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All chemistry students must develop competency in analyzing and making sense of data. 

However, there are many difficulties that chemistry students may experience while analyzing 

data. Many students may not use relevant prior knowledge to aid in making sense of data, or they 

may not form conclusions using all the data provided. Additionally, prior knowledge seems to 

influence one’s data analysis, but little is known about how students use it to make sense of data. 

Thus, I interviewed undergraduate students as they analyzed graphical data for a task and 

characterized how they used their prior knowledge throughout. My findings suggest that 

students’ prior knowledge helped to form a frame for students. This frame is then used 

throughout students’ sensemaking to help search for and identify relevant data and evaluate data 

against their frame to aid in decision-making. Because there are limited classroom interventions 

designed to help develop undergraduate students’ data analysis competencies, I designed a study 

in which undergraduate students compared their data analyses to pre-constructed sample 

responses via a simulated peer review. My findings suggest that providing students with the 

opportunity to compare their analyses against other responses, practice giving feedback, and 

reflect on their work may provide opportunities to generate internal feedback on their 

performance. Depending on the nature of the internal feedback (i.e., if it is critical or not), 

students may revise to improve their work. Finally, as part of contributing new knowledge to 

their field, chemistry graduate students must learn how to best respond to data that is discrepant 



 
 

with their expectations. Yet, there is little research on how chemistry graduate students analyze 

data, and none that explores how they respond to unexpected data. For this reason, I interviewed 

chemistry graduate students as they analyzed multiple data sets to explain a chemical 

phenomenon, and I characterized how students responded to unexpected data using Data-Frame 

Theory. My findings indicate that students respond to discrepant data in several ways, and each 

response is capable of progressing students’ sensemaking to achieve the goals of the analysis. 
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CHAPTER 1 

 INTRODUCTION AND LITERATURE REVIEW 

Students of today are exposed to different sources of information and evidence that 

influence their decision-making. Many of these sources of information may be false (e.g., mis- 

and dis-information) or manipulated in some way (e.g., mal-information), and ultimately can 

cause real harm when used as the basis for decisions (Carmi et al., 2020). To prepare students to 

engage with such information in their everyday lives, some experts have argued for further 

developing students’ understanding of science practices (Sharon & Baram-Tsabari, 2020). This 

echoes chemistry educators’ calls for reforms to increase student engagement in science practices 

in post-secondary STEM courses (Cooper et al., 2015; National Research Council, 2012; 

Talanquer & Pollard, 2010).  

Science practices consist of the methods that scientists use to “do” their science. One 

essential science practice for STEM students to develop competency in is data analysis. As 

undergraduate and graduate students progress through their education, they must continue 

building competency in data analysis to be prepared for the STEM workforce (Cooper et al., 

2015; National Academies of Sciences, 2018). Although the Next Generation Science Standards 

has outlined the data analysis competencies students should be able to demonstrate at a variety of 

grade levels (National Research Council, 2012), there is a limited understanding of how this 

competency develops past the K-12 level. Thus, there is a need to further investigate how 

chemistry students engage in making sense of data at the postsecondary level and beyond. 

Data Analysis and Graph Interpretation 

One of the most common forms of data that students will encounter and analyze is the 

graph. The steps associated with data analysis and graph interpretation are comparable and share 
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similar challenges. To begin, an individual will first encode the features of the data 

representation and identify the relevant features that are important for the remainder of the 

analysis (Carpenter & Shah, 1998; Glazer, 2011; Shah & Hoeffner, 2002; Zagallo et al., 2016). 

The encoded features can then be used to identify any relevant patterns or relationships that may 

be present (Ratwani et al., 2008; Zagallo et al., 2016). During these steps, many encounter 

challenges in differentiating relevant data features from irrelevant data features (Canham & 

Hegarty, 2010; Jeong et al., 2007; Kanari & Millar, 2004; Shah & Hoeffner, 2002), which may 

cause individuals to identify less relevant patterns in the data (Zagallo et al., 2016). Once the 

individual identifies the different patterns in the data, they must connect the pattern to the 

underlying scientific phenomenon to form a claim about the data (Carpenter & Shah, 1998; 

Glazer, 2011; Latour, 1999; Shah & Hoeffner, 2002). Essentially, the last step serves as the 

opportunity to make meaning of the data by using one’s knowledge of the underlying content 

(Carpenter & Shah, 1998; Roth & Bowen, 2000; Shah & Hoeffner, 2002). Not fully engaging 

and completing this last step can result in more superficial interpretations of the data (Lai et al., 

2016). 

Prior Knowledge in Data Analysis 

There is a growing body of evidence that suggests that what prior knowledge is accessed 

during data and graph analysis greatly affects what meaning one can make from a data set. 

Graphical representations often elicit one’s schemas of graphs to help orient oneself to the 

information presented and make sense of it (Pinker & Feedle, 1990; Shah & Carpenter, 1995; 

Shah & Hoeffner, 2002). For instance, it is a common graphical convention to place independent 

variables on the x-axis of the graph and dependent variables on the y-axis of the graph. When 

this convention is not followed, interpreters often make faulty interpretations due to their schema 
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of where independent and dependent variables exist on the graph (Shah & Hoeffner, 2002). 

One’s knowledge of the content in the data representation or data set also greatly affects how one 

engages in data analysis. For instance, having prior knowledge of the content in the graph can 

help analyzers encode more relevant information, identify relevant patterns in the data, and 

engage in a more thorough analysis of the data set (Canham & Hegarty, 2010; Roth & Bowen, 

2000; Shah & Hoeffner, 2002). Conversely, not accessing the necessary content knowledge can 

affect what information is deemed important and consequently impact what patterns are 

identified (Carpenter & Shah, 1998; Jeong et al., 2007; Masnick & Morris, 2022; Shah & 

Hoeffner, 2002).  

Research in chemistry education also highlights the importance of prior knowledge in the 

students’ data analyses, in that multiple studies have identified that undergraduate students rely 

on heuristics and “everyday” knowledge when reasoning with chemical data (Becker et al., 2017; 

Heisterkamp & Talanquer, 2015; Zhou & Moon, 2023). In one study, Becker and colleagues 

identified the different ways that undergraduate students used chemical rate data to construct 

mathematical kinetic models (2017). Some students relied on the stoichiometric constants from 

the balanced chemical reaction equations rather than consulting the initial reaction rate and 

concentration data. They also used heuristics that were not productive in constructing an 

empirically sound kinetic model. It is possible that this could be due to students not accessing 

relevant content knowledge related to reaction rates, and instead relying on other knowledge that 

they could access to aid in making sense of the data. Similarly, Zhou and Moon’s study found 

that when asked to decide on which reaction mechanism was the most likely, some 

undergraduate students admitted to not using any of the data presented to them to evaluate 

(2023). Instead, students relied on heuristics to determine the mechanistic pathway, such as 



4 
 

reasoning that one of the pathways seemed to use less energy, even though none of the data 

presented related to energy. In Heisterkamp and Talanquer’s case study of an undergraduate 

chemistry student analyzing boiling point data and ionization energy, the authors found that the 

participant often used their everyday knowledge in tandem with their content knowledge (2015). 

For example, the participant used their knowledge of the density of macroscopic items like rocks 

and cotton with their knowledge of electron density when explaining ionization energy trends. 

From these studies, it is evident that what prior knowledge students can access when analyzing 

data affects how they engage in the analysis of chemical data. 

Although much of the research in chemistry education demonstrates the importance of 

accessing prior knowledge, it is also important to consider how the student uses the prior 

knowledge in their data analysis. For instance, Connor and colleagues identified that both 

undergraduate and graduate chemists use the “n+1” rule when analyzing proton nuclear magnetic 

resonance (1H NMR) spectra to determine molecular structure, but graduate students knew under 

what contexts this rule was no longer valid (2021). Additionally, Zhou and Moon’s study found 

that undergraduate students who used data to form their conclusions and students who did not 

use the data often both employed the same content knowledge related to the rotation of bonds in 

a cyclic molecule (2023). However, those who used the data could identify the connections 

between the data provided and the knowledge that they were accessing to construct better-

supported conclusions. Both studies suggest that simply activating necessary prior knowledge 

can only take one’s data analysis so far. 

More research is needed to uncover how prior knowledge is used in the data analysis 

process. Specifically, there is a need to establish a model that can describe the underlying 

mechanism of how prior knowledge is used throughout the data analysis process. This can best 
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be fulfilled through qualitative inquiry, in which think-aloud interviews are used to elicit when 

and how students draw upon their prior knowledge and experiences to make sense of data. These 

interviews can help provide a rich, detailed source of information directly sourced from students 

to provide a fuller picture of the phenomenon (Creswell & Poth, 2016; Merriam & Tisdell, 

2016). Additionally, qualitative analysis of interviews can best capture the complex and 

sometimes even messy processes students engage in as they make sense of data (Creswell & 

Poth, 2016; Merriam & Tisdell, 2016). In this way, a theory can be built that captures a 

mechanism of how prior knowledge is used throughout students’ data analyses (Creswell & Poth, 

2016; Merriam & Tisdell, 2016). 

Epistemic Criteria Used in Data Analysis 

When engaging in data analysis, all students must consider several epistemic criteria for 

what constitutes a quality data analysis. These epistemic criteria help guide students in their 

reasoning to develop more sophisticated and complete analyses. A deep understanding of the 

epistemic criteria related to data analysis (and science practices more generally) is demonstrative 

of further developing competency in the domain of data analysis (Kuhn et al., 2017).  There are 

several criteria for students to consider including (but not limited to) the following: 

Students must consult and use data as evidence when forming a conclusion (National 

Research Council, 2012). It is only in this way that scientific knowledge is constructed; empirical 

data must serve as the basis for scientific conclusions (Duschl, 2008; Ford, 2012; Jiménez-

Aleixandre & Crujeiras, 2017; Kuhn et al., 2017; Taber, 2017). When students base their 

analysis on heuristics or intuition alone, they risk forming poorly supported conclusions or 

misinformed conclusions that are not scientific in nature (Becker et al., 2017; Zhou & Moon, 
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2023). Thus, a strong data analysis is built upon and supported by the foundation of empirical 

data. 

Students must also consider what knowledge to use to make sense of the data and 

consider if that knowledge is most appropriate for their analysis (Duncan et al., 2018; Grolemund 

& Wickham, 2014; Klein et al., 2007). This is important as students may use “everyday” 

knowledge in place of more relevant prior knowledge when analyzing data until prompted 

otherwise (Heisterkamp & Talanquer, 2015). Students may also draw upon conceptual 

knowledge that is related to the data but is not productive for the context. For instance, Zhou and 

Moon found that when undergraduate students analyzed data on halogenated products to identify 

a mechanism that produced the products, students used their knowledge of electronegativity to 

make sense of data (2023). Although the data set contained data on halogens with different 

electronegativities, the mechanisms presented did not depend on the electronegativities of the 

halogens. Had the undergraduate students considered other possible knowledge and interrogated 

which could best make sense of the data as part of their analysis process, they might have 

identified that electronegativity was not productive in identifying the mechanism that produced 

the halogenated product yields. Therefore, not only do stronger analyses use conceptual 

knowledge, but stronger analyses use conceptual knowledge that offers the most explanatory 

power for making sense of the data. 

Additionally, students must recognize when there is discrepant data, and then consider 

how they must engage with said discrepancy (Grolemund & Wickham, 2014). When making 

sense of data, the data should serve as evidence to support one’s conclusions formed from one’s 

analysis (National Research Council, 2012). Thus, when students encounter discrepant data, they 
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must decide if the data weakens or limits their conclusions, and if so, what they must do to 

address said discrepancy.  

To develop and internalize epistemic criteria such as these, it is necessary to implement 

more opportunities for students to practice them in the classroom. However, it can be difficult to 

attend to individual students’ engagement in data analysis and interpretation in the classroom, as 

instructors and teaching assistants must monitor and manage many groups of students in most 

classroom spaces (Phillips et al., 2021). Although some work has investigated methods to 

implement data analysis in the undergraduate biology classroom (Bolger et al., 2021; Zagallo et 

al., 2016), there is still a need to investigate more classroom methods that can develop this 

competency, especially within the context of the chemistry. 

Peer Review 

Many of the science practices, including data analysis, will produce written knowledge 

products. Peer review can serve as a tool to evaluate these written products. By being exposed to 

other students’ products when giving feedback and receiving compelling feedback from others, 

students can develop and practice evaluative judgment (Nicol et al., 2014; Sadler, 2010). This 

evaluative judgment serves as a “rubric” of what constitutes a successful and quality product for 

a specific domain (Sadler, 2010). Developing and exercising evaluative judgment related to 

science practices, like data analysis, is equivalent to building a deep understanding of the 

epistemic criteria of science practices, which is essential for developing competency (Kuhn et al., 

2017). 

 Peer review serves as a vehicle to produce different sources of feedback on written work. 

Receiving feedback from multiple peers in a peer review setting offers students the opportunity 

to improve their work without needing the same feedback from an instructor (Cho & MacArthur, 
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2011). However, students must develop feedback literacy to effectively engage with feedback 

that they receive from peers. This involves students appreciating the feedback and recognizing its 

value, exercising their evaluative judgment on the feedback (i.e., does the feedback help students 

better fulfill the criteria for success), managing affect relating to the received feedback (e.g., 

managing defensive feelings, doubt, uncertainty, etc.), and then acting on the feedback that they 

have received (Carless & Boud, 2018). This can be a laborious literacy to develop and 

purposefully engage in, especially in the context of large-enrollment courses where students may 

not know the peers whom they receive feedback from. Given the laborious nature of these steps, 

it is not surprising that receiving feedback in peer review may not compel some students to make 

necessary changes to their work (Finkenstaedt-Quinn et al., 2021).  

 Some studies have shown that students make more improvements to their written work 

after giving feedback in peer review (Anker-Hansen & Andrée, 2015; Cho & MacArthur, 2011; 

Ion et al., 2019; Lundstrom & Baker, 2009; Nicol et al., 2014; Nicol & McCallum, 2021). 

Students sometimes report that giving feedback helped them identify areas of improvement in 

their work before they had even engaged with the feedback that they had received from peers 

(Nicol et al., 2014). Considering that students demonstrate such significant improvements from 

giving feedback, it is necessary to uncover the underlying mechanism that produces these 

improvements. 

 When students give feedback in peer review, they begin by making a comparison 

between their own work and the work that they are reviewing (McConlogue, 2015; Nicol, 2020; 

Nicol et al., 2014; Nicol & McCallum, 2021; van Popta et al., 2017). During this comparison, 

students use their own work as a reference. Engaging in this comparison between the two 

products can prompt students to reflect on the task’s criteria for success and exercise evaluative 
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judgment on their own work (McConlogue, 2015; Nicol et al., 2014; Nicol & McCallum, 2021). 

This process can help students generate internal feedback which can be used to inform and 

improve their work to better meet the criteria of the task (Anker-Hansen & Andrée, 2015; Nicol, 

2020; Nicol et al., 2014; Nicol & Kushwah, 2023; Nicol & McCallum, 2021). Given the research 

on giving feedback in peer review, questions remain on how to effectively implement peer 

review within chemistry classrooms.  

Recent studies within chemistry education have attempted to describe the role of peer 

review in undergraduate students’ revisions in writing assignments (Finkenstaedt-Quinn et al., 

2024; Watts et al., 2024); however, their decision to only consider undergraduate students’ 

written peer review comments and final written products limits the findings that they produce. In 

both studies, the authors identified new writing present in a student’s final written draft that 

seemed to reflect feedback that the student had given or received. Though the authors could infer 

that the peer review’s feedback caused revisions, in no part of the study were students given the 

opportunity to explain why they chose to revise or not. Additionally, students were not asked 

how the different sources of feedback influenced their decision-making to revise. This makes it 

difficult for instructors to know how to best design classroom peer review assignments to elicit 

students’ full participation to produce their best-written work. 

Thus, research is needed to develop a theory that can explain how and why students 

choose to revise their written work when giving feedback, especially in the context of science 

practices. To do this, qualitative interviews are needed so that students can directly explain how 

they evaluated their written work after giving feedback to others (Creswell & Poth, 2016). These 

interviews can be analyzed via exploratory qualitative inquiry to describe the rather complex 

feedback generation and implementation processes found in peer review (Creswell & Poth, 2016; 
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Merriam & Tisdell, 2016). In this way, a more comprehensive model of giving feedback in peer 

review can be built to provide more explicit implications to researchers and instructors (Creswell 

& Poth, 2016; Merriam & Tisdell, 2016).  

Graduate Students’ Sensemaking of Unexpected Data 

One of the central goals of chemistry graduate programs is to develop competent and 

independent scholars within the field of chemistry (National Academies of Sciences, 2018; The 

American Chemical Society, 2012). To do this, chemistry departments require that graduate 

students participate in and fulfill different programmatic elements, such as writing and defending 

a dissertation (Donkor & Harshman, 2023). Working towards these programmatic elements 

requires that graduate students analyze empirical data and conduct original research that 

contributes new knowledge to their field (Donkor & Harshman, 2023). 

 Scientists often construct new knowledge for the world through engaging with 

uncertainty (Kampourakis & McCain, 2020). A form of uncertainty that scientists, including 

chemistry graduate students, face in their research is data that is discrepant with one’s 

expectations (Grolemund & Wickham, 2014). For instance, scientists stage experiments with 

uncertain outcomes and make sense of the results as part of their research (Latour, 1999). Thus, 

to develop into competent and independent scholars who contribute new knowledge to their 

field, chemistry graduate students must be trained to productively engage with unexpected data. 

 Few studies in chemistry education have investigated chemistry graduate students' 

reasoning with chemical data, and the ones that have done so primarily focus on graduate 

students’ sensemaking of IR and 1H NMR spectra to determine chemical structures. In a study of 

how chemistry graduate students used IR and 1H NMR to construct a molecular structure, 

Cartrette and Bodner qualitatively captured the different ways in which more successful students 
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differed from less successful students (2010). The authors found that more successful graduate 

students searched the data for less salient data, specifically the 1H NMR spectra’s coupling 

constants, to aid them in determining the structure of the molecule. Furthermore, more successful 

graduate students were more likely to check their proposed structure against the spectra, which 

suggests that students were verifying that their claims were supported by the evidence provided. 

In another study, Connor and colleagues used eye tracking and retrospective think-aloud 

interviews to explore undergraduate and graduate students’ analyses of IR and 1H NMR to 

determine if a synthesis was successful or not (2021). The authors identified that graduate 

students spent less time than undergraduates looking at the fingerprint region of the IR spectra. 

The authors argue this reflected that the graduate students knew the fingerprint region has 

varying useful information for determining molecular structure. Additionally, the graduate 

students’ gaze patterns indicate that they searched for complementary data between the IR and 

1H NMR data to help them determine if a synthesis was successful or not. This could be 

indicative of graduate students looking for multiple sources of evidence to support their claims. 

 Both studies from Cartrette and Bodner and Connor et al. have documented ways in 

which chemistry graduate students make sense of IR and 1H NMR spectra to determine 

molecular structures, but there are still gaps on graduate students’ sensemaking of data overall. 

