
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Robert Katz Publications Research Papers in Physics and Astronomy 

August 1997 

Simulation of a Microdosimetry Problem: Behavior of a Simulation of a Microdosimetry Problem: Behavior of a 

Pseudorandom Series at a Low Probability Pseudorandom Series at a Low Probability 

P. Meyer 
LMN, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon, France 

J. E. Groetz 
LMN, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon, France 

Robert Katz 
University of Nebraska-Lincoln, rkatz2@unl.edu 

M. Fromm 
LMN, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon, France 

A. Chambaudet 
LMN, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon, France 

Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz 

 Part of the Physics Commons 

Meyer, P.; Groetz, J. E.; Katz, Robert; Fromm, M.; and Chambaudet, A., "Simulation of a Microdosimetry 
Problem: Behavior of a Pseudorandom Series at a Low Probability" (1997). Robert Katz Publications. 82. 
https://digitalcommons.unl.edu/physicskatz/82 

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by 
an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/physicskatz
https://digitalcommons.unl.edu/physicsresearch
https://digitalcommons.unl.edu/physicskatz?utm_source=digitalcommons.unl.edu%2Fphysicskatz%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.unl.edu%2Fphysicskatz%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/physicskatz/82?utm_source=digitalcommons.unl.edu%2Fphysicskatz%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages


282

Published in Microdosimetry: An Interdisciplinary Approach, edited by Dudley T. Goodhead, Peter 
O’Neill, and Hans G. Menzel. Cambridge: The Royal Society of Chemistry, 1997. Pages 282–285. 

Copyright © 1997 The Royal Society of Chemistry. Used by permission.

Simulation of a Microdosimetry Problem: 
Behavior of a Pseudorandom Series  

at a Low Probability
P. Meyer, J. E. Groetz, R. Katz,* M. Fromm, and A. Chambaudet

LMN, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon, France
* Department of Physics and Astronomy, University of Nebraska-Lincoln,  

Lincoln NE 68588-0111 U.S.A.

1   Introduction

The carcinogenic effects for low dose irradiations are not very well known. Estima-
tions usually are made based on the effects observed at high doses that are then extrapo-
lated to low doses. To estimate low dose effects, the ICRP (International Commission on 
Radiological Protection) uses a linear extrapolation matched with a dose-rate reduction 
factor equal to two. This proportionality of the effect and dose, even for the lowest doses 
and dose-rates, leads to two assumptions which must be questioned 1:

1. the efficiency of DNA repair in cells does not vary with the dose and the 
dose-rate, 

2. when one single particle crosses one single cell, a carcinogenic transformation 
may occur. 

Low doses are frequently generated by fast electrons at low fluence. 
We must consider the irradiated medium as an assembly of targets and the cross sec-

tion as a representation of the probable interaction between the incident particle and the 
target.2, 3, 4 Biologically, cells contain internal structures which are the sensitive elements. 
Physically, a hit is interpreted as a registered event caused by a particle passing through 
the sensitive site. 

The Poisson law describes the statistic behavior of this event: 

P(x) = (e–m/x!) mx                                                             (1)

where P(x) is the realization probability of the event x and m represents the average hits 
per target (ratio of the number of hits per number of targets). For example, consider that a 
flux of exactly 106 particles/cm2 reaches a cell population whose sensitive elements have 
a geometric cross section of 100 μm2. The average number of particles per cell will be one, 
but according to the Poisson statistics, about 37% of the cells will survive (0 hits), about 
37% of the cells will be hit only once and 26% will be hit twice or more.5 

This problem can be extended to the response of many radiation detectors—one-hit or 
multi-hits detectors.6 
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2   Calculations

Microphysical processes have a random character that are ruled by continuous or dis-
crete probability laws. By using numerical simulations with Monte Carlo methods, ran-
dom experiences are imitated by a sampling of pseudorandom numbers which are gener-
ated by algorithms such as the linear congruential generators (LCG) that use the integer 
recursion 7: 

Xi + 1 = (aXi + c) mod M,                                                     (2) 

where the integers a, c, and M are constant. They generate a sequence X1, X2, ... of random 
integers between 0 and M – l (into [1, M – 1] if c = 0). Each Xi is then put into the interval 
[0,1). 

