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 A family of materials similar to graphene are transition metal dichalcogenides (TMDs) 

which have emerged as an improved alternative. Importantly, each combination of TMD is 

unique, possessing different properties. Chemical vapor deposition (CVD) has become a popular 

method to grow TMDs at large scale and in reproducible fashion. Molybdenum disulfide (MoS2) 

has been intensely studied at the monolayer due the creation of an indirect band gap but little has 

been done to investigate few layered structures and as the number of layers change, so do the 

properties. In this work, CVD is utilized to grow uniform bilayer and trilayer MoS2 triangular 

islands and compare few layer islands to their monolayer counterpart. Another TMD, tungsten 

disulfide (WS2), also has an indirect band gap at the monolayer. The combination of different 

two-dimensional (2D) materials has become a new way to achieve different structures with 

tunable properties. Stacking of 2D materials using van der Waals interactions has already created 

a pathway to an almost limitless number of combinations. A common combination is graphene 

and boron nitride because boron nitride has the same structure as graphene and creates an 

insulated layer with very little charge trapping and surface defects. As a starting point for 2D 

heterostructures, graphene on top of boron nitride was investigated and found to indeed reduce 

charge trappings creating a Dirac point closer to zero than other dielectric substrates. With the 

previous work done using CVD to grow TMDs it was also thought possible to grow MoS2 on 

boron nitride to improve the quality and reduce charge trappings from the substrate. The quality 

of the MoS2 became improved due to similar lattice structures leading to epitaxial growth along 



 
 

 
 

the boron nitride. Finally, CVD combining the two TMDs studied above was used to create 

lateral heterostructures. The combination of these two materials creates a theoretically staggered 

band gap that could lead to controllable electronic or optical properties not yet explored due to 

the limitations of conventional stacked heterostructures.  
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CHAPTER 1: MOLYBDENUM DISULFIDE  

Background 

The discovery of graphene, a sp2 hybridized planar sheet of carbon atoms, has 

caused an eruption of new two dimensional materials to be studied. Graphene’s unique 

properties, such as its strength,1 flexibility,1,2 high charge carrier mobility,3–5 high 

surface-to-volume ratio6 and transparency,7,8 are different from the properties of its bulk 

counterpart, i.e. graphite, and highly desired for a number of applications, including RF 

transistors, gas sensors and transparent conductors among others. 

The major problem with graphene for electronic applications is its lack of an 

energy band gap. Band gap refers to the energy required to excite an electron from the 

valence band to the conduction band so that it may conduct electricity. Graphene’s band 

structure is unique because it consists of two cones touching at the tips, or Dirac points.9 

In these cones, the two-dimensional energy dispersion relation is linear making electrons 

and holes degenerate.10,11 Since graphene does not have a band gap, it acts like a 

semimetal, giving it a very poor on/off ratio in field-effect transistors (FETs) of up to ~55. 

Its shortcomings are what have led to the interest in alternative two-dimensional materials 

with semiconductor properties. 

Other materials in the graphene family include hexagonal boron nitride (often 

referred to as “white graphene”),12 boron carbon nitride (BCN),13 fluorographene14 and 

graphene oxide7 among others. “White graphene” is an insulating material, so it cannot 

be used as a device channel, although it finds applications as a substrate dielectric for 
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improved graphene based devices.12 The other materials, such as fluorographene, 

mentioned to be in the same family of graphene have proven thus far to have very poor 

electronic qualities14 or are non-stoichiometric making them difficult to control.15,16 A 

second set of materials that exist as two-dimensional materials are oxides, which are 

more stable in air than many monolayer materials, but also more susceptible to changes 

when in contact with water and protic solvents. This poses many problems for the entire 

family of oxides outside of simply stability, their use in reactions would be limited as 

well as characterization and fabrication techniques diminished.17  

A very most promising group of two-dimensional materials, most of which 

actually have semiconductor properties, are transition metal dichalcogenides (TMDs), of 

which the most prominently studied two-dimensional material up to this point besides 

graphene has been molybdenum disulfide (MoS2).
17–21 TMDs have a transition metal 

(e.g., Mo, W, Nb, Ta) “sandwiched” between two chalcogen layers (e.g., S, Se, Te). 

Graphene and TMDs share many similarities characterized by noncovalent bonding 

between layers and strong in-plane covalent bonding.17  

Majority of studies use MoX2 and WX2 because they have been shown to be 

semiconducting, whereas NbX2 and TaX2 are metallic making them less versatile for 

transistor applications.22–25 Regardless of bulk or monolayer, the band gaps of many 

TMDs are comparable to or exceed that of the 1.1 eV of silicon.26 One of the most 

important properties of MoS2 is that as a crystal it has an indirect band gap of ~1.3 eV, 

and as the number of layers decreases to a monolayer, it becomes a semiconductor with a 

direct band gap of ~1.9 eV.27 The reason for an increase in the band gap is generally due 

to confinement of carriers in the out-of-plane direction inducing a gradual increase in the 
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band gap with decreasing thickness.28 Since the monolayer MoS2 has a direct band gap, it 

is promising for the electronics industry, which is driven by scaling down the size of 

transistors and is reaching the limit for current silicon-based transistors.26 

Current field-effect transistors (FETs) use a semiconducting channel region 

connected to source and drain electrodes that are made of an inert conducting material, 

i.e. gold, while an insulating layer, such as silicon oxide (SiO2), is used as a gate 

dielectric.29 The current that flows between the source and drain electrodes through the 

semiconducting channel can be modulated by the voltage applied to the gate electrode. 

There are many different factors that can affect the electronic characteristics of a device, 

specifically the mobility of carriers is affected by different types of scattering, such as 

Coulombic impurities,30 surface interfacial phonons and roughness scattering.4,12,31 

Minimizing these scattering effects can lead to improved mobilities in FETs and bring the 

characteristics of current devices closer to theoretical calculations. This study includes 

results of FET measurements of TMD materials, as well as describes efforts on 

minimization of scattering effects in TMDs by growing them on atomically flat 

crystalline hexagonal boron nitride substrates. 

Introduction 

As the most studied TMDs, MoS2 has been found to have a large number of 

applications such as its use in field-effect transistors (FETs) due to its high on-off 

ratios,32–34 gas sensors with its n-type semiconducting nature,35 photodetectors,36 

optoelectronics such as ferroelectric memories,37 and energy storage in batteries.38 The 

reason MoS2 has been favored over materials utilizing tungsten or selenium is because of 

the larger availability of molybdenite crystals, and their higher chemical stability 
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compared to most other TMDs. After becoming “the standard” for TMD, MoS2 growth 

has been studied in a multitude of ways. 

Because of the weaker out-of-plane bonding, it very easy to mechanically 

exfoliate single to few layers of these materials from the bulk crystals. Mechanical 

exfoliation is simply the peeling away of a material layer by layer, which in the case of 

graphene and TMDs is the disruption of weak van der Waals attractions. The most 

common way to exfoliate these materials is using adhesive tape to overcome the van der 

Waals forces holding the layers together.39 This top-down approach of preparing these 

single to few layered materials has many problems which are difficult to overcome, such 

as reproducibility, uniformity and the size of the flakes created. Alternative exfoliation 

techniques of TMDs and other two-dimensional materials are not limited to the 

mechanical exfoliation, liquid-phase exfoliations have also been performed.40 In one 

method, it was found that the flakes exfoliated in this manner were monolayer with sizes 

of <1 µm, and since lithium is used, it increases the cost and risk of flammability. A 

second liquid-phase technique, involves the use of sonication in different solvents such as 

isopropanol, dimethylformamide, dimethyl sulfoxide, and cyclohexanone.41 and 

surfactant solutions, e.g. sodium cholate, taurodeoxycholate, lithium dodecyl sulfate, and 

others.42 These methods are much safer and cost effective than using lithium intercalation 

but give low yield of monolayer flakes. 

Despite the problems, mechanical exfoliation of graphene using tape has shown 

the best results in terms of physical and electrical properties.4 Likewise, much research 

has been done on exfoliated flakes of MoS2, but a different approach to making these 

materials is bottom-up synthesis where the materials are synthesized at the atomic level. 
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Chemical vapor deposition (CVD) has allowed for the synthesis of large-scale, large-area 

growth of single layer MoS2 not reproducible via exfoliation, although the CVD-grown 

MoS2 is still routinely compared to the top-down exfoliated samples.34 The most common 

CVD techniques of producing MoS2 rely on sulfur powder and a separate source of 

molybdenum, such as MoO3,
43–48 MoCl5,

49 or metallic molybdenum.50 Other CVD 

techniques that have been done are the vapor phase transport and recrystallization of 

MoS2,
51 thermal decomposition of (NH4)2MoS4,

52 and metal-organic CVD.53  

The growth of MoS2 is predominately triangular with a single nucleation point 

leading to monolayer islands that grow outward, potentially merging with nearby islands 

to form lager continuous monolayers. Although the grain boundaries between domains of 

merging islands do not affect the electronic properties as seen in the individual triangles 

of MoS2,
47 they are still most often used in research because their shape can be correlated 

with the MoS2 crystallographic orientations. There have been other growth types 

reported, i.e. star shaped54 and hexagonal,48,55 that form due to differences in procedure 

that lead to alteration of growth kinetics or the amount of chalcogen used. 