Specifically, neither study considers how graduate students respond to data that they do not 

expect. Given that chemistry graduate students are likely to engage with unexpected data as they 

conduct their research and that many graduate students face challenges in their development as 

independent scholars (Gardner, 2007, 2008; Grolemund & Wickham, 2014), there is a need for 

research to investigate graduate students’ sensemaking of discrepant data. Specifically, research 

is needed that can qualitatively document how chemistry graduate students respond to data they 
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do not expect. This can best be achieved by interviewing graduate students as they reason 

through unexpected data to provide detailed accounts of their sensemaking (Merriam & Tisdell, 

2016). Directly interviewing graduate students as they make sense of unexpected data can 

provide a more complex, nuanced account of their reasoning (Creswell & Poth, 2016). In this 

way, qualitative inquiry can help to develop a model that describes the different ways that 

chemistry graduate students respond to discrepant data (Creswell & Poth, 2016; Merriam & 

Tisdell, 2016). This model can then be used to provide suggestions that help guide students’ 

analyses of unexpected data. 

Study Goals and Research Questions 

This dissertation seeks to advance knowledge of undergraduate and graduate chemistry 

students’ data analysis in three different ways. All three studies are qualitative and use student 

interviews to build models that describe various processes undergraduate and graduate students 

use while reasoning through different data analysis tasks. The studies are summarized below. 

 The first study investigated how undergraduate chemistry students’ prior knowledge and 

experiences were activated and leveraged as students completed a data analysis task. 

Undergraduate chemistry students participated in think-aloud interviews as they analyzed a line 

graph to identify ideal experimental conditions for a dual-phase extraction and constructed an 

argument for their choice using the experimental data. The following research question guided 

the thematic analysis of this study: 

1. How do general chemistry students’ prior knowledge and experiences interact with their 

graph analysis during data analysis and interpretation? 

The next study explored how a simulated peer review could be used to prompt 

undergraduate students to engage in self-evaluation of their written knowledge product related to 
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a science practice, specifically data analysis. To do this, undergraduate chemistry students were 

interviewed as they compared their responses from a data analysis task to three preconstructed 

sample responses that each had an embedded flaw. Each comparison constituted a “social 

comparison” in which students engaged in a critique of both the sample response and their own 

response. The interviews were analyzed using social comparison and internal feedback theories 

to construct a model of students’ evaluations of their written work. The research question that 

guided the analysis of the study was: 

2. How do chemistry students evaluate their own data interpretations when critiquing 

hypothetical peers’ data interpretations? 

The final study characterizes how chemistry graduate students responded to and made 

sense of empirical data that did not align with their expectations in some way. Chemistry 

graduate students participated in a think-aloud interview as they analyzed multiple data sets to 

construct an explanation for the cause of a chemical phenomenon. The discrepant moments arose 

naturally as students voiced that some aspects of the data did not align with their expectations. 

The study used Data-Frame Theory to characterize how chemistry graduate students responded 

to their discrepancies, and in what ways their responses to the discrepant data impacted their 

sensemaking. The research questions that guided the study were: 

3. How do chemistry graduate students respond to discrepant data when analyzing multiple 

data sets to explain a chemical phenomenon? 

4. How can different responses to discrepant data differentially affect sensemaking? 

Overview of Chapters 

The following dissertation is formatted as a paper collection. The second chapter 

describes the methods, analysis, and results of the first study; the third chapter describes the 
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methods, analysis, and results of the second study; and the fourth chapter describes the methods, 

analysis, and results of the third study. The fifth chapter will discuss conclusions, implications 

for both research and practice, and recommendations for cultivating students’ data analyses and 

implementing peer review in the classroom. 
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CHAPTER 2 
 A CHARACTERIZATION OF CHEMISTRY LEARNERS’ ENGAGEMENT IN DATA 

ANALYSIS AND INTERPRETATION 
 

Abstract 

Both graph comprehension and data analysis and interpretation are influenced by one’s 

prior knowledge and experiences. To understand how one’s prior knowledge and experiences 

interact with their analysis of a graph, I conducted think-aloud interviews with general chemistry 

students as they interpreted a graph to determine optimal conditions for an experiment. 

Afterward, students engaged in a simulated peer review by reviewing three sample responses, 

which further revealed their reasoning. I deconstructed students’ analyses using Data-Frame 

Theory to identify the prior knowledge and experiences that informed and guided their analysis, 

as well as characterized moments in which their analysis was influenced by different sources of 

information. Using template analysis, I present and discuss four themes: establishing the frame, 

observing and interacting with the data, data-frame interactions, and when frames change. From 

these findings, I discuss the implications of utilizing students’ prior knowledge and experiences 

to aid in their data analysis and interpretation, as well as identify opportunities for future 

research.  

Introduction 

Reforms in science and chemistry education have emphasized the need for STEM 

students to engage in science and engineering practices (Cooper & Klymkowsky, 2013; National 

Research Council, 2012; Talanquer & Pollard, 2010). At the K-12 level, the Next Generation 

Science Standards in the United States have effectively outlined competency across eight science 

practices for various grade bands (2012). While it is critical for undergraduate students to 

develop competency in these practices to be scientifically literate and prepared for future careers 
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in STEM (Cooper et al., 2015), research is required to define competency and outline how it 

develops. As part of this research, I aim to characterize how undergraduate chemistry students 

engage in the science practice of data analysis and interpretation. 

Studies across science education, educational psychology, and chemistry education have 

shown that prior knowledge and experiences influence students’ data-based reasoning. Accessing 

(or not accessing) certain prior knowledge and experiences can affect the features and patterns 

that one notices in a data set (Friel et al., 2001; Heisterkamp & Talanquer, 2015; Jeong et al., 

2007; Pinker & Feedle, 1990; Shah & Carpenter, 1995; Shah & Hoeffner, 2002). Relevant prior 

knowledge is also necessary to tie patterns found within the data back to the phenomenon under 

study (Lai et al., 2016; Latour, 1999; Shah & Carpenter, 1995; Shah & Hoeffner, 2002). In the 

absence of the necessary content knowledge, many students will rely on heuristics and intuition 

or neglect to use reasoning entirely (Becker et al., 2017; Heisterkamp & Talanquer, 2015; 

Masnick & Morris, 2022). For more advanced scientists, this prior knowledge is key because 

with it, the scientist will contextualize their interpretations in the broader scientific context; that 

is, they consider hypotheses, theory, experimental design, and implications to draw conclusions 

(Angra & Gardner, 2017). To support the development of this integration between relevant prior 

knowledge and science practice engagement for younger scientists, there is a need to understand 

how these two domains interact.  

To that end, this study seeks to investigate how general chemistry students use data to 

determine optimal conditions for an experiment. I use Data-Frame Theory to model the dynamic 

interactions between a student’s prior knowledge and experiences and their analysis of a graph as 

they engage in a data analysis and interpretation task. The study is specifically guided by this 
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research question: How do general chemistry students’ prior knowledge and experiences interact 

with their graph analysis during data analysis and interpretation?  

Background 

Data Analysis and Interpretation 

When encountering data, an individual must first encode the visual features and identify 

the features that are important (Glazer, 2011; Shah & Carpenter, 1995; Shah & Hoeffner, 2002; 

Zagallo et al., 2016). Once the important visual features are encoded, any relevant patterns or 

relationships must be identified within the data displayed (Ratwani et al., 2008; Zagallo et al., 

2016). Not being able to differentiate between the relevant and irrelevant information has been 

noted as one of the many challenges for data-based reasoning (Jeong et al., 2007; Kanari & 

Millar, 2004). In addition to this, students may use select data to form conclusions or predictions, 

often explaining away the data that contradicts their theory (Chinn & Brewer, 1993, 2001; 

Meister et al., 2021). After the important patterns have been identified, they must be connected 

back to the phenomena or concepts modeled in the representation (Glazer, 2011; Latour, 1999; 

Shah & Hoeffner, 2002). Both identifying relevant information and connecting the information 

back to phenomena are processes that are largely influenced by an individual’s prior knowledge 

and experiences with the type of data representation and the phenomenon being considered. 

Graph schemas aid in identifying the kinds of relationships represented in the graph (Pinker & 

Feedle, 1990). Prior knowledge of the phenomenon modeled in the graph can also “unlock” more 

expert-like reasoning and comprehension (Roth & Bowen, 2000). Not having ready access to the 

content knowledge of the phenomenon could affect what visual features and patterns are 

identified within the graph (Shah & Hoeffner, 2002). This is also true of analysis with other 
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forms of empirical data in representations such as data tables (Jeong et al., 2007; Masnick & 

Morris, 2022). 

Many of the challenges identified for students’ data-based reasoning in chemistry 

education echo those of science education and psychology. In a study investigating students’ use 

of initial kinetic rates data in constructing rate laws, Becker and colleagues found that some 

students neglected to use some of the empirical data provided or even neglected to use the data 

entirely (Becker et al., 2017). They also found that many students used unproductive reasoning 

and heuristics when forming their models. I posit that the use of this reasoning could potentially 

come from students’ lack of relevant content knowledge of the phenomena they were modeling. 

In another data analysis and interpretation study, Heisterkamp and Talanquer used a case study 

approach to explore a participant’s analysis of boiling point data and ionization energies (2015). 

The authors identified the use of “hybridized” reasoning wherein the participant used a mix of 

intuitive ideas and chemical content knowledge to form explanations for trends in the data. The 

participant also relied on explicit surface features of data to form explanations. For example, the 

participant tried to explain the increasing boiling points of substances by counting the number of 

atoms in each molecule and calculating the differences in the masses of compounds. In both 

studies, chemistry students’ reasoning seems to be influenced by their prior knowledge and 

experiences that they use to analyze the data. Additional work in biology education and science 

education has further supported this (Angra & Gardner, 2017; Jeong et al., 2007).  

The work in graph comprehension, data analysis and interpretation, and chemistry 

education has continually found that prior knowledge and experiences affect students’ analyses 

with data representations (Carpenter & Shah, 1998; Glazer, 2011; Heisterkamp & Talanquer, 

2015; Jeong et al., 2007; Masnick & Morris, 2022; Pinker & Feedle, 1990; Roth & Bowen, 2000; 
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Shah & Carpenter, 1995; Shah & Hoeffner, 2002). However, little work has considered how 

prior knowledge and experiences interact with one’s data-based reasoning. Therefore, I sought to 

bridge this gap in the literature by characterizing the processes by which chemistry students 

engaged in data analysis and interpretation using real data. I specifically aimed to account for 

their prior knowledge and experiences that they used to make sense of the data.  

Data-Frame Theory 

The science practice of data analysis and interpretation can be viewed as a sensemaking 

process (Chen and Terada, 2021). Raw empirical data must be manipulated, organized, and 

interpreted by the scientist to generate meaning (National Research Council, 2012).  One kind of 

data representation that all scientists encounter, regardless of what field they are in, is the graph. 

Numerous studies have characterized the graph comprehension process (Carpenter & Shah, 

1998; Friel et al., 2001; Ratwani et al., 2008; Shah & Carpenter, 1995), but it is typically 

detached from science practice. These studies offer little insight into how an analyst’s prior 

science knowledge and science practice competency interact when they analyze and interpret 

data. With the specific aim of understanding this interaction, I use the Data-Frame Theory of 

sensemaking (Klein et al., 2007; Klein & Moon, 2006).  

Data-Frame Theory asserts that analysts concurrently construct data (observations) and 

frame (reasoning), and that the data and frame inform one another. The frame is an explanatory 

structure that helps to account for pieces of data by describing their relationship to other data in 

the environment. In this way, the frame serves as a lens for making observations and assigning 

meaning to those observations. Frames can take the structures of stories, scripts, maps, or plans, 

and are synonymous with schemas (Gouvea et al., 2019; Hammer, 2000; Klein et al., 2007).  
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The other component of data-frame theory is data. Data is the information extracted from 

the environment. Within chemistry, data would be considered the empirical data collected from 

experiments, but other sources of information, such as experimental schemas, directions, 

molecular structures, or events, can be considered data as well.  

Data and frames tend to interact in a cyclic pattern. A person begins by encountering data 

in an environment, and certain features of the data can cue a frame. Certain points of data or key 

features within the data serve as anchors that help to elicit a frame. This frame can then guide 

how the analyst makes sense of the data. The frame is influenced by the analyst’s prior 

knowledge and experience with similar data. The frame can also be influenced by whatever goals 

the person may have associated with the data (e.g., a hypothesis). Once the frame is established, 

a person can begin to search for more information. During this search the frame “filters” 

incoming information to help a person seek more relevant information to aid in sensemaking. To 

account for the incoming information, the frame can be elaborated and extended to fill in 

whatever gaps were not originally accounted for, as illustrated in Figure 2.1.  

 

Figure 2.1: Data-Frame Theory Model of Sensemaking modified from Klein and Moon (2006) 
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During the sensemaking process, it is likely that an individual will encounter data that is 

inconsistent with their frame. When this happens one can begin to question their frame and note 

where the data violates expectations generated from the frame. After these gaps are exposed, the 

frame can be maintained through two processes: preserving the frame or elaborating the frame. 

To preserve the frame, the anomalous data can be explained away or disregarded. This aligns 

with many other studies within science education and discipline-based education research in that 

many will discount data that contradicts their mental model (Chinn & Brewer, 1993, 2001; 

Meister et al., 2021). If the contradictory data is accepted, one can engage in elaborating their 

frame. During this process, the frame is expanded and extended to account for the new 

information. Although the frame might be undergoing changes, the frame’s integrity is still 

intact, and its key anchors are maintained.  

If the anomalous data is accepted and cannot be integrated into the frame, a person may 

decide to disengage from their current frame and construct a new frame. In this reframing 

process, new anchors will be searched for to establish the new frame. Data that was previously 

overlooked or discarded may now be considered and interpreted from a new perspective as 

well.   

At times an individual might compare or even consider multiple frames to make sense of 

the data. Klein and colleagues estimate that a person can use up to three frames simultaneously 

(Klein et al., 2007). Using multiple frames in sensemaking is akin to observing the data from 

multiple perspectives. Each frame will have different anchors that are unique to each frame, 

allowing the individual to pick up on different aspects of the data specific to the perspective they 

are considering.  These frames likely have different key anchors unique to each frame allowing 

the individual to pick up on different pieces of data through each perspective they are 
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considering. Students can also compare the frame that they are using to another frame they 

encounter. This can potentially cause students to disengage from their initial frame and use the 

other if they find the new frame compelling enough.  

I posit that for an individual to consider and compare a frame against their own, they 

likely need to engage in decentering from a central perspective. Decentering involves 

recognizing alternative perceptions and reasoning for the same problem or situation (Piaget, 

1955). To consider and compare frames, an individual must recognize alternative perspectives of 

the same data, which means they are recognizing alternative perceptions of the same problem. 

Differentiating between different perspectives in this way has been shown to support more 

productive argumentation (Moon et al., 2017) and support teacher noticing (Teuscher et al., 

2016). 

Data-Frame Theory also reports that experts and novices engage in data-based reasoning 

in similar ways. The primary difference between an expert’s analysis and a novice’s analysis is 

what mental models and prior knowledge the individual can access. Experts possess richer 

collections of conceptual knowledge and more experiences that can inform their frame when 

engaging in sensemaking. In having richer collections of knowledge and experiences, experts can 

access more frames to use when engaging in sensemaking. This also allows experts to find 

deeper meaning in data that is presented to them, whereas novices tend to produce more shallow 

conclusions. Data-Frame Theory helps to identify what pieces of knowledge and experiences 

inform an expert’s frame to lead to more productive sensemaking and sophisticated conclusions.  

I propose using Klein’s Data-Frame Theory primarily because it enables us to deconstruct 

an analysis, as well as document interactions between frames and data. Other studies have shown 

the utility of using a frame theory to explore how one’s frame can affect the ways in which one 



23 
 

reasons with a problem (Hammer et al., 2004; Slominski et al., 2020). Similarly, Data-Frame 

Theory can help to identify a student’s different prior knowledge and experiences they use to 

guide their analysis of a dataset. Different data features can also be identified that were used to 

help students reach a conclusion after consulting the dataset. Data-Frame Theory also can 

characterize more complex interactions between data and one’s frame. Inconsistent and 

anomalous data or information that challenge a scientist’s initial ideas and hypotheses can be 

explored and characterized. Additionally, data analysis and interpretation, like other science 

practices, is an iterative and dynamic process. Scientists’ previous experiences with types of data 

and knowledge of the content they are studying greatly influence how they interact with their 

own data. Much of their data analysis process is informed and guided by the scientists’ expertise. 

When they encounter anomalous data, scientists must consult their prior knowledge and decide 

how they plan to address it. In this work, I am particularly interested in accounting for these 

interactions to characterize the different processes that a chemistry student engages in while 

using data from a graph to reach a conclusion.  

Data Collection and Analysis 

Interview Protocol 

The semi-structured interviews used for this study consisted of two stages. In the first 

stage, students determined the optimal reaction conditions for an experiment using a graph. The 

task is a scaffolded version of the same experimental decision made by Doidge and colleagues 

when deciding what concentration of HCl would best be used to isolate gold in a dual-phase 

extraction of waste electronic equipment (Doidge et al., 2016). Students were specifically tasked 

to use the graph from Doidge and colleagues to choose what concentration of HCl would best 

extract a maximal amount of gold and a minimal amount of tin and iron, as shown in Figure 2.1. 
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They chose between 0 M, 2 M, and 4 M. Throughout this part of the interview, students were 

encouraged to annotate the graph using the Zoom annotation feature to help explain their 

reasoning, especially when referring to specific parts of the graph. At the end of this interview 

phase, students wrote a summary of their verbal analysis and were told to include whatever 

amount of detail and evidence they deemed necessary to convince someone else. The written 

summaries were typed into the chat function of the Zoom call to be referenced later in the 

interview.  

In the second stage of the interview, students engaged in a simulated peer review, in 

which they gave feedback to three sample responses and compared them to their own (Berg & 

Moon, 2022). Each sample response was pre-constructed to support one of the three choices for 

the task. The responses also had different argumentative flaws embedded for students to identify 

and critique. During the simulated peer review, students compared their own analysis to that of 

the sample response and gave feedback meant to improve the response. This comparison helped 

to indirectly probe the student’s own analysis as well, especially if they mentioned that the 

analysis of a sample response was similar to their own. During the simulated peer review, several 

students expressed feeling less confident in their selection of which concentration of HCl to use 

for the task. To remedy this, students were given the opportunity to make changes to their work. 

If students made these changes during their interview, they were asked how their response had 

changed from before the peer review.  

See Appendix A for the full interview protocol. 

Sampling 

This study took place in a large, Midwestern university in the fall of 2020. Institutional 

IRB approval was obtained before recruiting for interviews. Participating students (N=18) were 
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from general chemistry I and II courses for both majors and non-majors. Students submitted 

consent forms electronically before their interviews. After the interview, students were 

compensated with a $20 gift card for their participation.  

Data Collection 

All interviews were conducted remotely via Zoom. Each interview was recorded within 

the application, and the recordings were used to generate transcripts of the interview. The video 

recordings of the interview were kept and used in the analysis for visual reference, especially 

when students annotated the graph in reference to something. All transcripts and videos have 

been deidentified and pseudonyms have been given to participants. Any stills from the video 

recording consist of only the graph and the students’ drawing; any references to the students’ 

names have been cropped out of the image when used in analysis.  

Analysis 

I analyzed transcripts from both stages of the interview for analysis. Particular attention 

was paid to the second stage if students changed their answer to a different concentration of HCl. 

I believe that this was evidence of students engaging in the task with a new or elaborated frame.  

Because my research question focuses on the processes that students are engaged in when 

analyzing a graph, I used both process coding and open coding (Miles et al., 2014). Process 

codes helped to identify different actions that the students took at different times during the task. 

