows RSSI as a function of distance for model in Figure 2.1.1.
Two di�erent frequencies are used.

and

φβ =
2πd2
λ0

,

where λ0 is the wavelength of the signal with frequency f0. Equation 2.1.1 can now

be used to compute the RSSI as a function of the distance d1 and height h. Figure

2.1.2 shows the RSSI for three di�erent cases. The �rst case, shown in blue, is the

RSSI without a ground re�ection. The two other cases � shown in orange and yellow

� show the RSSI for f0 equal to 620 MHz and 1.33 GHz, respectively.

Figure 2.1.2 shows that constructive and destructive interference creates local

extrema at certain distances. Furthermore, it is important to observe that the occur-

rence of local extrema correlates with the operating frequency of the mobile target and

its distance. As the frequency increases, so does the occurrence of extrema. At higher

frequencies, the occurrence of the extrema is considerably higher, such that moving a
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small distance rapidly changes the measured RSSI. This is the fast fading e�ect. This

is why fast fading is more prevalent in Wi-Fi enabled devices operating at 2.4 GHz

than in devices operating in the 918MHz ISM band. If one samples RSSI as a function

of distance with a high enough spatial resolution, one could capture the occurrence of

most extrema. This captures necessary information of RSSI as a function of distance

to make the process of interpolating measurements easier for any given position. It

should be noted that, regardless of frequency, RSSI generally decreases with increas-

ing distance due to the path-loss model with no re�ections. In a real environment,

walls and objects create multiple re�ected signals contributing to the signal seen at

the receiver. Researchers usually add a random component to the path-loss model to

take into account the unpredictability of re�ections [13, 73, 90, 108, 111, 117].

Multipath propagation introduces error in an RSSI-based localization method's

location estimate by adding an element of unpredictability. For example, let us assume

from Figure 2.1.2 that the RF energy exponential decay model without re�ections

(show by the blue line) is used to determine the location of the mobile transmitter. If

the receiver determines an RSSI of -80 dBm for a received signal, then the transmitter

is at a distance of six meters assuming both devices are present in a re�ection free

environment. However, if the environment produced a ground re�ection and the signal

was being transmitted at 1.33 GHz (as shown by the yellow line), the transmitter could

be at four di�erent distances: 4.3 m, 5.05 m, 5.45 m, and 6.25 m as indicated by the

pink dots. The algorithm chooses one of them with a chance that it is the wrong

location.

It must be noted that this example illustrates a simpli�ed model of multipath

propagation in the sense that there are only two paths. In a real indoor environ-

ment, countless number of paths exist � along side countless propagation factors �

that a�ect the observed RSSI at a receiver. Researchers commonly approach these
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complicated problems with statistical methods, primarily using Rayleigh and Rician

multipath propagation models [43] to represent a complicated channel envelope with

Rayleigh and Rician distributions. Of the two, the Rayleigh model is the most pop-

ular because it assumes that all paths are relatively equal. That is, that there is no

dominant path. This di�ers from the Rician model where more weight is given to the

line-of-sight path.

2.2 Terminology for RSSI-Based Localization

Methods

People have proposed a large variety of RSSI-based localization methods over the

years. Bor et al. [18] note that, based on the di�erent proposed taxonomies of

localization techniques, there is a clear division between range-free and range-based

localization. The di�erence between the two categories lies in the initial steps of

the methods. Range-based techniques use RSSI to estimate the distance between a

device with known location and a device with unknown location. On the other hand,

range-free techniques exploit connectivity information between anchors to determine

constraints on the location of mobile target [4].

Range-free techniques gain a great deal of information when an anchor with known

location receives a signal from a target device with unknown location. This indicates

that the target, of which we wish to know the location, is within the connectivity

region of the anchor. The connectivity region of the anchors is the entire area where

they can establish communication with another device. It is not important for range-

free techniques to determine the exact location of the target because some application

may not need absolute localization, but rather to have a general estimate. Because of
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Figure 2.2.1: Sub-�gure (a) illustrates range-free localization and (b) illustrates range-
based localization.

this, people often choose to have low computational requirements and hardware cost

at the expense of increased localization error. A simple range-free method is nearest

neighbor location assignment, where the system chooses the location of the anchor

that connects with the mobile target as the location estimate. This method bene�ts

from low computational power requirements and power consumption. In the case

where multiple anchors are able to hear the target, the algorithm takes additional

steps to improve localization. This includes averaging the location of all the anchors

receiving the signal or averaging the overlapping connectivity regions [61] as shown

in Figure 2.2.1(a). The anchors are labeled with the letter A and the target is labeled

with the letter T.

Range-based localization takes a di�erent approach. Rather than simply relying

on whether a target was heard or not, range-based techniques begin by using RSSI

to infer the distance between the target and each of the anchors as shown in Figure
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2.2.1(b). Common range-based methods include trilateration, triangulation and ring

localization [23, 107, 111].

2.3 Single Channel Range-Based Localization

Methods

2.3.1 Trilateration

The most popular method in RSSI-based localization is trilateration. Trilateration is

a classic method for determining the location of a point using the geometry of circles

or spheres. RSSI-based trilateration localization methods use RSSI to compute the

distance between three or more anchors with known locations and a single mobile

target with unknown location. Trilateration draws circles that have radii equal to

the computed distances around the three anchors. Ideally, the three circles all in-

tersect at one point as shown in Figure 2.3.1(a). Calculating the intersection of the

circles provides the location of the target. Trilateration uses circles for 2-dimensional

localization and spheres for 3-dimensional localization.

For indoor localization, there will almost never be a single point where all the

circles intersect due to the seemingly noisy nature of RSSI caused by multipath prop-

agation [118]. In some cases, as illustrated in Figure 2.3.1(b), multiple circles overlap

causing uncertainty of the transmitter's location. In other instances, it may be that

none of the circles intersect, as shown in Figure 2.3.1(c). The lack of a single point

of intersection is the largest issue with trilateration for indoor environments. People

spend much e�ort devising methods to solve this problem, including making arti�cial

intersections [111].

People build all RSSI-based localization systems around the following question:
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Figure 2.3.1: Sub-�gure (a) has a single point of interception, (b) and (c) do not.
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How can acceptable location estimates be achieved with noisy input data? Priwgharm

et al. [94] use the Max-min approach, which draws squares around the circles to cre-

ate smaller overlapping boxes, even if the circles do not overlap. It then chooses

the center of the overlapping area as the estimated location [67]. Thaljaoui et al.

[107] use a method called iRingLA. iRingLA draws rings around all circles and deter-

mines the ring thickness based on the RSSI noise in a particular environment. The

algorithm then averages all points within the overlapping ring area to compute an es-

timated location. The method by Wang et al. [113] uses intersecting areas of circles to

form points of a polygon and averages the polygon point location coordinates to pro-

vided an estimate. Researchers later improved this method into the popular weighted

centroid localization (WCL) algorithm. The WCL algorithm improves accuracy by

performing a weighted average on the polygon points where each polygon point is

weighted by the RSSI measurements from the receivers. Liang et al. [70] use this

approach for large scale WSN applications and Vari et al. [111] use WCL to investi-

gate RSSI-based localization at the 60 GHz frequency range (IEEE 802.11ad). Others

minimize and deal with noisy input data through least squares optimization which

typically has higher computational requirements. The Gauss-Newton algorithm and

the Lederberg-Marquette algorithm [16, 76] are examples of algorithms used for least

squares optimization.

Overall, these single channel RSSI-based localization methods will have relatively

large localization error. Liu et al. [71] composed a survey of wireless indoor position-

ing methods which is simpli�ed in Figure 2.3.2. They concluded that single channel

RSSI methods can not achieve sub-meter accuracy. Because of this relatively large

localization error, the research community continues to work towards �nding other

alternatives.
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Figure 2.3.2: Outline of current wireless based positioning systems [109]

2.4 Fingerprinting for Single Channel RSSI

Pattern learning � �ngerprinting � is a subcategory of range-based localization used for

indoor environments [5]. People commonly use �ngerprinting methods for RSSI-based

localization [11, 54, 86]. It is relatively easy to distinguish �ngerprinting from other

methods because �ngerprinting requires a calibration stage that creates a dataset

by sampling RSSI from known locations, and stores them for later use. The idea

is to capture a �signature� for every recorded position. In doing so, �ngerprinting

methods generally provide better localization results than other methods [19] at the

expense of a separate calibration stage. Fingerprinting can require a great deal of time

and e�ort to build the initial dataset, but by providing improved performance, they

have captured the attention of researchers. The next section brie�y covers k-nearest

neighbor (kNN) and arti�cial neural networks (ANN) in the context of RSSI-based

localization.
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2.4.1 kNN

The most popular �ngerprinting algorithm is the nearest neighbor approach. In near-

est neighbor, the algorithm compares RSSI measurements from the mobile target to

measurements captured during calibration. The algorithm computes a distance metric

between all the measurements in the calibration dataset and the RSSI measurements

of the mobile target. It then chooses the location associated with the closest match-

ing measurement in the dataset as the location estimate. Bahl et al. [11] have used

this approach to develop service architectures of location-aware systems to locate and

track mobile users.

