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Linear Regression with Stationary
Errors: the R Package slm
by Emmanuel Caron, Jérôme Dedecker and Bertrand Michel

Abstract This paper introduces the R package slm, which stands for Stationary Linear Models.
The package contains a set of statistical procedures for linear regression in the general context where
the error process is strictly stationary with a short memory. We work in the setting of Hannan (1973),
who proved the asymptotic normality of the (normalized) least squares estimators (LSE) under
very mild conditions on the error process. We propose different ways to estimate the asymptotic
covariance matrix of the LSE and then to correct the type I error rates of the usual tests on the
parameters (as well as confidence intervals). The procedures are evaluated through different sets of
simulations.

Introduction

We consider the usual linear regression model

Y = Xβ + ε ,

where Y is the n-dimensional vector of observations, X is a (possibly random) n × p design matrix,
β is a p-dimensional vector of parameters, and ε = (εi)1≤i≤n is the error process (with zero mean
and independent of X). The standard assumptions are that the εi’s are independent and identically
distributed (i.i.d.) with zero mean and finite variance.

In this paper, we propose to modify the standard statistical procedures (tests, confidence intervals,
. . . ) of the linear model in the more general context where the εi’s are obtained from a strictly
stationary process (εi)i∈N with a short memory. To be more precise, let β̂ denote the usual least
squares estimator of β. Our approach is based on two papers: the paper by Hannan (1973) who
proved the asymptotic normality of the least squares estimator D(n)(β̂ − β) (D(n) being the usual
normalization) under very mild conditions on the design and on the error process; and a recent
paper by Caron (2019) who showed that, under Hannan’s conditions, the asymptotic covariance
matrix of D(n)(β̂ − β) can be consistently estimated.

Let us emphasize that Hannan’s conditions on the error process are very mild and are satisfied
for most of the short-memory processes (see the discussion in Section 4.4 of Caron and Dede
(2018)). Putting together the two above results, we can develop a general methodology for tests
and confidence regions on the parameter β, which should be valid for most of the short-memory
processes. This is, of course, directly useful for time-series regression, but also in the more general
context where the residuals of the linear model seem to be strongly correlated. More precisely, when
checking the residuals of the linear model, if the autocorrelation function of the residuals shows
significant correlations, and if the residuals can be suitably modeled by an ARMA process, then
our methodology is likely to apply. We shall give an example of such a situation on the "Shanghai
pollution" dataset at the end of the paper.

Hence, the tools presented in the present paper can be seen from two different points of view:

- as appropriate tools for time series regression with a short memory error process
- as a way to robustify the usual statistical procedures when the residuals are correlated.

Let us now describe the organization of the paper. In the next section, we recall the mathematical
background, the consistent estimator of the asymptotic covariance matrix introduced in Caron (2019),
and the modified Z-statistics and χ-square statistics for testing the hypothesis on the parameter
β. Next, we present the slm package and the different ways to estimate the asymptotic covariance
matrix: by fitting an autoregressive process on the residuals (default procedure), by means of the
kernel estimator described in Caron (2019) (theoretically valid) with a bootstrap method to choose
the bandwidth (Wu and Pourahmadi (2009)), by using alternative choices of the bandwidth for the
rectangular kernel (Efromovich (1998)) and the quadratic spectral kernel (Andrews (1991)), and
by means of an adaptive estimator of the spectral density via Histograms (Comte (2001)). In a
section about numerical experiments, we estimate the level of a χ-square test for a linear model
with random design, with different kinds of error processes, and for different estimation procedures.
In the last section, we apply the package to the "Shanghai pollution" dataset, and we compare the
summary output of slm with the usual summary output of lm. An extended version of this paper is
available as an arXiv preprint (see Caron et al. (2019)).
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Linear regression with stationary errors

Asymptotic results for the kernel estimator

We start this section by giving a short presentation of linear regression with stationary errors, more
details can be found for instance in Caron (2019). Let β̂ be the usual least squares estimator for the
unknown vector β. The aim is to provide hypothesis tests and confidence regions for β in the non
i.i.d. context.

Let γ be the autocovariance function of the error process ε: for any integers k and m, let
γ(k) = Cov(εm, εm+k). We also introduce the covariance matrix:

Γn := [γ(j − l)]1≤j,l≤n .

Hannan (1973) has shown a Central Limit Theorem for β̂ when the error process is strictly
stationary, under very mild conditions on the design and the error process. Let us notice that
the design can be random or deterministic. We introduce the normalization matrix D(n) which
is a diagonal matrix with diagonal term dj(n) =

∥∥X.,j
∥∥

2 for j in {1, . . . , p}, where X.,j is the jth
column of X. Roughly speaking Hannan’s result says in particular that, given the design X, the
vector D(n)(β̂ − β) converges in distribution to a centered Gaussian distribution with covariance
matrix C. As usual, in practice, the covariance matrix C is unknown, and it has to be estimated.
Hannan also showed the convergence of second order moment:1

E

(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) −−−−→
n→∞

C, a.s.

where
E

(
D(n)(β̂ − β)(β̂ − β)tD(n)t

∣∣∣X) = D(n)(XtX)−1XtΓnX(XtX)−1D(n).

