
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Jay F. Storz Publications Papers in the Biological Sciences

5-2016

Gene Duplication and Evolutionary Innovations in
Hemoglobin-Oxygen Transport
Jay F. Storz
University of Nebraska - Lincoln, jstorz2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/bioscistorz

This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln.
It has been accepted for inclusion in Jay F. Storz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Storz, Jay F., "Gene Duplication and Evolutionary Innovations in Hemoglobin-Oxygen Transport" (2016). Jay F. Storz Publications. 68.
http://digitalcommons.unl.edu/bioscistorz/68

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fbioscistorz%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/bioscistorz?utm_source=digitalcommons.unl.edu%2Fbioscistorz%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/bioscipapers?utm_source=digitalcommons.unl.edu%2Fbioscistorz%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/bioscistorz?utm_source=digitalcommons.unl.edu%2Fbioscistorz%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/bioscistorz/68?utm_source=digitalcommons.unl.edu%2Fbioscistorz%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages


Physiology (Bethesda). 2016 May; 31(3): 223–232.
Published online 2016 Apr 6. doi:  10.1152/physiol.00060.2015

PMCID: PMC5005275

Gene Duplication and Evolutionary Innovations in Hemoglobin-Oxygen
Transport

Jay F. Storz

School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
Corresponding author.

Email: jstorz2@unl.edu

Copyright ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

Abstract

During vertebrate evolution, duplicated hemoglobin (Hb) genes diverged with respect to functional
properties as well as the developmental timing of expression. For example, the subfamilies of genes that
encode the different subunit chains of Hb are ontogenetically regulated such that functionally distinct Hb
isoforms are expressed during different developmental stages. In some vertebrate taxa, functional
differentiation between co-expressed Hb isoforms may also contribute to physiologically important
divisions of labor.

Gene Duplication and the Evolution of Novel Protein Functions

Gene duplication is known to play an extremely important role in the evolution of new protein functions.
Following the complete duplication of a protein-coding gene, functional redundancy between the two
daughter copies will often entail a relaxation of selective constraints that permits the accumulation of
degenerative mutations in one or both copies (52, 107). In the majority of cases, one of the two gene
duplicates will be rendered functionless by inactivating mutations. However, in a small minority of cases,
the fixation of previously forbidden mutations may lead to the acquisition of a novel function and/or
expression pattern in one copy or the other. In such cases, both duplicate copies may be selectively retained
in the genome, and they can then evolve new functions or divide up ancestral functions.

The diversification of the vertebrate globin gene family provides an excellent example of the role of gene
duplication in promoting evolutionary innovation. In this review I highlight several important case studies.
First, I describe how the proto hemoglobin (Hb) and myoglobin (Mb) genes originated via whole-genome
duplication in the common ancestor of vertebrates. This duplication event facilitated a physiological
division of labor between O -binding proteins with distinct roles in respiratory gas transport. I then

describe how repeated rounds of gene duplication and divergence promoted the functional diversification of
the subfamilies of globin genes that encode the different subunit polypeptides of tetrameric Hb. These
globin genes are ontogenetically regulated such that functionally distinct Hb isoforms (isoHbs) are
expressed during different stages of prenatal development and postnatal life. I end by discussing the
possible functional significance of Hb multiplicity in the definitive red blood cells of different vertebrate
groups.

Phylogenetic Insights Into Gene Family Evolution
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Phylogenetic reconstructions permit inferences about the branching relationships among homologous
members of a multigene family that have diversified via successive rounds of duplication and divergence.
In comparisons among different species, phylogenetic reconstructions provide a means of distinguishing
different types of homology. Specifically, the congruence or lack of congruence between a species tree and
the gene tree contained within it enables us to distinguish “paralogous” genes (which trace their common
ancestry to duplication events) and “orthologous” genes (which trace their common ancestry to speciation
events; that is, they descend from a common ancestral gene by phylogenetic splitting at the organsimal
level) (FIGURE 1A).