Algorithm developers later improved the nearest neighbor algorithm into what is

known as the kNN algorithm. The kNN algorithm �nds the k closest matching mea-

surements in a dataset, where k is a speci�ed integer, and averages the coordinates

to provide a location estimate [94]. Researchers further improved the algorithm by

introducing weighted averaging during the location estimation stage [41]. Fang et al.

[32] performs weighted averaging with weights that are dependent on kNN distance

criteria. In addition to weighted averaging, other methods have been combined with

kNN. Chi et al. [24] applies the WCL algorithm after kNN to improve indoor local-

ization for RSSI-based tracking of healthcare patients. Kasantikul et al. [56] use a

particle �lter after the kNN predictions which exploits a time dependent property of

the measurements to improve on localization accuracy.

The distance metric is the driving mechanism of kNN; it directly determines which

measurements in�uence the location estimate. The most common metric is Euclidean

distance, but researchers use the kNN algorithm with various distance criteria includ-

ing city block, Mahalanobis, and Minkowski distances [45, 103]. Guowei et al. [41] use

the Je�rey-Matusita distance formula for indoor tracking in their version of the kNN.



29

Some variations of the kNN algorithm assume a particular data distribution to be

used as a distance metric based on the Gaussian isotropic distribution [7]. Yang et al.

[116] assume a non-Gaussian distribution over their data to remove 3% of their least

probable RSSI measurements. They then use weighted averaging that is dependent

on the distance from the data distribution.

Fingerprinting with a kNN is a method to improve the localization error of tradi-

tional single channel localization methods. Additionally, there are other more intricate

methods available to further improve localization, i.e., �ngerprinting with an arti�cial

neural network.

2.4.2 ANN

Arti�cial neural networks are algorithms whose inspiration comes from the biology of

the human brain, neurons to be precise. Machine learning algorithm designers con-

struct mathematical models that resemble the neural connections of a human brain

working as an interconnected network [108]. Researchers have used these models in

various ANN structures with di�erent training algorithms for RSSI-based localization

since the early 2000's [83] which they exploit for a variety of applications. For in-

stance, ANN's have localized people within museums to assist in location-aware tour

guide systems [110]. Battiti et al. [15] localized people within a university through

a WLAN system that used a three layer feed-forward ANN trained with the one-

step secant algorithm. They obtained an average localization error of 2 meters in

their results. Others [10] obtained �ne-grained localization (50 centimeter average

localization error) to aid in indoor robotic navigation. They perform all tests in an

indoor o�ce environment and trained their three layer feed-forward ANN with the

Levenberg-Marquardt algorithm. Mehmood et al. [78] cascaded several ANNs using
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the output of some ANNs as the inputs of other ANNs and trained all networks with

genetic algorithms in order to localize a laptop within their university. Chuang et al.

[25] improved localization results by providing hop count information as additional

inputs and observed a 5 meter average location error during simulations. More re-

cently, researchers used a feed-forward ANN trained with their own feature selection

backpropagation arti�cial immune system (FSBP-AIS) algorithm to track workers in

a warehouse [60]. Their training algorithm performed better than traditional back-

propagation algorithms due to that fact that their FSBP-AIS model does not tend to

converge towards local minima.

More recently, the radial basis function neural network (RBFNN) structure has

become more popular for indoor RSSI-based localization with ANNs; especially after

2012. RBFNNs are a special class of ANN where some layers consist of Gaussian

kernels. A di�erent class of training algorithms are used for these networks. Typically,

training is divided into two stages: �rst, the center and widths of the Gaussian kernels

are determined and then the network learns all other parameters [108]. Carlson et al.

[22] used a (RBFNN) on localization data to monitor the health of the elderly. Their

model was trained using linear optimization and later their localization estimates

were re�ned by using a Viterbi algorithm. Goa et al. [40] used the di�erence of

RSSI as additional inputs to their RBFNN which they trained with a fuzzy clustering

algorithm. Others combined the RBFNN and Particle �lter to improve localization

results [82]. Their RBFNN provided a real-time location estimate and the particle

�lter was used to predict the next location.

In summary, single channel RSSI-based localization is going to be problematic

due to localization error coming from multipath propagation. Fingerprinting with

the ANN and kNN can help address this issue, but even though using these methods

render better localization results than traditional methods, the results will still have
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a relatively large localization error.

2.5 Multichannel RSSI Methods

As discussed in section 1.2.1, a commonly used indoor line-of-sight path-loss model is

RSSI(d) = RSSI0 − 10np log
d

d0
+Xσ, (2.5.1)

where the random variable Xσ represents the erratic behavior of RSSI due to multi-

path propagation. Bor et al. [18] recorded RSSI on 16 di�erent channels for IEEE

802.11 compliant devices transmitting at various distances and their data is consis-

tent with the path-loss model of equation 2.5.1. Their data, shown in Figure 2.5.1(a),

shows that the RSSI drastically changes over increments as small as two feet. This

graph also shows that RSSI is di�erent for the same location when measured on

di�erent channels.

The RSSI for a single channel varies rapidly over small distances, but if all the

measurements for a given location are averaged over all the channels, the results

approximate the path-loss model without the random component. Figure 2.5.1(b)

shows the results when the measurements in Figure 2.5.1(a) are averaged over all

channels for each location. Doing this mitigates multipath propagation e�ects [115].

Because of this, many researchers apply channel averaging to improve localization

accuracy in RSSI-based systems. Many other frequency diversity methods do exist,

but frequency averaging is the most popular. Bardella et al. [13] use IEEE 802.15.4

compliant devices operating at 2.4 GHz to measure RSSI from the 16 de�ned channels.

They show that localization accuracy is improved by averaging measurements that

are collected on di�erent channels. Using the same standard, Ladha et al. [66] were
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able to signi�cantly reduce the average root mean squared error for estimating a

device's location within an o�ce environment. Pricone et al. [93] used a system that

averaged RSSI over four channels to locate basketball players in a gym. They used

Memsic IRIS anchors operating in the 2.4 GHz ISM band with their own TDMA

communication protocol designed for channel hopping.

2.5.1 Other Multi-Frequency Approaches

Although RSSI averaging is the most popular method for improving localization re-

sults when using multi-frequency data, other methods exist. Fink et al. [33] use the

weighted centroid localization (WCL) algorithm without averaging data from mul-

tiple channels with stationary nodes transmitting at two frequencies. The dynamic

sensors, or target sensors to be located which are referred to as BN, have two antennas

placed in di�erent locations of the board, one for each frequency. They use a total

of four antennas for each target sensor. By doing so they achieve frequency diversity

and spatial diversity at the same time. Figure 2.5.2 shows the transmitting (BN) and

receiving (RN) devices communicating to each other. They are able to obtain four

di�erent RSSI measurements, each with a di�erent frequency and spatial o�set for

the same sensor location. Their algorithm starts by converting received RSSI mea-

surements into weights for each RN. Then, an adaptive WCL algorithm estimates the

sensor location by using a modi�ed weighted average approach. To improve accuracy,

Fink et al. also uses a plausibility �lter where movement restriction is enforced. This

limits the maximum distance that a BN may travel during the prediction stage and

thus lowers error from predicting unrealistic movement by imposing a maximum ve-

locity that a BN can travel. Fink et al. improves upon his method in later work by

re�ning localization results through data fusion [34]. A six axis inertial measurement
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Figure 5.1: Multiple frequencies experimental results.

in a one-dimensional setup, where all nodes lie on one line. As a test case we use
proximity localization. The idea of proximity localization is quite simple: the position
of the node is the position of the strongest anchor.