In this paper, we propose a general plug-in approach: for some given estimator Γ̂n of Γn, we introduce
the plug-in estimator:

Ĉ = Ĉ(Γ̂n) := D(n)(XtX)−1XtΓ̂nX(XtX)−1D(n),

and we use Ĉ to standardize the usual statistics considered for the study of linear regression.
Let us illustrate this plug-in approach with a kernel estimator which has been proposed in Caron

(2019). For some K and a bandwidth h, the kernel estimator Γ̃n,h is defined by

Γ̃n,h =
[
K
(

j − l

h

)
γ̃j−l

]
1≤j,l≤n

, (1)

where the residual-based empirical covariance coefficients are defined for 0 ≤ |k| ≤ n − 1 by

γ̃k =
1
n

n−|k|∑
j=1

ε̂j ε̂j+|k|. (2)

For a well-chosen kernel K and under mild assumptions on the design and the error process, it has
been proved in Caron (2019) that

C̃−1/2
n D(n)(β̂ − β)

L−−−−→
n→∞

Np(0p, Ip), (3)

for the plug-in estimator C̃n := Ĉ(Γ̃n,hn
), for some suitable sequence of bandwidths (hn).

More generally, in this paper, we say that an estimator Γ̂n of Γn is consistent for estimating
the covariance matrix C if Ĉ(Γ̂n) is positive definite and if it converges in probability to C. Note
that such a property requires assumptions on the design, see Caron (2019). If Ĉ(Γ̂n) is consistent
for estimating the covariance matrix C, then Ĉ(Γ̂n)

−1/2
D(n)(β̂ − β) converges in distribution to a

standard Gaussian vector.
To conclude this section, let us make some additional remarks. The interest of Caron’s recent

paper is that the consistency of the estimator Ĉ(Γ̂n) is proved under Hannan’s condition on the
error process, which is known to be optimal with respect to the convergence in distribution (see for
instance Dedecker (2015)), and which allows dealing with most short memory processes. However,
the natural estimator of the covariance matrix of β̂ based on Γ̂n has been studied by many other

1The transpose of a matrix X is denoted by Xt.
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authors in various contexts. For instance, let us mention the important line of research initiated by
Newey and West (1987, 1994) and the related papers by Andrews (1991), Andrews and Monahan
(1992), among others. In the paper by Andrews (1991), the consistency of the estimator based
on Γ̂n is proved under general conditions on the fourth-order cumulants of the error process, and
a data-driven choice of the bandwidth is proposed. Note that these authors also considered the
case of heteroskedastic processes. Most of these procedures, known as HAC (Heteroskedasticity
and Autocorrelation Consistent) procedures, are implemented in the package sandwich by Zeileis,
Lumley, Berger and Graham, and presented in great detail in the paper by Zeileis (2004). We shall
use an argument of the sandwich package, based on the data-driven procedure described by Andrews
(1991).

Tests and confidence regions

We now present tests and confidence regions for arbitrary estimators Γ̂n. The complete justifications
are available for kernel estimators, see Caron (2019).

Z-Statistics. We introduce the following univariate statistics:

Zj =
dj(n)β̂j√

Ĉ(j,j)

, (4)

where Ĉ = Ĉ(Γ̂n). If Γ̂n is consistent for estimating the covariance matrix C and if βj = 0, the
distribution of Zj converges to a standard normal distribution when n tends to infinity. We directly
derive an asymptotic hypothesis test for testing βj = 0 against βj ̸= 0 as well as an asymptotic
confidence interval for βj .

Chi-square statistics. Let A be an n × k matrix with rank(A) = k. Under Hannan (1973)’s
conditions, D(n)(Aβ̂ − Aβ) converges in distribution to a centered Gaussian distribution with
covariance matrix ACAt. If Γ̂n is consistent for estimating the covariance matrix C, then AĈ(Γ̂n)

converges in probability to AC. The matrix AĈ(Γ̂n)A
t being symmetric positive definite, this yields

W := (AĈ(Γ̂n))
−1/2D(n)A(β̂ − β)

L−−−−→
n→∞

Nk(0k, Ik).

This last result provides asymptotical confidence regions for the vector Aβ. It also provides an
asymptotic test for testing the hypothesis H0 : Aβ = 0 against H1 : Aβ ̸= 0. Indeed, under the
H0-hypothesis, the distribution of ∥W ∥2

2 converges to a χ2(k)-distribution.
The test can be used to simplify a linear model by testing that several linear combinations

between the parameters βj are zero, as we usually do for Anova and regression models. In particular,
with A = Ip, the test corresponds to the test of overall significance.

Introduction to linear regression with the slm package

Using the slm package is very intuitive because the arguments and the outputs of slm are similar to
those of the standard functions lm, glm, etc. The output of the main function slm is an object of
class "slm", a specific class that has been defined for linear regression with stationary processes. The
"slm" class has methods plot, summary, confint, and predict, see the extended version Caron et al.
(2019) for more details. Moreover, the class "slm" inherits from the "lm" class and thus provides the
output of the classical lm function.

The statistical tools available in slm strongly depend on the choice of the covariance plug-in
estimator Ĉ(Γ̂n) we use for estimating C. All the estimators Γ̂n proposed in slm are residual-based
estimators, but they rely on different approaches. In this section, we present the main functionality
of slm together with the different covariance plug-in estimators.