The codes were developed to describe actions that the students consciously described they were 

doing as well as actions that they may not have been aware of. The open codes that were 

developed at this time were used to capture different features of the graph that students were 

using as well as the different conceptual and everyday ideas that they used to help with the task.  
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After open coding, I employed template analysis, a type of thematic analysis, to organize 

codes (Brooks et al., 2015). I began by sorting open codes into two a priori categories: the data 

category and the frame category. Codes that had anything to do with information that could be 

found in the graph were sorted into the data category. These codes included instances in which 

students pointed out peaks within the graph or comparisons students may have made between 

different parts of the graph. Codes that focused on reasoning with information external to the 

graph or used information from the prompt were sorted into the frame category. Many of these 

codes included some sort of set of goals or objectives that students mentioned that they wanted to 

accomplish to fulfill the task. These are assumed to be parts of a student’s frame that helped 

guide their analysis.  

In the second round of template analysis, I noticed that some of the codes sorted into the 

data category also had elements of a frame to them as well. These codes did have elements of a 

graph feature included in them, but there was also some sort of opinion or evaluation being made 

with the data. For example, in his comparison between the increases of gold and other metals 

between 2 M and 4 M, Fernald said, “And this increase [in other metals] is not compensated for 

the increase in gold accumulated.” This part of his analysis does include directly observable 

information from the graph (the increases), but there is also an element of value or meaning 

ascribed in the comparison that is not directly observable (the compensation of one increase over 

the other). I inferred that assertions and evaluations like Fernald’s showcase an interaction 

between the student’s frame and the data; thus, a new coding category was constructed to capture 

them.  
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Figure 2.2: Screen capture of Fernald's graph 

After using template analysis to organize a student’s analysis, I developed a coding 

scheme in which the analysis is followed and deconstructed according to three categories: the 

frame, the data, and the data-frame interactions. To identify the student’s frame, I identified key 

anchors that seemed to guide their analysis. I identified these anchors by considering three 

things: how a student, explicitly or implicitly, defined minimal or maximal for the task; what 

concentrations of HCl were being considered (i.e., if a student constrained their focus to one area 

of the graph or used data from beyond the designated choices to inform their choice); and what 

metals were being considered. I also tried to identify any outside knowledge, conceptual or 

previous experiences that seemed to inform or guide parts of the frame. Next, I identified the 

data being used by the student during the think-aloud interview. This meant identifying which 

points or areas of the graph the student deemed important, identifying what comparisons students 

made in the graph, and how such comparisons were made. Finally, I identified the data-frame 

interactions that occurred during the student’s analysis. These interactions were moments in 

which the frame was used to inform decisions with the data and moments in which the data had 
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some sort of effect on the student’s frame. Each student’s interview was deconstructed following 

this method of analysis.  

I recognize that in some interviews, students’ analyses were not as linear or direct as 

others. Many students changed their answers at some point during the interview. The change in 

answer likely indicated that something had changed in the student’s frame. To distinguish 

between a student’s different frames, I identified the anchors that seemed to inform the student’s 

answer before and after the change. For this part of the analysis, I identified either an entirely 

new set of anchors for a student’s frame or I identified new anchors that might have been added 

to the pre-existing set. After this, I identified the circumstances under which the frames changed 

as well as pinpointed the actions students undertook when their analysis deviated or changed 

somehow.  

Trustworthiness 

An outside researcher who is also trained on Data-Frame Theory as a theoretical 

framework was recruited to establish trustworthiness for the modeling of students’ data analyses. 

The outside researcher and I collaboratively deconstructed three students’ interviews to identify 

the students’ frames for analysis, the data used, and the data-frame interactions that took place to 

help a student reach their final answer. Any disagreements or discrepancies between researchers 

were discussed and changes were made to the coding to reflect the discussion.  

To begin, the outside researcher was trained on the anchors that I had identified as 

relevant to the task. The outside researcher and I then constructed frames for each student by 

identifying anchors that seemed to guide the student through their analysis. There was an initial 

discrepancy concerning whether one student had formed a frame and immediately changed to 

another frame or if the student had been simultaneously using two frames to approach the task 
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before settling on one. The outside researcher and I discussed and decided that because the 

student seemed to weigh both frames equally when speculating, he likely was considering 

multiple frames at once rather than changing frames. This was noted and applied to similar 

interviews in which students considered multiple answers until eventually settling on one. The 

researchers also worked to describe new frames that students had after changing answers in the 

interview.   

Once frames had been constructed for each student, the outside researcher and I identified 

data that each student considered in their analysis, as well as what students did with the data. The 

interview transcripts were read line by line to identify the graph features students spoke about or 

marked on their screens. We then identified what students did with the graph features to help 

further their analysis.   

After considering the frames and the data that students used within their analysis, the 

outside researcher and I identified data-frame interactions for each interview. Much of the 

discussion focused on two of the interviews in which students changed their answers at some 

point. We inferred that a change in answer meant that students experienced some sort of change 

in their frame. We further inferred that there was data to prompt the change. Both students were 

exposed to new information before they changed their answer: one student reread the prompt that 

changed their perspective and another student engaged in a peer review that changed their 

perspective. Therefore, in the instance of a frame change, we decided to classify it as a data-

frame interaction, and to expand the definition of data to include different sources of information 

such as simulated peer review and rereading of a prompt. Following this, other interviews in 

which students experienced a change in frame were reanalyzed to identify the information that 

caused such a change.   
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Once consensus was reached for all three interviews, I coded the remaining interviews.   

Results 

Overview 

The first theme examined is the forming of a frame. Chemistry students began the task by 

establishing some sort of frame to help make sense of the data. This often involved first drawing 

upon relevant prior knowledge and experiences that were activated by the task. This in turn 

would help students establish goals and objectives to guide their analysis and completion of the 

task. Although all students did establish a frame to work through the task, many of the students 

began the task using multiple frames in their approach before deciding on one.   

The next theme investigated is the theme of observing and interacting with data. Having 

established and decided on a frame, students then began searching for graph data that was 

relevant to their frame. This information included different points within the graph such as the 

peaks for different lines and low points for others. Once students had identified the relevant 

information, they would engage in interacting with the graphical data. For this task, these 

interactions mainly consisted of comparisons of different graphical data.  

Following the themes of frame and data, a third theme is introduced that examines the 

interactions between the two. After exploring the data to find relevant information and engaging 

with important graphical data, students engaged in various data-frame interactions. The most 

common data-frame interaction involved students using graphical data to make evaluations of the 

different HCl concentration options. These evaluations, in turn, were used to help students gauge 

which option best fulfilled the task according to their frame. For some students, the data within 

the graph activated another data-frame interaction in which students deviated from the task’s 
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prompt and incorporated extra or different objectives in their frame that were not observed in 

other students’ analyses.  

The final theme explored is when students’ frames changed during their analysis. I 

consider this to be another form of a data-frame interaction; however, the interaction resulted 

from incoming information outside of the data in the graph. One source of information that 

prompted such a change was the rereading of the prompt. Students began their interviews with 

one answer informed by one frame, but immediately after rereading the directions changed their 

answer informed by a different frame. Another type of incoming information that led to many 

students changing their answers was considering an alternative perspective. Typically, this 

occurred during the simulated peer review in which students were exposed to an alternative 

frame that seemed to prompt a change in perspective.  

These findings are outlined in Table 2.1 and presented in further detail below with quotes 

from students and images of their graph analyses.  

Table 2.1: Overview of themes and subthemes in students' analyses, underlined themes and subthemes denote 
a written section in the results. 

Themes Subthemes Description 
Establishing Frame Prior Knowledge and 

Experiences 
Students draw upon prior knowledge and experiences that 
are activated by data within the graph and prompt. These 

can help activate and guide the student’s frame 
Anchors Key pieces of data and objectives of the student help 

students form a frame to guide their analysis 
Multiple Frames Some students approach the task seeing multiple 

perspectives or interpretations of the same prompt 
Observing and 

Interacting with 
Data 

Relevance of Data Students’ frames help “filter” incoming information from 
the graph, helping them identify what graphical data is 

important and what is irrelevant to their analysis 
Comparisons Students make different kinds of comparisons in graphical 

data to gather information for their decision-making 
Data-Frame 
Interactions 

Data-Based Evaluations 
 

 

Students used objectives and anchors from their frame to 
evaluate their choices for the task 

Data Affecting Frame Students consider information outside of the task prompt 
and embed new information into their frame, producing a 

small change in the frame 
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Frame Changes Students’ frames changed in one of two ways: considering 
new information outside of the graph and considering 

alternative perspectives 
 

Establishing the Frame 

To begin, students called on prior knowledge and experiences that could help construct a 

frame for them to engage in the task. Many of these experiences involved some sort of work in 

the laboratory. Throughout his analysis, Evander often mentioned wanting a pure gold product to 

fulfill the task. When asked about this, he specifically recalled his summer work in a research 

lab:   

“I worked in a research lab where drug purity is paramount because you don’t want stuff 

messing with drug delivery. So I guess that was kind of in my mind.” (Evander)  

Even though he did not reference this research lab experience right away in his interview, 

it is likely that he unconsciously was drawing upon the knowledge he gained working in the 

environment to help form a frame to complete the task.   

Not all students drew upon prior knowledge and experiences that were directly related to 

the task at hand. Many students brought up everyday connections to the task that helped them 

make sense of the task. In addition to this, some students attempted to use conceptual knowledge 

that was unrelated to the task. For example, Hector attempted to use his prior knowledge of 

kinetics to make sense of the task:  

“One thing I’m like trying to incorporate would be like rates of reactions… I feel like if 

there were more materials other than the HCl, the gold, and the PA, then it could probably slow 

the reaction down.” (Hector)  

 Here, Hector is attempting to use the concept of kinetics to help inform his analysis. In 

the interview, he mentioned that that it was a subject covered in his chemistry lecture, but that he 
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had not understood it as well as other concepts. This was particularly interesting as there was no 

mention of reaction rates in the task’s prompt, nor was there any data provided that related to 

reaction rates; his ideas solely came from his prior knowledge and experiences in class. Hector’s 

focus on the molecular level of the extraction phenomenon demonstrates a relatively 

sophisticated level of reasoning for the task; however, none of the data presented related to rates 

of reaction, nor did the task ask him to consider that for his response. Although the concept of 

rate of reactions helped Hector initially to begin activating a frame and guide him to an answer, 

he later changed his response during the peer review portion of the interview. This was likely 

because the prior knowledge Hector had activated was limited in what it could help him make 

sense of.  

Accessing prior knowledge and experiences for the task helped students to activate 

anchors for their frame and guide the frame overall. The anchors helped to define the goals or 

objectives that students set out to accomplish during their task, as shown by Gregor:  

“Oh, I saw some keywords in the, in the question…you know, ‘maximal amount of Au 

with minimal amounts of waste.’…So when I see things like that, I'm thinking that the problem 

that we're trying to solve here is one of there's a specific name for it, but it's, it's getting the most 

of what you want and the minimum of what you don't. Optimization, I believe.” (Gregor)   

Here, Gregor is focusing on keywords in the prompt and connecting them to previous 

optimization problems he has encountered before. The combination of the “maximal” and 

“minimal” terms seemed to activate his previous experiences with optimization. This allowed 

him to begin to establish anchors that helped guide what data he needed to consider. Gregor 

began to hint that his one anchor for him involved searching for an area of the graph that 
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satisfied having a maximum of gold while still maintaining a relative minimum of other tin and 

iron. 

Overall, anchors helped to define the goals or objectives that students set out to 

accomplish through their analysis. They gave direction for the student’s frame to follow. 

Because anchors were so embedded in a student’s analysis, it was often difficult to directly elicit 

from a student’s interview. However, some students verbalized this aspect of their frame, as Ben 

did:  

“So the first [step] is find the most Au that I can get. The second one is find the least Sn 

and Fe that I can get. And then the third one would be like now find the point where you can 

achieve both of the two steps the best way you can.” (Ben)  

However, not every student formed a guiding frame immediately when they began the 

task. Some students began by acknowledging that different concentrations of acid would fulfill 

different interpretations of the task, which seemed to show they were approaching the task from 

multiple perspectives. It is possible that these students were tracking multiple frames, one for 

each perspective they considered. Take Bruce:   

“The biggest one, I kept going back and forth between either two or four molarity, just 

because I don't know how important it is to get rid of waste. Like if the main goal is to extract 

gold or the main goal is to minimize waste, I think that could depend on, whatever the goal is 

would change if you want to use two or four molar hydrochloric acid.” (Bruce)  

 Bruce recognized that there could be multiple interpretations for the task, with each 

having its own set of objectives to fulfill. The “main goal” for one frame was to extract as much 

gold as possible, making 4 M an ideal choice. While the other frame he tracked was to avoid 

extracting other metals with the gold, making 2 M an ideal choice. Although Bruce saw the merit 
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in both interpretations of the task, he ultimately chose one to pursue for the remainder of his 

analysis. 

Observing and Interacting with Data 

Once students had a frame, they began to use it to navigate the different information in 

the graph. The frame played a key role during this part of their data analysis, as it allowed them 

to filter incoming information from the graph, such as Gregor explains when describing his 

analysis:  

“I'm looking around and I'm trying to figure out, okay, so what of this information is 

relevant? And that's why I went and I found our items we're actually looking for and try to 

ignore the rest of this to some degree.” (Gregor)  

Here Gregor points out that there is key information that is relevant for his analysis. His 

frame allowed him to solely focus on the gold, iron, and tin curves during his analysis as those 

were the metals of interest for his interpretation of the task. The rest of the data displayed on the 

graph was filtered out and ignored, as they were not part of his frame when engaging in the task. 

Gregor’s frame also cued him to specific spaces of the graph:  

 “It simplifies the problem solving if I realized that all I really have to do is figure out 

where this is maximum *circles maximum point on gold curve* and then look and see what's 

going on with my other sort of secondary criteria. And then if I look at that and I go, okay, well 

they're pretty high here *circles tin and iron points at 4 M*. Then I go, well, where are they 

low? And I see, well, how much did we really relatively change?” (Gregor)  
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Figure 2.3: Screen capture of Gregor's graph 

Here, Gregor is cued by his frame to narrow down his search of the graph to the space in 

which gold has reached a maximum. Once this has been located, he mentions his second 

objective to fulfill, which for Gregor’s frame meant finding a spot with relatively low extractions 

of tin and iron. He then navigated to the bottom space of the graph to search for the tin and iron 

lines where he knew the extraction would be lower.   

Following the identification of relevant data and important areas of the graph, students 

began to make various types of comparisons. Many of these comparisons were between a 

specific metal or set of metals at two different points in the graph, such as Jemma demonstrates 

when comparing the gold extraction at 0 M and 2 M: “The amount of gold extracted [at 2 M] is 

like 25% higher than at zero where it's only 65.”   

Another type of comparison made by some students was gauging the relative differences 

of all the metals’ extractions at a given concentration of HCl. Some students did this by creating 

a “ratio” of the extraction of gold to the extraction of tin and iron, such as Colette did:  

Interviewer: “I wanna go back to a point you mentioned earlier when you were 

analyzing the graph, you talked about this idea of ratios. Can you explain that a little bit more 

for me?”  
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Colette: “I guess the ratio you want as much gold as you can get with having as little of 

the iron and tin as you can get, so like the farther apart they are. To me, if you have a 90:10 

ratio, that's better than a 70:30 ratio. If you're only getting 70% of your gold, but you're getting 

30% of the other metals.”  

The ratio of different data points that Colette had constructed helped Collete to consider 

more information simultaneously. Students who constructed ratios for comparisons condensed 

graphical data from both the gold and the iron and tin data into a single piece of information for a 

given concentration of HCl. By constructing a ratio for each possibility of HCl, students could 

then compare each ratio and evaluate how well each choice had fit their frame’s objectives via a 

data-frame interaction.  

Data-Frame Interactions 

There were two main ways in which graphical data and students’ frames interacted within 

this task: data-based evaluations against a frame and data affecting a frame.   

In a data-based evaluation, students weighed the different options of HCl outlined in the 

task by first obtaining some sort of relevant data from the graph. This data could be singular in 

nature wherein students use one point on the graph, such as a peak, or it could be more complex 

and involve comparisons of points or multiple points at once. Students then used this data to help 

assess how well the different HCl concentrations fit the objectives of their frame. If a 

concentration of HCl fulfilled their objective(s), they qualified it as an option for their final 

choice. If a concentration of HCl did not fulfill an objective or violated some aspect of their 

frame, the concentration was then disqualified and no longer considered an option for the final 

choice. To illustrate this, consider an excerpt from Gregor’s analysis:  
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“The first thing that comes up is 4 M. 4 M comes up because that's where the gold 

maximum is…And then when I think about it and I decided that maybe we don't want all of this 

waste right here, I start looking for the minimum of the tin and iron and that's at 2 [M].” 

(Gregor)  

Gregor begins by first noting that the peak of gold is at 4 M. The peak signifies the 

largest extraction of gold which aligns with his objective of achieving a relative maximum 

amount of gold. This qualifies 4 M as an option for Gregor to further consider against the other 

objectives of his frame. The next objective he considers is achieving a minimum extraction of tin 

and iron. Still considering 4 M as an option, Gregor then checks the tin and iron points at 4 M to 

see if they fit his objective. After noting that the tin and iron extraction is much higher at 4 M 

compared to the other options, Gregor decides to disqualify 4 M as an option for the task because 

it failed to meet one of his frame’s objectives. Gregor then continues his analysis to examine 2 M 

HCl as a potential option as it seems to better fit the objective of a minimum extraction of iron 

and tin.   

The other type of data-frame interaction involved data within the graph affecting a 

student’s frame. This was a far less common occurrence, and students’ frames experienced 

relatively small changes from the data. The students who had their frames affected by the data in 

the graph seemed to consider information that was not outlined in the task prompt and embedded 

the new information into their frames. For example, Fernald’s analysis considered a metal that 

was not outlined in the task:   

“Well, the ideal molarity would be around the relative maximum for the gold, and it 

would also be around the relative minimum for all of these other metals, especially with Sb.” 

(Fernald)  
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Fernald seemed to experience a very small frame change upon beginning to explore the 

graph. As mentioned in the methods section, the prompt only asked students to consider gold, 

iron, and tin. These were also the only lines in the graph that were displayed in color to help 

students more easily identify them. Because of this purposeful design of the prompt and graph, 

Fernald likely began the task only considering these metals. However, in exploring the graph 

during his interview warm-up questions, he noticed the line for antimony and used it for the 

remainder of his analysis. Fernald may have embedded antimony into his frame as it was a 

relatively visible line on the graph, being lighter in color and situated above the other greyed-out 

metals in the graph. Despite frequent reminders from the interviewer, Fernald continually 

referenced antimony throughout his analysis, which suggests that his frame considered this metal 

in addition to the others. Specifically, I infer that he incorporated achieving a relative minimum 

extraction of antimony into his original frame objective of achieving a relative minimum 

extraction of tin and iron. Even though including antimony in his frame did not cause his 

analysis to differ drastically from other students in the end (he chose 2 M as his final answer, as 

did most other students), it illustrates an instance in which a student’s frame and data interact 

within their analysis.  