The Role of Hemoglobin in Blood-Gas Transport

Hb is a red blood cell protein that plays an essential role in sustaining aerobic metabolism by transporting
O  from the respiratory exchange surfaces (e.g., lungs, gills, or skin) to the cells of respiring tissues. In

jawed vertebrates (gnathostomes), Hb is a tetrameric protein composed of two α-chain subunits and two
β-chain subunits. Each of these subunit polypeptides contains a heme group: an iron atom at the center of a
poryphyrin ring, which reversibly binds a single O  molecule in the ferrous state (Fe ). The related

myoglobin (Mb) protein stores O  and facilitates intracellular O  diffusion from the sarcolemma to the

mitochondria of cardiac and skeletal muscle cells (35, 93). In contrast to the tetrameric Hb protein, Mb is a
monomer and is therefore structurally similar to a single heme-bearing subunit of Hb. Mb and the
individual Hb subunits have similar heme-coordination chemistries, but Mb has a much higher O  affinity

than Hb. This fulfills an important requirement of an efficient O -transporting system, since the storage

molecule (Mb) should have a higher O  affinity than the carrier molecule (Hb) at the low Pඈ  that prevails

in the cells of aerobically metabolizing tissues.

The evolution of Hb as a specialized O -transport protein played a key role in the evolution of aerobic

energy metabolism in early vertebrates. Without Hb to augment blood O  content, the fluid convection of

physically dissolved O  in the blood plasma would not be generally sufficient to meet the cellular O

demands of relatively large, mobile vertebrates. The one remarkable exception to this rule are the
Notothenioid icefish that inhabit the freezing, ice-laden waters surrounding the continental shelf of
Antarctica. Notothenioid fish in the family Channichthyidae do not express Hb, and many species do not
express Mb either (76).

The O -transport Hbs of ancestral vertebrates likely existed in a monomer-oligomer equilibrium as in

modern-day lampreys and hagfish (see below), where cooperative O -binding stemmed from association-

dissociation dynamics. In modern gnathostomes, by contrast, the efficiency of Hb as a specialized O -

carrier molecule is chiefly attributable to its multisubunit quaternary structure. The interaction between
unlike subunits gives rise to the cooperativity of Hb-O  binding, whereby O  binding of a given heme iron

facilitates the binding of subsequent O  molecules at the remaining unliganded hemes, and, conversely, O

liberated by a heme iron facilitates the unloading of O  molecules from the remaining liganded hemes.

Thus Hb has a high O  affinity at the sites of respiratory gas exchange (the alveoli of the lungs in humans

and other mammals) where the Pඈ  is high, and a reduced affinity at the sites of O  delivery in the tissue

capillaries where the Pඈ  is substantially lower. The physiological significance of cooperativity is that it

permits efficient O  unloading over a relative narrow range of blood O  tensions. In addition to

cooperativity, which results from interactions between subunits, the O  affinity of Hb is also modulated by

the binding of allosteric cofactors at sites remote from the heme iron. These cofactors include H , Cl ,

CO , and a variety of organic phosphates, all of which preferentially bind and stabilize deoxy-Hb, thereby

shifting the allosteric equilibrium in favor of the low-affinity “tense-state” quaternary structure (92, 93).

In addition to Hb's familiar role as an O  carrier, recent discoveries have revealed that Hb also plays a role

in regulating blood flow in the arterial microcirculation. In this process, which may be important for

2

2
2+

2 2

2

2

2 2

2

2

2 2

2

2

2

2 2

2 2

2

2

2 2

2

2 2

2
+ −

2

2

Gene Duplication and Evolutionary Innovations in Hemoglobin-Oxygen ... https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005275/?report=printable

2 of 19 7/28/17, 2:59 PM



matching tissue perfusion to local O  demand, Hb functions as an O  sensor and O -responsive nitric oxide

(NO) signal transducer, thereby contributing to red cell-dependent hypoxic vasodilation (47). This may be
accomplished via enzymatic reduction of nitrite to NO by deoxy-Hb (18, 19, 31) and/or release of bioactive
NO from S-nitrosylated Hb (2, 77, 108). Both of these proposed mechanisms of vasoregulation are
governed by oxygenation-linked allosteric transitions in Hb quaternary structure. These findings suggest
that vertebrate Hb has evolved physiologically important interactions with NO in addition to the more
familiar interactions with CO, CO , and O .