We used a class of random empirical test methods (chi-square test, Kolmogorov- Smi-
mov test, gap test, run-up run-down test, serial test) that seem to give valid results.8 Valid 
as they may be, these tests are not sufficient; therefore new tests created for specific ap-
plications are often advisable. We tested two LCG generators, the subroutine RAND from 
the Matlab software 9 and the subroutine RND from the Fortran 77 software.10 As a sys-
tematic test, we compared the spectrum of hits obtained with the given pseudorandom 
numbers generators with the one predicted by Poisson’s distribution law. 

Calculations were performed at a HP 9000 workstation and probabilities were deter-
mined for only one series. Each pseudorandom number generated between [0,1) (original 
number) is put in the interval corresponding to the number of digits. As an example, for 
3 digits each original number is multiplied by 103 and we extract the integer part (integer 
x); and for 4 digits each original number is multiplied by 104. Experimental probability Π 
for integer x (independently of number of digits) to be hit is defined as: 

Π(x) = nx/N ,                                                              (3) 

where nx is the number of drawings for integer x and N the total number of drawings. 

The discrepancy ξ(x) between experimental and theoretical (1) probabilities is calcu-
lated from the expression (if P(x) = 0 and Π(x)  ≠ 0, we put arbitrarily ξ(x) = –10):  

ξ(x) = (|P(x) – Π(x)|)/P(x) × 100                                               (4) 

We are interested in the probability of hitting a particular number, the number of hits 
ranges from 0 to 10 in the case of the presented application. The number m, considered as 
the average of hits per integer is defined as: 

m = N/card{interval}                                                        (5) 

where card{ interval} is the number of integers in this interval. 
Experimental probabilities for a same value of m (in our study m ranges from 0.1 to 

10) were calculated as a function of the number of digits. Let us consider the case where 3 
digit numbers are used: 
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•  m = 1, if we calculate the hit spectrum of integers in the interval [0,103) for 103 in-
tegers generated in this interval, 

•  m = 2, if we calculate the hit spectrum of integers in the interval [0,103) for 2 × 
103 integers generated in this interval. 

3   Results

We have represented the descrepancies (4) between calculations and theory for the 
Fortran generator on Figures 2 through 5. We have obtained similar results for the Matlab 
generator. The Poisson law (1) is represented as a function of m and x on Figure 1. Two ar-
eas can be observed: a first one corresponding to non-null probabilities (relief zone) and a 
second one corresponding to probabilities which tend towards zero (flat zone). 

Discrepancies ξ(x) are localized into two types of areas: a first one which does not 
move with increasing number of digits and corresponding to nx (number of hits)  [0,2] 
and m  [5,10]; and a second zone, much more important, which seems to be localized 
at the border of high Poisson probabilities (Figure 1) and moves toward high number of 
hits with increasing digit numbers. As a matter of fact, we observe that an increase of the 
number of digits results in a decrease of the total descrepancy, in the studied ranges of nx 
and m. 

Figure 1. 3-D representation of the Poisson distribution.

             Figure 2. ξ(x) for 3-digit numbers.                            Figure 3. ξ(x) for 4-digit numbers.
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The results presented in the 3D graphs (Figures 2 to 5) correspond to only one his-
tory. In general, many histories must be used to obtain accurate statistics. We made the 
calculations (average and standard deviation for Π(x)) on the largest discrepancies, and 
even though a large number of histories were used, an important standard deviation re-
mains. For such calculations, we find that the general behavior is a stabilization of the ob-
tained average values of Π(x) around the needed value of P(x) when the number of histo-
ries increases. 

4   Conclusion

We examined the properties of two pseudorandom generators using a test which 
mimics the properties of the application in which the generators will be used. In this case, 
these applications are ruled by the Poisson law. We have shown that the two generators 
fail in the described cases. It also appears that an increase of digits improves the proper-
ties of the tested generators about the Poisson law. It should be noticed that in the case of 
our test, the use of a number of digits greater than 6 was not possible due to the needed 
memory capacity and time of computation. Such a test seems necessary if a pseudoran-
dom generator can be expected to provide reliable results, we strongly recommend this 
test if a number of digits lower than 7 is used. 
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