5.4.1 Experimental Setup

For this experiment we used the 8 Tmote Sky nodes of the testbed as anchors. There
is one mobile node that transmitted beacons with maximum power at a regular inter-
val on increasing frequency. The mobile node is placed, preferably on a desk, in 6

Figure 2.5.1: Graph (a) shows RSSI as a function of distance for multiple communi-
cation channels. Graph (b) shows the data in graph (a) averaged over all channels.
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Figure 2.5.2: A diagram showing how Fink's et al. devices communicate to each
other.

unit (IMU) provides an additional location prediction method through the use of a

Kalman �lter. A �nal �lter combines the prediction from the two methods, one from

WCL and another from the Kalman method, to provide an updated estimate. These

methods may o�er an alternative to channel averaging based localization, but their

systems add additional hardware to the system which increases the complexity and

drives up cost.

Another method of localizing a target while operating on multiple frequencies is

radio interferometric positioning system (RIPS). Localization by RIPS is achieved

by transmitting two RF signals with slightly di�erent frequencies. The composite

signal at the receiver's side will have a low frequency envelope such that neighboring

devices can measure its power with less expensive hardware than that of measuring

time-of-arrival. Figure 2.5.3 displays the computation of the phase o�set δ between C

and D used to compute an AOA measurement. The method then infers location from

AOA measurements with a variety o�-the-shelf algorithms. Maroti et al. [75] �rst

introduced RIPS for 3D positioning of wireless sensor networks. They later improved

their method through various developments [63, 64, 65]. It is worth noting that RIPS

is not indoor localization method and was only presented because it uses multiple
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Figure 2.5.3: An illustration of the radio interferometric ranging technique.

frequencies in it's localization scheme. Neither does it use RSSI. This work looks to

use RSSI for localization because it relatively easy to have access too. Even if RIPS

was deployable indoors, the complexity of the system would drive up the cost.

2.5.2 Fingerprinting with Multichannel Data

In one instance, found in the work of Bor et al. [18], a machine learning algorithm uses

multiple frequencies for indoor localization where a nearest neighbor algorithm was

used along side RSSI �ngerprinting. During a training stage, Bor et al. collected RSSI

data in an o�ce environment for di�erent locations to create a dataset that would

later be used as a look-up table. The nearest neighbor algorithm searches the dataset

to �nd the closest matching data point with a new and unknown RSSI measurement

during the prediction stage. The location of the closest matching data point is then the

predicted location. Additionally, the simple algorithm's prediction accuracy increases

when averaging measurements over multiple channels. This method does not allow

for �ne grain localization but it works well for room level localization. What Bor et

al. learned with these results is that �ngerprinting with a nearest neighbor algorithm

can improve localization error. If this simple method can improve results, then it

would be expected that more complicated algorithms like the kNN can surpass its
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performance.

2.6 Summary

The presented literature shows that multichannel RSSI can help mitigate localization

error. This is bene�cial because it is relatively easy to measure RSSI from multiple

channels. Currently, most work on multichannel localization averages multichannel

RSSI. Instead of using channel averaging, this work focuses on treating multichan-

nel RSSI separately and combining multichannel �ngerprinting with algorithms that

include k-nearest neighbor and arti�cial neural networks.
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Chapter 3

Fingerprinting Methods for

Localization

This chapter introduces �ngerprinting methods that use frequency diversity to miti-

gate localization error. As stated in Chapter 1, the hypothesis is that a multichannel

RSSI �ngerprint of the environment is capable of providing more information re-

garding a mobile target's location than a single RSSI measurement. To test this

hypothesis, the performance of various �ngerprinting algorithms are evaluated based

on their ability to estimate the mobile target's location.

This chapter introduces three methods for RSSI �ngerprinting. The �rst is a k-

nearest neighbor (kNN) implementation that stores calibration data and later uses

it as a look-up table to interpolate an active tag's position using weighted averaging.

The second uses a data driven Neural Network model. The third method uses sta-

tistical modeling and particle �ltering to maximize the a posteriori probability of a

current location estimate.

For 2-dimensional localization using multichannel RSSI, let the 2-dimensional lo-
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cation of a mobile target be

sm = [ sm,x, sm,y ],

where sm,x denotes the �rst spatial coordinate and sm,y denotes the second coordinate.

The associated RSSI measurement recorded for multiple communication channels at

location sm is

zm = [ zm,1, zm,2, · · · , zm,C ],

where C denotes the total number of channels used.

The goal of the localization methods is to calculate the true location sm from the

measurement zm. In order to do so, the �ngerprinting algorithms must establish a

relationship between sm and zm from a calibration dataset prior to operation. The

locations in the calibration dataset, or training dataset, are

s1:M =



s1

s2
...

sM


,

where M is the total number of positions in the training dataset. The corresponding

RSSI at each set of positions s1:M is

z1:M =



z1,1, z1,2, · · · , z1,C

z2,1, z2,2, · · · , z2,C
...,

zM,1, zM,2, · · · , zM,C


.
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In order to evaluate an algorithm's performance and to account for the possibility

of over�tting, a separate dataset is required for testing that provides unseen data

measurements to evaluate the robustness and accuracy of localization. The testing

dataset also consists of 2-dimensional location and RSSI measurement data given by

s1:N and z1:N , respectively, where N denotes the total number of measurements in

the testing dataset. For this work, both the testing and training dataset come from a

single dataset collected through the same experimental procedure. The entire dataset

is then split into an 80:20 ratio: 80% of the data is used for the training dataset while

the remaining 20% is used for testing dataset which is a common ratio among the

machine learning community. This ensures that both datasets are sampled from the

same environment with the same sampling probability distribution, while still being

independent of each other in order to avoid the problem of over�tting. More details

on the data collection process are provided in Chapter 4.

To be clear, the index m and constant M will be used exclusively for the training

dataset while the index n and N will be used exclusively for the testing dataset.

3.1 k-Nearest Neighbors Algorithm

The k-nearest neighbor (kNN) algorithm, one of the simplest �ngerprinting algo-

rithms, was proposed in the 1960's and is still commonly used today [27]. The intu-

ition behind the algorithm is simple: when an application requires a prediction for

an unseen data sample, the kNN algorithm searches through the training dataset for

the k-most similar samples [20]. The algorithm then uses the prediction attributes

of the most similar samples to compute the estimate for the unseen sample. Many

researchers have demonstrated that kNN is computationally e�cient for many ap-

plications with acceptable accuracy [69], especially in clustering, classi�cation, and
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Figure 3.1.1: Voronoi diagram

regression. It can be used for interpolation, as illustrated by the Voronoi diagram

shown in Figure 3.1.1. Here, sub-spaces are divided on a 2-dimensional plane based on

distances, where the di�erent subareas are shaded in assorted colors corresponding to

the closest samples on the plane. This �gure provides a visual example of piece-wise

constant interpolation using a single nearest neighbor algorithm.

In the context of RSSI-based localization, kNN provides a location estimate ŝn

using only the RSSI measurement zn and a database of known location RSSI pairs

(s1:M ,z1:M). The index n denotes the unseen measurement of interest. The algorithm

works as follows:

• Compute the distance d between each new measurement zn and all known mea-

surements in the training dataset z1:M .

• Select the k neighbors within the training dataset z1:M with the smallest dis-
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tances.

• Compute ŝn as a weighted average of all known measurements in s1:M corre-

sponding to the k-nearest neighbors of zn within z1:M using

ŝn =

∑k
i=1 disi∑k
i=1 di

.

• Repeat the previous three steps for all unseen measurements.

• Stop when ŝN is computed.

Various distance criteria have been used for the kNN algorithm including the Man-

hattan and Minkowski distances [102]. The majority of researchers use the Euclidean

distance because this metric is also often considered as the standard choice when no

prior knowledge is available about the data's distribution [114]. For this reason, this

work used the Euclidean distance given by

d(zn, zm) = ||zn − zm||,

where zn and zm are RSSI measurements in dBm for the testing and training dataset,

respectively, and

||zn − zm|| =
√

(zn,1 − zm,1)2 + (zn,2 − zm,2)2 + · · ·+ (zn,C − zm,C)2,

where zn,c and zm,c are RSSI measurements for channel c. The algorithm calcu-

lates the Euclidean distances between every new measurement and all of the current

measurements in the training datasets during the �rst step. The distances are then

compared to each other to select the measurements with the smallest distance. That
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determines which measurements will be used to compute a weighted average for the

location estimate.