Gene Duplication, Genome Duplication, and the Origin of Hemoglobin as an O
Carrier

Two rounds of whole-genome duplication in the stem lineage of vertebrates played an important role in
promoting the diversification of the globin gene superfamily (37, 38, 42, 60, 80, 81). The progenitors of the
Hb and Mb gene lineages originated as products of one such genome duplication event (42). The retention
of the proto Hb and Mb genes in the ancestor of gnathostomes set the stage for a physiological division of
labor between O -carrier and O -storage functions. In the ancestor of gnathostomes, subsequent duplication

of the proto Hb gene gave rise to the progenitors of the α- and β-type globins (FIGURE 1B). This
duplication event occurred 450 million years ago, before the divergence between the ancestor of
cartilaginous fish and the common ancestor of ray-finned fish and tetrapods (32, 42, 80, 81). Functional
divergence of the proto α- and β-globin genes permitted the formation of multimeric Hbs composed of
unlike subunits (α β ). The evolution of this heteromeric quaternary structure was central to the emergence

of Hb as a specialized O -transport protein because it provided a mechanism for cooperative O -binding

and allosteric regulatory control. Both of these features require a coupling between the effects of ligand
binding at individual subunits and the interactions between subunits in the quaternary structure (64).

The ancestral linkage arrangement of the proto α- and β-globin genes is still retained in the genomes of
some modern-day amphibians and teleost fish (27, 56). In amniote vertebrates, by contrast, the α- and
β-type globin genes are located on different chromosomes (34, 42, 44). In the human genome, the α-globin
gene cluster is located on chromosome 16, and the β-globin gene cluster is located on chromosome 11 (
FIGURE 2A). This reflects the fact that the ancestral β-globin gene was transposed to a new chromosomal
location in the lineage leading to modern amniotes (34). Intriguingly, an “orphaned” β-type globin gene (ω-
globin) is still found in association with the tandemly linked α-type globin genes in the genomes of
monotremes and marsupials (41, 59, 105).

Phylogenetic evidence indicates that erythroid-specific, O -transport Hbs evolved independently from

different ancestral precursor proteins in the two deepest branches of the vertebrate family tree:
gnathostomes and jawless fishes (cyclostomes, represented by lampreys and hagfish) (39, 75). The
independent evolution of O -transport Hbs in these two anciently diverged vertebrate lineages involved the

convergent co-option of distinct globin precursors to perform similar respiratory functions in circulating
red blood cells. In the Hbs of both gnathostomes and cyclostomes, multisubunit quaternary structures
provide the basis for cooperative O  binding and allosteric regulation, but differences in numerous

structural details belie their independent origins. In the tertrameric Hbs of gnathostomes, cooperativity
stems from an oxygenation-linked transition in quaternary structure between high- and low-affinity
conformations (64). In the Hbs of cyclostomes, by contrast, cooperativity stems from an oxygenation-
linked dissociation of low-affinity homo- and/or heterodimers into high-affinity monomers (11, 12, 22, 23,
66). Thus the O -transport Hbs of gnathostomes and cyclostomes represent superficially similar but

structurally distinct design solutions to the challenge of maintaining cellular O  supply in support of

aerobic metabolism (39).

Gene Duplication and the Developmental Regulation of Hemoglobin Synthesis
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In mammals, the arrangements of tandemly linked genes in the α- and β-globin gene clusters are co-linear
with the temporal order of expression during development (25, 73). For example, the human α-globin gene
cluster is arranged: 5′-ζ (embryonic)-α  (fetal and adult)-α  (fetal and adult)-3′, and the human β-globin

gene cluster is arranged: 5′-ε (embryonic)- γ (fetal)- γ (fetal)-δ (minor adult)-β (major adult)-3′ (

FIGURE 2A). This same general arrangement also is seen in the α- and β-globin gene clusters of other
amniotes, although the individual identities of early and late-expressed genes vary among taxa due to
lineage-specific gene duplications and deletions (41, 44, 57, 58, 78).

Evolutionary changes in the developmental timing of isoHb expression are typically associated with
changes in oxygenation properties, since the different isoHbs are adapted to perform distinct O -

scavenging/O -transport tasks during different stages of development (7, 92, 106). Evolved changes in

functional properties of differentially expressed isoHbs are attributable to amino acid substitutions in
paralogous genes that encode the different α- and/or β-type subunits.

During human embryogenesis, O  diffusion is sufficient to meet the metabolic demands of the developing

embryo until day 15 postconception (7, 24). At that stage of development, the embryonic α- and β-type
globin genes (ζ- and ε-globin, respectively) are transcriptionally activated to produce Hb Gower I (ζ ε ),

which serves as an O  carrier (106). After 4 wk of gestation, the heart of the developing embryo becomes

septated, the venous and arterial circulations are established, and the placenta begins to develop. During
this phase, two additional embryonic isoHbs are synthesized: Hb Gower II (α ε ) and Hb Portland (ζ γ ).