While most studies pertain to the monolayer MoS2, very little work has been done 

on multilayer MoS2, especially uniform bilayer and trilayer MoS2 triangular islands. 

Some unique properties that multilayer two-dimensional materials possess over their 

monolayer counterparts originate from different van der Waals interactions between the 

layers. The different ways the layers of MoS2 can grow on top of one another has been 

studied extensively to differentiate between stacking order; a 0o twist angle between two 

layers (AB stacking) and a 60o twist angle (AA’ stacking) being the major 

conformations.56 The stacking configuration can play an important role in the size of the 
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band gap, changing with the twist angle57. The van der Waals interactions between layers 

are what eliminate the direct band gap of MoS2 and create an indirect one, which explains 

the absence of photoluminescence in few-layer MoS2 compared to monolayer crystals.21 

In this chapter, a CVD procedure is established that yields continuous bilayer and 

trilayer MoS2 islands. Characterization via Raman spectroscopy, atomic force 

microscopy (AFM) and photoluminescence (PL) microscopy provides data that conforms 

to what has already been established for single to multilayer MoS2. Due to the difference 

in the band gap type (direct versus indirect) as seen by the stark contrast in PL, it was 

determined that monolayers of MoS2 could also be differentiated from few-layers with 

scanning electron microscopy (SEM) at very low accelerating voltages. After confirming 

the results, electrical measurements were also performed on monolayer and few-layer 

MoS2 flakes. 

Experimental Procedure 

MoS2 crystals were grown on p-doped silicon substrates covered with 300 nm-

thick silicon oxide (SiO2). Substrates were cleaned for 10 minutes in acetone, 10 minutes 

in deionized water, and 10 minutes in 2-propanol before being put into a UV ozone 

cleaner, ProCleanerTM Plus system for 30 minutes. Once the substrates are clean, 0.5-1 

mg of molybdenum (VI) oxide (99.95%, Alfa Aesar) was placed into the center of a clean 

40 mm quartz boat. One substrate (1 x 0.25 cm2) was placed with the SiO2 layer facing 

away from the MoO3 (indicated face-up) directly over the center of the MoO3 and the 

second substrate (~2 x 2 cm2) was placed with the SiO2 layer facing toward the MoO3 

(face-down) with one edge aligned over center of the MoO3. The quartz boat was then 

loaded into a 2-inch quartz tube in a Lindberg Blue M tube furnace. A second quartz boat 



7 
 

 
 

was prepared with 50 mg of sulfur (99.999%, Acros Organics) and placed ~35 cm 

upstream of the MoO3, over the center of a hotplate. The CVD setup can be seen in 

Figure 1a.  
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Figure 1 CVD growth of MoS2 islands with different thicknesses. (a) Scheme of the 

CVD setup. (b) Experimental parameters for growing MoS2 with a different number of 

layers. TF represents the temperature of the furnace and THP represents the temperature of 

the hotplate. Arrows indicate the time when THP is increased and held constant.  
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The system was flushed with argon three times and the growth procedure was 

performed at atmospheric pressure with 100 sccm of argon flowing throughout the 

growth procedure. The CVD procedure starts as the temperature goes up to 300 ºC over 

30 minutes, remains at 300 ºC for 30 minutes, then climbs to 550 ºC over 30 minutes to 

remove any water or surface contaminates that remained after cleaning. After reaching 

550 ºC the temperature is further increased to 800 ºC over 10 minutes, held at 800 ºC for 

10 minutes, and cooled slowly until 380 ºC before opening the furnace to cool back to 

room temperature. 

To produce single layer MoS2 the above procedure was followed by increasing 

the temperature of the hot plate, THP, to 250 ºC at 5 minutes before the temperature of the 

furnace, TF, reaches 800 ºC. Monolayer MoS2 triangles were grown similarly to 

previously reported studies.58 In order to produce multilayer MoS2 the same procedure as 

above was followed except with a change to the rate of sulfur evaporation. By increasing 

the THP to 275 ºC when TF reaches 800 ºC a bilayer of MoS2 was produced. If THP is 

increased again to 300 ºC after 5 minutes at 800 ºC, an allotment of trilayer MoS2 islands 

form. 

Raman spectroscopy was performed using a Thermo Scientific DXR Raman 

microscope with a 532 nm laser. SEM images were taken using a Hitachi S4700 field 

emission scanning electron microscope in secondary electron detection mode at the 

accelerating voltage of 5 kV. Atomic force microscopy (AFM) images were recorded 

using a Bruker Dimension Icon Atomic Force Microscope equipped with ScanAsyst. 

Photoluminescence (PL) microscopy was performed using a Nikon Eclipse Ti-E inverted 
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microscope with a Cy5 filter cube with an excitation cut-off at ~652 nm and an emission 

cut-off at ~671 nm. 

For device fabrication, a Zeiss Supra 40 field-emission scanning electron 

microscope and a Raith pattern generator were used for electron beam lithography (EBL) 

and an AJA electron beam evaporator was used for electron beam evaporation (EBE), the 

detailed procedure for the device fabrication can be found elsewhere.59 Electrical 

measurements of the devices mentioned above were performed using a Lake Shore TTPX 

cryogenic probe station at a base pressure of ~2 x 10-6 Torr. The device electrodes were 

connected to an Agilent 4155C semiconductor parameter analyzer that was linked to a 

computer through 82357B USB/GPIB interface and controlled using a National 

Instruments LabView code. 

Results and Discussion 

 Earlier work done in this field had yielded a method of getting single layer flakes 

of MoS2 but not quite as consistently in shape or quality as was desired. The process of 

growing consistent single layer MoS2 triangular islands was adapted from previous work 

by tweaking growth points and additional parameters, see Experimental section for 

optimized growth conditions currently used. By adjusting the conditions, more uniform 

triangular islands of MoS2 could be seen all around the substrate rather than a mix of 

triangles, stars, hexagons, and merging islands, Figure 2. 

 Star-shaped MoS2 tends to occur when the cooling time was fast, not allowing the 

sulfur enough time to reach the MoO3 and to fully react. More complete triangular islands 

were grown by turning the hotplate on earlier in the process rather than after maximum 

temperature was reached or once cooling began rather than the star shapes originally 
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seen. Formation of hexagons and merging islands of MoS2 was reduced by limiting the 

amount of MoO3 allowed to reach the second/larger substrate. To limit the overall 

nucleation that can occur and restrict the number of merging islands, the amount of MoO3 

used was reduced and a smaller substrate was placed between the desired substrate and 

molybdenum source. 
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Figure 2 Different shapes of MoS2 islands in the form of stars (a), hexagons (b), merging 

islands (c) and uniform triangles (d). Scale bar is the same for all images. 
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 After consistent growth of uniform MoS2 triangular islands the next task was to 

try and grow uniform layered triangles. As could sometimes be seen in the adjusted 

growth procedure, some of the triangles formed had a very clear nucleation site visible in 

the center of the triangle and even some with growth occurring off that nucleation site 

presenting the beginning of a second layer Figure 2d. The assembly of a second layer on 

top of a single layer is something that has already been studied in detail but almost no 

work has been done on a uniform few layer islands of MoS2. 

 The areas that seemed to have more appearances of a bilayer on the substrate were 

closer to the center of the boat where the oxide is originally placed, indicating that the 

area nearer the sulfur may grow taller structures. A possible explanation for these thicker 

islands was due to a faster rate of sulfurization. Unfortunately, it was not the case for 

when the rate of sulfur was simply increased by raising the temperature of the hotplate 

immediately upon reaching growth temperatures, no thicker uniform islands were seen. 

An array of different temperatures was tested, every 5 ºC upward of 250 ºC all the way to 

300 ºC, but nothing different grew than at the initial 250 ºC introduction point. In fact, 

even fewer structures were seen overall than before and even less uniform in shape than 

the previously shown. This was most likely due to the sulfur simply flowing past the 

molybdenum faster than it was depositing on the substrate creating less opportunity for 

growth to occur.  