3.2 Arti�cial Neural Networks

Arti�cial neural networks (ANN) are used for state-of-the-art machine learning frame-

works [1, 26, 53] and were inspired by the biological structure of neural networks in

the human brain. Human neurons interconnect in large intricate networks to trans-

fer information amongst each other with electrochemical signals to produce thoughts

and actions. A neuron can be simpli�ed into dendrites, axons, and a nucleus. The

dendrites and axons analogize as the inputs and outputs of each neuron. Figure 3.2.1

displays a simpli�ed image of two interconnected neurons. The axons (outputs) of the

�rst neuron transfer electrochemical signals to the second neuron's dendrites (inputs).

The receiving neuron processes these signals within its nucleus to either produce a

response (or not) and then transmit its own output signal, through its axons, to other

neurons.

Early neural network developers conceived the arti�cial neuron with the concept

of a biological neural network architecture. The crude analogy between arti�cial

neurons and the biological neuron is that the connections between nodes represents

the axons and dendrites, the connection weights represent the synapses, and the

activation function approximates the activity in the soma [52]. Figure 3.2.2 illustrates

an arti�cial neuron and shows multiple inputs, an output, and an activation function

analogous to a biological neuron's soma. The activation function is what produces a

neuron's output which is dependent on its input and the selected activation function.

In the context of multichannel RSSI �ngerprinting, the input A to the activation
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Figure 3.2.1: Interconnected human neurons [31]

function is

A = w1z1 + w1z2 + · · ·+ wCzC ,

where z1:C are the input data and w1:C are the corresponding weights. The output of

the activation function is called the activation a. Both the biological network and the

ANN learn by incrementally adjusting the magnitudes of their weights or synapses

[120].

Certain activation functions can introduce nonlinearity in the network. Without

these functions, the network can only learn functions that are linear combinations of

the inputs. Gaussian, step, threshold, sigmoid, and recti�ed linear units are examples

of such functions. This work uses the sigmoid function because it possesses the

distinctive properties of continuity and di�erentiability on the interval (−∞, ∞),

which are both essential requirements in back-propagation learning [14]. The sigmoid
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Figure 3.2.3: The sigmoid activation function

function is

f(A) =
1

1 + e−βA
,

where β is a constant that determines the width of the sigmoidal shape. Low input

values (far into the negatives) produce an output close to zero; high input values

result in an output close to one. The sigmoid function's response is shown in Figure

3.2.3.
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ANNs are typically modeled as collections of neurons that are interconnected in

acyclic graphs [55]. In other words, the outputs of some neurons can become inputs

to other neurons. The algorithm propagates input data through a network from start

to �nish in a process which is referred to as a forward pass. Additionally, ANN

models are often organized into distinct layers of neurons instead of amorphous blobs

of interconnected neurons. For regular neural networks, the most common layer type

is the fully-connected layer in which neurons between two adjacent layers are fully

pairwise connected, but neurons within a single layer share no connections [55]. Figure

3.2.4 illustrates a three layer feed-forward ANN using a stack of fully connected layers

and also shows the direction of data �ow. The �rst layer represents the input data,

the intermediate layer is called the hidden layer, and last layer is the output of the

ANN. With an exception to the input layer, each layer has a bias value as an input

to neurons that introduces a bias o�set. Figure 3.2.4 depicts the bias values as the

circles labeled with b. The bias allows the algorithm to modify the bias weight value

to shift a neuron's response either the left or the right. This may be necessary to

learn certain features between the training and testing datasets.

3.2.1 Training with the Back-Propagation Algorithm

ANNs undergo training to learn relationships between input and output data through

adjusting network weights and biases. The network's ultimate goal is to make predic-

tions on a testing dataset with the least amount of error so that the algorithms can be

deployed to solve real problems. Researchers have used various training methods of

various complexity including Levenberg-Marquardt, adaptive sub-gradient, and even

a Kalman �lter [8, 10, 59].

This work trains an ANN with Levenberg-Marquardt backpropagation because it
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Figure 3.2.4: A three-layer feed-forward perceptron neural network

is a very e�cient algorithm for networks with less than a few hundred weights even

when compared with conjugate gradient techniques [42]. The Levenberg-Marquardt

backpropagation algorithm is well documented in the work of Hagan et al. [42]. Before

explaining the Levenberg-Marquardt algorithm, the gradient descent algorithm is �rst

presented since Levenberg-Marquardt builds upon gradient descent to create a more

e�cient training algorithm.

In gradient descent, as Jia et al. [53] describe, ANN layers have two key respon-

sibilities for the operation of the network as a whole. A forward pass that takes the

inputs and produces the outputs at the �nal layer, and a backwards pass that takes

the gradients with respect to the output, and computes the gradients with respect to

the parameters and to the inputs, which are in turn back-propagated to earlier layers.

This process ultimately updates all weights and bias values. The forward pass begins

by considering a multilayer neural network where the net input A to a neuron j in
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layer l + 1 is

Al+1(j) =

Hl∑
i=1

wl+1(i, j)al(i) + bl+1(j),

where Hl is the total number of neurons in layer l. The activation of neuron j is

al+1(j) = fl+1(Al+1(j)).

For an L layer network, the algorithms vectorize the previous expression for all net-

work layers into a system of equations given by

a0 = z (3.2.1)

and

al+1 = fl+1(wl+1al + bl+1), l = 0, 1, · · · , L− 1 . (3.2.2)

These equations make up the forward propagation stage. Note that the task of the

ANN is to learn associations between a speci�ed set of input-output pairs

{(z1, s1), (z2, s2), · · · , (zM , sM)} ,

so the performance index (also known as the cost function or the objective function)

for the mth input of the ANN is given by

E =
1

2
e>mem,

where em = sm − aL,m is the prediction error for the mth input, zl, and e>mem

is the squared error. Using this, the standard backpropagation algorithm uses an

approximate steepest descent rule. Since the observation of convergence towards a
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local minima always moves towards the negative gradient of the convex function E

[2], the approximate steepest (gradient) descent algorithm is then

∆wl(h, c) = −α ∂E

∂wl(i, j)
(3.2.3)

and

∆bl(h) = −α ∂E

∂bl(i)
(3.2.4)

where α is the learning rate. The algorithm obtains the gradients through

∂E

∂wl(i, j)
= ξl(i)al−1(j) (3.2.5)

and

∂E

∂bl(i)
= ξl(i), (3.2.6)

where ξl(i) is the sensitivity of the cost function to changes in the net input A of

neuron i in layer l. The algorithm exploits the fact that the sensitivities satisfy the

following recurrence relation

ξl = fl(Al)w
>
l+1ξl+1, (3.2.7)

where it is initialized at the �nal layer as

ξL = −fL(AL)(sm − am). (3.2.8)

In summary, the algorithm �rst performs a forward pass using Equations 3.2.1

and 3.2.2; then it performs a backwards pass using Equations 3.2.8 and 3.2.7; and

�nally updates the weights and biases using Equations 3.2.3, 3.2.4, 3.2.5, and 3.2.6.
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3.2.2 Training with the Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm is a balancing act between an approximation

to Newton's optimization method and an approximation to the gradient descent rule

[42]. Suppose a problem seeks to minimize a function with respect to the parameter

vector w, then Newton's method would be

∆w = [J>(w)J(w)]−1J>(w)e(w),

where J(w) is the Jacobian matrix and e(w) is the error vector. The Levenberg-

Marquardt modi�cation [42] to the Gauss-Newton method is

∆w = [J>(w)J(w) + µI]−1J>(w)e(w). (3.2.9)

By varying the combination coe�cient µ, the algorithm performs parameter updates

by adaptively changing between the gradient descent rule and Gauss-Newton update

[36]. The coe�cient µ is determined by the following rule

µ =


E(wt) > E(wt−1), βµ0

E(wt) ≤ E(wt−1),
µ0
β

,

where the coe�cient µ0 is multiplied by some value β whenever a step would result

in an increase of the cost function E(w). When a step reduces E(w), µ0 is divided

by β. If µ is small, then the method approximates the Gauss-Newton method; if it

is large, it approximates the gradient descent rule. It is a disadvantage to always use

the Gauss-Newton method throughout training since the search space is only convex

around the point of interest and has multiple local minima. Using the �optimal� step
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from the Gauss-Newton method would most likely guarantee a divergence from the

point of interest due to the fact that the objective function is not globally convex.

Using a variable step size allows for faster convergence when approaching a minima

(undergoing a constant negative slope) while still maintaining stability. Knowing this,

the last modi�cation to the standard backpropagation algorithm is seen at the �nal

layer as

∆L = −fL(AL), (3.2.10)

where each column of the matrix ∆L is a sensitivity vector that must be back-

propagated through the network to produce one row of the Jacobian matrix [42].