During the next 6 wk, the placental circulation is established, the yolk sac gradually disappears, and the
liver becomes the major site for hematopoeisis, producing definitive, enucleated erythrocytes containing a
mix of fetal Hb (HbF; α γ ) and adult Hb (HbA; α β ). After 20 wk of gestation, the bone marrow

becomes established as a secondary site for hematopoesis, producing only HbA (106). At birth, the
neonatal circulation consists of erythrocytes containing 70% HbF and 30% HbA. In 5-mo-old infants,
the fraction of HbF in the blood falls to 3%, and by 2 years of age, circulating erythrocytes derived from
the bone marrow contain 97% HbA and 3% HBA2 (α δ ) (FIGURE 2B).

This same basic pattern of ontogenetic gene switching is observed in all other tetrapod vertebrates that have
been examined to date (1, 78, 97, 104). In the α-globin gene cluster, the physiological division of labor
between early and late-expressed genes was established in the common ancestor of tetrapod vertebrates,
and it appears to have been retained in nearly all descendant lineages. The ancestral arrangement of the
tetrapod α-globin gene cluster is 5′-α -α -α -3′ (43, 44), where α  is orthologous to the embryonic

ζ-globin gene in humans and α  is orthologous to the adult α-globin in humans. In the tetrapod common

ancestor, the α -globin gene and the (presumably embryonic) progenitor of the α /α  genes originated via

tandem duplication of an ancestral proto α-globin gene; the α - and α -globins originated via a subsequent

tandem duplication (43). In modern tetrapods, the α -globin gene appears to be expressed exclusively in

larval/embryonic erythroid cells, and the α -globin gene is expressed in definitive erythroid cells during

later stages of prenatal development and postnatal life. In mammals, products of the α -globin gene

(annotated as “μ-globin” in the human genome assembly) do not appear to be incorporated into functional
Hb tetramers. However, the α -globin gene is expressed in both primitive and definitive erythroid cells of

birds and non-archosaurian reptiles (1, 78).

In contrast to the ancient functional diversification of α-type globin genes (FIGURE 3A), the
developmental regulation of gene expression in the β-globin gene cluster evolved independently in several
different tetrapod lineages (44). For example, in mammals and birds, the β-type globin genes that are
expressed during the earliest stages of embryogenesis were independently derived from lineage-specific
duplications of the same proto-β-globin gene, that is, the embryonic β-globins of mammals and birds are
not “1:1 orthologs” (FIGURE 3B). Even within mammals, embryonic β-type globin genes appear to have
originated independently as the products of lineage-specific duplication events in monotremes (egg-laying
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mammals) and in the common ancestor of marsupials and eutherian mammals (59). Likewise, fetally
expressed β-type globin genes originated independently in simian primates (New World monkeys, Old
World monkeys, apes, and humans) and in bovid artiodactyls (cattle, antelope, and goats). In most
eutherian mammals, the γ-globin gene encodes the β-chain subunit of embryonic isoHbs, but in simian
primates, duplicated copies of γ-globin ( γ and γ) have been co-opted for fetal expression (49, 50). In

New World monkeys, γ-globin is expressed in nucleated erythroid cells derived from the embryonic yolk-

sac (the ancestral condition), but γ-globin is expressed in enucleated erythroid cells derived from the fetal

liver. In catarrhine primates (Old World monkeys, apes, and humans), both γ- and γ-globin are fetally

expressed. This developmental switch was accompanied by a delay in the fetal expression of the β-globin
gene, which is predominantly expressed during postnatal life in mammals. Goodman et al. (32) suggested
that the acquisition of fetally expressed Hb may have played an important role in the life history evolution
of simian primates because it facilitated an extended duration of fetal development.

Whereas embryonic γ-globin genes were co-opted for fetal expression in simian primates, duplicate copies
of the adult β-globin gene were co-opted for fetal expression in bovids (17, 74, 86). Thus the stage-specific
expression of fetal isoHbs evolved twice independently from different ancestral states. In simian primates
and bovids, the co-option of γ- or β-globin genes for fetal expression was likely facilitated by the fact that
redundant or semi-redundant copies of other early or late-expressed β-type globin genes continued to
perform their ancestral functions. The acquisition of fetally expressed isoHbs would not have been possible
if the ancestor of simian primates had possessed only a single embryonic gene or if the ancestor of bovid
artiodactyls had possessed only a single adult-expressed gene, as in contemporary monotremes and
marsupials (58, 59).