For illustrating the package, we simulate synthetic data according to the linear model:

Yi = β1 + β2(log(i) + sin(i) + Zi) + β3i + εi,

where Z is a Gaussian autoregressive process of order 1 and ε is the Nonmixing process described
further in the paper. We use the functions generative_model and generative_process respectively
to simulate observations according to this regression design and with this specific stationary process.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=sandwich


Contributed Research Articles 86

R> library(slm)
R> set.seed(42)
R> n = 500
R> eps = generative_process(n,"Nonmixing")
R> design = generative_model(n,"mod2")
R> design_sim = cbind(rep(1,n), as.matrix(design))
R> beta_vec = c(2,0.001,0.5)
R> Y = design_sim %*% beta_vec + eps

Linear regression via AR fitting on the residuals

A large class of stationary processes with continuous spectral density can be well approximated
by AR processes, see for instance Corollary 4.4.2 in Brockwell and Davis (1991). The covariance
structure of an AR process having a closed form, it is thus easy to derive an approximation Γ̃AR(p)
of Γn by fitting an AR process on the residual process. The AR-based method for estimating C is
the default version of slm. This method proceeds in four main steps:

1. Fit an autoregressive process on the residual process ε̂ ;
2. Compute the theoretical covariances of the fitted AR process ;
3. Plug the covariances in the Toeplitz matrix Γ̃AR(p) ;

4. Compute Ĉ = Ĉ(Γ̃AR(p)).

The slm function fits a linear regression of the vector Y on the design X and then fits an AR
process on the residual process using the ar function from the stats package. The output of the
slm function is an object of class "slm". The order p of the AR process is set in the argument
model_selec:

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "fitAR",
+ model_selec = 3)

The estimated covariance is recorded as a vector in the attribute cov_st of regslm, which is an
object of class "slm". The estimated covariance matrix can be computed by taking the Toeplitz
matrix of cov_st, using the toeplitz function.

AR order selection. The order p of the AR process can be chosen at hand by setting model_selec
= p, or automatically with the AIC criterion by setting model_selec = -1.

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "fitAR",
+ model_selec = -1)

The order of the fitted AR process is recorded in the model_selec attribute of regslm:

R> regslm@model_selec

[1] 2

Here, the AIC criterion suggests to fit an AR(2) process on the residuals.

Linear regression via kernel estimation of the error covariance

The second method for estimating the covariance matrix C is the kernel estimation method (1)
studied in Caron (2019). In short, this method estimates C via a smooth approximation of the
covariance matrix Γn of the residuals. This estimation of Γn corresponds to the so-called tapered
covariance matrix estimator in the literature, see for instance Xiao and Wu (2012), or also to the
"lag-window estimator" defined in Brockwell and Davis (1991), page 330. It applies in particular for
non-negative symmetric kernels with compact support, with an integrable Fourier transform and
such that K(0) = 1. Table 1 gives the list of the available kernels in the package slm.

It is also possible for the user to define his own kernel and use it in the argument kernel_fonc
of the slm function. Below we use the triangle kernel, which assures that the covariance matrix is
positive definite. The support of the kernel K in Equation (1) being compact, only the terms γ̃j−l

for small enough lag j − l are kept and weighted by the kernel in the expression of Γ̃n,h. Rather
than setting the bandwidth h, we select the number of γ(k)’s that should be kept (the lag) with the
argument model_selec in the slm function. Then the bandwidth h is calibrated accordingly, that is
equal to model_selec +1.
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kernel_fonc = kernel definition
rectangular K(x) = 1{|x|≤1}

triangle K(x) = (1 − |x|)1{|x|≤1}
trapeze K(x) = 1{|x|≤δ} +

1
1−δ (1 − |x|)1{δ≤|x|≤1}

Table 1: Available kernel functions in slm.

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "kernel",
+ model_selec = 5, kernel_fonc = triangle, plot = TRUE)

The plot output by the slm function is given in Figure 1.

Figure 1: ACF of the residual process.

Order selection via bootstrap. The order parameter can be chosen at hand as before or
automatically by setting model_selec = -1. The automatic order selection is based on the bootstrap
procedure proposed by Wu and Pourahmadi (2009) for banded covariance matrix estimation. The
block_size argument sets the size of bootstrap blocks, and the block_n argument sets the number
of blocks. The final order is chosen by taking the order which has the minimal risk. Figure 2 gives
the plots of the estimated risk for the estimation of Γn (left) and the final estimated ACF (right).

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st ="kernel",
+ model_selec = -1, kernel_fonc = triangle, model_max = 30,
+ block_size = 100, block_n = 100, plot = TRUE)

The selected order is recorded in the model_selec attribute of the slm object output by the
slm function:

R> regslm@model_selec

[1] 10

Order selection by Efromovich’s method (rectangular kernel). An alternative method
for choosing the bandwidth in the case of the rectangular kernel has been proposed in Efromovich
(1998). For a large class of stationary processes with exponentially decaying autocovariance function
(mainly the ARMA processes), Efromovich proved that the rectangular kernel is asymptotically
minimax, and he proposed the following estimator:

f̂Jnr
(λ) =

1
2π

k=Jnr∑
k=−Jnr

γ̂keikλ,
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(a) Estimated risk error via bootstrap. (b) Estimated ACF for the selected order.