In summary, the algorithm �rst performs a forward pass to compute the prediction

error at the output of the network. Then the algorithm computes the Jacobian matrix

using Equations 3.2.5, 3.2.6, 3.2.7, and 3.2.10. Finally, it solves for ∆w using equation

3.2.9.

3.3 The Particle Filter

Since their introduction in 1993, particle �lters have become a popular class of es-

timators for nonlinear non-Gaussian problems [30]. This �ltering technique handles

situations where information about a random process is desired. More formally, par-

ticle �ltering is a general Monte Carlo (sampling) method that performs inference of

state-space models where the state of a system evolves in time and collects information

via noisy measurements made at each time step [84].

The �lter is based on Bayesian principles that have provided a rigorous general

framework for dynamic state estimation problems [51]. Bayesian tracking methods

typically construct probability density functions (PDF) for states based solely on all

previous observations [38]. Although these methods work particularly well for lin-
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f(st|z1:t)

1⁄N

s

Figure 3.3.1: Particles approximate a non-Gaussian distribution

ear Gaussian (LG) estimation problems, there are no general analytic (closed form)

expressions for the required PDF of nonlinear non-Gaussian (NLNG) estimation prob-

lems. Particle �lters cleverly approach NLNG problems by representing the required

posterior PDF as a set of random samples (particles) with associated weights, then

computing estimates based on these samples and weights [100]. Figure 3.3.1 displays

a set of particles that approximate a NLNG distribution (blue line). Particle �l-

ters have the ability to approximate any arbitrary PDF with a relatively large set

of particles, making the algorithm a suitable choice for problems with non-Gaussian,

multi-modal PDFs.

This section gives a general overview of the particle �lter algorithm. For a thor-

ough understanding of the algorithm, refer to the work by Arulampalam et al. [9]

which includes a tutorial of the particle �lter. In order to formulate the particle �lter

problem, the state transition model and the measurement equation must �rst be de-

�ned. The state transition model, otherwise known as the discrete-time state-space

model, and the measurement equation are

st = ft(st−1, ηt−1)
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and

zt = gt(st, νt),

respectively, where st represents the state of the system at time t and st−1 represents

the previous state. Also, zt is a noisy measurement which is the only information

obtained from st. The function ft describes the evolution of the state and gt is the

function describing the measurement process. Both ft and gt are possibly nonlinear

and time-dependent functions. ηt−1 and νt are the state and measurement noise,

respectively.

The particle �ltering problem involves computing the estimate of the state st

at time t given all measurements up to and including t (also written as z1:t). The

Bayesian solution must �rst be formalized because the particle �lter builds upon

Bayesian principals.

3.3.1 The Optimal Bayesian Tracking Solution

In a Bayesian setting, the optimal Bayesian solution estimates the current state st

by computing the PDF p(st|z1:t) of the current state using all previously known

observations. The computation process performs this in two steps: the prediction

step and the update step. In the prediction step, p(st|z1:t−1) is

p(st|z1:t−1) =

∞�

−∞

p(st|st−1)p(st−1|z1:t−1)dst−1, (3.3.1)

where p(st−1|z1:t−1) and p(st|st−1) are both assumed to be known and p(st|st−1) is

given by the state transition model. At this point, p(st|z1:t−1) is the prior estimate

of the state before receiving the measurement at time t. When a new measurement

is made, then one may proceed to the update step by using Bayes' rule to obtain the
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posterior PDF

p(st|z1:t) ∝ p(zt|st)p(st|z1:t−1), (3.3.2)

where p(zt|st) is the distribution of zt with the newly available measurement.

Equations 3.3.1 and 3.3.2 have a recurrence relation and form the basis for the

optimal Bayesian solution. In general, the recursive propagation of the posterior PDF

cannot be computed analytically and can only be done in a restrictive set of cases.

But, when the analytical solution is intractable, e.g. the NLNG case, particle �lters

can provide an approximation to the optimal Bayesian solution.

3.3.2 Sequential Monte Carlo Simulation

A sequential Monte Carlo (SMC) simulation is the most basic method used to ap-

proximate the optimal Bayesian solution. The simulation produces random samples

with associated weights to represent the required posterior density p(st|z1:t). These

random samples are known as particles and the representation is

p(st|z1:t) ≈
N∑
i=1

ωitδ(st − sit), (3.3.3)

where ωit are the associated particle weights, i denotes the particle index, N is the

total number of particles, and δ(· ) denotes the Dirac delta function. As the number

of particles increases, the accuracy of the approximation improves. The weights are

then chosen using the principle of importance sampling [29].

3.3.3 Sequential Importance Sampling

It is common to see the sequential importance sampling (SIS) particle �lter and SMC

as being presented as the same thing in much of the literature [30], but in fact the
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Algorithm 1 SIS Particle Filter [9]

[{sit, ωit}Ni=1] = SIS[{sit−1, ωit−1}Nj=1, zt]

• FOR i = 1 : N

� Draw sit ∼ q(sit|sit−1, zt)
� Assign the particle a weight, ωit, according to equation 3.3.4

• END FOR

SIS algorithm is a Monte Carlo (MC) method that forms the basis for the particle

�lter. For a problem where it is di�cult to draw particles from p(s0:t|z1:t) for equation

3.3.3, one could draw particles from the importance PDF q(·) that is related to the

particles weights ωit by

ωit ∝
p(si0:t|z1:t)
q(si0:t|z1:t)

.

This relationship is rewritten[9] as

ωit ∝ ωit−1
p(zt|sit)p(sit|sit−1)
q(sit|sit−1, zt)

. (3.3.4)

It can be shown that, as the number of particles N approaches∞, the approximation

in equation 3.3.3 approaches the true posterior PDF p(st|z1:t). The SIS particle

�ltering algorithm is now given by Algorithm 1.

The common problem with the SIS particle �lter is that after a few iterations,

all but one particle will have negligible weight. This is known as the degeneracy

phenomenon which researchers have shown that it is impossible to avoid [29]. This

means that a large portion of computational time will be spent on updating particles

with weight values that are close to zero. The sequential importance resampling

algorithm is used to address this phenomenon.
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Algorithm 2 The resampling algorithm [9].

[{sj∗t , w
j
t , i

j}Nj=1] = RESAMPLE[{sit, wit}Nj=1]

• Initialize the CDF: c1 = 0

• FOR i = 2 : N

� Construct CDF: ci = ci−1 + wit

• END FOR

• Start at the bottom of the CDF: i = 1

• Draw a starting Point: u1 ∼ U[0, N−1]

• FOR j = 1 : N

� Move along the CDF: uj = u1 +N−1(j − 1)

� WHILE uj > ci

∗ i=i+1

� END WHILE

� Assign sample: sj∗t = sit

� Assign weight: wjt = N−1

� Assign parent: ij = i

• END FOR

3.3.4 Sequential Importance Resampling

Sequential importance resampling is a means to prune particles with low weight val-

ues and replace them with signi�cant particles. These signi�cant particles will most

likely be duplicated multiple times from particles with large weights, and conversely,

particles with very small weights are not likely to be duplicated at all. After resam-

pling, the weights of all particles will all be equal to 1/N as shown in Figure 3.3.1.

The resampling algorithm is given in Algorithm 2.

The sequential importance resampling algorithm has a few disadvantages. The
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�rst is that the ability to parallelize the algorithm is lost because particles are de-

pendent on other particles so they cannot be put into separate processes that could

run in parallel. This is due to the spawning of new particles from previous particles

which make a signi�cant impact on the total computational time. The other draw-

back of the algorithm is that particle diversity decreases after each resampling stage.

This means that, statistically, more particles will spawn from other particles with the

highest weight values, resulting in a focus on those particles and limiting the search

space around them.

3.3.5 The General Particle Filter Algorithm

For location tracking problems where an application seeks to estimate location infor-

mation, p(s0:t|z1:t) is not available to be used in a SMC simulation. Thus, one must

make use of an importance PDF q(·) that is related to p(s0:t|z1:t). In the context of

RSSI-based localization, the training dataset can be used to generate the importance

PDF. The general algorithm for the Particle �lter is given in Algorithm 3.