In humans, the fetally expressed isoHb, HbF (α γ ), exhibits a slightly lower intrinsic O  affinity relative to

adult Hb, HbA (α β ). However, in the presence of physiological concentrations of allosteric cofactors that

are present in the red blood cell, HbF exhibits a higher O  affinity than HbA due to its reduced sensitivity

to the organic phosphate 2,3-diphosphoglycerate (DPG), a metabolite of red cell glycolysis (85) (
FIGURE 4). During pregnancy, the resultant O -affinity difference between HbF in the fetal circulation

and HbA in the maternal circulation facilitates O  transfer across the placental barrier (7). Since HbF and

HbA have identical α-type subunits, the different functional properties must be attributable to substitutions
between the γ- and β-globin genes. The reduced DPG sensitivity of HbF relative to HbA appears to be
mainly attributable to the amino acid substitution γ143His → Ser, which eliminates two DPG binding sites
per tetramer (26), in combination with γ43Glu → Asp, which indirectly affects DPG binding by perturbing
the allosteric α β  interface (15).

In other eutherian mammals, the requisite Pඈ  difference between the maternal and fetal circulations is

accomplished via changes in red cell DPG concentrations that differentially modulate the O  affinities of

structurally identical Hbs. Viviparous vertebrates employ an astounding diversity of mechanisms for
maintaining the Pඈ  differential between maternal and fetal circulations, only some of which involve

genetically based differences in the oxygenation properties of isoHbs with stage-specific expression (17,
45, 90, 92, 98). One consistent pattern across all vertebrates is that, within a given species, isoHbs that are
expressed during early embryogenesis have higher O  affinities and lower cooperativities than isoHbs

expressed later in prenatal development or in postnatal life (13, 45, 92, 97, 104). In humans, for example,
the embryonic isoHbs (Hb Gower I, Hb Gower II, and Hb Portland) have uniformly higher O  affinities

and lower cooperativities than the later expressed HbF and HbA (7, 10).

Functional Differentiation of Co-Expressed Hb Isoforms

Most eutherian mammals possess multiple copies of α- and β-type globin genes that are co-expressed
during postnatal life (30, 40, 41, 53, 58, 59, 61, 70, 82). Adult-expressed genes of the same subunit type

G A

G

A

G A

2 2 2

2 2

2

2

2

1 2

2

2

2

2

2

Gene Duplication and Evolutionary Innovations in Hemoglobin-Oxygen ... https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005275/?report=printable

5 of 19 7/28/17, 2:59 PM



typically have highly similar coding sequences and therefore encode identical or nearly identical
polypeptides. Thus, in definitive red blood cells, isoHbs that incorporate the different α- and β-type
subunits typically have very similar functional properties (14, 46, 51, 71, 83).

The situation is quite different in other tetrapods. The majority of birds, reptiles, and amphibians co-express
multiple structurally and functionally distinct Hb isoforms during adult life (20, 33, 57, 78, 79).
Crocodilians are a notable exception, since all species that have been examined to date express a single
adult Hb (94, 100, 101). Birds typically express two main isoHbs in definitive red blood cells: HbA (the
major isoHb, with α-chain subunits encoded by the α -globin gene) and HbD (the minor isoHb, with

α-chain subunits encoded by the α -globin gene). Both isoHbs incorporate the same β-chain subunits. In all

bird species that have been examined to date, the minor HbD exhibits a substantially higher O  affinity

than the major HbA in the presence of physiological concentrations of allosteric cofactors (16, 29, 33, 54,
57, 65). Turtles, lizards, and snakes also express homologous HbA and HbD isoHbs in definititive
erythrocytes. [The α-type globin genes are orthologous to those in birds, but the β-type globins are not
necessarily 1:1 orthologs (44, 78).] However, the reptilian pattern of isoHb differentiation is a mirror image
of the avian pattern: In the few non-archosaurian reptiles that have been investigated, HbD is the major
isoHb, and (at least in turtles and snakes) it has a lower O  affinity than other isoHbs that incorporate

products of the α -globin gene (20, 78, 79).