Figure 2: Plots output by slm for the kernel method with bootstrap selection of the order.

with the lag
Jnr =

log(n)
2r

[
1 + (log(n))−1/2

]
,

where r is a regularity index of the autocovariance index. In practice, this parameter is unknown
and is estimated thanks to the algorithm proposed in the section 4 of Efromovich (1998). As for the
other methods, we use the residual based empirical covariances γ̃k to compute f̂Jnr

(λ).

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "efromovich",
+ model_selec = -1)

Order Selection by Andrews’s method. Another method for choosing the bandwidth has
been proposed by Andrews (1991) and implemented in the package sandwich by Zeileis, Lumley,
Berger and Graham (see the paper by Zeileis (2004)). For the slm package, the automatic choice of
the bandwidth proposed by Andrews can be obtained as follows:

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "hac")

The procedure is based on the function kernHAC in the sandwich package. This function computes
directly the covariance matrix estimator of β̂, which will be recorded in the slot Cov_ST of the slm
function. Here, we take the quadratic spectral kernel:

K (x) =
25

12π2x2

(
sin (6πx/5)

6πx/5 − cos (6πx/5)
)

,

as suggested by Andrews (see Section 2 in Andrews (1991), or Section 3.2 in Zeileis (2004)), but
other kernels could be used, such as Bartlett, Parzen, Tukey-Hamming, among others (see Zeileis
(2004)).

Positive definite projection. Depending on the method used, the matrix Ĉ(Γ̂n) may not always
be positive definite. It is the case of the kernel method with rectangular or trapeze kernel. To
overcome this problem, we make the projection of Ĉ(Γ̂n) into the cone of positive definite matrices
by applying a hard thresholding on the spectrum of this matrix: we replace all eigenvalues lower or
equal to zero with the smallest positive eigenvalue of Ĉ(Γ̂n). Note that this projection is useless for
the triangle or quadratic spectral kernels because their Fourier transform is non-negative (leading
to a positive definite matrix Ĉ(Γ̂n)). Of course, it is also useless for the fitAR and spectralproj
methods.

Linear regression via projection spectral estimation

The projection method relies on the ideas of Comte (2001), where an adaptive nonparametric method
has been proposed for estimating the spectral density of a stationary Gaussian process. We use
the residual process as a proxy for the error process, and we compute the projection coefficients
with the residual-based empirical covariance coefficients γ̃k, see Equation (2). For some d ∈ N∗,
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the estimator of the spectral density of the error process that we use is defined by computing the
projection estimators for the residual process on the basis of histogram functions:

ϕ
(d)
j =

√
d

π
1[πj/d,π(j+1)/d[, j = 0, 1, . . . , d − 1.

The estimator is defined by

f̂d(λ) =

d−1∑
j=0

â
(d)
j ϕ

(d)
j ,

where the projection coefficients are

â
(d)
j =

√
d

π

(
γ̃0
2d

+
1
π

n−1∑
r=1

γ̃r

r

[
sin
(

π(j + 1)r
d

)
− sin

(
πjr

d

)])
.

The Fourier coefficients of the spectral density are equal to the covariance coefficients. Thus, for
k = 1, . . . , n − 1 it yields

γk = ck

=
2
k

√
d

π

d−1∑
j=0

â
(d)
j

[
sin
(

kπ(j + 1)
d

)
− sin

(
kπj

d

)]
,

and for k = 0:

γ0 = c0 = 2
√

π

d

d−1∑
j=0

â
(d)
j .

This method can be proceeded in the slm function by setting method_cov_st =
"spectralproj":

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "spectralproj",
+ model_selec = 10, plot = TRUE)

The graph of the estimated spectral density can be plotted by setting plot = TRUE in the slm function,
see Figure 3.

Figure 3: Spectral density estimator by projection on the histogram basis.

Model selection. The Gaussian model selection method proposed in Comte (2001) follows the
ideas of Birgé and Massart, see for instance Massart (2007). It consists of minimizing the l2 penalized
criterion, see Section 5 in Comte (2001):

crit(d) := −
d−1∑
j=0

[
â
(d)
j

]2
+ c

d

n
,

where c is a multiplicative constant that in practice can be calibrated using the slope heuristic
method, see Birgé and Massart (2007), Baudry et al. (2012) and the R package capushe.
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R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "spectralproj",
+ model_selec = -1, model_max = 50, plot = TRUE)

The selected dimension is recorded in the model_selec attribute of the slm object output by the
slm function:

R> regslm@model_selec

[1] 8

The slope heuristic algorithm here selects a Histogram on a regular partition of size 8 over the
interval [0, π] to estimate the spectral density.

Linear regression via masked covariance estimation

This method is a full-manual method for estimating the covariance matrix C by only selecting
covariance terms from the residual covariances γ̃k defined by (2). Let I be a set of positive integers,
then we consider

γ̂I (k) := γ̃k1k∈I∪{0}, 0 ≤ |k| ≤ n − 1,

and then we define the estimated covariance marix Γ̂I by taking the Toeplitz matrix of the vector γ̂I .
This estimator is a particular example of a masked sample covariance estimator, as introduced by
Chen et al. (2012), see also Levina and Vershynin (2012). Finally, we derive from Γ̂I an estimator
Ĉ(Γ̂I ) for C.

The next instruction selects the coefficients 0, 1, 2 and 4 from the residual covariance terms:

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "select",
+ model_selec = c(1,2,4))

The positive lags of the selected covariances are recorded in the model_selec argument. Let us
notice that the variance γ0 is automatically selected.