 As a result of less growth with an increase in temperature, the idea that the 

monolayer triangles needed time to properly form before the second layer formation can 

begin emerged. To allow time for a monolayer to grow, the procedure for single layer 

triangular islands was used and after 5 minutes, the temperature of the hot plate was 
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increased in three separate experiments first by 10 ºC, then 20 ºC and 30 ºC, respectively, 

to see if growth of a second layer would form if the nucleation site atop the monolayer 

was given time to form first. Incomplete growth was seen at 260 ºC leaving more 

monolayer islands at the early stages of the second layer formation. More uniform bilayer 

triangles were then seen at the 20 ºC and 30 ºC increases but at 280 ºC the triangles 

appeared to be smaller than the complete bilayer found at 270 ºC. It was decided that the 

rate of sulfur deposition was too fast, and the second layer was reaching the edge of the 

still growing single layer inhibiting the growth. Without enough energy in the system, the 

second layer of MoS2 will halt the first layer from continuing to expand outward because 

the second layer will grow at a faster rate than the first due to more sulfur being deposited 

faster at the nucleation site. As such, the sulfur flow rate at 280 ºC was limiting the 

growth of the triangles, and 275 ºC was used to encompass both better size and 

uniformity.  

 At the creation of a uniform bilayer MoS2 triangle, the idea to expand this to a 

third layer by the same process was decided. After allowing time for the bilayer to begin 

forming, the temperature was increased again by 25 ºC. A sample produced by this final 

approach is shown in Figure 3 with labelled monolayer, bilayer and trilayer MoS2 crystals 

(the same area of the same without labels is shown in Figure 4a). It is easy to distinguish 

monolayer MoS2 just by the optical contrast on 300 nm-thick SiO2 under an optical 

microscope, while the bilayer and trilayer islands can be differentiated by color. The 

thickness of the crystals was also verified by Raman spectroscopy, AFM and PL 

microscopy. All of the MoS2 crystals in Figure 3 are labelled to indicate the number of 

layers; of the 123 islands shown. Only 19 are monolayer (15.5%), 72 are bilayer (58.5%) 
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and 32 are trilayer (26%). For the growth procedure of trilayer MoS2 as depicted in 

Figure 1, the sample shows an area of 84.5% multilayer growth but with other areas of 

varied growth scattered throughout the substrate, but several comparable areas were 

commonly seen. This makes for very simple identification of large (>10 µm) uniform 

bilayer and trilayer MoS2 crystals. 

Characterization of these flakes was done with several different techniques. 

Raman spectroscopy can differentiate between monolayer, bilayer and trilayer MoS2 

crystals based on spectral positions of the 𝐸2𝑔
1  (~383 cm-1) and A1g (~405 cm-1) 

modes.60,61 As the number of layers in a MoS2 crystal increases, the separation between 

the 𝐸2𝑔
1  peak and A1g peak grows from ~19 cm-1 (monolayer) to ~25 cm-1 (bulk)60. Figure 

4b shows a Raman intensity map of the area outlined by the red square in Figure 4a at 

382 cm-1 demonstrating that bilayer MoS2 crystals give a higher Raman intensity than 

that of monolayer crystals. Figure 4c shows a representative Raman spectra recorded for 

both the monolayer and bilayer MoS2 triangles shown above. 
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Figure 3 Optical photograph of a Si/SiO2 substrate with monolayer (1L), bilayer (2L) and 

trilayer (3L) MoS2 islands with single nucleation sites.  
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Figure 4 Characterization of MoS2 islands grown from the procedure shown in the top of 

Figure 3b of trilayer synthesis. (a) Optical photograph of MoS2 crystals on Si/SiO2 

containing monolayer (1L), bilayer (2L) and trilayer (3L) crystals. (b) Raman intensity 

map of the area shown in the red rectangle in (a) recorded at 383 cm-1. (c) Raman spectra 

of monolayer (1L) and bilayer (2L) MoS2 triangles from (b). (d) AFM image of the area 

shown in the green rectangle in (a). (e) Height profiles measured along the dashed lines in 

(d). 
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 Another technique used to measure thickness of MoS2 crystals is AFM. The AFM 

shown in Figure 4d is of the area outlined by the green square in Figure 4a. According to 

the height profiles given by the dashed lines intersecting the triangles shown in Figure 4d 

the area contains monolayer (1L), bilayer (2L) and trilayer (3L) MoS2 crystals. The 

monolayer measured in Figure 4e gives a thickness of ~0.7 nm which is consistent with 

previously reported literature of other CVD-grown MoS2 triangles44. If the heights add up 

as expected, then it follows that the bilayer should have a thickness of ~1.3 and trilayer a 

thickness of ~2.0, which in fact they do. While the trilayer in this sample is actually 

terraced, not uniform, it gave a good representation of how all three layers can grow in 

the same area. A uniform trilayer crystal that could be observed in many places on the 

flake is show in Figure 5c. Figure 5a-c shows how similar the three different layers of 

MoS2 triangles may appear, only differing in height (Figure 5d). 

 Since bulk MoS2 all the way down to bilayer has an indirect band gap while 

monolayer has a direct band gap, the difference between monolayer and multilayer can be 

distinguished by PL microscopy. Figure 6 shows images of optical and PL microscopy of 

a sample grown with bilayer conditions previously mentioned with a maximum THP of 

275 ºC. Although monolayer MoS2 crystals show a bright emission in Figure 6b, 

multilayer crystals remain dark, except for the edges. The reason some of the monolayer 

crystals do not look as uniform has been reported to be the result of sulfur deficiency.43 

PL shows a more detailed image of monolayer MoS2 flakes. However, PL is impractical 

on samples with flakes thicker than one layer, or to differentiate between thicknesses 

beyond one to two layers. 
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Figure 5 AFM images of uniform monolayer (a), bilayer (b) and trilayer (c) MoS2 

crystals. (d) Height profiles measured along the dashed lines in (a-c). 
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Figure 6 Comparison of optical (a) and PL (b) images of MoS2 crystals. 
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 To reinforce what has been demonstrated on the growth and characterization of 

CVD grown MoS2 it was compared to mechanically exfoliated MoS2 flakes from a single 

crystal (SPI Supplies) via adhesive tape and transferred to a Si substrate with a 300-nm-

thick SiO2 layer for similar comparison as seen in Figure 7d-f. The exfoliated area shown 

in Figure 7f contains monolayer (1L), bilayer (2L), trilayer (3L), and bulk MoS2 crystals. 

The CVD-grown MoS2 and exfoliated MoS2 were verified with Raman spectroscopy, see 

Figure 7g. In both cases, the 1L and 2L regions are indistinguishable by their brightness 

in SEM at 5 kV (Figure 7a and 7d). However, at 1 kV, the monolayer regions of MoS2 

crystals appear much darker than the bilayer regions seen in Figures 7b and 7e. This 

demonstrates a new and useful way to quickly screen for monolayer MoS2 similarly seen 

in PL spectroscopy.  
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Figure 7 (a-c) CVD grown MoS2 triangles on Si/SiO2 recorded by (a) SEM (5 kV), (b) 

SEM (1 kV), (c) optical microscopy. (d-f) Exfoliated MoS2 flakes on Si/SiO2 recorded by 

(d) SEM (5 kV), (e) SEM (1 kV), (f) optical microscopy. (g) Raman spectra recorded 

from the spots shown in panels (c) and (f) for different thicknesses of MoS2 crystals. 
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 Finally, the electronic properties of the CVD-grown MoS2 crystals on Si/SiO2 

substrates were assessed. Ti/Au (1 nm/20 nm) electrodes were fabricated onto MoS2 

crystals. A FET shown in Figure 8a depicts a MoS2 channel bridging two Ti/Au source 

(S) and drain (D) electrodes on Si/SiO2. The silicon was used as a back gate (G) and is 

heavily doped toward the p-type silicon. The devices were allowed two days of 

evacuation in order to minimize the effect of surface adsorbates62. 

 Figure 8a demonstrates the properties of a monolayer MoS2 FET with a n-type 

source-drain current (ISD)-gate voltage (VG) dependence with electron mobilities reaching 

2.5 cm2 V-1 s-1. The source-drain current (ISD)-source-drain voltage (VSD) dependences 

are Ohmic at all gate voltages (Figure 8b insert). A semi-logarithmic scale of the same n-

type ISD-VG dependence shows the device has an ON/OFF ratio of ~105, Figure 8b. In 

total, 15 devices based on monolayer MoS2 triangles were measured and show consistent 

electron mobilities of 2.7 ± 0.9 cm2 V-1 s-1 with ON/OFF ratios ranging from 103 to 105. 

Devices made of bilayer and trilayer MoS2 crystals exhibited similar properties. 