When Frames Change 

Many students changed their answers at some point during their analysis. The change in 

their answer likely reflected some sort of change in the students’ frames. Students often seemed 

to have additional or entirely new objectives for their analysis to follow, which resulted in new 

answers for the task. I observed these changes in answers in two different scenarios, considering 

new information outside the graph and considering alternative perspectives.  
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Frame changes that resulted from considering new information outside the graph 

occurred when students reread the prompt at some point. These interviews began with students 

either not fully reading or remembering the full prompt before starting their analysis. Students 

began by choosing 4 M and justifying their choice by stating the gold or all metals were highest 

at that point, such as Kit illustrates: “I guess in all, I would say 4 M, because it seems like based 

off the 4 M in general, there's more percent metal extracted than from the other ones.” Because 

the students justified their answers without mentioning any other aspect of the prompt, the 

researcher would reread the prompt to ensure the students had fully understood the directions. 

Immediately after rereading the prompt students switched their answer to 2 M, often saying they 

misunderstood the question being asked before or that they understood the task better after 

rereading the prompt. The rereading of the prompt helped students to form new frame objectives 

that helped to guide their analysis of the graph, such as demonstrated with Kit:   

Interviewer: “So what new pieces of information do you think that you used in order to 

reach your conclusion?”   

Kit: “Oh, like based off of like the new, like reading the paragraph again? I think that the 

key things for me was like the maximal amount of Au and the minimal amount of waste. I think 

that originally I had thought this [maximal amount of Au], but I wasn't considering the amount 

of waste.”  

Originally, Kit’s frame only contained the objective to find as much gold as possible 

within the range of concentrations given. This objective guided her to seek out the highest point 

for the gold line, which happened to be at 4 M, qualifying 4 M as an option to fulfill the task. 

Upon rereading the prompt, Kit identified an additional objective for her frame to use: achieving 

a minimal amount of waste. Having an additional objective in her frame guided Kit to new data 
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within the graph that she had not considered relevant before. This new information then allowed 

her to consider a new concentration of HCl which progressed her analysis further into a new 

answer for the task.   

In addition to experiencing frame changes from considering new information outside of 

the graph, some students also experienced frame changes by considering alternative perspectives. 

Most students who incurred a frame change in this way did so during the simulated peer review 

portion of the interview. During the peer review, students compared their own work to that of a 

hypothetical peer. After this comparison, some students stated that they had low confidence in 

their answers or were feeling less confident overall. A few students even admitted that they 

thought their answer was wrong. To alleviate this, the interviewer gave the student an 

opportunity to make changes to their answer, which gave students the chance to choose a 

different concentration of HCl to fulfill the task. After students had changed their answers and 

explained what made that answer more appropriate, the interviewer asked the student what had 

motivated their change in answer. Some of these students explained that the peer review offered 

a new perspective that seemed better than their own. For example, consider Violet after 

reviewing the 0 M sample response:   

“This one's pretty convincing, different after reading the first student and comparing it to 

mine. It's kind of like seeing it from someone else's perspective. [It] just kind of puts it into a 

better perspective. And I feel like that makes a lot more sense than my answer…It makes a lot of 

sense that there's actually zero waste at 0 M and you still get a pretty good amount of the gold 

and no waste at all.” (Violet)  

The peer review prompted Violet to compare against the 0 M sample response. The 

comparison exposed Violet to a perspective of a frame different from her own that was more 



42 
 

appealing. This new frame had slightly different objectives from her original frame, wherein the 

extraction had to achieve an absolute minimum extraction of tin and iron rather than a relative 

minimum. This disqualified her original answer of 2 M, which could be interpreted as having a 

relative minimum extraction of tin and iron (tin being slightly above zero and iron at zero) but 

not an absolute minimum. The only HCl concentration that achieved an absolute minimum of 

iron and tin was 0 M, so it qualified as the best option for Violet’s frame.  

Although the majority of frame changes from considering alternative perspectives arose 

from the simulated peer review, one student, Ariel, experienced a frame change solely by 

thinking of another person’s perspective. Ariel began her interview with 4 M HCl as her answer. 

When asked to explain what had made this the most appropriate answer Ariel described her 

definition of minimal for the task: “So that's kind of how, I guess I would think of it where you 

can't count something as minimal until it is actually present.” Using this definition, the only 

concentration that was qualified to fit her frame was 4 M, as both iron and tin had extractions 

above zero.  

Intrigued by this answer, the interviewer asked Ariel to consider how the scientists 

behind the experiment would approach the same task. Ariel began to express ideas surrounding 

reducing the error of the experiment, and when asked to specifically describe what the best 

choice would be for the scientists, she said, “I would say when you get the most amount of gold 

extracted, and then when you probably just have as little possible of tin and iron.” Here, Ariel is 

beginning to recognize a frame different from her own, the main difference being each frame’s 

objective involving the iron and tin extraction. Ariel’s frame defined a minimal extraction as an 

extraction in which both metals had a presence, whereas the new “scientist” frame defined a 

minimal extraction as having relatively little to no iron or tin present. Following this moment in 
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the interview, the interviewer asked Ariel what perspective she wanted to take for the task. She 

admitted to feeling indecisive at this point but decided to choose 2 M HCl as her answer. After 

going through her analysis with the interviewer, Ariel brought up an experience from her general 

chemistry laboratory course that reminded her of the interview task, describing it as such:  

“Well, we do like one where we mix like caffeine with HCl and like water or 

something…I think it's kind of similar to this one where it has like different layers…So I was just 

kind of thinking about that, like visually when I was doing this, cause it was kind of similar.” 

(Ariel)  

Ariel’s frame change was unique in that she did not need to read another written analysis 

to consider this alternative perspective. Upon being asked to consider a more science-based 

perspective, she seemed to activate a new frame that could be used to complete the same set of 

directions in the task. This new perspective also seemed to help Ariel establish connections 

between her previous experiences in an experiment she had performed in the laboratory to the 

metal extraction task at hand. This in turn helped her to visualize and better make sense of the 

phenomenon, leading to more productive sensemaking for the task.  

Discussion and Implications for Research and Practice 

This study outlined the ways in which a student’s prior knowledge and experiences 

interact with their data analysis. I specifically demonstrated that a student’s prior knowledge and 

experience played a part in activating and developing a frame that could be used to analyze the 

graph. Upon approaching the task, students could draw upon relevant knowledge and 

experiences that helped guide them through the task. For example, one student, Evander, 

specifically brought up his experience working in a drug research lab as something that he used 

to help him navigate the task. Although his lab work did not directly mirror the task, it was 
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similar enough for him to use as a reference. Evander used the idea of purity from his research to 

help identify priorities for his frame objectives to complete and support his reasoning. Slominski 

and colleagues interviewed several biology, physics, and engineering faculty with a fluid 

dynamics task in two different contexts: blood vessels and water pipes (2020). Some biology 

faculty used vocabulary and conceptual knowledge reminiscent of cardiovascular systems when 

answering questions for the water pipe task. Even though water pipes do not directly relate to 

cardiovascular systems, they do share the same underlying concept of fluid dynamics. Like 

Evander, the biology faculty used their prior experiences and prior knowledge as a reference and 

frame to help navigate new problems.   

Not all prior knowledge and experiences were helpful for students. Consider Hector’s 

interview; even though he was taking a rather sophisticated approach thinking of how the rate of 

the extraction could be affected by what metals were being extracted at a given concentration of 

HCl, he did end up changing answers and drawing upon different sources of knowledge to 

inform a changed frame later in the interview. Something in the interview questions or task 

prompt likely activated his conceptual knowledge of kinetics from class, and he decided to use it 

to inform his decision-making. Hector then seemed to struggle to connect the concept any further 

to the task, so he further sought other knowledge and experiences to inform his frame. This 

shows an example of a less productive piece of prior knowledge. Hector’s knowledge was 

conceptually sound, but it had limited use for the context of the task. Hector saw the lack of 

utility in the conceptual knowledge, so he drew upon other ideas to inform his reasoning. Experts 

do this as well in their reasoning. Slominski and colleagues highlight one biological expert’s 

attempt at using relatively sophisticated biological conceptual knowledge to explain a 

phenomenon (2020). The expert was trying to use capillary physics as a conceptual resource but 
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was unable to connect it to the task. Recognizing this, the expert then drew upon their previous 

experiences with syringes and used this to inform and shape their frame.   

I also observed students draw upon their everyday knowledge and experiences to help 

complete the task. In one example, Ariel began her interview by defining minimal as the smallest 

amount that was not zero. This definition informed one of the objectives for her frame, which in 

turn helped her choose her initial answer of 4 M. Other studies have shown this to occur during 

chemistry students’ data analysis. Heisterkamp and Talanquer observed their participant using 

examples from his everyday life to explain differences in chemical phenomena (2015). Experts 

also use everyday knowledge and experiences to help them reason in unfamiliar contexts as well. 

In their dual-context fluid dynamics task, Slominski and colleagues found that some experts used 

a frame informed by everyday knowledge to help reason through the task situated in an 

unfamiliar context (2020). For example, one biologist used an outdoor water hose in their 

reasoning for the water pipe context. Their experience with putting a finger over the end of a 

water hose gave them a reference to complete the task. In all these examples, participants 

accessed prior knowledge from their everyday experiences that can help inform their frame for a 

task. There is likely some aspect of the task that activates this everyday knowledge or 

experience, which then serves as a frame to help the participant make sense of their task.  

This work provides additional evidence that novices and experts actually undergo similar 

sensemaking processes (Klein et al., 2007). Both students and experts access some sort of prior 

knowledge or experience to help establish a frame for the sensemaking process. The key element 

that seems to vary in sophistication is access to relevant prior knowledge and experiences, where 

experts often have richer mental models and a larger knowledge base. Those who have access to 
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prior knowledge and experiences that share similarities to the phenomenon or target similar 

concepts can engage in more sophisticated and productive reasoning.  

To ensure that students are equipped to engage in sophisticated and productive data 

analysis in the classroom, instructors should consider how they are activating students’ 

knowledge and experiences that could help students productively engage in data-based 

reasoning. Situating tasks in a variety of different contexts and experiences could serve to 

expand learners’ knowledge base, thereby increasing the chances of activating students’ prior 

knowledge and experiences that could productively frame their data analysis. Additionally, 

scaffolding to explicitly cue students’ relevant prior knowledge and experiences can support 

productive engagement. The sensitivity to scaffolding was evidenced by Ariel who modified her 

response simply by being prompted to consider the perspective of the scientists conducting the 

experiment.   

Overall, the participants were proficient in navigating the graph. With the scaffolding 

employed for the task, students did not seem to have any problems comprehending the graph and 

its features. Students could easily identify local maxima and minima, compare points and slopes, 

and interact with the surface features of the graph. Students’ competency in comprehending these 

surface-level graph features aligns with much of the science education literature on graph 

comprehension in science courses (Ivanjek et al., 2016; Potgieter et al., 2008). The ease with 

which students navigated graphs and their features suggests they have rich graph schemas that 

help them to synthesize and comprehend information from a graph (Pinker & Feedle, 1990). 

These schemas can serve to automate graph reading for students, which helps to explain why 

there was very little variation in students’ graph comprehension and primarily variation in what 

information students used from the graph.  
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In addition to considering how one’s prior knowledge and experiences interact with 

graphs, there were also different ways in which a frame changed during our participants’ data 

analysis. In all three ways, students noticed something that then altered their frame in some way. 

There was a variation in the degree of these frame changes, depending on how the new 

information aligned with a student’s current frame. New information that produced smaller 

frame changes generally fit with the student’s original frame. Smaller changes in analysis 

occurred when the new information did not alter any objectives within a student’s frame. In 

Fernald’s analysis, there was a very small frame change early on in his analysis. Initially, his 

frame had him consider only gold, tin, and iron data in the graph, as they were the only metals 

outlined in the task. After viewing the graph though, Fernald incorporated antimony into his 

frame by expanding upon his minimal extraction objective. This is an example of elaborating 

one’s frame in Data-Frame Theory, in which the core tenets of the frame remain integral, but the 

frame is changed to accommodate new data that was not explained or considered beforehand 

(Klein et al., 2007).  

To produce more significant changes in a student’s frame, the student’s frame needed to 

be challenged in some way. One way in which this occurred was by engaging students in a 

simulated peer review to have them consider an alternative perspective. In previous work, I used 

social comparison theory to model how students engaged in the simulated peer review (Berg & 

Moon, 2022). Here, it is likely that the simulated peer review offered students an opportunity to 

compare their frame to that of the sample response they were reviewing. From this comparison, 

students evaluated how well their frame fulfilled the task. If students were not satisfied with how 

their frame completed the task, they could adapt it or use a different frame entirely.  
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Throughout the simulated peer reviews, students demonstrated proficiency in comparing 

their frames to that of the sample responses. This was especially prominent for students who 

changed their frame after reviewing the sample response. To change their frame in this manner, 

students decentered from their original frame to consider another. Decentering is defined as the 

process of recognizing and understanding different perspectives from one’s own (Piaget, 1955). 

Some students directly verbalized that reading the sample responses offered new perspectives 

they had not considered, such as Violet did when reviewing the 0 M sample response: “It’s kind 

of like seeing it from someone else’s perspective. [It] just kind of puts it into a better 

perspective.” Here, Violet recognizes that the 0 M sample response has a perspective different 

from her own, and then acknowledges that the sample response’s frame fulfills the task better 

than her own. By recognizing the alternative perspective and then adopting it as her own, Violet 

shows evidence of decentering from her original frame.  

The findings provide further evidence that not only does empirical data shape a student’s 

sensemaking during data analysis and interpretation, but also other sources of data such as 

socially obtained information. Previous work in physics education has found that frames can be 

influenced by social cues (Gouvea et al., 2019). In the context of this study, social cues and 

social information were accessed by engaging in the simulated peer review. Through the peer 

review, students were exposed to alternative perspectives that they could consider and potentially 

adopt as their own for the task. Further work could and should consider how a student’s frame 

influences how they may engage in a peer-based classroom activity. This work is based in peer 

review, but there likely are similar occurrences in other peer-based classroom activities such as 

peer-led team learning. This is an opportunity for further research to a) uncover how peers 

prompt modifications to a learner’s frame and b) elucidate how scaffolding and intangible cues 
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may serve to activate specific frame components, or even prompt reflection on and help aid in 

productive modification of frames.   

I encourage classroom practitioners to consider how they are attempting to elicit 

sensemaking from students in tasks. Instructors should account for how the information in the 

task, such as empirical data and prompt instructions, may activate specific frames with which 

students make sense of the data. When designing the task, instructors can also think of how to 

leverage certain prior knowledge and prior experiences that relate to the task. These both can 

help guide students in forming an appropriate frame to make sense of the task productively. 

Finally, instructors can consider how other sources of information, such as alternative 

perspectives of peers, may influence students’ frames in their sensemaking process and overall 

engagement in a task. Other sources of information, like reviewing peer’s work, could have the 

power to challenge students’ less productive or relevant ideas.  

Conclusions 

The present study shows three themes and one sub-theme related to how undergraduate 

chemistry students used their prior knowledge and experiences when analyzing a line graph for a 

task. The themes are shown in Table 2.2. 

Students first established a frame to help make sense of the data. To do this, students 

activated relevant prior knowledge and experiences that helped to establish goals for their 

analysis to accomplish. Students may even have started with multiple frames before deciding 

which frame best suited the task. 

After establishing their frame, students observed and interacted with the data in the 

graph. The frames helped students to identify important data that would help them to accomplish 
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their goals. Students also compared different data features or sets of data features to gather 

information for their decision-making for the task. 

Once students had made observations of the data, students had different data-frame 

interactions. Often, students used graphical data to evaluate one of the three options for the task. 

The students’ evaluations helped students to decide which task option best fit the goals of their 

frames. A few students experienced another type of data-frame interaction in which the students’ 

observations of the data incorporated new additional goals into their frames.  

The final theme explored is when students’ frames experienced changes. This was 

another form of data-frame interaction; however, these changes resulted from students 

considering information outside of the graph. These changes occurred after students re-read the 

task prompt and considered information they had overlooked when they previously read the 

prompt. Alternatively, some students made changes to their frames when considering alternative 

viewpoints they were exposed to through a simulated peer review.  

Table 2.2: Description of themes and subtheme of students’ analyses 

Theme or Subtheme Explored Description 

Establishing Frame Students activate prior knowledge and experiences that 
help to establish goals for their data analysis to accomplish. 
Students may begin with multiple frames but eventually 
decide on one to use for the task. 

Observe and Interact with Data Students’ frames help them to identify what data features 
must be considered in their analysis. Students compare 
data features to garner more information for their decision-
making. 

Data-Frame Interactions Students use graphical data to evaluate which of the three 
options for the task best meets the goals of students’ 
frames. The graphical data may also cause students to 
incorporate additional goals into their frames. 

Frame Changes Resulting from 
Data-Frame Interactions 

Some students’ frames changed when re-reading the task 
prompt or when being exposed to alternative viewpoints 
through the simulated portion of the interview. 
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Limitations 

This study’s characterizations of students’ data analyses are highly contextualized in the 

design of the task and research methods used. 

First, the task utilized a familiar data representation for students. It is extremely likely 

that undergraduate students have encountered graphs and used them at some point before 

engaging in this task. Familiarity with analyzing and using graphs affords robust graph schemas 

for students to use, which made the navigation of the graph relatively effortless for students. 

Throughout the interviews, students had no difficulties navigating the graph to find certain 

information, make comparisons, or in comprehending the graph in nearly any manner. Other 

kinds of data representations, both domain-specific representations (such as NMR spectra) and 

domain-general representations (such as data tables) are very likely to produce different 

sensemaking from students.  

It is also important to acknowledge that the design only required students to consider one 

set of data. For this work, I simplified the task so that students only needed to consider a graph of 

extraction values, which narrowed students’ focus to three specific metals. The task was 

designed to be simple so that the analysis could both focus on characterizing students’ 

sensemaking process and identifying students’ prior knowledge and previous experiences used in 

their sensemaking. Tasks that use multiple sets of data will produce more complex sensemaking 

and potentially more complex frames. This would be especially likely for tasks in which the data 

sets contradict one another in some way.  

The content knowledge required to navigate the task also poses a limitation. The task was 

purposefully scaffolded to be accessible to chemistry students enrolled in first- and second-

semester general chemistry courses. Much of the underlying chemistry content was removed so 
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that students could engage in the task with relative ease. Tasks that would require more content 

knowledge to engage in will produce much more complex sensemaking from participants. It is 

also likely that requiring more content knowledge would produce more variation in sensemaking 

from participants as well.  

Finally, the use of interviews does pose a limitation in generalizability to broader 

contexts; however, the choice to use interviews enabled deep examination of students’ thought 

processes during their analyses as well as the identification of prior knowledge and experiences 

that influenced their analyses. During data collection, saturation was reached at eighteen 

interviews as students in the later interviews used no new reasoning or perspectives that had not 

been used before (Nelson, 2017).  