3.4 Conclusion

In this chapter, three �ngerprinting algorithms were explained that can be used for

RSSI-based �ngerprinting localization. Each has advantages and disadvantages with

respect to complexity and performance. In the next chapter, each algorithm is tested

on multichannel real RSSI data collected in an indoor environment. Ultimately, the

goal of our e�ort is to improve localization performance with multichannel RSSI.
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Algorithm 3 Particle Filter

[{sit, ωit}Ni=1] = PF[{sit−1, ωit−1}Ni=1, zt]

• FOR i = 1 : N

� Draw sit ∼ q(sit|sit−1, zt)
� Assign the particle a weight, ωit, according to equation 3.3.4

• END FOR

• Calculate the total weight: total = SUM[{ωit}Ni=1]

• FOR i = 1 : N

� Normalize: ωit = (total)−1ωit

• END FOR

• Resample using Algorithm 2
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Chapter 4

Results

This chapter explores three �ngerprinting methods for RSSI-based 2-dimensional lo-

calization and then compares the performance of each method while discussing their

strengths and weaknesses. Each of the �ngerprinting methods perform localization

using frequency diversity by collecting RSSI measurements over multiple communi-

cation channels in an attempt to mitigate localization error.

The chapter begins by describing the data collection process and provides details

on the experimental set-up. A performance comparison of k-nearest neighbor (kNN),

arti�cial neural network (ANN), and particle �lter (PF) is then presented near the

end of the chapter.

4.1 Experimental Setup and Data Collection

The user must perform calibration before using any of the �ngerprinting techniques

considered in this chapter. During calibration, a training dataset containing RSSI

measurements with corresponding known recorded locations is constructed. Only a

single transmitter and receiver are used during the data collection stage in order to
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demonstrate the performance of multichannel �ngerprinting based localization. That

is, only one static anchor and one mobile target are used. These results can easily

extend to larger systems with multiple anchors and targets. Additionally, the entire

data collection process was performed in the smart-space of the Perceptual Systems

Research Group (PSRG) lab.

A TI ez430-Chronos smart watch served as the mobile target for the data collection

process and was chosen due to its convenient form factor, as shown in Figure 4.1.1.

The watch uses a CC430F6137 TI microcontroller which operates at the 915 MHz ISM

band. The watch requires a 3 volt CR2032 battery to function and comprises many

on-board sensors including a barometer, accelerometer, and a thermometer. For the

localization experiment, the watch only serves the purpose of a mobile, radio-enabled

target.

The anchor used for the data collection is an Angelos Ambient: a custom radio

enabled device shown in Figure 4.1.1 that was created by PSRG researchers. The

anchor has a USB connector so that a standard 5 V power supply can be used to

power the device. This allows the anchor to be installed anywhere that a standard

120 V electrical wall outlet is available by using an inexpensive AC to DC converter.

The anchor also uses a CC1101 radio with �rmware designed to continuously listen

for data packets transmitted from the watch and forward them, along with the RSSI,

to a nearby base station. The base station then uploads the RSSI information to a

central database, making RSSI available to localization algorithms.

The entire data collection process was performed in the PSRG lab smart-space.

The room's dimensions are 4.34 meters wide, 9.58 meters long, and 2.84 meters in

height. The room also has a bed, reclining chair, plasma TV, desk, and other items as

shown in Figure 4.1.2. This room is used to perform health monitoring experiments

and is designed to resemble a typical person's bedroom.
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Figure 4.1.1: The TI's ez430-Chronos smart watch and Angelos Ambient

Figure 4.1.2: The smart space was used to conduct the experiment.

The anchor was placed on one side of the smart-space and the watch was placed

near the center during the data collection process. The anchor was mounted on a

wooden rod to keep it at a height of one meter. The watch was mounted on a wooden

�xture placed on top of a movable cart and was also kept at a height of one meter.

It is important for both devices to be kept at a height of one meter throughout the

experiment to eliminate variability associated with vertical movement. A diagram of

the top view of the smart-space can be seen in Figure 4.1.3. The blue circle represents

the position of the anchor while the green square represents the 1 meter by 1 meter
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1m x 1m
Anchor

Watch Area

Figure 4.1.3: Basic room layout for RSSI data collection

area that the watch occupied during the data collection stage.

It should be noted that the 1 meter by 1 meter area occupied by the watch is

relatively small when compared to the entire room, but there were a few reasons why

the area was kept to this size. First, it was necessary to capture transitions between

local extrema in RSSI caused from multipath fading. Figure 4.1.4, shows a plot of

the mean and standard deviation of RSSI versus distance for line-of-sight between

the watch and anchor in the smart-space for three di�erent channels. The mean and

standard deviation were computed for 100 RSSI measurements at each location and

for each channel. The variance is denoted by the the light shaded area around the

data lines. The blue line displays data for channel 96, the red for 116, and the green

for 136. All three lines show that the measured RSSI separately follows the path-loss

model in a multipath environment as described in Chapter 1 with all lines appearing

noisy and displaying a high number of local extrema for short distances due to fast

fading. To capture the transition between local minima and maxima, one must sample

the area with a high spatial resolution. In order to determine an acceptable sampling
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Figure 4.1.4: RSSI versus distance for line-of-sight between the anchor and watch

resolution, the RSSI plots as shown in Figure 4.1.5 were created with 2.5 centimeter,

7.5 centimeter, 12.5 centimeter, and 17.75 centimeter resolutions. One may determine

the minimum spatial resolution necessary by observing the di�erences between the

four plots such as the increase and decrease of extrema. In fact, the occurrence of

extrema reduces as the resolution decreases. At resolution lower than 7.5 centimeter

(about 3 inches), the data already start to lose many of the minima and maxima

present in the 2.5 centimeter plot. This observation keeps occurring as the resolution

continues to decrease. The sampling resolution was judged to be acceptable if it

captured most transitions between the extrema. This requires a resolution less than

7.5 centimeter and we chose a resolution 2 centimeter to ensure that these conditions

were met.

Due to the required high spatial resolution and a sampling rate limited to 6 Hz,

the data collection process required 36 minutes to cover the 1 meter by 1 meter area.
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Figure 4.1.5: RSSI versus distance for di�erent sampling resolutions
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It would have taken about an hour and a half to sample a 1.5 meter by 1.5 meter

area and if a 2 meter by 2 meter area is sampled, that would require 2 hours. The

total area covered by the watch was kept at 1 meter by 1 meter to limit the amount

of time spent during the data collection process.

Figures 4.1.4 and 4.1.5 show that the RSSI at each location is relatively consistent

since the standard deviation is low at each location. This means that the RSSI is

not extremely noisy within the environment. The light color shaded area around the

data lines in Figures 4.1.4 and 4.1.5 indicate the standard deviation.

4.1.1 Channel Selection

Data packets were transmitted by the watch to the anchor over ten communication

channels with a protocol that uses Gaussian frequency shift keying (GFSK) modu-

lation. The highest channel was centered at 835.7 MHz and the lowest channel was

centered at 918.14 MHz. The channel spacing was 374 kHz and the frequency devi-

ation was 128 kHz. Channels were chosen to be relatively evenly spaced within the

available frequency band while avoiding the following channels:

• 65-90 (856.3 - 865.6 MHz)

• 145-150 (886.3 - 888.1 MHz)

• 160-168 (891.9 - 894.9 MHz)

due to possible communication interference. When scanning the 918 MHz ISM with

a 8591E Hewlett-Packard spectrum analyzer, it was found that activity of RF trans-

mission was present within the three above frequency ranges by unknown devices.

There were two reasons to avoid using the channels: 1) to not interfere with other
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Channel Order Actual Channel Center Frequency (MHz)

1 230 918.14
2 50 850.73
3 136 882.93
4 10 835.75
5 191 903.53
6 96 867.95
7 171 896.04
8 30 843.24
9 116 875.44
10 211 911.02

Table 4.1: List of channels used during the data collection stage

840 MHz 850 MHz 860 MHz 870 MHz 900 MHz890 MHz 910 MHz 920 MHz880 MHz

2 76 34 58 19 10

Figure 4.1.6: Visual representation of the channels listed in Table 4.1

radio devices, and 2) to avoid possible packet loss due to transmitting data in a high

interference channel.

The ten selected channels are listed in Table 4.1 which also lists each channel's

numerical order, actual channel number, and center frequency. Channel 10 is the

channel with lowest center frequency (835.7 MHz) and channel 230 has the highest

center frequency (918.14 MHz).

Figure 4.1.6 shows a visual representation of the channels listed in Table 4.1 with

in the allowed frequency band. The numbered circles are the channels. The number

in the center of each circle is the channel label from the table. The �rst six channels

that are listed in Table 4.1 are indicated by green circles. The other four channels

are indicated by blue circles.
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Figure 4.1.7: Pearson correlation coe�cient between channels 1, 116, and 251 with
all other channels

The organization for the channel order was inspired by a simple experiment that

was performed to explore the idea of channel RSSI cross-correlation. The data col-

lection process in Figure 4.1.4 was repeated for RSSI on all communication channels

between 1 and 251. Only three of those channels were chosen to compute the Pearson

correlation coe�cient with all other channels using the RSSI versus distance data

lines. Figure 4.1.7 shows the results for channels 1, 116, and 251.