 A comparison of the conductivity between the different layers of devices optically 

shown in Figure 8c can be seen below in Figure 8d. From the graph, it can be seen, that 

as the number of layers increases so does the conductivity. The electron mobilities reach 

3.1 cm2 V-1 s-1 for 1L MoS2, 4.5 cm2 V-1 s-1 for 2L and 9.5 cm2 V-1 s-1 for 3L. Overall, 

eight bilayer MoS2 FETs were measured with an average mobility of 4.7 ± 1.6 cm2 V-1 s-1 

and seven trilayer MoS2 FETs with an average mobility of 7.3 ± 2.3 cm2 V-1 s-1. The 

ON/OFF ratios for each multilayer measured had the same range as monolayer, 103 to 

105.  
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Figure 8 Electrical measurements of CVD-grown MoS2 crystals. (a) Transfer 

characteristics of the MoS2 device show in the inset. (b) Semi-logarithmic scale of the Isd-

Vg from panel (a) with an inset of the Ids-Vds at different gate voltages (ranges -40 to 40 V 

with a 20 V step). (c) Optical photographs of a monolayer (1L), bilayer (2L) and trilayer 

(3L) MoS2 triangle device. (d) Transfer characteristics of devices 1L, 2L and 3L MoS2 

devices from (c). 
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 In summary, the new growth procedure for MoS2 crystals grown in CVD from 

MoO3 and sulfur yield prominently bilayer and trilayer MoS2 islands. Additional layers 

can only form after the initial nucleation and growth of the monolayer has occurred. This 

method allows for uniform bilayer and trilayer islands rather than the more often reported 

terraced structures,56,57 although some terraced growth does still occur. It was revealed 

that along with traditional forms of characterization for MoS2 (Raman spectroscopy, 

AFM and PL microscopy), SEM can also be used to distinguish between monolayer and 

few-layered MoS2 flakes at low accelerating voltages. Lastly it was demonstrated that 

electron mobility increases with increasing layer counts. 
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CHPATER 2: TUNGSTEN DISULFIDE 

Introduction 

 Another well-studied TMD that works in comparison to molybdenum disulfide 

(MoS2) is tungsten disulfide (WS2). While the valence band energy of WS2 is higher than 

that of MoS2, so is the conduction band energy. The result gives a comparable band gap 

to MoS2 at ~1.3 eV as bulk crystal and ~2.1 eV as a monolayer25. However, with a 

slightly larger splitting, it should have a slightly larger band gap than MoS2 making it an 

even better material for electronic devices. Another benefit of WS2 is that the higher PL 

emission efficiency28 could potentially lead to unique heterostructures with adaptive 

optical and electrical functions.19,63 

As was shown with mechanical exfoliation of graphene and MoS2, mechanically 

exfoliated WS2 has also shown greater efficiency compared to its bottom-up grown 

counterpart. Different CVD approaches to growing WS2 are also similar to those of 

MoS2, and include the reaction of tungsten (VI) oxide (WO3) with sulfur,64 sulfurization 

of thermally deposited tungsten oxide films,65,66 pre-dipping into a WO3-IPA (isopropyl 

alcohol) solution,67 iodine transport of WS2,
68 and metal-organic CVD53.  

It has been shown that single layer CVD-grown WS2 has a relatively low 

mobility, ~0.01 cm2 V-1 s-1 compared to MoS2,
46 leaving much room for improvements 

and optimizations in its performance. While there have been improvements in the 

mobility using other techniques such as atomic layer deposition (ALD) to raise the 

mobility up to 3.9 cm2 V-1 s-1,69 CVD-growth still lacks drastically in comparison. The 

largest mobilities recorded for any WS2 come from the thin layered version at 8~10 nm 

with the largest being 234 cm2 V-1 s-1.70 
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Experimental Procedure 

WS2 crystals were grown on p-doped silicon substrates covered with 300-nm-

thick SiO2. The substrate was cleaned for 10 minutes in acetone, 10 minutes in deionized 

water, and 10 minutes in 2-propanol before treatment with an UV ozone cleaner, 

ProCleanerTM Plus system for 30 minutes. Once the substrate is clean, 2-3 mg of tungsten 

(VI) oxide (99.995%, Sigma Aldrich) was placed into the center of a clean 40-mm quartz 

boat. The substrate (~2 x 2 cm2) was placed with the SiO2 layer facing toward the 

tungsten source (face-down) with one edge aligned at the center of WO3. The quartz boat 

was then loaded into a 2-inch quartz tube in a Lindberg Blue M tube furnace.  

 The system was flushed with argon and the growth procedure was performed 

under vacuum with 100 sccm of argon flowing throughout the growth procedure at 1.5-

2.0 Torr. The CVD procedure starts as the temperature goes up to 300 ºC over 30 

minutes, remains at 300 ºC for 30 minutes, then climbs to 550 ºC over 30 minutes to 

remove any water or surface contaminates that remained after cleaning. At 550 ºC the 

temperature climbs to 1100 ºC over 15 minutes, remains at 1100 ºC for 10 minutes, and 

then is cooled normally until 420 ºC before opening the furnace to cool back to room 

temperature.  

 The initial CVD is meant to deposit a very small amount of WO3 on the surface of 

the Si/SiO2. A second CVD is needed to ensure growth of the WS2. Once the CVD 

finishes, the substrate is placed into the center of a different clean quartz boat of the same 

size and loaded into a new 2-inch quartz tube set in the furnace. A third quartz boat was 

then prepared with 40 mg of sulfur (99.998%, Sigma Aldrich) and placed ~35 cm 

upstream of the center of the substrate, over the center of a hotplate.  
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The system was flushed with argon three times and the growth procedure was 

performed at atmospheric pressure with 100 sccm of argon flowing throughout the 

growth procedure. The CVD procedure starts as the temperature goes up to 300 ºC over 

30 minutes, remains at 300 ºC for 30 minutes, then climbs to 550 ºC over 30 minutes to 

remove any water or surface contaminates that remained after cleaning. At 550 ºC the 

temperature climbs to 805 ºC over 10 minutes and remains at 805 ºC for 5 minutes. The 

system begins to slowly cool back down to 550 ºC over 40 minutes, finally being cooled 

normally until 380 ºC before opening the furnace to cool back to room temperature. 

Sulfur was introduced 2 minutes prior to the start of cooling, while the furnace is still at 

805 ºC. For all measurements taken see previous section for equipment, except for the 

SEM in which case a Zeiss Supra 40 field-emission scanning electron microscope using 

an in-lens detector at the accelerating voltage of 5 kV was used instead of a Hitachi 

S4700 field emission scanning electron microscope in secondary electron detection 

mode. 

Results and Discussion 

 A number of initial attempts to grow WS2 by CVD were unsuccessful. The most 

likely reason was due to a deprivation of available tungsten during previous synthesis 

attempts. Initial attempts at WS2 were done similarly to the MoS2 procedure mentioned in 

the previous chapter and there was no/very poor WO3 evaporation to the substrate leading 

to no appreciable growth. A secondary method was adapted where the WO3 was placed 

directly onto the substrate itself for the synthesis to occur without evaporation, again 

leading to no growth. The difference this time was likely due to too much oxide on the 

substrate, inhibiting the growth when reacting with the sulfur and no proper adhesion to 
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the surface. This lead to limiting the amount of oxide used and after numerous trials, 

maximum heat was used in order to evaporate enough tungsten for the reaction to occur, 

while limiting the amount of oxide used. 

 As in the case of MoS2, triangular islands are also the preferred morphology of 

WS2 (Figure 9a). Other shapes seen in certain areas of the substrate are stars, hexagons 

and merging islands, are shown in Figure 9b,c. Similarly, star shapes are seen when the 

cool down time was too short and the reaction was not given enough time to grow, while 

hexagons or merging islands are due to the over-deposition of the oxide. We tried to 

investigate the deposition of the oxide after the initial CVD using only WO3 by taking a 

Raman map, Figure 10, but after the second growth, the relationship between oxide 

deposition and WS2 islands growth was unclear. As sulfurization is occurring, there is the 

possibility of tungsten migrating further downstream and being redeposited elsewhere. 

Thus far, all cases have been similar to the one shown in Figure 10 with areas of WO3 

present, without WS2 growth. We are still considering how the growth of WS2 relates to 

that of WO3 pre-deposited on the surface but it does not currently pose much of an issue 

as large areas of monolayer triangular islands are forming. 
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Figure 9 Differing shapes of WS2 islands in the form of triangles (left), stars (middle) 

and merging islands (right). 

  



31 
 

 
 

 

 

Figure 10 Raman map collected at 521 cm-1 of the area enclosed in a red rectangle shown 

in the inset. 
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Subtle differences between MoS2 and WS2 is the mechanism of growth, although 

it is more common for synthesis of many materials to occur at multiple nucleation points 

we do not necessarily see that in the MoS2 growth very often but in the case of WS2 it is 

far more common. For many trials, it is possible to see multiple small triangular islands 

forming on the original monolayer, Figure 11. Since there are multiple nucleation sites, it 

makes monolayer growth more difficult given that the focus has been to grow it off a 

single nucleation site without a seed present, to compare the results properly to those of 

MoS2. Unfortunately, we are not able to observe the growth process directly in our 

furnace via SEM, transmission electron microscopy (TEM), or even optical microscopy. 

It can be said that many of the monolayers grow from a single nucleation site because the 

triangular shape appears unobstructed at the edges, see Figure 9a. This would mean that 

the nucleation sites appearing on top of the monolayer are due to defects such as 

dislocations or out-of-plane interstitial atoms that occur during the growth procedure. 