Since the HbA and HbD isoHbs exhibit appreciable differences in O -binding properties, regulatory

changes in the HbA-to-HbD ratio could conceivably provide an effective mechanism for reversibly
modulating blood-O  affinity in response to changes in environmental O  availability or changes in internal

metabolic demands (33, 36, 95). Among sauropsid vertebrates, however, there is no evidence to suggest
that isoHb switching plays an important role in acclimatization to environmental hypoxia. Birds that are
native to different elevations in the Andes exhibit consistent differences in Hb-O  affinity due to

genetically based increases in the O  affinities of HbA and HbD in highland taxa, but there are no

detectable elevational differences in HbA-to-HbD ratios (16, 29, 54, 65). Likewise, in turtles, the HbA-to-
HbD ratio does not change during acclimation to hypoxia (20).

The Root Effect and IsoHb Differentiation In Teleost Fish

To assess the possible physiological significance of Hb multiplicity, teleost fishes are an ideal group to
study. First, teleosts exhibit the highest levels of functional isoHb diversity among vertebrates (28, 45, 48,
88, 91, 103). The extensive repertoire of α- and β-type globin genes in this group is partly attributable to a
teleost-specific whole-genome duplication event (56). Second, teleosts inhabit aquatic environments that
span an extraordinarily broad range of variation in O  availability, salinity, ionic composition, pH, and

temperature. In principle, the expression of multiple isoHbs with graded O  affinities and allosteric

regulatory capacities could broaden the permissible range of O  tensions for efficient tissue O  delivery

(88, 89). The isoHb differentiation in some groups may be adaptive in this regard. Most notably, a number
of taxa, including eels, catfish, and salmonids, express two electrophoretically distinct isoHb classes
(designated as “anodic” and “cathodic”) that exhibit pronounced differences in intrinsic O  affinity and

buffer capacity, and sensitivity to pH, temperature, and organic phosphates (6, 48, 88, 89, 91, 99, 102, 103).

An important functional specialization of the anodic isoHbs involves an extreme form of pH sensitivity
known as the Root effect, whereby the low-affinity “T-state” conformation of deoxyHb is strongly
stabilized at low pH (3, 4, 8, 9, 62, 63). In tissues such as the retina and the gas gland of the swim bladder,
reductions of blood pH in dense, counter-current capillary networks (rete) trigger the release of Hb-bound
O  via the Root effect, thereby promoting O  secretion at high Pඈ . The evolution of the Root effect

represents a key physiological innovation in teleosts, since O  secretion in the ocular choroid rete increases

the O  diffusion gradient to highly aerobic cells in the avascular retina (which enhances high-acuity
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vision), and O  secretion into the swim bladder provides a mechanism of buoyancy regulation (which

facilitated the colonization of deep sea habitats). In addition to these well known functional specializations,
recent in vitro and in vivo studies have demonstrated that Root effect Hbs, in conjunction with mechanisms
for maintaining an arterial-venous pH difference, also play a significant role in general tissue O  delivery

(67-69).

The differentiation between (anodic) Root effect Hbs and cathodic isoHbs that have low to normal pH
sensitivities may represent a physiologically significant division of labor for tissue O  delivery, especially

under hypoxic and/or hypercapnic stress (21, 48, 84, 88, 89, 103). Since the cathodic isoHbs typically have
higher O  affinities than the Root effect Hbs, they may help secure arterial O  loading under conditions of

severe hypoxia where the Root effect Hbs would not be fully saturated. Likewise, since the cathodic isoHbs
typically have far lower pH sensitivities, they may help secure tissue O  delivery during stress-induced

acidosis if the red cell β-adrenergic response is not sufficient to safeguard intraerythrocytic pH.

Marine and freshwater fishes must often contend with extreme vicissitudes of O  availability on a daily or

seasonal basis. Given that adult-expressed isoHbs of teleost fish often exhibit physiologically significant
differences in oxygenation properties, it seems plausible that regulatory adjustments in red cell isoHb
composition could represent an important mechanism of phenotypic plasticity in blood-O  transport.

Experiments involving the African cichlid Haplochromis ishmaeli revealed that exposure to chronic
hypoxia during postnatal development induced changes in the relative expression of functionally distinct
isoHbs that increased blood-O  affinity (72). However, as a mechanism of physiological plasticity during

adulthood, there is not much evidence to suggest that regulatory changes in red cell isoHb composition
make significant contributions to the acclimatization response to hypoxia (45, 103). In fishes, reversible
changes in red cell pH and concentrations of allosteric effectors appear to represent far more important
mechanisms for modulating blood-O  affinity in response to changes in O  availability (5, 48, 55, 87, 88,

91, 96, 103).