As shown in Figure 4.1.7, the correlation coe�cient equals one for the case where

the coe�cient is computed for a channel with itself. The �gure also shows a high

correlation amongst neighboring channels that drops as you move further away in

any direction within the frequency band. These results strongly suggest that choosing

channels that are distant from one another correlate less and thus can provide the

most information when considered jointly. This knowledge was taken into account
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when organizing the channels.

4.1.2 The Dataset used for the Localization Algorithms

The watch was moved around the 1 meter by 1 meter area shown in Figure 4.1.3

while continuously transmitting data packets. The orientation of the watch was kept

the same throughout the entire data collection stage to remove variations caused

by antenna directionality. At the top of the wooden �xture holding the watch, a

UTM-30LX Hokuyo laser range �nder was mounted to provide highly accurate watch

location measurements that were used as the ground-truth for each of the RSSI mea-

surements. The Hokuyo laser range �nder has an accuracy of 3 centimeter or 1.18

inches.

While the watch transmitted data packets on all ten channels, six times a second,

the cart was moved around the entire test area. Figures 4.1.8 and 4.1.9 show the

RSSI collected within the 1 meter by 1 meter area for all ten channels. Each data

point is represented by a colored circle depicting RSSI measured by the anchor for

that location. Additionally, each �gure has a color-bar that indicates RSSI intensity.

These measurements were suitable to be used as the training dataset because they

had su�cient spatial resolution to capture the majority of extrema that occur within

the 1 meter by 1 meter area.

As described in Chapter 3, a separate testing dataset was created to evaluate

the performance of each algorithm and to ensure that the training and testing sets

are mutually exclusive. The testing dataset consists of data points of a shorter path

within the 1 meter by 1 meter area as shown in Figure 4.1.10. The training dataset

was composed of 7,084 RSSI measurements while the testing dataset consisted of 1288

measurements. The color bar in Figure 4.1.10 indicates time progressing. The dark
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Figure 4.1.8: RSSI heat-maps for the �rst six channels
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Figure 4.1.9: RSSI heat-maps for the last four channels

blue color corresponds to the beginning of the testing dataset and the light yellow

color corresponds to the end of the dataset.
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0 sec

234 sec

Figure 4.1.10: Testing dataset

4.2 Training and Testing Datasets with

Localization Algorithms

The three algorithms are trained using the training dataset and their performance

was evaluated using the testing dataset. Each algorithm was then evaluated based on

the accuracy of its prediction by computing the average Euclidean distance between

the estimated and true location. The ultimate goal is to determine whether or not

multichannel data helps reduce prediction error. However, prior to the analysis, an

explanation of design decisions and parameter selection are given for all algorithms.

4.2.1 k-Nearest Neighbor Algorithm for RSSI-Based

Localization

The number of nearest neighbors indicates the total number of closest data points that

are used to compute a location estimate through weighted averaging. As explained
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Figure 4.2.1: kNN performance as a function of the neighbors used

in Chapter 3, this is the only parameter of the kNN algorithm and when given a

training and testing dataset, the algorithms �nds the k closest data points in the

training dataset for each data point in the testing dataset. The coordinates of the

k closest points are then averaged, giving a location estimate of the watch. The

number of nearest neighbors was varied for the algorithm over a large range of values

as shown in Figure 4.2.1 where the kNN's performance is the y-axis and the number

of neighbors is the x-axis. The performance is given by the average Euclidean error

Ē(e) = mean(|e|),

where e = s1:N − ŝ1:N and Ē is average distance between an estimate and the true

location of the watch.
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The best performance is seen when the number of neighbors is within the range

of 7 and 9, which results in an Ē of less than 11.4 centimeter. Outside of this range,

the kNN's performance degrades and decreases. There are two di�erent reasons why

this happens, each corresponding to whether a the number of neighbors uses is higher

or lower than 7 or higher than 9. When using a low value, such as 1, one will not

have enough data points to mitigate error due to noise through location averaging.

When using a high value, such as greater than 11, then the algorithm starts using too

many data points where the furthest points start skewing the results. A nice balance

between the two e�ects is seen within a certain range. Since the best performance

was observed when using 7 neighbors (Ē of 13.25 centimeter), this was chosen as the

the default parameter value for all subsequent computations.

RSSI data from all ten channels was used for this tuning process. This ensured that

the algorithm was tuned with all available information. The next section demonstrates

that doing this does not negatively impact the algorithm's performance, and in fact,

improves the Ē.

4.2.2 Arti�cial Neural Network for RSSI-Based Localization

The three-layer arti�cial neural network (ANN) only has one variable parameter:

the number of neurons in network's hidden layer, or the hidden layer size. The

neurons are responsible for learning a number of features from the training dataset

that contribute to the �nal output. The algorithm was used while varying the hidden

layer size as shown in Figure 4.2.2 to determine a suitable parameter value. The

number of neurons in the hidden layer was varied between one and 300. The x-axis in

Figure 4.2.2 indicates the hidden layer size. The blue, orange, and gray lines indicate

the ANN's performance on the training, validation, and testing datasets respectively.
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Figure 4.2.2: ANN performance as a function of the hidden layer size

Once again, RSSI from all ten channels were used during parameter tuning.

As the size of the ANN's hidden layer increases, so does its performance. An

18 centimeter average Euclidean error improvement is seen when using 200 neurons

instead of one; a little over half of the original error. With more neurons, more

features are learned from the training dataset which play a large role in disambiguating

similar RSSI data measurements and improves localization performance. A suitable

hidden layer size parameter value is chosen to be 70 for all subsequent computations.

Choosing a value larger than 70 does not signi�cantly increase the algorithm's Ē, but

increases the training time by about 5 minutes for every 70 neurons.
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Figure 4.2.3: Three dimensional interpolated heat map

4.2.3 Particle Filter for RSSI-Based Localization

Finally, the PF was used to provide location estimates with the RSSI training and

testing datasets. Here, the training dataset was �rst used to create RSSI maps that

provided measurements for each �lter particle. These measurements are arti�cial

RSSI samples interpolated from these multichannel RSSI maps. It was important to

use this interpolation method because there were a �nite number of samples in the

training dataset and the randomly moving particles could take on an in�nite number

of locations. MATLAB's interpolate scattered data function accomplished this for

the 1 meter by 1 meter area as shown in Figure 4.2.3. A gridded map was created for

each of of the channels in the training dataset.
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4.2.3.1 Parameter Tuning for the Particle Filter

The PF has two parameters that can be varied: the number of particles and the

measurement standard deviation. The number of particles used gives the PF the

ability to search the RSSI maps and �nd the most probable locations for each new

measurement zt. The number of particles used was varied from 25 to 200 particles.

Figure 4.2.4 shows the performance of the Ē as a function of the number of particles.

Immediately, one notices that the performance increases as the number of particles

increase. With a higher number of particles �searching� the area, there are more

measurements from which to compare the observation making it more likely to �nd

the true location. Here, a 10 centimeter decrease in the Ē occurs when using 200

particles instead of 25. Even though a high number of particles corresponds to a higher

location accuracy, there exists a trade-o� between decreasing the Ē and increasing

the computation time. A suitable value for the number of particles was chosen to be

100 because using a higher values does not signi�cantly increase accuracy.

The other variable parameter is the measurement SD which assigns the width

of the multivariate Gaussian function that is used to compute the weight for each

particle. The multivariate Gaussian function determines the similarity between the

particles and zt during the resampling step. The multivariate function was chosen

due to its simplicity and although it may not be an optimal choice due to RSSI's non-

Gaussian nature, these results show that the function works well. The measurement

SD was varied between the range of 0.01 and 3000 as shown in Figure 4.2.5.

The PF algorithm performs best when the measurement SD lies between 0.3 and

100. Outside of this range, the PF's performance degrades by at least 10 centimeter.

When using low measurement SD values, only the particles that are close to zt will

receive large weight value. This starts to limit the spatial diversity that the particles
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Figure 4.2.4: PF performance as a function of the number of particles used

can take on, where their space becomes limited after each resampling step. And, since

RSSI is noisy, it a�ects the PF's performance during averaging. On the other hand,

using a high measurement SD value will make the PF take a larger number of particles

into consideration when averaging. The additional particles may have locations that

are farther away from the true location of the watch. Because a measurement SD of

30 rendered the lowest Ē, this value was chosen for all subsequent experiments.