These are caused by an excess sulfur or contact with unreacted WO3, creating an 

additional site for nucleation to adsorb to. 
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Figure 11 Multiple nucleation sites on the surface of a WS2 crystal. 
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To determine if WS2 was grown, Raman spectroscopy allows for fast and easy 

determination of results. Figure 12 shows the Raman spectra of a uniform single layer 

WS2 crystal as grown by the reported procedure seen in the ‘inset’ closely matching that 

of reported literature.66,69 The difference in shifts is caused by lasers of different 

wavelength. Raman spectra of different samples had revealed a difference between the 

A1g peak and the 2LA(M) peak increasing from monolayer to bulk, 65.58 to 70.39 cm-1, 

respectively. Another indicator is that the peak at 347 cm-1 has a much greater relative 

intensity than the peak at 413 cm-1.  

AFM was the second characterization technique used to determine the heights of 

the islands. It was found that the height was ~1 nm, which matches with previously 

reported results69. With higher adsorption of sulfur to the oxide than was seen in MoS2, it 

is also more common to see some thicker islands form farthest upstream (closest to the 

sulfur source). These crystals are much thicker than what was seen in the trilayer growth 

of MoS2. AFM of these thicker crystals confirmed that the heights were 8~20 nm (Figure 

13). 
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Figure 12 Raman spectra of monolayer (1L), bilayer (2L) and multilayer (ML) WS2 

crystals shown in the inset. 
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Figure 13 AFM showing the height of a thick multilayer WS2 crystal closest to the sulfur 

source. Change in vertical height (Δh). 

  

Δh = 17.42 nm 
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Finally, the electronic properties of the single layer WS2 crystals were measured. 

The device seen in Figure 14 was one of the better devices fabricated. The mobility was 

found to be moderately low in comparison to MoS2, Figure 14. Although the mobility is 

~0.20 cm2 V-1 s-1, it is almost 20 times that of reported values for CVD grown WS2, 

which were not reported to be any higher than 0.01 cm2 V-1 s-1.46 However, a number of 

fabricated devices were nonfunctional due to the degradation of the SiO2 substrate, since 

its melting point is close to that of WO3. The degradation of the substrate was associated 

with the formation of nanoscopic holes, which caused high leakage currents and failure of 

the devices. Transferring the WS2 flakes to a new substrate that was not subjected to high 

temperature can drastically reduce leakage current. However, a new set of transfer related 

defects can be introduced, such as trapping of transfer liquid or particles, leading to 

mobility reduction. The measured mobilities are still higher than what has been reported. 

In the future, transfer of the monolayer WS2 to a new substrate lacking holes 

should help to ensure a larger sample size. While the growth modifications have not 

drastically increased the mobilities, the results are encouraging as far as CVD grown WS2 

is concerned. The gap between CVD synthesis and exfoliation techniques is shrinking. 

Additionally, our two-part synthesis leads to appreciable monolayer growth, without the 

requirement of a seed catalyst. In summary, WS2 synthesis still has much to improve 

upon but with the limited data acquired, it is applicable towards more complex structures. 
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Figure 14 Optical image of single layer WS2 device (left). Mobility of WS2 device (right) 

with an inset showing IDS-VSD dependencies measured at different gate voltages from -40 

V to 40 V with a 20 V step. 
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CHAPTER 3: HETEROSTRUCTURES OF 2D MATERIALS 

 In recent years, there was a growing interest of heterostructures of 2D materials. 

Stacking is one method of combining different 2D materials to form a heterostructure 

with distinct properties. Stacking can be realized for materials obtained from both a top-

down or bottom-up approaches.  

Many top-down methods involve individual exfoliation of the 2D materials, prior 

to stacking, and then flakes are transferred one on top of another. The van der Waals 

forces that hold graphene and other TMD materials together are strong enough that by 

placing them in contact with one another they will not move. Some of the various 

methods of mechanical transfer involve the use of polymers71,72 to lift one material off 

from its substrate. Using some form of micromanipulator, the flake chosen for transfer 

can then be placed at the desired location. After aligning the flake with a proper 

orientation and position under an optical microscope or other objective lens, the flakes 

can be brought together. This method also allows the freedom to change the alignment of 

the materials and observe how different configurations change the interaction of the two 

layers.73 Washing away of polymers is not a perfect process which leaves behind trace 

amounts that will hinder further building. Recently, more advanced dry peel-off methods 

have started to emerge to eliminate the use of polymers for such transfers.74–76  

Bottom-up growth approaches are much more versatile in the number of 

techniques available, ranging from CVD,77 pulsed laser deposition (PLD),78 vapor-liquid-

solid mechanism(VLS),79,80 atomic layer deposition (ALD),81 and others, provide a large 

variety 2D materials that can be combined in various heterostructures. Currently, CVD 

growth of 2D materials is mostly limited by the sensitivity of growth conditions used 
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since most have different growth parameters. While the bottom-up approaches are more 

diverse, the top-down mechanical exfoliation is readily accessible as long as the bulk 

crystals themselves are available. 

Heterostructures do not necessarily need to be stacked vertically as described in 

the above methods, but can also fused horizontally using the bottom-up approach. The 

ability to create a structure without gaps between two materials or using a top-layer to 

bridge two materials is a more recently developing idea.82 Many electronic properties are 

determined by the edge of a material, which means that if that interface can be altered or 

added to, so should the electronic properties.3,83 In this chapter, different forms of 

heterostructures will be looked at via top-down and bottom-up approaches, while not 

directly comparing the two methods on the same materials. Much of the following work 

lays a foundation to grow and expand upon. 

3.1 Graphene on boron nitride 

Introduction 

 The field of graphene has seen more work done on it in recent years than most 

other forms of research, but still many new ideas are still being generated as for its uses 

or how to improve its current uses. The problems with many graphene devices on silicon 

oxide (SiO2) are surface defects leading to disordered structure, charge trappings that can 

cause shifts in the Dirac point,84 and impurity scattering.4 In order to remove surface 

defects and help reduce charge trappings from the graphene it was thought to transfer the 

graphene onto hexagonal boron nitride which is atomically smooth and free of dangling 

bonds.12 Boron nitride has great thermal and dielectric stability,85 which will greatly help 

to support properties of another material rather than inhibit them. Some of the issues with 
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transferring graphene onto different structures are polymer residues and the appearance 

of wrinkles that develop due to the relaxation of the polymer once graphene has been 

removed from the substrate.86 Different ideas have emerged to try and counter these 

wrinkles, which involve either applying a thicker/secondary layer of polymer86 or using a 

second polymer with more rigidity to it.72 

 Upon setting graphene atop boron nitride, the van der Waals interactions between 

the two materials is strong enough to hold graphene in place. While the interactions are 

strong, they are not as strong as the interactions that hold the bulk crystals of each 

materials together due to lattice mismatching that is accommodated for by the van der 

Waals gap.87,88 These van der Waals structures have been looked to expand graphene’s 

uses beyond current limitations like it’s zero band gap89 and increasing its mobility.90 

Overcoming these limitations, could result in more sophisticated electronic devices.  

 In this study, the goal was to first create a functional graphene boron nitride field 

effect transistor, then study the functionalization of graphene on an insulator compared to 

graphene on just SiO2. The second goal is to compare the same graphene flake placed on 

top of boron nitride and on the SiO2 substrate. The second goal will help to ensure that 

regardless of the material used, the properties demonstrated by that material will change. 

Experimental Methods 

 Graphite flakes (Sigma Aldrich) were first exfoliated several times using Scotch 

tape. Once determined to be thin enough, the tape was pressed onto p-doped silicon 

substrates covered with a 300-nm-thick SiO2. The substrate was then heated to help 

improve the adhesion of large area graphene flakes91 and then slowly peeled off. An 

optical microscope was used to approximate the number of layers of graphene based 
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upon transparency and color. If a flake is thought to be single layer or of few layers, a 

Raman spectrum was measured to confirm the number of layers, as Raman spectra of 

single to few layer graphene has been well documented92–95 and can be quickly cross 

referenced.  

 Polymethyl methacrylate in 4% anisole (PMMA-A4) was then drop-cast on the 

substrate and spin coated on an SH-2 Magnetic Stirrer for 5 minutes at the max rate. 