As for the kernel method, the resulting covariance matrix may not be positive definite. If it is
the case, the positive definite projection method described before is used.

Linear regression via manual plugged covariance matrix

This last method is a direct plug-in method. The user proposes his own vector estimator γ̂ of γ, and
then the Toeplitz matrix Γ̂n of the vector γ̂ is used for estimating C with Ĉ(Γ̂n).

R> v = rep(0,n)
R> v[1:10] = acf(eps, type = "covariance", lag.max = 9)$acf
R> regslm = slm(Y ~ X1 + X2, data = design, cov_st = v)

The user can also propose his own covariance matrix Γ̂n for estimating C.

R> v = rep(0,n)
R> v[1:10] = acf(eps, type = "covariance", lag.max = 9)$acf
R> V = toeplitz(v)
R> regslm = slm(Y ~ X1 + X2, data = design, Cov_ST = V)

Let us notice that the user must verify that the resulting covariance matrix is positive definite.
The positive definite projection algorithm is not used with this method.

Numerical experiments and method comparisons

This section summarizes an extensive study which has been carried out to compare the performances
of the different approaches presented before in the context of a linear model with short range
dependent stationary errors.

Description of the generative models

We first present the five generative models for the errors that we consider in the paper. We choose
different kinds of processes to reflect the diversity of short-memory processes.
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• AR1 process. The AR1 process is a Gaussian AR(1) process defined by

εi − 0.7εi−1 = Wi,

where Wi is a standard gaussian distribution N (0, 1).
• AR12 process. The AR12 process is a seasonal AR(12) process defined by

εi − 0.5εi−1 − 0.2εi−12 = Wi,

where Wi is a standard Gaussian distribution N (0, 1). When studying monthly datasets, one
usually observes a seasonality of order 12. For example, when looking at climate data, the
data are often collected per month, and the same phenomenon tends to repeat every year.
Even if the design integrates the deterministic part of the seasonality, a correlation of order
12 usually remains present in the residual process.

• MA12 process. The MA12 is also a seasonal process defined by

εi = Wi + 0.5Wi−2 + 0.3Wi−3 + 0.2Wi−12,

where the (Wi)’s are i.i.d. random variables following Student’s distribution with 10 degrees
of freedom.

• Nonmixing process. The three processes described above are basic ARMA processes, whose
innovations have absolutely continuous distributions; in particular, they are strongly mixing
in the sense of Rosenblatt (1956), with a geometric decay of the mixing coefficients (in fact,
the MA12 process is even 12-dependent, which means that the mixing coefficient α(k) = 0
if k > 12). Let us now describe a more complicated process: let (Z1, . . . , Zn) satisfying the
AR(1) equation

Zi+1 =
1
2 (Zi + ηi+1),

where Z1 is uniformly distributed over [0, 1] and the ηi’s are i.i.d. random variables with
distribution B(1/2), independent of Z1. The process (Zi)i≥1 is a strictly stationary Markov
chain, but it is not α-mixing in the sense of Rosenblatt (see Bradley (1986)). Let now Q0,σ2

be the inverse of the cumulative distribution function of a centered Gaussian distribution with
variance σ2 (for the simulations below, we choose σ2 = 25). The Nonmixing process is then
defined by

εi = Q0,σ2 (Zi).
The sequence (εi)i≥1 is also a stationary Markov chain (as an invertible function of a stationary
Markov chain). By construction, εi is N (0, σ2)-distributed, but the sequence (εi)i≥1 is not a
Gaussian process (otherwise, it would be mixing in the sense of Rosenblatt). Although it is
not obvious, one can prove that the process (εi)i≥1 satisfies Hannan’s condition (see Caron
(2019), Section 4.2).

• Sysdyn process. The four processes described above have the property of "geometric decay
of correlations", which means that the γ(k)’s tend to 0 at an exponential rate. However, as
already pointed out in the introduction, Hannan’s condition is valid for most of the short
memory processes, even for processes with slow decay of correlations (provided that the
γ(k)’s are summable). Hence, our last example will be a non-mixing process (in the sense of
Rosenblatt), with an arithmetic decay of the correlations.
For γ ∈]0, 1[, the intermittent map θγ : [0, 1] 7→ [0, 1] introduced in Liverani et al. (1999) is
defined by

θγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x − 1 if x ∈ [1/2, 1].

It follows from Liverani et al. (1999) that there exists a unique θγ -invariant probability measure
νγ . The Sysdyn process is then defined by

εi = θi
γ .

From Liverani et al. (1999), we know that on the probability space ([0, 1], νγ), the auto-
correlations γ(k) of the stationary process (εi)i≥1 are exactly of order k−(1−γ)/γ . Hence,
(εi)i≥1 is a short memory process provided γ ∈]0, 1/2[. Moreover, it has been proved in
Section 4.4 of Caron and Dede (2018) that (εi)i≥1 satisfies Hannan’s condition in the whole
short-memory range, that is for γ ∈]0, 1/2[. For the simulations below, we took γ = 1/4,
which give autocorrelations γ(k) of order k−3.
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The linear regression models simulated in the experiments all have the following form:

Yi = β1 + β2(log(i) + sin(i) + Zi) + β3i + εi, for all i in {1, . . . , n}, (5)

where Z is a Gaussian autoregressive process of order 1 and ε is one of the stationary processes
defined above. For the simulations, β1 is always equal to 3. All the error processes presented above
can be simulated with the slm package with the generative_process function. The design can be
simulated with the generative_model function.