 

 



53 
 

CHAPTER 3  

PROMPTING HYPOTHETICAL SOCIAL COMPARISONS TO SUPPORT 

CHEMISTRY STUDENTS’ DATA ANALYSIS AND INTERPRETATION 

Abstract 

To develop competency in science practices, such as data analysis and interpretation, 

chemistry learners must develop an understanding of what makes an analysis and interpretation 

“good” (i.e., the criteria for success). One way that individuals extract the criteria for success in a 

novel situation is through making social comparisons, which is often facilitated in education as 

peer review. In this study, I explore using a simulated peer review as a method to help students 

generate internal feedback, self-evaluate, and revise their data analyses and interpretations. In 

interviews, I tasked students with interpreting graphical data to determine optimal conditions for 

an experiment. Students then engaged in social comparisons with three sample responses that I 

constructed and compared these samples to their own. I present a model informed by social 

comparison theory that outlines the different processes students went through to generate internal 

feedback for their own analysis and response. I then discuss the different ways students use this 

internal feedback to determine if and how to improve their responses. This study uncovers the 

underlying mechanism of self-evaluation in peer review and describes the processes that led 

students to revise their work and develop their analysis. This work provides insight for both 

practitioners and researchers to leverage student’s internal feedback from comparisons to self-

evaluate and revise their performances.  

Introduction 

Reforms in science education have called for the integration of science practices (i.e., the 

ways scientific knowledge is generated) into science instruction (National Research Council, 
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2012). Although there is consensus on the need for integrating these practices in the classroom 

(Cooper et al., 2015; National Research Council, 2012; Singer et al., 2012), the science education 

community continues to investigate methods to support students’ competency in science 

practices. Recent research has found critique to be an essential component of competency in 

science practices (Ford, 2012; González-Howard & McNeill, 2020; Osborne et al., 2016). Of the 

eight science practices, research on student engagement in data analysis and interpretation has 

uncovered a multitude of challenges many students face.  

Of the documented challenges, many students begin to experience difficulties when 

working with empirical data. Students may fail to differentiate important data from unimportant 

data (Jeong et al., 2007). Students may also focus on the surface features of data and ignore 

salient features that target the given phenomenon (Heisterkamp & Talanquer, 2015; Kanari & 

Millar, 2004). This can lead to students uncovering less relevant patterns in the data that do not 

effectively target the phenomenon (Zagallo et al., 2016). Focusing on these surface-level patterns 

in a dataset may lead to students missing the relevant scientific concepts. Students also face 

challenges when connecting patterns back to the target phenomenon. Many students will form 

conclusions with misconstrued reasoning or neglect to use scientific reasoning entirely when 

connecting uncovered patterns from datasets to the target phenomenon (Becker et al., 2017; 

Heisterkamp & Talanquer, 2015).   

To overcome these challenges and support students in developing competency in data 

analysis and interpretation, I propose peer review as a method to help students develop 

evaluative judgment in their data analysis and interpretation. In this study, I simulate peer review 

to explore how critiquing peers’ work helps learners develop evaluative judgment. 

Understanding how students evaluate their own work when giving feedback to others can inform 
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and improve peer review practices in the classroom. Additionally, it can offer a practical 

approach to supporting undergraduate students’ development of competency in science 

practices.  

Background 

Data Analysis and Interpretation 

Data analysis and interpretation is one of eight science practices outlined in the Next 

Generation Science Standards (National Research Council, 2012). Practicing data analysis and 

interpretation often involves making sense of a visual representation, such as a graph or a table, 

and using it to form a conclusion. There are several processes students engage in to interpret 

data. First, the visual representation of data must be “decoded” where the information that is 

embedded is extracted (Carpenter & Shah, 1998; Glazer, 2011; Shah & Hoeffner, 2002; Zagallo 

et al., 2016). The difficulty of this step can vary depending on the kind of representation that is 

being used and the amount of information that is embedded within it (Glazer, 2011; Shah & 

Hoeffner, 2002). From here, relevant patterns within the data must be identified (Carpenter & 

Shah, 1998; Glazer, 2011; Shah & Hoeffner, 2002; Zagallo et al., 2016). This step can prove 

difficult for many students as studies have shown that students may selectively use data or 

struggle to differentiate important features of data from unimportant ones (Jeong et al., 2007; 

Kanari & Millar, 2004). By focusing on the less important information, students may uncover 

irrelevant patterns within the data (Zagallo et al., 2016). Focusing on less relevant data and 

patterns ultimately proves problematic when students must then tie the patterns back to the target 

phenomenon to form a conclusion or explanation (Carpenter & Shah, 1998; Glazer, 2011; Shah 

& Hoeffner, 2002). When the claims and explanations constructed from less relevant data do not 

effectively target the phenomenon for which the data has been collected, students may risk 
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missing the relevant scientific concept entirely (Lai et al., 2016; Zagallo et al., 2016). For 

example, Zagallo and colleagues found that some groups of undergraduate biology students in a 

transformed Cell and Developmental Biology course became distracted by less relevant data 

during a classroom problem set (2016). Although the students did eventually shift their focus to 

the relevant data, they did lose valuable class time and needed guidance from an instructor to 

lead them to the relevant scientific concept. 

Similar challenges have also been identified for data analysis and interpretation in 

chemistry contexts. Like in many other domains, chemistry students will often rely on surface 

features or less relevant features of data representations and models to form conclusions or 

construct explanations (Becker et al., 2017; Heisterkamp & Talanquer, 2015). In addition to this, 

many chemistry students will use misconstrued reasoning or neglect to use reasoning entirely 

when engaging in data analysis and interpretation (Becker et al., 2017; Heisterkamp & 

Talanquer, 2015). In a case study investigating the major types of reasoning general chemistry 

students use when engaging in data analysis and interpretation, participants relied on 

“hybridized” reasoning and mixed intuitive knowledge with their chemical knowledge when 

producing explanations (Heisterkamp & Talanquer, 2015). In another study investigating how 

students construct mathematical models to describe rate laws from empirical data, many of the 

students did not connect the mathematical model they had produced to the actual trends in the 

data (Becker et al., 2017). Becker and colleagues also found that some of the participants 

engaging in the data analysis and interpretation had produced conclusions without even 

consulting the kinetic data given to them. This is perhaps the most problematic approach to data 

analysis and interpretation, as the Next Generation Science Standards states that students must 
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“present data as evidence to support their conclusions” when engaging in data interpretation and 

analysis (National Research Council, 2012).  

The current literature in psychology, science education, and chemistry education has 

described how students engage in the practice of data analysis and interpretation and documented 

common challenges for students; however, little work has explored how to support the 

development of their data analysis and interpretation skills (Bolger et al., 2021; Zagallo et al., 

2016) and no work has been done in chemistry.  

Peer Review 

Peer review offers a unique opportunity to expose students to their peers’ work. The 

potential benefit is especially promising for tasks that require students to generate a product, as 

many of the science practices do (in this case, an evidence-based decision). Reviewing peers’ 

work can help students evaluate their own work and potentially make changes to improve it. 

Making improvements to their work could entail incorporating new evidence or reasoning they 

had encountered in their peer’s work, or it could even involve producing an entirely new 

conclusion if their peer’s work is more compelling than their own. On the other hand, if their 

peer’s work is like their own, students may develop confidence in their conclusion. In this way, 

engaging students in peer review has been shown to develop evaluative judgment (Nicol et al., 

2014). Evaluative judgment includes an understanding of the criteria for success and quality 

work within a given domain (Sadler, 2010). Therefore, developing evaluative judgment is key to 

learning what makes data analysis and interpretations good. For science practices, evaluative 

judgment is part of what has been referred to as deep understanding, or understanding of the 

epistemic criteria of science (Kuhn et al., 2017). Deep understanding is a key learning objective 

for engaging learners in science practices.   
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The process of receiving feedback in peer review has received much of the attention 

within peer review literature. Receiving feedback from multiple peers can help students evaluate 

their work and make changes to improve the quality of their work more so than only receiving 

feedback from an instructor (Cho & MacArthur, 2011); however, receiving feedback from peers 

does not guarantee a student will make necessary revisions to their work (Finkenstaedt-Quinn et 

al., 2019). Students must recognize the value of the feedback they are given and make judgments 

on what feedback must be incorporated, while also managing affect surrounding the feedback 

(Carless & Boud, 2018). This process of enabling feedback uptake takes time and labor to 

develop for both instructors and students.   

Recent work has found that the gains from receiving feedback are less than the gains 

from giving feedback in peer review (Anker-Hansen & Andrée, 2015; Cho & MacArthur, 2011; 

Ion et al., 2019; Lundstrom & Baker, 2009; Nicol & McCallum, 2021). Giving feedback appears 

to engage students differently than receiving feedback from others. When giving feedback, 

students make comparisons with their own work (McConlogue, 2015; Nicol et al., 2014; van 

Popta et al., 2017). The student’s own product will often serve as a reference to compare against. 

The comparison process allows students to engage in active reflection on the task criteria and 

their own work (McConlogue, 2015; Nicol et al., 2014; Nicol & McCallum, 2021). Through 

producing feedback for others, students can generate internal feedback to inform and revise their 

draft to be in better compliance with their understanding of the task criteria. Students have 

reported that revising their draft in this way reduces the need for receiving feedback from peers, 

as they had already made the changes suggested to them when they reflected on their own work 

(Anker-Hansen & Andrée, 2015; Nicol et al., 2014; Nicol & McCallum, 2021).   
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To better understand how students evaluate and revise their own work when giving 

feedback to others, it is necessary to first consider the process of revising a written draft. 

Previous studies in college writing have found that when making revisions, students engage in a 

four-step process (Flower et al., 1986). First, they define the task, gaining a deeper understanding 

of what must be done in the task. This part of the review process is further supported by students 

self-reporting that they can take the perspective of an assessor and better understand the given 

standards for the task when providing feedback (Nicol et al., 2014). Second, students detect any 

problems that might be present in the work. To detect a problem, students must recognize the 

differences between the given work and an ideal work that follows the standards defined in the 

first step. Students will often use their own work as a standard to compare against (Nicol et al., 

2014). The differences that students find between the given works will likely be the problems 

they detect. Once the problems have been detected, they can be further identified in the third 

step: diagnosis of the problem. Flower states that the diagnosis of a problem “brings new 

information to the task” (Flower et al., 1986, p. 41). The problem diagnosis is not necessarily 

essential for the revision process; however, identifying and articulating the nature of a given 

problem is associated with more sophisticated revisions (Patchan & Schunn, 2015). Finally, a 

solution strategy is offered as the final step in the revision process. A strategy may involve 

getting rid of a problematic portion or revising and rewriting the given task.   

The cognitive processes of making revisions overlap with many of the cognitive 

processes associated with providing feedback for others in peer review (Patchan & Schunn, 

2015). Students must be able to detect a problematic part of a work, diagnose what makes that 

part problematic, and then determine a solution strategy to improve the work. In addition to these 

processes, current peer review literature has also outlined how peer review can act as a vehicle to 
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generate internal feedback for students (Nicol, 2020; Nicol & McCallum, 2021). Because 

students use their own work as a benchmark to make comments on other’s work, the resulting 

comparisons will promote active reflection on one’s own work and help generate internal 

feedback about their performance. Generating this internal feedback is one way that students can 

make improvements to their own work (Butler & Winne, 1995; Nicol, 2020; Nicol et al., 2014; 

Nicol & McCallum, 2021). A key step in this comparison is the explicit differentiation between a 

peer’s perspective and one’s own, or decentering (Moon et al., 2017; Teuscher et al., 2016). 

Decentering itself has been shown to be productive in supporting one’s own reasoning and 

interactions with others (Moon et al., 2017; Teuscher et al., 2016).   

Social Comparison Theory 

Peer review is an inherently social process in which students typically engage in 

comparison with other’s work. These comparisons are affected by how the student perceives 

themself in relation to others. This will also impact the internal feedback that students generate 

from evaluating their own work while giving feedback in peer review. I propose using social 

comparison theory to investigate how chemistry students generate internal feedback and evaluate 

their own work when giving feedback in a peer review setting.  

Social comparison theory was originally developed by social psychologist, Leon 

Festinger, in 1954. He theorized that when placed in ambiguous environments that produce 

uncertainty about how to think or behave, individuals will compare themselves with others in the 

same situation to reduce that uncertainty (Festinger, 1954). Later research in social psychology 

has found that people will often engage in social comparison in situations where there are 

specific criteria and standards (Alicke, 2007; Greenwood, 2017; Levine, 1983; Martin, 2000; 
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Miller et al., 2015; Pomery et al., 2012; Smith & Arnkelsson, 2000). These comparisons serve to 

gauge an individual’s performance and ability relative to others.  

When engaging in social comparison, an individual will compare to a “target” (Alicke, 

2007; Greenwood, 2017; Martin, 2000; Miller et al., 2015; Pomery et al., 2012; Smith & 

Arnkelsson, 2000). The target is simply the subject(s) to whom the individual compares themself 

to, and these subjects can be real or imaginary as long as they exist in a similar environment or 

situation. The individual’s perception of the target’s performance will determine the kind of 

social comparison being made. If the target’s performance is perceived as superior in some way, 

it is considered an upward comparison. If the target’s performance is perceived as inferior in 

some way, the comparison is considered downward. Performances that are perceived as similar 

are considered lateral comparisons. The direction of the social comparison is often influenced by 

the motivation for the social comparisons, beyond reducing uncertainty.   

Further research in social comparison theory has found that there are two primary 

additional motivations for engaging in social comparisons: self-improvement and self-

enhancement. Self-improvement is associated with upward comparisons (Dijkstra et al., 2008). 

By comparing one’s work to a “better” model, an individual has the chance to gain inspiration or 

learn how to improve their own work. On the other hand, self-enhancement is associated with 

downward comparisons (Dijkstra et al., 2008). Individuals will engage in a downward 

comparison with a target that they perceive to be worse off. This aids in helping the individual 

improve their perception of their own work, easing the anxiety and low self-esteem surrounding 

their performance or ability (Dijkstra et al., 2008).   

Social psychologists have argued that the classroom creates the ideal conditions for 

engaging in social comparisons (Pepitone, 1972). Students are motivated to improve their 
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learning and the act of learning new material in the classroom often generates cognitive 

uncertainty. Therefore, students are motivated to engage in social comparison as a method to 

evaluate and obtain internal feedback on their performance (Levine, 1983). Some, however, have 

hesitated to use social comparison in the classroom due to the negative connotations of 

comparing oneself to others. There are underlying assumptions that engaging in social 

comparison could potentially cause feelings of inferiority, competitiveness among peers, and 

decreased motivation for some students (Levine, 1983). To minimize this possibility, I propose 

adjusting the conditions of social comparison within the peer review process by lowering the 

stakes of the comparison and having students review anonymous, preconstructed responses 

(Beach & Tesser, 2000).   

Using social comparison theory to investigate offers the opportunity to focus on the 

thoughts and processes of the individual in a peer review setting. I propose using this theory as a 

lens to explore the mechanisms by which a student evaluates their own work and generates 

internal feedback while giving feedback in a simulated peer review. This specifically guided the 

study to answer this central research question: How do chemistry students evaluate their own 

data interpretations when critiquing hypothetical peers’ data interpretations?  

Methods 

Overview 

The central phenomenon the study is to investigate is how students evaluate their own 

work when giving feedback in peer review, specifically focusing on the cognitive processes that 

students go through to make changes to their work (Creswell & Poth, 2016). Semi-structured 

interviews were used to allow for a systematic approach in interviews with the added flexibility 

of probing questions.  
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Interview Protocol 

The interviews consisted of two stages. The first stage of the interview engaged the 

students in data analysis using a modified line graph shown in Figure 3.1. The data was taken 

from a report of an experiment performed to extract gold from waste electronic and electric 

equipment (Doidge et al., 2016). Students were tasked with finding an optimal concentration of 

hydrochloric acid to obtain a maximal extraction of gold with a minimal extraction of waste 

metals tin and iron. Students were given relevant experimental details to aid in their analysis and 

interpretation of the graph to help them choose between three different concentrations of 

hydrochloric acid (0M, 2M, and 4M). At the end of this stage, students produced a written 

response to convince someone else and explain why their concentration choice was the best.  

 

 

Figure 3.1: Graph modified from Doidge et al. (2016) 

In the second stage of the interview, participants evaluated three sample responses. They 

were told that these sample responses had been generated by students participating in the same 

study (i.e., interpreting the same data). The three responses corresponded to the three 

concentrations of hydrochloric acid considered in the first stage of the task. Importantly, I 
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constructed each sample response to include potential epistemic errors that could be made in this 

context (e.g., only considering one variable). Each sample response contained accurate 

information from the graph but used different reasoning to support one of the three hydrochloric 

acid concentrations. Students were presented with one sample response at a time to review. 

Students often began by identifying points of strength and weakness for the sample. If they did 

not explicitly bring up their own response at this point in the interview, they were directly asked 

to compare it to the sample response. This point served as the social comparison of the interview. 

Students generally brought up differences between the content and the quality of the responses 

and their own. Follow-up questions were asked as needed to elicit comparisons of both the 

content and quality types. After the comparison, students shared their feelings about their own 

responses and analysis. This point served to gauge the student’s confidence from engaging in the 

social comparison and providing feedback to the sample. If the student stated they felt less 

confident or had low confidence, the interviewer asked the student what kinds of changes they 

would make to their own response to improve their confidence. Students also shared why they 

felt their confidence was affected by reading the sample. See Appendix A for the full interview 

protocol with the three sample responses. 

Sample Selection  

The study took place at a large, Midwestern university in the fall of 2020. Approval was 

obtained for the study from the Institutional Review Board before recruiting for interviews and 

students consented immediately prior to participating in the interviews. Participating students 

(N=18) were recruited for semi-structured interviews from both first-semester and second-

semester general chemistry courses near the end of the semester. All interviews took place 

remotely over Zoom a week after the semester had ended.   
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Data Collection 

During the interviews, students used the chat feature to write their own responses for the 

data analysis task, and later to review their responses and read sample responses. I presented the 

student with one sample response at a time. Interviews lasted between 45 and 80 minutes. The 

resulting audio recordings were transcribed via Temi.com or Zoom, and the video recordings 

were kept for reference in the case that students made comments referring to visual features in 

the graph. All data collected from the interviews were deidentified and pseudonyms were 

assigned to each interview participant. Participants who completed the interview were 

compensated with $20 gift cards for their help in the study.   

Data Analysis 

For this study, I analyzed interview transcripts from the second stage of the interview. In 

each interview, a student responded to three sample responses; thus, a total of fifty-four students’ 

social comparisons to sample responses were collected. Two of the social comparisons were 

excluded from the analysis and results because students did not show evidence of engaging in the 

social comparison.   

To begin the analysis, I used a combination of process coding and open coding to find 

patterns in students’ responses (Miles et al., 2014). Process coding is a form of open coding that 

uses gerunds to describe observable and conceptual actions performed by the participants in the 

study (Miles et al., 2014). All process codes and other open codes produced resulted from 

students’ own words describing their actions and confidence throughout the task. Additionally, 

there were some codes developed a priori to describe gaps students identified within each written 

sample. These codes were weaknesses I had purposefully constructed into each response, and I 

anticipated students would identify them at some point in their interviews.   
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The process codes that I developed were used to describe students’ actions throughout the 

interview (Miles et al., 2014). I began by reading through each interview to identify how students 

responded to each sample response. As certain actions were repeated within interviews and 

across interviews, codes were generated to describe the specific action. These codes related to 

both how students reacted toward the written samples and their own responses. Some examples 

of process codes from this point in the analysis include “offering constructive criticism”, 

“dismissing sample”, and “changing claim.”  