4.2.3.2 The Particle Filter Delay

An interesting observation is that the PF's performance improves if the location esti-

mate is delayed. In other words, the Ē decreased when a current estimate was com-

pared to a past true location of an observation. To show this, the PF's performance is
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Figure 4.2.5: PF performance as a function of the measurement SD

shown with various time-delays in Figure 4.2.6. The real time estimate lagged behind

the true location most of the time during the experiment. This phenomenon occurs

due to making no assumptions about the state transition model other than random

movement. Most PF tracking applications assume some movement model that adds

useful information, such as designing a model around the knowledge of the acceler-

ation or velocity for the moving watch. In the future, data from the accelerometer

could prove useful in improving the PF performance and make it a true real-time sys-

tem. It was observed that an o�set of �ve rendered the lowest Ē. The measurement

SD was kept at this value for all subsequent computations.
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Figure 4.2.6: PF performance as a function of an output o�set

4.3 Comparison of the Three Algorithms

Figure 4.3.1 shows the performance for all three algorithms as a function of the number

of channels used in the training and testing datasets. The blue line corresponds to

the kNN algorithm's performance, the orange corresponds to the ANN, and the gray

to the PF. The x-axis indicates the number of channels used. All of the algorithms

are evaluated by computing the Ē of their location estimates.

The PF performs the best with at least 5 centimeter Ē improvement over the other

two algorithms using any number of channels in the training and testing dataset. The

ANN has the worst performance in all cases except when using a single channel, where

the kNN's Ē is also the highest. The kNN is the second best algorithm when using

two or more channels.
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Figure 4.3.1: kNN, ANN, and PF performance as a function of channels

The PF o�ers the best performance because it takes advantage of the temporal

aspect during the location estimation. It makes a location estimate that is in�uenced

by the previous location estimate. The particles are �rst initialized randomly, but

after a number of iterations, they congregate to a general area as a result of the

resampling step. Knowledge of the particle's previous position is used during the

particle update step. The PF is a time-dependent system whereas the other two

algorithms are time-invariant.

The PF can give a location estimate with an average Euclidean error of 4.5 cen-

timeter. However, it must be considered that the algorithm performs well under the

constraints imposed during the experimental design. For instance, a person was not

wearing the watch. Instead, the watch was mounted on a wooden �xture placed on
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top of a movable cart with the same orientation throughout the whole experiment.

Even though the watch has an omnidirectional antenna radiation pattern, a person

wearing the watch will alter the RSSI by attenuating RF radiation with their body

placed between the anchor and watch [81]. Also, the sampled area was only 1 meter

by 1 meter, which is not a large area but which was kept at that size because it was

desired to capture transitions between local extrema with an acceptable sampling

rate. Theoretically, the sampled area can be increased by using a lower RF frequency

band during communication. This will increase the average distance between local

extrema but also scales up the average Euclidean error in the algorithm's location

estimate.

Regardless of the method used, it is impressive that 2-dimensional localization is

performed with RSSI measurements from a single anchor and watch; a great advan-

tage of �ngerprinting techniques. A log-normal based model, used in many traditional

methods, simply can not do this because they only infer a distance between a tar-

get and anchor from RSSI. The target could then lie anywhere on a circle centered

around the anchor with a radius equal to the estimated distance. The results of this

work even suggest that �ngerprinting can even achieve 3-dimensional localization if

the calibration stage is designed to include 3-dimensional data. This system can also

easily be scaled up to include more watches and anchors. This adds the ability to

track multiple targets and most likely increase localization accuracy through receiver

diversity. A disadvantage of using multiple communication channels is that it signif-

icantly reduces the watch's battery life. For example, power consumption is doubled

by using two communication channels rather than just one.

Table 4.2 lists other indoor localization systems in order of their localization ac-

curacy. The table shows that most of the systems surpass the performance of our

multichannel �ngerprinting approach; some of these systems can even perform 3-
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System Name Technology Accuracy Localization Type

UTM-30LX Laser 1 cm 2-dimensional
MIT's Cricket Ultrasonic 1-3 cm 3-dimensional

Cambridge's Bat Ultrasonic 3 cm 3-dimensional
DW1000 UWB TDOA 10 cm 3-dimensional
Ubisense UWB TDOA 15 cm 3-dimensional

Multichannel Fingerprinting RSSI 4.5-15 cm 2-dimensional

Table 4.2: Accuracy of indoor localization systems.

dimentional localization. Even though these systems may seem superior to multi-

channel �ngerprinting in terms of localization accuracy, they have higher cost and in-

creased complexity compared to multichannel �ngerprinting. For example, Hokuyo's

UTM-30LX laser scanner [47] provides the �nest resolution, but this laser scanner

costs $5,000! MIT's Cricket [79] and Cambridge's Bat [21], which are ultrasonic

based localization methods, have their disadvantage in that line-of-sight must always

be established between the target and the anchor. DecaWave's DW1000 [77] and the

Ubisense systems [119], which are ultra wideband (UWB) time-di�erence-of-arrival

(TDOA) based systems, provide more accurate localization than multichannel �n-

gerprinting, but they are relatively expensive due to the strict constraints on timing

synchronization. In the end, multichannel �ngerprinting provides a low cost, low

power, and low complexity localization solution with reasonable accuracy.
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Chapter 5

Conclusion

This work shows that using multiple channels can improve 2-dimensional localization

accuracy for RF-based �ngerprinting methods while still using low power and low cost

hardware. The �rst chapter introduced indoor localization and provided the motiva-

tion for RSSI-based systems. The second chapter examined multipath propagation

and presented current indoor RSSI-based localization solutions. Chapter 3 presented

three di�erent multichannel �ngerprinting based algorithms that were developed to

improve RSSI localization. Finally, Chapter 4 presented results that showed that the

three methods successfully reduce the localization error compared to single channel

systems.

Experiments showed that the best method, a particle �lter, achieves a 4.5 cen-

timeter average Euclidean error with 10 di�erent communication channels on the 918

MHz ISM band. The second best method is kNN followed by the ANN. The particle

�lter performed better for multiple reasons. First, it is a time-dependent system that

exploits knowledge of previous observations to make its current estimate. This is

advantageous because adjacent measurements are dependent on each other's position

with respect to time. Having this property leads to better performance in this case.
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Second, the �lter uses a Monte Carlo sampling method that approaches the opti-

mum Bayesian solution. In other words, the PF approximates the optimal solution,

while the kNN and ANN do not. Regardless of which method is used, the results

demonstrate that 2-dimensional localization can be achieved using RSSI data from

only a single target and anchor. This is not possible using traditional localization

approaches that rely on direct measurements of distance.

This work demonstrates that �ngerprinting techniques are promising, but the time

required for the calibration is a signi�cant disadvantage. This process could be au-

tomated through robotics to increase the coverage area. For example, a small rover

robot equipped with a target and laser range�nder can move around multiple rooms

to collect data overnight to be used the next morning. Another drawback of �nger-

printing methods is that they are sensitive to dynamic environments. Simple changes

in the environment, such as moving furniture, will a�ect multipath propagation and

change the RSSI maps for a room. Thus it is necessary to re-perform calibration

every time objects are moved.

For future work, it would be interesting to investigate how performance is a�ected

by scaling up the system to include more anchors. Introducing additional anchors will

reduce the error in location estimates by providing additional anchor dependent RSSI

maps that will have supplementary location information. It would also be interesting

to perform 3-dimensional localization with the proposed system, which our results

suggest is feasible. One only needs to vary the target's vertical position during cali-

bration to sample a 3-dimensional area and create a 3-dimentional calibration dataset.

In this case, the system would be performing 3-dimensional localization with a sin-

gle target and anchor whereas traditional methods require at least four anchors for

3-dimensional localization. Additionally, it would be bene�cial to investigate adding

a time-dependent component to kNN and ANN. The PF was the most successful
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because it is a time-dependent system where the current prediction relied on previ-

ous information. Adding a time-dependent component to the ANN such as using a

recurrent neural network structure should improve its location estimates. Finally, to

expand the coverage area of the system, a lower frequency band can be used. This

would result in RF signals with larger wavelengths that create more space between

extrema transitions in RSSI maps. This would reduce the spatial sampling resolution,

but would also introduce a trade o� between using a lower frequency and having to

use a larger antenna.
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