After spin coating, ~1 cm of PMMA was removed by scratching with a razor blade at the 

edges furthest from the desired graphene flake to help later dissolve PMMA72. A piece of 

PDMS is then cut to be slightly larger than the substrate and small holes are pierced near 

the edges of the two sides that will line up with the areas of PMMA and exposed 

substrate that were removed. These holes will help allow solvent to get under the PDMS 

and dissolve the PMMA more easily as well as act as alignment markers once the 

graphene has been removed from the substrate. The PDMS was then placed over the 

PMMA as indicated above and gently pressed to ensure adhesion takes place evenly. The 

PDMS/PMMA/graphene/substrate should then be placed directly into a 10% KOH 

solution with the PDMS on top. After a short while the SiO2 will begin to dissolve, 

releasing the PDMS/PMMA/graphene to be left floating on top of the solution. The 

substrate can be safely picked up with tweezers at the corner of PDMS with holes to 

avoid damaging desired graphene flake. It was then washed with water three times to 

wash off most the remaining KOH leftover from the solution. The sample was then set on 

a glass slide with the PDMS side in contact with glass to allow the sample to dry. 

 While the sample dries, a large yet thin boron nitride flake (Momentive) then 

needs to be exfoliated in the same manner as graphene, indicated above. The major 
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difference is that it is more difficult to determine the thickness of boron nitride since 

there has not been enough Raman work done to determine the thickness by differing 

Raman wavenumbers, only shifts relating thin layers to bulk are generally seen.96 As a 

fallback, AFM can then be used to determine thickness of boron nitride. While the boron 

nitride does not necessarily need to be single layer for most of the goals of our 

experiments, allowing for some leeway in thickness, but does need to be uniformly thick. 

After confirmation of the thickness of the desired flake it was centered and refocused 

under an optical microscope. Using a camera and TopView program, the flake can be 

outlined to record the position and lowered out of focus without disturbing the x/y axial 

stage controls. 

 Once the PDMS/PMMA/graphene was dry, the glass slide can then be attached 

inverted to a secondary stage that has the capabilities to move in the x, y and z directions. 

The graphene flake was focused using the secondary stage controls and shifted into the 

outline of the boron nitride flake previously recorded in the program. Once the secondary 

stage has been set into the outline, the microscope stage can then be raised slowly and 

steadily, to not shift the x/y position. Upon contact of the substrate containing the boron 

nitride flake and the glass slide holding PDMS/PMMA/graphene the stage should be 

continued to be raised to promote better adhesion between the substrate and PMMA. 

After 5 minutes the secondary stage was slowly raised to lift the substrate from the 

microscope stage. The microscope stage can again be lowered out of focus and the 

secondary stage refocused to determine if the graphene was in fact placed onto the boron 

nitride. The secondary stage can then be moved and the sample lowered onto a hotplate at 

65 ºC for 10 minutes to ensure better adhesion between the graphene and boron nitride. 
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 After heating the sample is removed from the secondary stage and left to cool 

slowly back to room temperature. The sample is finally washed with acetone to dissolve 

the PMMA and release the graphene onto the boron nitride. Characterization of the van 

der Waals heterostructure created is done by optical microscopy, Raman microscopy, 

atomic force microscopy (AFM), and scanning electron microcopy (SEM). 

Results and Discussion 

 Successful transfer of graphene onto boron nitride is shown in Figure 15. The 

graphene in this sample is not single layer but demonstrates a perfectly fit graphene 

transfer and how the finished product should look. Because the graphene is completely 

isolated from the Si/SiO2 substrate, that eliminating any potential surface interactions 

with SiO2. Figure 16a and b show two different single layer graphene flakes on the same 

piece of boron nitride and Figure 16c shows a third single layer graphene flake on the 

SiO2 ~200 µm away from the boron nitride flake. The transfer characteristics and 

mobilities of each graphene flake are shown in Figures 16d-e. The graphene flakes that 

are on boron nitride show Dirac points very close to zero whereas the graphene flake on 

SiO2 shows a Dirac point that is drastically shifted away from zero. Since these flakes 

were prepared on the same substrate at the same time there should be no difference in 

how the devices were prepared meaning the boron nitride is eliminating charge trappings 

on the surface. 
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Figure 15 Few-layer graphene on boron nitride. 

  



46 
 

 
 

 

 

Figure 16 Single layer graphene devices with transfer characteristics and mobilities from 

-40 V to 40 V. (a and c) Graphene on boron nitride and (e) graphene on SiO2. (b) 

Transfer characteristics of (a) showing a Dirac point around -3 V. (d) Transfer 

characteristics of (b) showing a Dirac point around 3V. (f) Transfer characteristics of (e) 

showing a Dirac point outside of the measured range. 
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If a device is positioned so that the area between the electrodes is completely on 

boron nitride the results should be the same. Figure 17a shows a finished device where 

the graphene was not completely placed fully on the boron nitride flake but the device 

that was fabricated only measures the area between the graphene that is atop the boron 

nitride. The mobility of the device can be seen to be ~2500 cm2 V-1 s-1, Figure 17d. (This 

sample is not single layer graphene but few-layers. The measurements show reasonable 

mobility for a few-layered device.) The next step after having created a FET of graphene 

on boron nitride would be to then functionalize it since the Dirac point remains closer to 

zero than that of flakes on SiO2 (Figure 16) helping to standardize shifts of different 

functional groups. Since most devices are unable to attain a Dirac point at or near zero on 

SiO2 then the shift of a Dirac point due to functionalization might result more from the 

functional group affecting the SiO2 than the flakes in question.  

  



48 
 

 
 

 

 

           

 

Figure 17 Few-layer graphene device on boron nitride. (a) Optical image. (b) Transfer 

characteristics of MoS2 device shown in (a). (c) ISD-VSD dependencies measured at 

different gate voltages ranging from -40 V to 40 V with a 10 V step. (d) Mobility 

calculation based on the transfer characteristics shown above. 

  

a b 

c d 
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 While many studies have looked at the increase in electrical properties from 

placing graphene onto boron nitride,12,97,98 there has been very little work done 

demonstrating that difference using the exact same graphene flake. To make such a 

comparison, a very long piece of few layer graphene (196 µm) was set on both boron 

nitride and lead zirconate titanate (PZT). Two devices were fabricated using the same 

graphene flake, as shown in Figure 18c and d. Figure 19 demonstrates how the electrical 

properties changes from placing the device on boron nitride/PZT compared to being left 

on the PZT. Because the boron nitride flake being used in this sample is so thick, it is 

eliminating the hysteresis seen from switching of the PZT in graphene on PZT. It can be 

seen that the drain-source current of graphene on boron nitride is also increased by a 

factor of ~4, which relates to the graphene on boron nitride shown above in Figure 17 

having similar drain-source current. 

  



50 
 

 
 

 

 

Figure 18 (a) Few-layer graphene on both boron nitride and PZT. (b) Enlarged area of (a) 

showing the difference between the graphene on boron nitride/PZT (left portion) and just 

PZT (right portion). Device fabricated of the graphene on (c) boron nitride/PZT. and (d) 

PZT. 

  



51 
 

 
 

 

 

Figure 19 Transfer characteristics of Gr-PZT (left) and Gr-BN-PZT (right), where Gr 

stands for graphene and BN stands for boron nitride. 
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 Future work would entail the addition of a second boron nitride flake on top of the 

graphene already on boron nitride to act as a top-gate, that can be used in place of a band 

gap to control switching99. Using the same procedure listed in the experimental section 

for graphene transfer, the same was attempted for boron nitride. Figure 20 shows the first 

completed sample of a boron nitride/graphene/boron nitride sample. As a preliminary 

result, the structure shows the appearance of new wrinkles not previously seen after the 

second transfer of boron nitride. This is likely due to liquids being trapped between each 

set of layers as the wrinkles were not seen prior to lift off of the polymer. This effect has 

also been seen in just the single transfer if washed or sonicated with an excess of acetone 

when removing PMMA. It is not clear as to why acetone can get trapped in between 

layers so easily during transfer of boron nitride but since graphene excels at preventing 

liquids moving through it, it could help explain why so much liquid becomes trapped 

after it squeezes between the layers. To determine if this preliminary result could lead to 

better stability or lower operating voltages, a top-gate FET has been fabricated on the 

graphene and the top boron nitride flake. The Dirac point of the materials is still close to 

zero, seen here to be about -2 V, indicating less surface charge trappings that were seen 

on SiO2. As seen in Figure 20, from -5 V to 5 V, a large hysteresis occurs similar to the 

previous example where graphene was placed onto PZT. The BN/graphene/BN 

heterostructures find emerging applications in high-performance nanoscale 

optoelectronics,100 as well as flexible and transparent electronics.101 
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Figure 20 A second layer of boron nitride placed on top of the graphene previously laid 

upon a boron nitride flake with a top-gate FET (top). Transfer characteristics of the 

device shown above at different voltages ranging from -1 V to 1 V through -5 V to 5 V 

(bottom). 
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3.2 Molybdenum disulfide on boron nitride 

Introduction 

 With the work already completed on molybdenum disulfide (MoS2) discussed in 

previous chapters and the work described in the previous section, the next step for MoS2 

is to grow it on top of boron nitride. The idea is like that of placing graphene on top of 

boron nitride to enhance the mobility90 and eliminate charge trapping.84 Similar work has 

already been done with the exfoliation of MoS2 onto boron nitride, some going even 

further of making a FET of these structures having graphene as the gate electrode 

demonstrating larger mobilities101,102. The reduction of surface defects for growing MoS2 

is also idealized by using boron nitride, since it is atomically flat and has very few 

dangling bonds.12 It is unclear how many layers of boron nitride it should take to screen 

the charged defects on the surface of SiO2. As such, it is reasonable to have a different 

number of layers present on the same flake to determine at which layer the defects can be 

screened. Another reason that boron nitride was chosen besides the previous work done is 

due to its triangular growth mechanism seen when it is grown in smaller areas via 

CVD.103 If both grow triangularly, the boron nitride should have a similar hexagonal 

lattice to that of MoS2 allowing for more relaxed growth if the sizes of the unit cells are 

compatible. 