Conclusion

The duplication and functional divergence of globin genes has promoted a number of key physiological
innovations in respiratory gas transport during vertebrate evolution. The physiological division of labor
among developmentally regulated isoHbs has clear adaptive significance in viviparous and oviviparous
vertebrates alike. Aside from isoHbs with unique specializations of function such as the Root effect Hbs of
teleost fishes, the adaptive significance of Hb multiplicity in the definitive erythrocytes of vertebrates is
generally unclear. It is also possible that Hb multiplicity confers physiological benefits that are not directly
related to inherent oxygenation properties of the proteins. For example, Hb multiplicity may increase Hb
solubility in the red blood cell, thereby increasing blood-O  carrying capacity by raising the upper limit of

intracellular Hb concentration (45, 89). An important line of future research is to elucidate the
physiological significance and evolutionary origins of less well understood functions of Hb.
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FIGURE 1.

Phylogenetic reconstructions reveal the branching relationships among members of a multigene family that have
diversified via successive rounds of duplication and divergence

A: paralogous genes trace their common ancestry to duplication events, whereas orthologous genes trace their common
ancestry to speciation events. B: phylogenetic diversification of the α- and β-globin gene subfamilies. The human α- and
β-globin gene clusters are shown at top. Pseudogenes are denoted by the Ψ symbol. In the human α-globin gene cluster, for
example, Ψζ denotes an inactivated copy of the embryonic ζ-globin gene. The tree depicts phylogenetic relationships
among the paralogous gene duplicates. The inferred timing of duplication events is indicated on the vertical axis. Note that
the human μ-globin gene is orthologous to the α -globin gene of other tetrapods, as discussed in the text.D
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FIGURE 2.

The expression of α- and β-type globin genes is developmentally regulated, resulting in the synthesis of functionally
distinct isoHbs

A: structure of the human α- and β-globin gene clusters. B: the set of structurally distinct embryonic, fetal, and adult Hb
isoHbs, with subunits encoded by each of the pre- and postnatally expressed α- and β-type genes. C: developmental
timeline for changes in the expression levels of the various α- and β-type genes from the earliest stages of embryogenesis
to the end of the first year of life. C was adapted from Ref. 106 with permission from British Medical Bulletin.
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FIGURE 3.

Diagrammatic phylogenies depicting the inferred relationships among members of the α- and β-globin gene subfamilies in
tetrapods

In each tree, nodes depicted as filled symbols represent gene duplication events. The remaining nodes represent speciation
events (phylogenetic splitting at the organismal level). A: phylogeny of α-type globin genes in representative tetrapod
lineages. Note that the three paralogs (α -, α -, and α -globin) are reciprocally monophyletic relative to one another. As

discussed in the text, the α - and α -globin genes are products of a duplication event that occurred in the stem lineage of

tetrapods. Orthologs of the embryonic α -globin gene are known as α -globin in amphibians, π-globin in birds, and

ζ-globin in mammals. The human ortholog of the α -globin gene is known as μ-globin. B: phylogeny of β-type globin

genes in representative tetrapod lineages. Note that eutherian mammals, monotremes, birds, nonavian reptiles, and
amphibians each inherited an ortholog of the same proto β-type gene, which then underwent one or more rounds of
duplication and divergence to produce distinct repertoires of β-type globins in each descendent lineage. The depicted
phylogenies are based on data reported in Refs. 43, 44, 59.
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FIGURE 4.

O -equilibrium curves of human adult and fetal isoHbs

O -equilibrium curves of human adult and fetal isoHbs (A and F, respectively). Data are shown for “stripped” Hbs

(purified Hbs that are stripped of organic phosphates and other allosteric cofactors) in the absence and presence of
equimolar concentrations of 2,3-diphosphoglycerate (DPG:Hb = 0 and DPG:Hb = 1, respectively) at 20°C and pH 7.2 (the
approximate intraerythrocytic pH value). Inset: O -equilibrium curves for maternal and fetal blood (solid and dashed lines,

respectively) at 37°C and extracelluar pH 7.4 (corresponding to an intracellular pH of 7.2), illustrating the difference in
arteriovenous O  content (double-headed arrows), as well as the higher O  affinity and higher O -carrying capacity of fetal

blood. Adapted, with permission, from Refs. 85, 90 and used with permissions from the Journal of Biological Chemistry
and the Israel Journal of Zoology.
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