To investigate students’ confidence, each interview was read through to see how students 

gauged their confidence when responding to different written samples. I coded the points when 

students stated an overall level of confidence or change in confidence, specifically noting if the 

students had stated they had higher or lower confidence. In addition to coding students’ 

confidence, many students with lower confidence made statements such as “I don’t know” or “I 

don’t know about…” while engaging in the social comparison with the written sample. I 

considered these to be instances of students expressing cognitive uncertainty surrounding some 

element of the task. Mitigating uncertainty is one of the motivations people may have to engage 

in social comparison (Festinger, 1954; Greenwood, 2017; Martin, 2000; Miller et al., 2015; 

Pomery et al., 2012; Smith & Arnkelsson, 2000); therefore, by accounting for students’ 

expressions of uncertainty and documenting the specific elements students expressed uncertainty 

about, students’ thought process could be better followed throughout the social comparison.   

In the next iteration of the analysis, I used axial coding to see how the different codes 

generated from open coding related to each other. This mainly involved relating the different 

process codes together to describe the general actions that students engaged in when giving 

feedback to the samples. I first used constant comparative analysis to sort students’ responses to 
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each sample response based on whether they found gaps in their own responses or not. The gaps 

were indicative of critical internal feedback the student had generated regarding their own work. 

From there, students were further sorted based on any changes in confidence they expressed after 

engaging in the social comparison with a sample response. This sorting included accounting for 

increases, decreases, or no notable changes in confidence. Finally, I further sorted students based 

on how they responded to their change in confidence. This first consisted of sorting students 

based on whether they made changes to their responses. Students who did make changes were 

then further sorted according to how they modified or planned to modify their responses.   

In the final stage of analysis, selective coding was done to piece together the general 

actions from the axial coding to outline the processes involved in giving feedback in peer review. 

Actions were put in sequential order to develop a model of obtaining internal feedback from peer 

review with the four categories from the axial coding stage as potential paths that could be taken. 

Student confidence and uncertainty of their own response were also incorporated into the model 

as observable events to track which path a student might end up taking when engaging in peer 

review during the interviews.  

Trustworthiness of Analysis 

Through these iterative cycles of coding, a coding scheme was developed to characterize 

student internal feedback from engaging in peer review and the changes students made to their 

original responses. A researcher from outside of the project was trained on the coding scheme 

and then independently coded 10% of student’s peer reviews in the interviews using the coding 

scheme. The coded subset of data was then compared and discussed between the outside 

researcher and me until consensus was reached. The main points of discussion concerned internal 

feedback for students who did not make any changes to their responses and stated they did not 
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have any change in confidence for a given social comparison. Originally, this response category 

only included students who identified gaps in the sample responses but did not state a notable 

change in confidence or make changes to their responses. The outside researcher and I discussed 

how to categorize a small sample of students who did appear to actively engage in comparison 

with the sample responses. These students identified gaps in the sample responses but also 

recognized the alternative responses as valid ways to approach the task. These students did not 

make any changes to their responses, nor did they state that they felt differently about their 

responses from the social comparison. Because of the lack of change in their response and lack 

of change in confidence, I inferred that they did not gain any observable internal feedback from 

the comparison. To capture this type of reaction, the “No Internal Feedback” category was 

expanded to include this type of reaction more explicitly. Discussions such as these refined the 

coding scheme and working model. I coded the remaining data, but the other trained researcher 

was consulted on two interviews for an additional perspective on coding.  

Results 

Overview of Results 

From the semi-structured interviews, I constructed a model that describes how students 

generated internal feedback by giving feedback in a one-sided peer review setting and how they 

then used the internal feedback to evaluate their work (Figure 3.2). All students began with the 

same process of forming their own response and continued comparing and evaluating it against a 

written sample, but from there diverged into different paths depending on the kind of internal 

feedback they had developed from the social comparison. These paths further diverged based on 

how students used and responded to the internal feedback they had generated from the social 

comparison.  
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In addition to outlining the processes associated with generating and using internal 

feedback from peer review, the model also considers how a student’s confidence and uncertainty 

change and influence how they use any internal feedback. After engaging in a social comparison, 

students’ confidence often changed, which seemed to relate to the internal feedback they had 

generated from the comparison. I observed students with lower confidence and more uncertainty 

in their original responses re-evaluate their original analysis. When the social comparison might 

have caused some uncertainty surrounding the quality of their work, many students were 

motivated to address their uncertainty by making changes to their answers.   

I observed four different types of responses to the social comparison illustrated in Figure 

3.2. Each response category is distinct based on what kind of internal feedback students 

generated from the comparison, their resulting confidence after the comparison, and how 

students responded to their internal feedback. The response categories were also tied back to the 

different motivations that have been identified in social comparison theory.  
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Figure 3.1: Model of different paths through social comparison, internal feedback generation, self-evaluation, 
and revision 

Form Internal Criteria 

Students first formed a response to fulfill the task. To do this, students needed to interpret 

the prompt from the first phase of the interview and define the criteria needed to fulfill the task. 

For this task specifically, students needed to form criteria surrounding what minimal and 

maximal meant within the context of an extraction, and then translate the interpretation to the 

graph to find an appropriate answer for the task. These terms were ambiguous enough that there 

was no universal definition for students to use, so students were required to ascribe some sort of 
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meaning to them. In constructing meaning for his criteria, Bruce (2M), like many of the other 

participants, defined minimal as closely related to minimum, but not the same:  

“Minimal doesn't mean the same thing as minimum, if I'm not mistaken… I would make 

the assumption that 1% is a minimal amount of waste, but it's not the minimum amount of 

waste. So 1% is a really small amount of waste, but it's not the smallest amount of waste.” 

(Bruce)  

Here, Bruce explains part of the criteria for his own response, noting the differences 

between a criterion of minimum waste and minimal waste within the context of the task. His 

answer was chosen and constructed to reflect his definition of minimal as a component of his 

criteria. Because of how implicit it was within a student’s analysis, the criteria itself often did not 

surface until students engaged in the social comparison. Bruce, like many of the other students, 

did not fully explain what ‘minimal’ meant until he encountered another interpretation of the 

same prompt. It was through encountering an alternative interpretation of a sample and 

comparing it to their own that most students mentioned the standards used for their own 

responses.  

Comparison of Sample Response 

After constructing their own response according to their criteria, students then 

encountered an alternative response and compared it to their own. Students often made 

comparisons of their interpretation of the prompt to the sample’s interpretation, using their own 

interpretation as a benchmark. For example, consider Evander’s comparison of his own 

interpretation (2 M) to the 0 M sample:  

 “They [0 M response] considered the impurity as the end all be all, however much gold 

we extract in the end, it is what it is. I kinda met or I started with at four and then worked my way 
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down to two. I had the maximize gold approach and then the minimizing the impurity was kind of 

second hand to that.” (Evander)  

Here, Evander recognizes that the 0 M response had interpreted the prompt differently 

than he had and is able to identify how the response differs from his own. He then provides his 

own approach to fulfilling the task, demonstrating that his own response acted as a benchmark 

for the comparison. Importantly, Evander very specifically uncovers the difference between the 

criteria being used in the sample and his own. Evander argues that the sample author considered 

only one criterion: eliminating impurity; whereas Evander prioritized maximizing gold followed 

by considering the impurity. Evander’s quote illustrates the decentering that served as the first 

step in comparing a sample response to one’s own. While all students used their own responses 

as a benchmark for a comparison to the sample, some students also made additional comparisons 

to previous samples they had encountered in the interview. These comparisons were similar in 

nature to ones in which students used their own response as a benchmark, they just included 

more targets to compare to and these occurred later in the interviews after students had 

encountered multiple sample responses.  

Evaluation of Sample Response 

Students’ comparisons with the sample response served as a basis for the evaluation step 

of the model. During this step, students assessed the sample to see how well it fit with their 

internalized criteria formed during the first step. When assessing the sample, students would 

identify different strengths and weaknesses of the sample response. Once these were identified, 

students would go on to determine how well the response aligned with the internalized criteria 

they formed from the prompt. For instance, Evander’s (2 M) evaluation of the 4 M response is 

heavily informed by his motivation for a pure gold extraction.  
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“They [4 M response] focused purely on the amount of [gold] extracted and 

they didn't take into account the potential for impurities as the concentration [of 

HCl] increased. So I guess starting from zero and going to four, like when they talked about that 

65 to 95, they didn't, I guess not understand, but they didn't take into account the other two 

compounds that are classified as waste within the question.” (Evander)   

Evander began his evaluation by identifying a gap in the 4 M response: the response only 

included information on gold. He recognized that the prompt considered two of the metals 

included in the task were waste and could be extracted with gold, causing an impure extraction to 

take place. Having a pure extraction was a criterion that informed Evander’s own response for 

the task, so encountering a sample response that was not aligned with this criterion ended up 

resulting in a negative evaluation of the sample response.  

Self-Enhancement  

How well the sample response fit with a student’s internal criteria influenced what kind 

of internal feedback was obtained from the social comparison. Students who did not find that the 

sample response fit their internal criteria typically found gaps in the response that made it 

weaker. This often gave students favorable internal feedback from the social comparison, as their 

own responses did not have these gaps making them relatively stronger; however, some students 

were able to obtain favorable internal feedback from social comparisons with sample responses 

that were similar in strength to their own, as is the case with Ben (2 M).  

Interviewer: “Okay. And how does this response [2 M response] compare to yours?”  

Ben: “I think it's kind of on the same level. I think we're saying the same thing. I don't 

really see it as false. We both do the same kind of analysis and like we compare both of 

them while acknowledging the maximum and the minimum amounts.”  
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Interviewer: “How are you feeling about your response after reading this one?”   

Ben: “I'm feeling good because I see that someone did the same thing I did. They 

analyzed it the same way without any -- like it doesn't differ from mine. If this differed from mine 

and the conclusion was different, that would make me less confident because I can see I had an 

error in mine, which makes mine not correct.”  

Although Ben had identified some argumentative gaps in the 2 M sample response earlier 

in the interview and had suggested that the response include more evidence to support its 

conclusion, he still viewed it as similar in quality to his own. He found that his own response and 

the sample had similar analyses and interpretations of the prompt that in turn validated the 

internal criteria for his own response. Seeing that his own internal criteria and analyses were 

mirrored in the 2 M sample response gave Ben positive internal feedback. Experiencing 

validation and higher confidence from positive internal feedback like this was indicative of a 

student experiencing self-enhancement from the social comparison. Students who experienced 

self-enhancement from the social comparison did not make changes to their response in any way; 

therefore, they were not considered to have been motivated to change their response. The 

validation they gained from the social comparison helped them to feel confident enough in the 

strength of their response that they likely did not feel an incentive to revise it.  

Self-Improvement Route 

In contrast, students who experienced critical internal feedback often lost confidence in 

their own responses, as observed in Ben’s explanation. Had the sample response had a different 

conclusion and analysis (and presumably fit his internal criteria) Ben would have lost confidence 

in his own response. This is what occurred with other students in their social comparisons, as 

Violet (2 M) noted after her comparison with the 0 M sample response:  
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 “My answer [2 M] made sense to me when it was just me thinking it through. And then 

getting the perspective of these other two students and what they think—it just makes more sense 

to have absolutely zero waste and have 65% of the gold. Versus my answer, you're having 90% 

of the gold but you have a little bit of waste... And in the paragraph, they want to use the 

maximum amount of gold with minimum amounts of waste. So, it just makes more sense to have 

absolutely zero waste and then you know that it is just the 65% of the gold going through.” 

(Violet)  

Upon making the social comparison with the 0 M sample response, Violet generated 

critical internal feedback for her own response. Even though her original response seemed to fit 

her original internal criteria at the time, it did not seem to align with her new internal criteria as 

much as the 0 M sample response did after the social comparison. Violet’s internal criteria 

seemed to shift after being exposed to the perspective of the 0 M response. She then identified 

that the amount of waste at 2 M in her original response did not satisfy the “minimum amounts 

of waste” criterion as well as the 0 M sample response did after the comparison.  

After engaging in the social comparison, students who generated critical internal 

feedback generally expressed doubt about the quality of their original responses. They then were 

given an opportunity to make changes to their response to address any of the gaps they identified 

in their own response. By addressing their uncertainty in the quality of their response, students 

demonstrated that they were motivated by self-improvement. To begin improving their response, 

students first evaluated the alignment between their internal criteria and their response. The 

results of this evaluation then went on to affect what kinds of changes students made to their 

responses.  
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Self-Improvement: Adaption 

Students who found their original response still mostly fit their internal criteria 

maintained the essence of their response but made smaller changes. This kind of response 

towards critical internal feedback was considered self-improvement through adaption. Students 

within this response category were motivated to address their critical internal feedback by 

maintaining their original claim and adapting their responses through minor revisions. Students 

typically proposed and made changes to their responses by incorporating new evidence or 

reasoning into their responses. Fernald (2 M) does this after engaging in social comparison with 

the 0 M sample response.   

Interviewer: “What is your confidence in your own response after reading this?”  

Fernald: “I think that it's a little bit lower because it shows a weakness that I may not 

have explored in its entirety. And because I don't know the details, I could end up being 

wrong with my answer.”  

Interviewer: “Okay. What changes would you make after reading this to your answer?”  

Fernald: “I would probably use, I would ask to see the specific numbers because just 

guessing kind of off of a graph is not very effective. I'd try to find the ratio that would show that 

two molarity would be better than zero molarity, unless of course the reverse is true.”  

When asked, Fernald began questioning his original response, stating that there was a gap 

in his response that, if not addressed, could make his response wrong. The potential “weakness” 

he mentioned had to do with whether or not 2 M had an appropriate amount of gold relative to 

other metals, something he had relied on with his reasoning in the first stage of the task. Fernald 

felt there was a gap in his response because he did not include numerical evidence to support his 

claim. To address the gap, Fernald sought new empirical evidence that would improve and adapt 
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his response. Fernald’s response still fit his internal criteria for the task (i.e., amounts of metals 

in the extraction), but by adapting it through incorporating new numerical evidence he would 

also definitively align it with his internal criteria.  

Self-Improvement: Adoption 

Students who found their original response did not fit their internal criteria after the social 

comparison often made other changes to their response. These changes consisted of adopting a 

new response with a different claim from their original. This kind of response to critical internal 

feedback was considered self-improvement through adoption. Students were motivated to wholly 

address their critical internal feedback surrounding the gaps in their original response and did so 

by adopting a new claim. Take Hector’s social comparison of his 2 M response to the 0 M 

sample response:  

Interviewer: “How has this affected your thinking about your own response?”  

 Hector: “It kind of made me realize that I didn't account for the single extraction test 

part. It also enforced that I talked about the gold yield on mine…So it sort of pointed out the 

things that I liked about mine while also, you know, showing the big point that I ended up 

missing.”   

Interviewer: “Okay. Is it making you want to change your response at all?”   

Hector: “Yeah, a bit.”  

Interviewer: “Okay. How would you change your response?”  

Hector: “If I ended up changing it? I would say I would switch to zero molarity HCl, just 

because I would want to get out as much gold as I can in a single extraction.”  

Although Hector generated some positive internal feedback by identifying a gap in the 0 

M sample response that his own response addressed, he generated more critical feedback overall 
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from the social comparison. His original internal criteria were fulfilled by his response, but 

Hector ended up modifying his internal criteria after the simulated peer review. Hector directly 

notes that his original response (and his internal criteria) did not account for a single extraction, 

something that was mentioned as a parameter for the experiment in the prompt. He then 

incorporated the single extraction criterion into his internal criteria and presumably noted that his 

original response did not fulfill his full set of criteria. To address this gap, Hector adopted a new 

claim to better align with the new criteria allowing Hector to better satisfy the updated criteria 

from the social comparison.  

No Internal Feedback Observed  

Some of the students in the study did not seem to generate internal feedback from a social 

comparison. These students stated that they did not have any significant change of confidence 

after their comparison, and they did not make any changes to their responses. Some of the 

students in this category mentioned that they did not gain any new information from reviewing 

the sample response, such as Hal (2 M) did with the 4 M response:  

“Just because I guess it would have changed my perspective if I hadn't seen that 

four molar was the highest extraction. But I already kind of knew that the four molar was the 

highest extraction going into reading the answer. It didn't really propose anything different or 

any new information that I hadn't considered.” (Hal)  

Earlier in his interview, Hal considered 4 M as a choice for his original response, but 

ultimately decided on 2 M as his final choice for his response. Reading this response exposed 

Hal to the same evidence and reasoning he had considered before. The lack of new information 

in the 4 M sample response did little to help generate internal feedback for Hal’s own response; 

therefore, he did not feel motivated to make any changes to his response.  
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Some students within this category had different reactions to sample responses and would 

recognize the sample responses as valid. At times, they could even identify what informed that 

sample response. Consider Jo’s (2 M) comparison to the 0 M sample response:  

Interviewer: “Okay. How does this response compare to yours?   

Jo: “Like I said, different conclusion, most of the same reasoning. Um, I think they're 

both pretty strong and just have different opinions on the best way to do it.”  

Interviewer: “Okay. What is your confidence in your own response right now?”  

Jo: “Yeah, it's still the same. I considered all those factors too. I just came to a different 

conclusion.”  

In her response, Jo recognized that her response and the 0 M sample response had similar 

reasoning, and even considered the 0 M sample response to be a strong argument. She also 

recognized that its perspective was informed differently than hers, hence the “different opinions” 

of the responses. Like Hal, she had already considered the information that the 0 M response 

used and did not feel any differently towards her own response after the social comparison. The 

social comparison produced no change in confidence and did not seem to offer Jo any critical 

internal feedback. With the lack of critical internal feedback, students likely did not feel any 

incentive to revise their responses in any way to improve them.  

Discussion 

The current study explored how students evaluate their own work in a simulated peer 

review and what affective changes arose during students’ self-evaluations. The reported results 

advance the community’s understanding of the underlying mechanisms of peer review and self-

evaluation that can accompany peer review. In doing so, I outlined the cognitive processes 

students went through to evaluate their own work and identified four distinct outcomes from a 
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simulated peer review. The outcomes identified differ based on how students used internal 

feedback from a social comparison to evaluate how well their responses met certain internal 

criteria. The nature of student’s generated internal criteria had a deep impact on the social 

comparisons they made.  

To develop their internal criteria, students constructed certain plans to accomplish the 

task at hand and meet specific goals. To form these goals and plans for any given task, students 

must consider external information such as the instructor’s comments, task prompts, and 

instructions (Nicol, 2020). Nicol found that the goals that students end up forming to accomplish 

a task are informed by their prior knowledge, beliefs, experience with similar tasks, and their 

overall interpretation of instructions given to them. Once students had formed an interpretation 

of the instructions and constructed goals for their internal criteria, the goals shaped how students 

evaluated and interacted with all responses for the task, including their own responses. Nicol has 

also reported that students’ criteria formed for a given task influence how they interact with all 

external products (i.e., their own response and other’s responses for a given task) (Nicol, 2020; 

Nicol et al., 2014).   

After producing internal criteria for the task, some students showed evidence of going 

through the process of decentering. Decentering is the process of recognizing and understanding 

different perceptions and reasoning from one’s own (Piaget, 1955). Decentering has been shown 

to lead to more productive discourse within the classroom. Physical chemistry students engaging 

in discourse in a process-oriented guided inquiry classroom demonstrated decentering when they 

recognized where their peer’s response stemmed from, allowing them to consider alternative 

reasoning and reflect on their own as well (Moon et al., 2017). In this study, students showed 

evidence of decentering during their social comparison when they could identify the internal 



81 
 

criteria that informed the sample response they were reviewing. For example, when comparing 

the 0 M sample response to his own (2 M) Evander stated that the 0 M sample response weighed 

the impurities present more heavily in its analysis. Although his own response involved 

accounting for impurities as well, it was weighed along with the other goal of obtaining a larger 

amount of gold. This demonstrates that Evander was able to recognize the perspective for the 0 

M sample response and identify the internal criteria and reasoning that informed the 

perspective.  It was the act of decentering that allowed some students to develop their analysis 

and change their responses. Students, such as Hector or Violet, adjusted their own criteria in 

some way after identifying other internal criteria that informed the sample response they were 

reviewing.  