 While CVD has become a promising route to explore new materials and their 

growth patterns, there are still many different combinations of materials still undeveloped 

or underdeveloped. A similar example to the work presented here can be seen in the work 

of Dmitry Ruzmetov et al. on “Epitaxial Molybdenum Disulfide and Gallium Nitride,” 

where they present similar results done on gallium nitride rather than boron nitride.104 
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Mitsuhiro Okada et al. report another experiment like our own using tungsten rather than 

molybdenum to grow tungsten disulfide on boron nitride.105 In this section, we present 

work reflecting the previously mentioned studies using our own techniques developed 

previously and to the best of our knowledge, on a combination of 

semiconductor/insulator materials not yet worked upon using the direct growth of the 

semiconductor in CVD onto the insulating material. 

Experimental Procedure 

 A substrate (~2 x 2 cm2) was cleaned for 10 minutes in acetone, 10 minutes in 

deionized water, and 10 minutes in 2-propanol before treated with an UV ozone cleaner, 

ProCleanerTM Plus system for 30 minutes. Boron nitride (Momentive) was then exfoliated 

several times using adhesive tape. Once the flakes were determined to be thin enough, the 

tape was pressed onto p-doped silicon substrates covered with 300 nm-thick SiO2. The 

substrate was then heated to help improve the adhesion of larger area flakes91 and then 

slowly peeled off. Flakes were first scrutinized using an optical microscope to determine 

which flakes might be thin enough or contain enough different steps with enough space to 

grow good single layer MoS2 triangles. The heights were then determined using AFM 

before CVD could be done to ensure accurate height profiles of thin layered boron 

nitride. This process was repeated twice onto smaller substrates (1 x 0.25 cm2). 

Once the substrates contain good boron nitride flakes, 0.5-1 mg of molybdenum 

(VI) oxide (99.5%, Sigma Aldrich) was placed into the center of a clean 40-mm quartz 

boat. One of the smaller substrates (1 x 0.25 cm2) was placed with the SiO2 layer facing 

away from the MoO3 (designated face-up) directly over the center of the MoO3 and the 

second small substrate placed in the same orientation just downfield of the first. The 
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larger substrate (~2 x 2 cm2) was placed with the SiO2 layer facing toward the MoO3 

(face-down) with one edge aligned over center of the MoO3. The quartz boat was then 

loaded into a 2-inch quartz tube in a Lindberg Blue M tube furnace. A second quartz boat 

was prepared with 50 mg of sulfur (99.998%, Sigma Aldrich) and placed ~35 cm 

upstream of the MoO3, over the center of a hotplate.  

The system was flushed with argon for 5 minutes and the growth procedure was 

performed at atmospheric pressure with 100 sccm of argon flowing throughout the 

growth procedure. The CVD procedure begins as the temperature goes up to 300 ºC over 

30 minutes, remains at 300 ºC for 30 minutes, then climbs to 550 ºC over 30 minutes to 

remove any water or surface contaminates that remained after cleaning. At 550 ºC the 

temperature climbs to 805 ºC over 10 minutes, remains at 805 ºC for 5 minutes. The 

cooling processes then begins with the furnace dropping to 550 ºC over 30 minutes 

finally allowed to cool normally until 380 ºC before opening the furnace to cool back to 

room temperature. To produce single layer MoS2 on boron nitride, the hotplate should be 

turned to 250 ºC 2 minutes before the cooling process begins while still at 805 ºC. 

Atomic force microscopy images were recorded using a Bruker Dimension Icon 

atomic force microscope. Raman spectroscopy was performed using a Thermo Scientific 

DXR Raman microscope with a 532 nm laser. Scanning electron microscopy (SEM) 

images were taken using a Zeiss Supra 40 field-emission scanning electron microscope 

using an in-lens detector at the accelerating voltage of 5 kV.   

Results and Discussion 

 The growth procedure for MoS2 on SiO2 does not translate as well as initially 

thought and thus leading to a slightly different experimental procedure than used in 
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Chapter 1. This is likely due to the differences in surfaces and nucleation. SiO2 was clean 

and only contained surface defects. The nucleation of MoS2 could be anywhere and it 

was not confined. Wafer scale films were not seen from the procedure described in 

Chapter 1. In the case of boron nitride both of these details were an issue. The larger 

problem of the two was the nucleation sites, because having flakes of boron nitride will 

instantly generate multiple nucleation sites at the edges, whether it be between the SiO2 

and a flake of boron nitride or individual layers of boron nitride within the same flake. As 

can be seen from the optical image in Figure 21, the green area around the boron nitride 

crystal (yellow) shows much more nucleation around the edges of the flake than other 

parts of the substrate. The area highlighted in red from Figure 21 shows the large clusters 

of nucleation between different layers. With more nucleation at edges between layers, 

MoS2 also requires more space between the edges of two layers for triangular island 

growth to occur. These two problems lead to decreasing the amount of cooldown time to 

get smaller MoS2 triangles to fit better in areas between layers but with later sulfur 

introduction time, i.e. turning the hotplate on later. 
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Figure 21 Optical image demonstrating MoS2 nucleation being favored at the edges of 

boron nitride (left). SEM image of the optical image from the left panel of MoS2 growth 

around and on top of boron nitride (right). 
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Since we predicted that growth should be better on boron nitride than just SiO2, it 

can be reasoned that the lattice mismatch will be one of the largest contributing factor to 

how well MoS2 can grow. The lattice also contributes to the directional growth of the 

MoS2 on the boron nitride, it should grow in the same direction as the boron nitride’s 

crystal structure and if it does happen epitaxial alignment should be seen consistently 

throughout the crystal. A representative sample of MoS2 grown on thicker boron nitride 

(>100 µm) is shown in Figure 22. The origin of alignment for triangles becomes clear 

from the top and right edges, highlighted with a red and green line respectively. Of all the 

MoS2 triangles present in Figure 22, >90% have two sides that align with both the red 

and green lines shown.  

The samples that do not have this same type of alignment pattern are the very thin 

flakes of boron nitride, where surface defects of the SiO2 could still be more impactful 

than the pristine surface of boron nitride. Figure 23 shows a thin boron nitride with MoS2 

grown but it does not appear epitaxially aligned like the crystals from Figure 22. A 

sample containing a boron nitride flake with thickness varying from very thin with 

unaligned regions of MoS2 to the thicker regions of aligned growth is shown in Figure 24. 

The AFM image in Figure 25 shows that the triangles grown in the thicker regions are in 

fact single layer, which was also confirmed by Raman spectroscopy.  
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Figure 22 SEM image demonstrating the alignment of MoS2 triangles compared to the 

edges of boron nitride. 
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Figure 23 Optical image of very thin boron nitride flake containing multiple thicknesses 

of few layers prior to MoS2 growth (left). SEM image of MoS2 grown on/around the 

boron nitride flake with no epitaxial alignment or very little triangular growth seen 

(right). 
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Figure 24 SEM image of boron nitride with thickness ranging from double layer (red) to 

greater than 100 layers (green), the thinnest parts showing no epitaxy and the thicker 

areas with good alignment can be seen in Figure 22. 

  



63 
 

 
 

 

Figure 25 AFM confirming single layer MoS2 triangles are grown in the thicker region of 

boron nitride. Change in vertical height (Δh). 

  

Δh = 0.986 nm 
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3.3 Molybdenum disulfide/tungsten disulfide 

Introduction 

 Strong interest TMDs and heterostructures resulted in the logical next step of 

combining MoS2 and WS2 to create new heterostructures, with unique properties, not 

seen in either material. While MoS2/WS2 heterostructures are not new, and much work 

has already been underway with these structures in the vertical direction, one stacked on 

top of the other,98,106–109 much less has been done in the lateral direction of these two 

materials, in-plane with one another.98,110,111 Many of the challenges facing the lateral 

heterostructures, not only MoS2/WS2 but others such as WS2/WSe2, MoS2/MoSe2 and 

MoSe2/WSe2 are poor interfaces,112 lattice mismatch,82 or special precursors to help 

create good contacts.111 

 Many of the aforementioned procedures have certain issues to overcome while 

using single-step growth techniques giving rise to the idea to use a two-step process. 