Automatic calibration of the tests

It is, of course, of first importance to provide hypothesis tests with correct significance levels or
at least with correct asymptotical significance levels, which is possible if the estimator Γ̂n of the
covariance matrix Γn is consistent for estimating C. For instance, the results of Caron (2019) show
that it is possible to construct statistical tests with correct asymptotical significance levels. However,
in practice, such asymptotical results are not sufficient since they do not indicate how to tune the
bandwidth on a given dataset. This situation makes the practice of linear regression with dependent
errors really more difficult than linear regression with i.i.d. errors. This problem happens for several
methods given before ; order choice for the fitAR method, bandwidth choice for the kernel method,
dimension selection for the spectralproj method.

It is a tricky issue to design a data-driven procedure for choosing test parameters in order to
have a correct Type I Error. Note that unlike with supervised problems and density estimation, it is
not possible to calibrate hypothesis tests in practice using cross-validation approaches. We thus
propose to calibrate the tests using well-founded statistical procedures for risk minimization ; AIC
criterion for the fitAR method, bootstrap procedures for the kernel method, and slope heuristics
for the spectralproj method. These procedures are implemented in the slm function with the
model_selec = -1 argument, as detailed in the previous section.

Let us first illustrate the calibration problem with the AR12 process. For T = 1000 simulations,
we generate an error process of size n under the null hypothesis: H0 : β2 = β3 = 0. Then we use
the fitAR method of the slm function with orders between 1 and 50, and we perform the model
significance test. The procedure is repeated 1000 times, and we estimate the true level of the test by
taking the average of the estimated levels on the 1000 simulations for each order. The results are
given in Figure 4 for n = 1000. A boxplot is also displayed to visualize the distribution of the order
selected by the automatic criterion (AIC).

Non-Seasonal errors

We first study the case of non-Seasonal error processes. We simulate an n-error process according to
the AR1, the Nonmixing, or the Sysdyn processes. We simulate realizations of the linear regression
model (5) under the null hypothesis: H0 : β2 = β3 = 0. We use the automatic selection procedures
for each method (model_selec = -1). The simulations are repeated 1000 times in order to estimate
the true level of the model significance for each test procedure. We simulate either small samples
(n = 200) or larger samples (n = 1000, 2000, 5000). The results of these experiments are summarized
in Table 2.

For n large enough (n ≥ 1000), all methods work well, and the estimated level is around 0.05.
However, for small samples (n = 200), we observe that the fitAR and the hac methods show better
performances than the others. The kernel method is slightly less effective. With this method, we
must choose the size of the bootstrap blocks as well as the number of blocks, and the test results are
really sensitive to these parameters. In these simulations, we have chosen 100 blocks with a size of
n/2. The results are expected to improve with a larger number of blocks.

Let us notice that for all methods and for all sample sizes, the estimated level is much better
than if no correction is made (usual Fisher tests).

Seasonal errors

We now study the case of linear regression with seasonal errors. The experiment is exactly the same
as before, except that we simulate AR12 or MA12 processes. The results of these experiments are
summarized in Table 3.

We directly see that the case of seasonal processes is more complicated than for the non-seasonal
processes especially for the AR12 process. For a small samples size, the estimated level is between
0.17 and 0.24, which is clearly too large. It is, however, much better than the estimated level of the
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Figure 4: Estimated level of the test according to the order of the fitted AR process on the residuals
(top) and boxplot of the order selected by AIC, over 1000 simulations. The data has been simulated
according to Model (5) with β1 = 3 and β2 = β3 = 0, with n = 1000.

usual Fisher test, which is around 0.45. The fitAR method is the best method here for the AR12
process because for n ≥ 1000, the estimated level is between 0.06 and 0.07. For efromovich and
kernel methods, a level less than 0.10 is reached but for large samples only. The spectralproj and
hac methods do not seem to work well for the AR12 process, although they remain much better
than the usual Fisher tests (around 19% of rejection instead of 45%).

The case of the MA12 process seems easier to deal with. For n large enough (n ≥ 1000), the
estimated level is between 0.04 and 0.07 whatever the method, except for hac (around 0.15 for
n = 5000). It is less effective for a small sample size (n = 200) with an estimated level around 0.115
for fitAR, spectralproj and efromovich methods.

I.I.D. errors

To be complete, we consider the case where the ϵi’s are i.i.d., to see how the five automatic methods
perform in that case. We simulate n i.i.d. centered random variables according to the formula:

ϵi = W 2
i − 5

4 ,

where W follows a student distribution with 10 degrees of freedom. Note that the distribution of
the ϵi’s is not symmetric and has no exponential moments. Except for the kernel method, the
estimated levels are close to 5% for n large enough (n ≥ 300). It is slightly worse for small samples,
but it remains quite good for the methods fitAR, efromovich, and hac.

As a general conclusion of this section about numerical experiments and method comparison, we
see that the fitAR method performs quite well in a wide variety of situations and should therefore be
used as soon as the user suspects that the error process can be modeled by a stationary short-memory
process.