Students who changed their internal criteria or other aspects of their responses did so 

because they gathered new information from the social comparison. According to Nicol (2020), 

students can use comparisons to gather external information to re-evaluate and modify their 

interpretations of instructions and therefore modify the strategies and tactics they use to 

accomplish the task. Students participating in this study’s simulated peer review had generally 

engaged in multiple social comparisons before they adjusted their internal criteria or any part of 

their response. Yan and Brown (2017) also noted this in their investigation regarding student 

self-assessment. Students used multiple sources of external information to “calibrate” their own 

performance and evaluations of other’s performances. Students generated internal feedback from 

multiple external sources of information that corroborated each other and then made changes to 

their work to address the abundance of internal feedback.   

Even though students were engaged in multiple social comparisons to generate some sort 

of internal feedback, there were some instances in which students did not generate any 
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observable internal feedback to evaluate their own work. This can be interpreted as a limitation 

of the interview setting, as students might have had unconscious internal feedback that was 

unable to be elicited through the study’s interview protocol; however, Nicol’s work in internal 

feedback suggests that providing external information for students to compare against does not 

guarantee they will make meaningful comparisons to produce internal feedback (Nicol, 2020). 

Instead, students may “monitor” this external information without using it to evaluate their own 

work. This “monitoring” could also explain why some students do not make changes to their 

own work when receiving explicit feedback from reviewers in traditional peer review settings 

(Finkenstaedt-Quinn et al., 2019). If they are not meaningfully engaging with external 

information such as peer’s constructive criticisms, there is no reason to then generate internal 

feedback and revise their work.  

The students who do end up generating internal feedback and decide to revise their work 

are likely to be motivated to act in this way. The results suggest that students are acting to 

address their critical internal feedback and mitigate their uncertainty in meeting their internal 

criteria as part of this motivation. By addressing their critical internal feedback and working to 

meet higher standards, students are attempting to improve their work. According to social 

comparison theory, these students seem to be motivated by self-improvement (Dijkstra et al., 

2008). Previous work in peer review has also found that students report that they were motivated 

to improve the quality of their own work after being exposed to other’s work (Nicol et al., 2014). 

Though this study’s model may not capture this motivation wholly as its findings are grounded 

in a simulated peer review, it is possible that the students in Nicol’s study could also be 

motivated by self-improvement through adoption and adaption.  
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Conclusions 

Findings from this study indicate that when the undergraduate students gave feedback in 

the simulated peer review, students first formed a set of internal criteria that was used to compare 

and evaluate their own work against the sample response. Students’ comparisons and evaluations 

served as an opportunity to generate internal feedback surrounding their work. How students’ 

work was meeting their internal criteria for success during their evaluation determined if students 

generated critical feedback on their work. The nature of students’ internal feedback and 

responses to the feedback shaped four pathways as shown in Table 3.1.  

Social comparisons that did not generate critical internal feedback followed one of two 

response pathways: Self-Enhancement or No Internal Feedback Observed. Students who 

followed either of these response pathways seemed to lack the incentive to make changes to their 

work because they did not generate critical feedback. In cases of self-enhancement, students may 

have even generated internal feedback that validated their work.  

In social comparisons that did generate critical internal feedback, students followed one 

of two response pathways motivated by self-improvement. For either self-improvement pathway, 

it is likely that the critical internal feedback students generated communicated that students' 

written work did not meet their internal criteria. In most cases, students’ work met most of their 

internal criteria and only needed new evidence or reasoning to be in full compliance. These 

students made smaller changes to their written responses to alter it and followed the Self-

Improvement: Adapt pathway. In a few cases, students' critical internal feedback communicated 

that students’ written work did not meet any of their internal criteria, and students fully rewrote 

their responses that adopted a new perspective. Thus, these students followed the Self-

Improvement: Adopt pathway. 
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Table 3.1: Description of student response pathways after engaging in social comparison. 

 

Implications for Research and Practice 

The study’s investigation of a simulated peer review suggests that peer review settings 

can help produce internal feedback to help students evaluate their own performance. So long as 

students engage in a purposeful social comparison with another response, they are likely to 

generate helpful internal feedback for themselves. Further, the findings show that students 

generated internal feedback from reviewing both similar and different others. The internal 

feedback from the comparison can validate the student’s work, in which case students will not 

make changes to improve their performance and maintain their approach. Internal feedback can 

also provide an incentive for students to revise their performance to improve it. Although our 

Response Pathway Description 

Self- Enhancement Students who underwent Self-Enhancement displayed higher 
confidence in their written responses. This likely came from 
internal feedback that validated their performance in some way. 
Students then did not revise their work. 

No Internal Feedback 
Observed 

Students who followed the No Internal Feedback Observed route 
did not seem to generate internal feedback, and they did not have 
any change in their confidence regarding their written responses. 
They also chose not to revise their work. 

Self-Improvement: 
Adapt 

Students who followed the Self-Improvement: Adapt pathway 
stated that they had lower confidence in their written responses 
following the comparison. This seems to have been due to their 
internal feedback telling them that they did not fully meet their 
internal criteria in some way. Students revised their work but did 
not change their claims. 

Self-Improvement: 
Adopt 

Students who followed the Self-Improvement: Adopt route also 
stated they had lower confidence in their written work after the 
comparison. These students likely experienced a large shift in their 
internal criteria, which meant that their written work no longer fit. 
Thus, students completely revised their responses and adopted a 
new claim. 
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research setting only simulated peer review, the kind of internal feedback observed can be 

reproduced in actual peer review settings. Many of the findings mirror that of traditional peer 

review work (Nicol, 2020; Nicol et al., 2014; Nicol & McCallum, 2021), which suggests that the 

cognitive processes and mechanisms leading to internal feedback from our study are also 

occurring in traditional peer review settings.  

This study’s findings, which were grounded in real-time data analysis and interpretation 

and review, are echoed in other peer review studies that investigated similar processes 

retrospectively (i.e., focus group interviews following completion of peer review) (Nicol et al., 

2014). Follow-up studies need to be conducted to ensure that the processes that were identified 

occur similarly in an actual peer review setting and that they also lead to the four different 

outcomes that were observed. Real peer review settings are not always anonymous, nor will 

students be guaranteed to see a variety of answers such as in this study. Students also tend to 

receive feedback in traditional peer review, something which I did not include for investigation 

in this study. In addition to this, the task for the simulated peer review was designed to target two 

specific performance expectations for the science practice of data analysis and interpretation: 

analyze data using tools, technologies, and/or models to determine optimal design solutions and 

analyze data to identify design features or characteristics of the components of a proposed 

system to optimize it relative to criteria for success (National Research Council, 2012). Future 

research can and should consider using students’ internal feedback to regulate and develop other 

performance expectations within data analysis and interpretation and consider it for the seven 

other science practices outlined by the Next Generation Science Standards.  

Internal feedback that students generate can also be leveraged in classroom settings. 

Offering students the opportunity to evaluate preconstructed sample responses allows students to 
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generate internal feedback and evaluate their performance. Findings showed that students were 

adept at uncovering what ideas and distinctions were contained in a sample response, and how 

those ideas differed from their own. This means that instructors can leverage preconstructed 

sample responses to convey ideas, criteria, and nuances in a way that students can understand 

and use.  

Internal feedback can be generated from a comparison with many different external 

sources of information, so this practice could potentially be expanded to include comparisons 

with exemplar works or even a rubric for a given task (Nicol, 2020). Facilitating comparisons 

with sample responses or other sources of external information can be implemented in the 

chemistry classroom or homework assignments. In chemistry contexts, facilitating comparison 

can potentially support the teaching of criteria for science practices that have been historically 

difficult to teach in a lecture or class setting, but are necessary for using chemical knowledge. 

For example, how to consider all data, weigh variables, and connect data to an assertion are 

rather difficult features of data analysis and interpretation to teach. This is the case for many of 

the science practices. Providing more opportunities for students to compare, evaluate, reflect, and 

revise their own work is a relatively low-labor instructional method that could help to develop 

certain practices and foster student’s own evaluative judgment. These opportunities could serve 

as a vehicle for having students extract and generate these criteria themselves.  

Limitations and Future Opportunities 

The findings of this work are unique to the design of the task and the methodological 

decisions made. Thus, several limitations must be acknowledged. 

 First, the task itself requires relatively little content knowledge to engage in. This was 

purposefully done, so that students’ revisions would primarily reflect feedback related to the 
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epistemic criteria they used for the task. Tasks that involve the use of more content knowledge 

could likely elicit internal feedback related to the content knowledge that students use. This 

would be most apparent in contexts in which students use different content knowledge than the 

response that they are reviewing. Contexts like these would be more likely to elicit internal 

feedback and revisions related to the content knowledge involved than the task of this study. 

Future peer review research should consider how one’s content knowledge might influence how 

one engages in peer review. 

 Next, I chose to study a simulated peer review that isolated the act of giving feedback to 

pre-constructed responses. These pre-constructed responses represented anonymous peers to 

simulate a “blind” peer review that is not representative of all contexts of peer review. Some 

classroom iterations of peer review may not grant anonymity to the responses that students 

review, and some students may know the writer of the reviewed response. Knowing the other 

person might affect how the student evaluates their peer’s response, and, in turn, affect how they 

evaluate their own response. I infer that aspects of Boud’s feedback literacy might also affect 

students’ decision to revise, as students may need to manage affect related to comparing to a 

known person’s response and students will need to make judgments about the quality of the 

known person’s response (Carless & Boud, 2018).  

 Finally, the clinical setting of the think-aloud interview might have affected students’ 

internal feedback generation. Although many students did respond to their internal feedback 

immediately after reviewing the sample response, it is possible that some students did not have 

enough time to reflect and respond. Traditional peer review settings often stage the peer review 

over multiple days, giving students more time to reflect and consider the internal feedback that 

they generate. The clinical setting of the present study’s interviews might have made it so that 
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some students generated internal feedback that they were not aware of while participating in the 

interview. This opens opportunities for future peer review research to consider ways in which to 

embed more time for students to reflect on internal feedback. 
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CHAPTER 4 

CHEMISTRY GRADUATE STUDENTS’ RESPONSES TO AND SENSEMAKING OF 

DISCREPANT DATA 

Abstract 

In preparation for developing into independent scientists, chemistry graduate students 

must engage with uncertainty to develop new knowledge for their field. One form of uncertainty 

that graduate students are likely to encounter and must learn how to productively engage with is 

unexpected data. Considering that graduate students often experience difficulties in developing 

their independence in their research and that they are likely to encounter unexpected data, there 

is a need to better understand how students engage with unexpected data. Thus, this study seeks 

to investigate how chemistry graduate students respond to unexpected data and how these 

responses affect their sensemaking of a chemical phenomenon. Chemistry graduate students 

participated in think-aloud interviews in which they analyzed multiple data sets to explain a 

chemical phenomenon. Using these interviews, I identified instances wherein students 

encountered data that was discrepant with their predictions and used Data-Frame Theory to 

characterize how students responded to discrepant data. Additionally, students' sensemaking that 

followed was analyzed to identify how the response affected students’ identification of 

underlying causes for the phenomenon and establishment of connections between the data sets. 

Graduate students showed three distinct responses to discrepant data: preserving the frame, 

elaborating the frame, and reframing. All three responses were capable of progressing students 

towards productive sensemaking of the phenomenon, but students needed to use the response to 

accomplish the goals of the analysis. Implications for supporting graduate students’ analyses of 

discrepant data are also discussed. 



90 
 

Introduction 

Chemistry graduate programs are meant to train graduate students to be competent and 

independent researchers who contribute new knowledge to their field through original research 

(Donkor & Harshman, 2023; National Academies of Sciences, 2018; The American Chemical 

Society, 2012). Knowledge is advanced within science by engaging with the uncertainty of the 

world (Kampourakis & McCain, 2020). One form of uncertainty that graduate students are likely 

to encounter in their research is data that is discrepant with one’s expectations (Grolemund & 

Wickham, 2014). Thus, if chemistry graduate students are to be trained to contribute original 

research that advances the knowledge of the field, they must also be trained to productively 

engage with unexpected data. 

 Of the chemistry education studies that have considered chemistry graduate students’ 

data analyses, both studies have investigated how chemistry graduate students analyze sets of IR 

and 1H NMR data to characterize molecules. Cartrette and Bodner interviewed fifteen chemistry 

doctoral students as they analyzed IR and 1H NMR data to construct structures for different 

organic molecules (2010). The authors identified that students who successfully determined the 

molecular structure checked the proposed molecular structure against the spectra to ensure the 

data supported their claims. Additionally, more successful students “mined” the spectral data to 

find important information, such as coupling constants in the 1H NMR, to aid in proposing a 

molecular structure. Similarly, Connor and colleagues tasked chemistry graduate students to 

analyze IR and 1H spectra to determine if an organic molecule was synthesized or not (2021). 

Using eye-tracking, the authors found that doctoral students spent less time looking at less 

relevant information when determining if a molecule was synthesized. The authors also 

identified that graduate students searched for complementary data across the IR and NMR 
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spectra, which suggests that they looked for corroborative evidence to support their claims across 

the different data sets.  

 Although both studies offer important information on chemistry graduate students’ 

analyses of spectral information, neither study considers what students do when encountering 

unexpected data. Given that many doctoral students face challenges in their development as 

independent scholars (Gardner, 2007, 2008), research needs to explore this facet of chemistry 

students’ data analysis and identify ways in which to support their development. Specifically, an 

exploratory qualitative study is needed to investigate graduate students’ sensemaking of 

discrepant data. An exploratory qualitative study can describe a rather complicated phenomenon 

(sensemaking of discrepant data in this case) that cannot be easily measured with existing 

statistical instruments like surveys (Creswell & Poth, 2016). To do this, interviews that directly 

elicit students’ reasoning are needed to generate rich, detailed accounts of students’ sensemaking 

(Creswell & Poth, 2016; Merriam & Tisdell, 2016). These accounts can be analyzed in such a 

way to develop a model that can describe students’ responses to discrepant data and explain how 

students’ responses impact their sensemaking (Creswell & Poth, 2016; Merriam & Tisdell, 

2016). Thus, qualitative research is the most appropriate form of inquiry to address this research 

gap. 

 The following study explores how chemistry graduate students respond to and make 

sense of data that was discrepant with their expectations. The graduate students in the following 

study participated in think-aloud interviews as they made sense of multiple data sets to explain a 

chemical phenomenon. Data-Frame Theory was then used to characterize students’ responses to 

discrepant data. I also explore how students’ responses affected the progression of their 
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sensemaking and explanation construction. With these in mind, this study was guided by the 

following research questions: 

1. How do chemistry graduate students respond to discrepant data when analyzing multiple 

data sets to explain a chemical phenomenon? 

2. How do the different responses to discrepant data differentially affect sensemaking? 

Theoretical Framework 

 Klein and colleagues’ Data-Frame Theory was used, as it characterizes how one’s 

reasoning can develop throughout one’s sensemaking of data (Klein et al., 2007; Klein & Moon, 

2006). It can explicitly outline the ways one’s reasoning interacts with one’s observations of data 

through its characterization of different sensemaking activities. This is especially important to 

consider for this research context, as the framework’s defined sensemaking activities can be used 

to characterize how graduate students respond to discrepant data.  

To begin, Data-Frame Theory posits that there are two interrelated components involved 

in one’s sensemaking. The two components, the data (observations) and frame (reasoning), are 

constructed simultaneously throughout the sensemaking process and interact in distinct ways. 

Data can be considered any directly observable feature of the thing one is making sense of. For 

the context of data analysis, data can take the form of tabulated measurements or visual 

representations such as graphs. Data includes any directly observable feature of the data set, 

including individual points, trends, patterns, peaks, slopes, data labels, legends, etc. The other 

component of Data-Frame Theory, the frame, is an explanatory structure that serves to ascribe 

meaning to observations from data by describing how data relates together. Frames come in 

many forms, including scripts, plans, prior knowledge and experiences, and schemas (Berg & 
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Moon, 2023; Gouvea et al., 2019; Grolemund & Wickham, 2014; Hammer et al., 2004; Klein et 

al., 2007; Klein & Moon, 2006; Zhou & Moon, 2023).  

 To begin the sensemaking process, one makes initial observations of the data. These 

observations activate a frame, which prompts one to recall prior knowledge and experiences, 

schemas, and other cognitive components. Once some aspect of a frame has formed, the frame 

begins to “filter out” data that is less relevant and identify more important information to 

consider. The incoming information may also elicit more pieces of the frame to appear, and the 

new parts of the frame may continue to filter out and search for more data. This cycle of 

observing data and forming one’s frame iterates until the frame and data converge. 

 During the sensemaking process, there are times in which the data observed will not fully 

align or fit with one’s frame (Grolemund & Wickham, 2014; Klein et al., 2007). I have defined 

these moments as discrepancies. When this occurs, the analyst might question their frame and 

notice where inconsistencies exist between the data and frame. This is akin to problematization, 

as the analyst identifies that there is a gap in their frame such that they cannot explain the data 

(Phillips et al., 2018). 

 Often, the analyst will elaborate their frame in response to encountering unexpected data. 

That is, they maintain the core tenets of their frame and add new information to better integrate 

the data with the frame. This may involve searching for more information within the data itself 

and going through data that may have been overlooked or misread previously. Elaborating the 

frame can also involve incorporating additional conceptual knowledge or drawing upon previous 

experiences to help make sense of the discrepant data. This new information is then added onto 

the frame to account for the unexpected data, but it does not challenge or call into question any 

initial components of the frame. 



94 
 

 In the case that discrepant data cannot be integrated into the frame through elaboration, 

the analyst may prioritize fully preserving their frame. When this occurs, the analyst does not 

consider any additional information in their frame, and they may ignore, discount, or disregard 

the discrepant data entirely. Essentially, the frame stays intact, and the discrepant data can be 

“filtered out” so that sensemaking can progress. This response has been commonly observed in 

studies regarding conflicting or anomalous data, in which students ignore, discount, or explain 

away data that does not fit their mental model (Bolger et al., 2021; Chinn & Brewer, 1998; 

Meister et al., 2021; Urbanek et al., 2023). However, there may be instances where the analyst 

may have to consider altering their frame to account for the discrepant data, especially in cases 

where the discrepant data does not support one’s conclusions. 

 When the unexpected data is accepted but cannot be integrated into the frame through 

elaboration, the analyst likely needs to engage in reframing. To do this, the analyst must 

disengage from their current frame. This means that the core ideas composing the frame are no 

longer used by the analyst, so the analyst may construct another frame that can explain the 

discrepant data. In constructing their new frame, the analyst will identify new core ideas that 

help to make sense of the data. Reframing is similar in some respects to Chinn and Brewer’s 

“theory change” in which analysts dismiss previous conceptions to account for anomalous data 

(1998).  