Having already established a two-step method for growing WS2 using tungsten oxide 

deposition mentioned in Chapter 2, see experimental procedure, the foundation for 

heterostructures using a two-step process was already in place. Kun Chen et al. also used 

a similar idea of first growing an MoS2 island in an initial CVD and then growing a WS2 

island around it in a second CVD to simplify the process of growing a lateral 

heterostructure.110 Our idea and goal was originally to create a structure with a WS2 

island grown using the pre-deposited WO3 to form a MoS2 island around it during the 

second phase of CVD growth. While we attempt to grow both islands in the same CVD 

cycle, it still utilizes a different method from the single-step growth techniques which 
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could allow for the expansion of growth for different materials. In this section, we present 

findings similar to the goal previously mentioned but not with the originally desired 

configuration.  

Experimental Procedure 

MoS2/WS2 crystals were grown on p-doped silicon substrates covered with a 300-

nm-thick SiO2 layer. The substrate was cleaned for 10 minutes in acetone, 10 minutes in 

deionized water, and 10 minutes in 2-propanol before being treated in an UV ozone 

cleaner, ProCleanerTM Plus system for 30 minutes. Once the substrate is clean, 1-2 mg of 

WO3 (99.995%, Sigma Aldrich) was placed into the center of a clean 40-mm quartz boat. 

The substrate (~4 x 2 cm2) was placed with the SiO2 layer facing toward the tungsten 

source (face-down) with one edge aligned at the center of WO3. The quartz boat was then 

loaded into a 2-inch quartz tube in a Lindberg Blue M tube furnace.  

 The system was flushed with argon and the growth procedure was performed 

under vacuum with 100 sccm of argon flowing throughout the growth procedure at 1.5-

2.0 Torr. The CVD procedure starts as the temperature goes up to 300 ºC over 30 

minutes, remains at 300 ºC for 30 minutes, then climbs to 550 ºC over 30 minutes to 

remove any water or surface contaminates that remained after cleaning. At 550 ºC the 

temperature climbs to 1100 ºC over 15 minutes, remains at 1100 ºC for 10 minutes, and 

then is cooled normally until 420 ºC before opening the furnace to cool back to room 

temperature.  

 The second CVD will be needed to ensure growth of the heterostructure of 

MoS2/WS2. Once the CVD finishes, the substrate is then placed into the center of a 

different clean quartz boat of the same size with 0.4-0.6 mg of MoO3 (99.5%, Sigma 
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Aldrich) in the center of it then loaded into new 2-inch quartz tube set in the furnace. A 

third quartz boat was prepared with 40 mg of sulfur (99.998%, Sigma Aldrich) and 

placed ~35 cm upstream of the center of the substrate, over the center of a hotplate.  

The system was flushed with argon for 5 minutes and the growth procedure was 

performed at atmospheric pressure with 100 sccm of argon flowing throughout the 

growth procedure. The CVD procedure begins as the temperature goes up to 300 ºC over 

30 minutes, remains at 300 ºC for 30 minutes, then climbs to 550 ºC over 30 minutes to 

remove any water or surface contaminates that remained after cleaning. At 550 ºC the 

temperature climbs to 805 ºC over 10 minutes, remains at 805 ºC for 5 minutes. The 

cooling processes then begins with the furnace dropping to 550 ºC over 40 minutes 

finally allowed to cool normally until 380 ºC before opening the furnace to cool back to 

room temperature. To form single layer heterostructures, it was found that the hotplate 

should be turned to 250 ºC as the cooling process begins. 

Characterization of the MoS2/WS2 structures created was done via optical 

microscopy, Raman microscopy, AFM, photoluminescence spectroscopy (PL), SEM and 

transmission electron microscopy (TEM). 

Results and Discussion 

 The inset in Figure 25 shows a heterostructure’s optical contrast within the same 

triangular island. The differentiation between the two materials was first confirmed by 

Raman spectroscopy. Figure 25 shows the Raman spectra of the areas highlighted in the 

insert. The middle island is MoS2 and the outer island is WS2. Raman also confirmed 

single layer MoS2 to be present because the difference between the 𝐸2𝑔
1  peak and A1g 

peak was ~19 cm-1. Similarly, the single layer WS2 was also confirmed with 532 nm the 
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peak at 351 cm-1, which should have had a higher intensity than the peak at 417 cm-1. 

Raman maps were also created of several samples showing the major peak for MoS2 at 

403 cm-1 and WS2 at 351 cm-1. Many of the maps created show similar results to the 

Figure 26 shown below where the MoS2 is the predominant species while WS2 is 

primarily seen along the edges. In some cases, though, WS2 can be seen in the center of 

the MoS2, marking the growth of a second monolayer of WS2 on top of the MoS2.  

To confirm that the Raman spectrum for these heterostructures is a result of the 

individual materials and that the new structure is not interfering with the vibrational 

frequencies, AFM was also done to confirm the number of layers. As can be observed 

from Figure 28, the height profile across the center structure like the one shown in Figure 

27 has very little to no change present when moving from the center to the outside. While 

there should be some height discrepancy between the two different materials, it is not 

easily seen in AFM because the single layer heights are so similar, MoS2 being 0.7 nm 

and WS2 being 0.8 nm. 

  



68 
 

 
 

 

Figure 26 Raman of the optical image from the inset. The black dot corresponds to the 

Raman shown in black confirming growth of WS2.The red dot corresponds to the Raman 

shown in red confirming growth of MoS2. 
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Figure 27 Optical image of a heterostrucutre (left). Raman maps taken of the sample 

from the left panel. Raman map of MoS2 recorded at 403 cm-1 (middle) and Raman map 

of WS2 recorded at 351 cm-1 (right). 
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Figure 28 AFM from the center region to the outer region similar to the flake shown in 

Figure 25 showing no discernable change in the height between the two structures. 
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 PL of a similar area mapped by Raman is shown in Figure 29 for comparison of 

the excitation. The outside of the islands appears brighter because the Cy5 filter cube 

being used gives a better excitation of the WS2 wavelength, making the MoS2 in the 

center appear dark. There is also a brighter area around the area that the two interfaces 

meet, most likely due to higher electron density in these areas. 

Electrical properties of the vertical species have been investigated thoroughly 

using traditional FETs,108 femtosecond pump-probe spectroscopy,109 and Kelvin probe 

force microscopy (KPFM)107 to observe interaction between van der Waals layers but 

little work has been done thus far as to investigate the changes in electrical properties due 

to the change as electrons flow laterally electron flow between the two. We present a 

concept of how to measure the current through just MoS2, how it changes when flowing 

through both MoS2 and WS2, and finally how it changes when flowing through WS2 with 

a center portion of MoS2
 separating two sides of WS2. The first device created is shown 

in Figure 30, but the results of this experiment have been inconclusive thus far. The 

problems previously observed in synthesis of WS2, where a large leakage current is 

present, gives little validity to the current results most likely due to the extreme 

conditions used in the synthesis process. The materials need to be transferred to a 

different substrate for device fabrication, like in case of WS2 from Chapter 2. This should 

eliminate the leakage current. This will leave an avenue for future work beyond what has 

already been presented here. 
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Figure 29 PL map of the same sample shown in Figure 27. 
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Figure 30 Primary attempt at measuring electronic properties of an in-plane MoS2/WS2 

heterostructure device. 
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Conclusion and Future Outlook 

 TMDs continue to be explored as complementary materials to graphene for a 

variety of applications. There is also a growing interest in emerging heterostructures of 

2D materials, which provide a more customizable way to design electronic properties. It 

has been discussed here that monolayer, bilayer and trilayer MoS2 still have properties to 

be explored and even more when placed onto the surface of another material. Alterations 

to these materials could also prove useful, such as functionalization. 

 Much work still needs to be done to further improve CVD of WS2, as has been 

done for MoS2 before it. We have shown a potential increase in the mobility compared to 

current standards than have been produced. The development of WS2 could very easily 

follow the same trend as MoS2 with its next step being the development of CVD 

procedures for bilayer and trilayer materials to determine if the same trend can be 

observed. Regardless of how the few layered materials behave, it could prove even more 

useful to place and/or grow WS2 on other materials, such as boron nitride, to further 

enhance the mobility, or possibly other properties as well. The combination of the two 

materials, MoS2 and WS2 in the same plane could tailor electrical and optical properties 

in much more specific ways than seen placing one atop of the other. 

While TMDs enjoy the increasing popularity, there may still be some novelty left 

to explore graphene in different heterostructures. In this work, graphene has been laid 

upon boron nitride to boost its already amazing electronic properties. It was also shown 

that the exact same graphene flake, does have better properties when placed onto boron 
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nitride. In the future work, a graphene flake on two different substrates can then be 

functionalized to help accurately determine shifts in the Dirac point caused by different 

functional groups. 
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