Application to the PM2.5 pollution Shanghai Dataset

This dataset comes from a study about fine particle pollution in five Chinese cities. The data are
available on the following website https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+
Five+Chinese+Cities#. Here we are interested with the city of Shanghai. We study the regression
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n Process
Method Fisher test fitAR spectralproj

200
AR1 process 0.465 0.097 0.14
NonMixing 0.298 0.082 0.103

Sysdyn process 0.385 0.105 0.118

1000
AR1 process 0.418 0.043 0.049
NonMixing 0.298 0.046 0.05

Sysdyn process 0.393 0.073 0.077

2000
AR1 process 0.454 0.071 0.078
NonMixing 0.313 0.051 0.053

Sysdyn process 0.355 0.063 0.064

5000
AR1 process 0.439 0.044 0.047
NonMixing 0.315 0.053 0.056

Sysdyn process 0.381 0.058 0.061

n Process
Method efromovich kernel hac

200
AR1 process 0.135 0.149 0.108
NonMixing 0.096 0.125 0.064

Sysdyn process 0.124 0.162 0.12

1000
AR1 process 0.049 0.086 0.049
NonMixing 0.053 0.076 0.038

Sysdyn process 0.079 0.074 0.078

2000
AR1 process 0.075 0.067 0.071
NonMixing 0.057 0.067 0.047

Sysdyn process 0.066 0.069 0.073

5000
AR1 process 0.047 0.047 0.044
NonMixing 0.059 0.068 0.05

Sysdyn process 0.057 0.064 0.071

Table 2: Estimated levels for the non-seasonal processes.

of PM2.5 pollution in Xuhui District by other measurements of pollution in neighboring districts
and also by meteorological variables. The dataset contains hourly observations between January
2010 and December 2015. More precisely, it contains 52584 records of 17 variables: date, time of
measurement, pollution and meteorological variables. More information on these data is available in
the paper of Liang et al. (2016).

We remove the lines that contain NA observations, and we then extract the first 5000 observations.
For simplicity, we will only consider pollution variables and weather variables. We start the study
with the following 10 variables:

- PM_Xuhui: PM2.5 concentration in the Xuhui district (ug/m3)
- PM_Jingan: PM2.5 concentration in the Jing’an district (ug/m3)
- PM_US.Post: PM2.5 concentration in the U.S diplomatic post (ug/m3)
- DEWP: Dew Point (Celsius Degree)
- TEMP: Temperature (Celsius Degree)
- HUMI: Humidity (%)
- PRES: Pressure (hPa)
- Iws: Cumulated wind speed (m/s)
- precipitation: hourly precipitation (mm)
- Iprec: Cumulated precipitation (mm)

R> shan = read.csv("ShanghaiPM20100101_20151231.csv", header = TRUE,
+ sep = ",")
R> shan = na.omit(shan)
R> shan_complete = shan[1:5000,c(7,8,9,10,11,12,13,15,16,17)]
R> shan_complete[1:5,]
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n Process
Method Fisher test fitAR spectralproj

200 AR12 process 0.436 0.178 0.203
MA12 process 0.228 0.113 0.113

1000 AR12 process 0.468 0.068 0.183
MA12 process 0.209 0.064 0.066

2000 AR12 process 0.507 0.071 0.196
MA12 process 0.237 0.064 0.064

5000 AR12 process 0.47 0.062 0.183
MA12 process 0.242 0.044 0.048

n Process
Method efromovich kernel hac

200 AR12 process 0.223 0.234 0.169
MA12 process 0.116 0.15 0.222

1000 AR12 process 0.181 0.124 0.179
MA12 process 0.069 0.063 0.18

2000 AR12 process 0.153 0.104 0.192
MA12 process 0.058 0.068 0.173

5000 AR12 process 0.1 0.091 0.171
MA12 process 0.043 0.057 0.147

Table 3: Estimated levels for the seasonal processes.

n Process
Method Fisher test fitAR spectralproj

150 i.i.d. process 0.053 0.068 0.078
300 i.i.d. process 0.052 0.051 0.06
500 i.i.d. process 0.047 0.049 0.053

n Process
Method efromovich kernel hac

150 i.i.d. process 0.061 0.124 0.063
300 i.i.d. process 0.05 0.095 0.052
500 i.i.d. process 0.049 0.082 0.056

Table 4: Estimated levels for the i.i.d. process

PM_Jingan PM_US.Post PM_Xuhui DEWP HUMI PRES TEMP Iws
26305 66 70 71 -5 69.00 1023 0 60
26306 67 76 72 -5 69.00 1023 0 62
26308 73 78 74 -4 74.41 1023 0 65
26309 75 77 77 -4 80.04 1023 -1 68
26310 73 78 80 -4 80.04 1023 -1 70

precipitation Iprec
26305 0 0
26306 0 0
26308 0 0
26309 0 0
26310 0 0

The aim is to study the concentration of particles in Xuhui District according to the other
variables. We first fit a linear regression with the lm function.

R> reglm = lm(shan_complete$PM_Xuhui ~ . ,data = shan_complete)
R> summary.lm(reglm)

Call:
lm(formula = shan_complete$PM_Xuhui ~ ., data = shan_complete)
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Residuals:
Min 1Q Median 3Q Max

-132.139 -4.256 -0.195 4.279 176.450

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -54.859483 40.975948 -1.339 0.180690
PM_Jingan 0.596490 0.014024 42.533 < 2e-16 ***
PM_US.Post 0.375636 0.015492 24.246 < 2e-16 ***
DEWP -1.038941 0.170144 -6.106 1.10e-09 ***
HUMI 0.291713 0.045799 6.369 2.07e-10 ***
PRES 0.025287 0.038915 0.650 0.515852
TEMP 1.305543 0.168754 7.736 1.23e-14 ***
Iws -0.007650 0.002027 -3.774 0.000163 ***
precipitation 0.462885 0.132139 3.503 0.000464 ***
Iprec -0.125456 0.039025 -3.215 0.001314 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.68 on 4990 degrees of freedom
Multiple R-squared: 0.9409, Adjusted R-squared: 0.9408
F-statistic: 8828 on 9 and 4990 DF, p-value: < 2.2e-16

The variable PRES has no significant effect on the PM_Xuhui variable. We then perform a backward
selection procedure, which leads to select 9 significant variables:

R> shan_lm = shan[1:5000,c(7,8,9,10,11,13,15,16,17)]
R> reglm = lm(shan_lm$PM_Xuhui ~ . ,data = shan_lm)
R> summary.lm(reglm)

Call:
lm(formula = shan_lm$PM_Xuhui ~ ., data = shan_lm)

Residuals:
Min 1Q Median 3Q Max

-132.122 -4.265 -0.168 4.283 176.560

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.365506 4.077590 -6.956 3.94e-12 ***
PM_Jingan 0.595564 0.013951 42.690 < 2e-16 ***
PM_US.Post 0.376486 0.015436 24.390 < 2e-16 ***
DEWP -1.029188 0.169471 -6.073 1.35e-09 ***
HUMI 0.285759 0.044870 6.369 2.08e-10 ***
TEMP 1.275880 0.162453 7.854 4.90e-15 ***
Iws -0.007734 0.002023 -3.824 0.000133 ***
precipitation 0.462137 0.132127 3.498 0.000473 ***
Iprec -0.127162 0.038934 -3.266 0.001098 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.68 on 4991 degrees of freedom
Multiple R-squared: 0.9409, Adjusted R-squared: 0.9408
F-statistic: 9933 on 8 and 4991 DF, p-value: < 2.2e-16

The autocorrelation of the residual process shows that the errors are clearly not i.i.d., see Figure 5.
We thus suspect the lm procedure to be unreliable in this context.

The autocorrelation function decreases pretty fast, and the partial autocorrelation function
suggests that fitting an AR process on the residuals should be an appropriate method in this case.
The automatic fitAR method of slm selects an AR process of order 28. The residuals of this AR
fitting look like white noise, as shown in Figure 6. Consequently, we propose to perform a linear
regression with slm function, using the fitAR method on the complete model.

R> regslm = slm(shan_complete$PM_Xuhui ~ . ,data = shan_complete,
+ method_cov_st = "fitAR", model_selec = -1)
R> summary(regslm)
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Figure 5: Autocorrelation function (left) and partial autocorrelation function (right) of the residuals.

Figure 6: Autocorrelation function of the residuals for the AR fitting.

Call:
"slm(formula = myformula, data = data, x = x, y = y)"

Residuals:
Min 1Q Median 3Q Max

-132.139 -4.256 -0.195 4.279 176.450

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -54.859483 143.268399 -0.383 0.701783
PM_Jingan 0.596490 0.028467 20.953 < 2e-16 ***
PM_US.Post 0.375636 0.030869 12.169 < 2e-16 ***
DEWP -1.038941 0.335909 -3.093 0.001982 **
HUMI 0.291713 0.093122 3.133 0.001733 **
PRES 0.025287 0.137533 0.184 0.854123
TEMP 1.305543 0.340999 3.829 0.000129 ***
Iws -0.007650 0.005698 -1.343 0.179399
precipitation 0.462885 0.125641 3.684 0.000229 ***
Iprec -0.125456 0.064652 -1.940 0.052323 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.68
Multiple R-squared: 0.9409
chi2-statistic: 8383 on 9 DF, p-value: < 2.2e-16
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Note that the variables show globally larger p-values than with the lm procedure, and more variables
have no significant effect than with lm. After performing a backward selection, we obtain the
following results:

R> shan_slm = shan[1:5000,c(7,8,9,10,11,13)]
R> regslm = slm(shan_slm$PM_Xuhui ~ . , data = shan_slm,
+ method_cov_st = "fitAR", model_selec = -1)
R> summary(regslm)

Call:
"slm(formula = myformula, data = data, x = x, y = y)"

Residuals:
Min 1Q Median 3Q Max

-132.263 -4.341 -0.192 4.315 176.501

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -29.44924 8.38036 -3.514 0.000441 ***
PM_Jingan 0.60063 0.02911 20.636 < 2e-16 ***
PM_US.Post 0.37552 0.03172 11.840 < 2e-16 ***
DEWP -1.05252 0.34131 -3.084 0.002044 **
HUMI 0.28890 0.09191 3.143 0.001671 **
TEMP 1.30069 0.32435 4.010 6.07e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.71
Multiple R-squared: 0.9406
chi2-statistic: 8247 on 5 DF, p-value: < 2.2e-16

The backward selection with slm only keeps 5 variables.
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