 When engaging in sensemaking of data, analysts are likely to use any combination of 

preserving, elaborating, and reframing their reasoning. These sensemaking activities all serve 

different functions to help one’s analysis progress depending on the nature of the discrepancy 

between the data and frame. Thus, it is likely that an analyst will employ different activities at 

different points in their sensemaking. This is especially true for making sense of multiple data 
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sets, in that there may be gaps between data sets that require additional content knowledge to fill, 

extraneous data that must be filtered out, and predictions across data sets that may not carry over. 

Analysts employ these different activities iteratively until their frame and the data converge or 

the analysts consciously choose to stop. 

Methods 

Task Design 

I first designed a task that used multiple data sets that were accessible to different 

chemistry graduate students. The task was designed using data from a recently published 

physical chemistry paper (Bodesheim et al., 2020), as it featured multiple data sets in the form of 

graphs. Additionally, the data sets involved measurements related to intermolecular forces and 

thermodynamics, which are foundational concepts that appear across the different sub-disciplines 

of chemistry. 

 In the paper, Bodesheim and colleagues seek to explain why hydrogen fluoride (HF) does 

not change phase from an orthorhombic (36) to cubic (225) structure in the same temperature 

range as three other hydrogen-halides: hydrogen chloride (HCl), hydrogen bromide (HBr), and 

hydrogen iodide (HI). To do this, the authors performed a series of computations that compare 

the energies of the hydrogen-halides in the 36 and 225-structures. Three of the resulting 

computational data sets featured in the paper were chosen to be used for the task.  

 These data sets were used for the task, as they could be scaffolded to be accessible for 

chemistry graduate students to analyze. Additionally, I predicted that using and establishing 

connections between multiple data sets might lead to moments in which students might get 

“stuck” or encounter data they did not expect. 
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Interview Protocol Design 

Because of the complexity of the task, teaching interviews were used to surface graduate 

students’ sensemaking. Teaching interviews have been used previously to capture student 

sensemaking and abstraction of information (Adams, 2023; Hershkowitz et al., 2001; Kapon & 

diSessa, 2012; Karch & Sevian, 2022). In teaching interviews, the interviewer provides some 

level of assistance to the participant. This assistance can take the form of explaining concepts to 

students or scaffolding connections that participants can make but may not immediately notice 

when engaging in the task. Ultimately, the goal of using the teaching interview format was to 

provide enough information and background so that students could more deeply engage in 

sensemaking even though they were unfamiliar with the context.   

 The teaching interview took place in stages so that students would be introduced to one 

data set at a time before they engaged in constructing an explanation. Each data representation 

was scaffolded so that students had relevant background information to make sense of the data. 

This information included basic experimental details, some mathematical relationships (i.e., 

equations), and mathematical information (e.g., the difference in conformational entropy is 

negative) to help students connect the vibrational entropy to other thermodynamic values. The 

interviewer also repeated background experimental information as needed to the students and 

would point out data features (such as labels and axes) if students seemed to overlook them. 

 The interview began by introducing students to the two structures involved in the phase 

change (the 36-state and 225-state) of the hydrogen-halides using figures from the publication 

(shown in Fig. 4.1). After students made observations of the structures, students considered 
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experimental data that illustrates the central phenomenon, that HF did not change to the 225-

phase like the other hydrogen-halides.  

Next, students analyzed the intermolecular force bar graph, Figure 4.2, in which they 

were prompted to compare the energies of the different hydrogen-halide structures’ 

intermolecular forces. In this stage, the graduate students were told that the data set distinguished 

the intermolecular forces for each hydrogen-halide structure by its van der Waals (vdW) and 

non-van der Waals (non-vdW) interactions. All participants were also told that van der Waals 

forces could be thought of as London dispersion forces in this context.  

Participants then analyzed the thermodynamic line graphs shown in Figure 4.3. During 

this part of the interview, students were given equations that showed that values plotted in the 

graph were composed of a difference between the two structures’ energies. The graphs depicted 

the difference in Gibbs free energy, the enthalpy, and entropy between the two structures, 

specifically the 36’s value minus the 225’s value. Questions in this stage targeted what 

differences students observed between the hydrogen-halides’ line graphs, what relationships 

Figure 4. 1: Crystal structure and phase chart figure modified from Bodesheim et al. (2020). (a) The chain 
structure of the 36-structure. The larger atom represents the halogen, and the smaller atom represents the hydrogen. 
The black shading indicates the rows existing in the front plane, and the white shading indicates the rows existing in 
the back plane. The dashed line represents the hydrogen bonding between molecules. (b) The crystal structure of the 

225-structure. The large, black atoms represent the halogens, and the small, white atoms represent the hydrogens. 
(c) A summary of the different hydrogen-halides reported to date of publication. The numbers represent the space 

groups of the crystal structure. 
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students identified between the thermodynamic values, and how the thermodynamic data related 

to the phase change.  

Figure 4. 2: Intermolecular force energy bar graph modified from Bodesheim et al. (2020). Graph depicts 
energies associated with HX structure’s intermolecular forces. The black portion represents the intermolecular force 
energy without the vdW correction, the black and white portion represents the intermolecular force energy with the 
vdW correction. 

Figure 4. 3: Thermodynamic line graphs depicting differences in Gibbs free energy, enthalpy, and entropy from 
Bodesheim et al. (2020). The solid black line represents the difference in Gibbs free energy, specifically ∆𝐺𝐺 =  𝐺𝐺36 −
𝐺𝐺225. The dotted red line represents the difference in enthalpy, specifically ∆𝐻𝐻 =  𝐻𝐻36 − 𝐻𝐻225. The dashed blue line 
represents the difference in -TS, specifically ∆𝑆𝑆 =  𝑆𝑆36 − 𝑆𝑆225. 
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Next, the graduate students were introduced to the background information surrounding 

the entropy, wherein participants were specifically told that the total entropy had two 

contributors. In this, the interviewer told the participants that all hydrogen-halides had an 

equivalent conformational entropy difference and that the conformational entropy difference 

between the 36- and 225-structure was negative, meaning that the conformational entropy 

favored the 225-structure. Students then thought aloud to reason why HF had a different entropy 

than the other hydrogen-halides.  

In the final data set, students were introduced to the concept of vibrational entropy (that it 

measures the space explored through atoms’ vibrations (Fultz, 2010)), given some basic 

experimental background information, and directed to the relevant data features before they 

began to analyze the vibrational entropy data shown in Figure 4.4. The interviewer also asked 

Figure 4. 4: Difference in pDoS figure modified from Bodesheim et al. (2020). Students were directed to only 
consider the blue line, which represents the integrated difference in vibrational entropy or ∆𝑆𝑆𝑣̅𝑣𝑣𝑣𝑣𝑣. Data is calculated at 
300 K. 
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questions meant to prompt students to mathematically relate the vibrational entropy values in this 

data set to the previous thermodynamic data.  

For the last stage of the interview, participants were prompted to explain why HF did not 

change phase like the other hydrogen-halides using the data they thought was necessary for an 

explanation. Participants were encouraged to review previous data sets and take notes as needed. 

This final stage of the interview was driven by the participants reasoning aloud, but additional 

questions were asked to probe students’ reasoning and ask students how they thought the 

different data sets were related or connected. In every interview, students were asked how the 

vibrational entropy data related to the intermolecular force data if the students had not brought it 

up themselves. Once the participants stopped bringing up new ideas or voiced that they needed to 

finish, the interview ended. 

 For the full draft of the interview protocol and explanation given to participants after the 

interview was complete, see Appendix B. 

Participants 

All participants included in the study were graduate students currently enrolled in a 

chemistry doctoral program at the time of the study. Institutional Review Board approval was 

obtained before interview recruitment was started. The participating graduate students were 

recruited from multiple research-intensive universities in the Southeast, Midwest, Southwest, and 

Pacific Northwest regions of the United States. I purposefully sampled interested students during 

recruitment so that participating graduate students (N=23) ranged in experience from students in 

their first year to students in their sixth year of study in their doctoral program (Creswell & Poth, 

2016). I also purposefully sampled so that participating students represented multiple sub-

disciplines of chemistry, including materials chemistry, polymer chemistry, laser chemistry, 
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organic synthesis, inorganic chemistry, analytical chemistry, chemical biology, and 

computational chemistry. Before each interview, participants completed and submitted electronic 

consent forms. After their interview, participants were given a $20 digital gift card as 

compensation for their time. 

Data Collection 

All interviews were conducted from Fall 2022 to early Spring 2023. The interviews were 

conducted using Zoom and ranged in length from thirty-five to ninety minutes. All interviews 

were recorded within the application and the resulting video recordings were used to generate 

transcripts of the interview. The video recordings were also used for analysis, both when 

participants annotated the data representations on their computer screens and when participants 

made gestures with their hands in their cameras. All transcripts and videos were deidentified and 

participants were assigned pseudonyms. Any notes participants wrote during their interviews 

were also collected as an additional interview artifact for analysis. 

Episode Selection 

To find moments in which participants encountered discrepant data, I used verbal cues in 

which participants explicitly mentioned that they expected to observe something different in the 

data, a data feature did not align with their expectations, or something directly conflicted with 

their reasoning. Each episode started at the point in which the participant identified the 

discrepancy, meaning they explained what they expected to observe and described what they 

actually observed in the data. The episode ended when the participant seemed to stop their 

sensemaking of the discrepancy. This point was identified as when the participant stopped 

bringing up new ideas in response to explaining the discrepant data (i.e., their explanation was 
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exhausted) or alternatively when the participant stopped discussing the discrepant data and 

moved on to analyzing other data features.  

 I used two criteria to select episodes before beginning the analysis. I first sorted out 

episodes in which the participants did not clearly specify what it was that they were expecting to 

observe in the data. I also sorted out the episodes in which the participants’ sensemaking of the 

unexpected data was interrupted and the participant did not bring up the discrepancy again. 

 In the remaining collection, there were instances in which some participants seemed to 

resurface the same discrepancy across multiple episodes. Because these episodes involved the 

same discrepancy, they were collapsed into single episodes. Using these criteria for selecting, 

sorting, and collapsing episodes, I identified thirty-seven episodes that occurred across twenty-

three participants’ interviews (N=23). 

Data Analysis 

The data analysis took part in three stages. First, I identified what may have caused the 

student to view the data as discrepant or what made the data unexpected. Next, students’ 

responses to the discrepant data were characterized using Data-Frame Theory. Finally, I explored 

how students’ responses to the data affected their following sensemaking and explanation 

construction. 

First, the analysis sought to identify what led students to perceive the data as unexpected. 

To do this, Data-Frame theory was used to help identify what Data-Frame components were 

involved. For each episode, I first identified what students expected to see in the data versus 

what it was that they observed. In describing students’ expectations, I identified the expectations 

resulting from specific components of students’ frames (i.e., what conceptual knowledge or ideas 

were used) and/or the expectations resulting from other data features (e.g., patterns). For 
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example, consider Ashland as they attempted to relate their interpretations of the intermolecular 

force data and the vibrational entropy data:  

Ashland: “So undergoing the [225 to 36] transition increases the vibrational entropy, 

meaning that [the HF molecules are] like having a greater area to explore [in the 36 phase], or 

the vibrations can spread out across the larger area... Which I wouldn't have actually expected 

at gut instinct.” 

Interviewer: “Yeah, what was your gut instinct?”  

Ashland: “It's that if you're having really strong, electrostatic, or intermolecular forces, 

that [molecules] are going to be held more rigidly in place because they're going -- or their 

motion is going to be more hindered by their interactions with other molecules. Is what I would 

have expected.” 

Here, Ashland identified that their interpretations of the intermolecular force data and the 

vibrational entropy data conflicted. Specifically, they noted that they did not expect HF 36 to 

vibrate across a larger area when HF had strong intermolecular forces that “held” molecules 

rigidly in place. Because this reasoning of the intermolecular force data is not something that can 

be directly observed in the data, their reasoning seems to be informed by a knowledge 

component of their frame, “stronger interactions ‘hold’ molecules in place.” This reasoning 

conflicted with their interpretation of the vibrational entropy data. Ashland had observed that the 

transition from 225 to 36 produced an increase in vibrational entropy, and they interpreted that to 

mean that HF molecules would explore more space via vibrations in the 36-phase. Ashland’s 

interpretation was likely guided by another knowledge component of their frame, “more 

vibrational entropy means more space explored.” This knowledge component of their frame that 

dictates HF molecules are moving conflicts with Ashland’s other part of their frame that says HF 
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molecules are “held” in place. Thus, Ashland’s discrepancy would involve these conflicting 

knowledge components of their frame. 

Next, to identify how students responded to the discrepant data encounter, I process 

coded a subset of the episodes (Miles et al., 2014). This involved describing the actions that 

students did throughout their sensemaking, such as identifying the discrepant data, making 

observations of data features, etc. The process codes from these episodes were used to develop 

an initial codebook. I then applied this codebook to the remaining episodes, revising to capture 

new actions until all actions students used to make sense of data could be accounted for.  

Then, summaries of each episode were constructed that began with students’ 

identification of the discrepancy and ended with the last action that students used. Using these 

summaries, I examined how students’ sensemaking actions affected their original line of 

reasoning (i.e., did students alter their initial reasoning in any way). Based on this step, I 

separated students whose sensemaking moves did not alter their original reasoning from students 

whose reasoning did change in some way. I categorized the episodes in which students did not 

alter their reasoning as “Preserving frame,” as their reasoning did not change. Students in this 

group were further differentiated based on what moves were used after they encountered the 

discrepancy, which resulted in two sub-categories of preserving frame sensemaking moves: 

students dismissing data and students not using new reasoning. For students who did alter their 

reasoning, I decided to further separate based on the extent of the change in their reasoning, 

which resulted in two categories. In one group, students altered their frame by expanding on their 

original reasoning. This expansion could involve using mathematical relationships, incorporating 

new conceptual knowledge, or accounting for new data features. Thus, I labeled this category 

“Elaborating frame” as they added onto their frame in some way and did not replace any original 
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ideas. For the other category, students dismissed or stopped using an idea that was involved in 

their discrepancy and replaced it with a new frame component. This last category was labeled 

“Reframing” as these students uniquely dismissed and replaced an essential frame component 

involved in their discrepancy.  

Finally, to explore how students’ responses affected the sensemaking that followed, I 

considered how the sensemaking fulfilled the purpose of the task. Students were told that the 

main purpose of the task was to construct an explanation as to why HF did not change phase like 

the other hydrogen-halides. In doing this, a student’s sensemaking was deemed most productive 

when they “connected the dots” between data sets or recognized the relationships between the 

different data sets (Klein et al., 2007). Additionally, students’ sensemaking should have 

identified the causes for what they observed in the data, both why HF differed from other 

hydrogen-halides and why one structure was preferred over another. These points were used as 

criteria to assess if the response contributed towards more productive sensemaking or limited 

sensemaking. If more criteria were fulfilled (i.e., connections were made, underlying causes 

identified, etc.), students’ sensemaking was considered to be more productive. Conversely, less 

productive or limited sensemaking occurred when the students’ explanations were missing these 

criteria. 

Trustworthiness 

Due to the exploratory nature of this work, I utilized trustworthiness as a method to 

establish the credibility and dependability of the analyses (Lincoln & Guba, 1985). To do this, an 

outside researcher familiar with the task was trained on the codebook. Additionally, the outside 

researcher was trained in how to identify the Data-Frame components involved in students’ 

discrepancies. 
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 The outside researcher and I then independently analyzed eleven episodes to identify 

what may have caused students to perceive the data as unexpected. The outside researcher and I 

met to compare and discuss the selected episodes until consensus was reached. The discussion 

centered on when students were using patterns within the data to create expectations for other 

data (e.g., other hydrogen-halides’ lines increased when HF’s line did not) and when students 

used content knowledge to create expectations. We decided that students needed to explicitly 

voice if a data feature was not following a pattern that the other data features did for their 

expectations or predictions to be shaped by patterns in the data. We also decided that students 

needed to explicitly voice what of their content knowledge was not aligning with the data (such 

as energy should not increase with temperature) to account for students’ frames to be shaped by 

their frame. 

Next, the outside researcher and I independently coded the eleven episodes to identify 

how students responded to the discrepant data and decide if this response seemed to contribute 

toward more productive sensemaking. We then met again to compare and discuss the coded 

subset of episodes until we had reached consensus. The main point of discussion involved 

disagreement on whether certain episodes showed students using one response or another. For 

example, in discussing one graduate student’s response (specifically Gibbon), the researchers 

disagreed if the student preserved their frame or elaborated their frame in response to a 

discrepant data feature. We came to an agreement that the student responded to the discrepant 

data feature by preserving their frame; however, following this response, the student then 

mathematically connected the data set they were analyzing to another, which was indicative of 

elaborating their frame. Because the student preserved their frame before they had elaborated 

their frame and because the frame preservation occurred in response to the discrepant data 
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feature rather than the entire data set, the researchers decided to classify the student’s response as 

preserving frame. It is very common for analysts to use multiple sensemaking activities (i.e., 

preserving frame, elaborating frame, etc.) when making sense of data though (Klein et al., 2007), 

so the student’s frame elaboration was considered a part of the sensemaking that followed the 

response to the discrepant data. 

Following these discussions, I updated the codebook to provide clearer descriptions of 

students’ discrepancies and applied updated codes accordingly to the remaining data. 

Results 

Overview 

Graduate students appeared to respond to unexpected data in three different ways: 

preserving the frame, elaborating the frame, and reframing.  

 I first explore students preserving their frame in response to their discrepancy. Students 

who preserved their frames did not alter their reasoning and did not attempt to incorporate the 

discrepant data into their frames. This worked to preserve students’ original state of mind. 

 Next, I examine students’ responses to their discrepancy by elaborating their frame. Here, 

students built upon their original reasoning to account for the discrepant data. However, students 

did not replace their original reasoning or original observations of the data. 

 Finally, I investigate students reframing after encountering their discrepancies. 

Reframing involved students dismissing some aspect of their original reasoning to accommodate 

the discrepant data. This helped students to start afresh and build new reasoning that could more 

closely align with the discrepant data. 

 The findings are presented in greater detail below with examples that feature quotes from 

students’ interviews. Each student example also features two figures. One figure describes 
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students’ discrepancies and shows the data and reasoning involved. The second figure 

summarizes how students’ responses to the discrepancy affected their sensemaking. 

Preserving the Frame 

One way in which graduate students responded to discrepant data was to preserve their 

frame. When students preserved their frame, they did not offer new ideas or account for the 

discrepant data in their explanation. Thus, students did not alter their reasoning to incorporate the 

discrepant data into their explanation, and there may still have been a gap in students’ 

understanding of the discrepant data. 

There were several ways in which students preserved their frame in response to the 

discrepancy. After students identified the inconsistency between their expectations and the data, 

some students proceeded to move on to analyzing other data features immediately, which 

suggests they might have ignored the discrepancy. Conversely, some students spent longer 

periods reiterating what they had expected to see in the data, and they did not attempt to alter 

their reasoning to the discrepant data. Lastly, a small subset of students discounted the discrepant 

data feature to help them move forward in their analysis of the data. Consider Fremont’s 

reasoning that led to their discrepancy and their response: 

  Before Fremont’s discrepancy encounter, they used evidence from the vibrational entropy 

data set to establish why HF 36 would not spontaneously form by connecting it to the Gibbs 

energy data.  

“So if we look back at here, that explains why you've got this ΔG dropping as the 

temperature increases, and the ΔG increasing for the other three [hydrogen-halides]. So when I 

take all that into account, I'm thinking because the vibrational entropy is so large in magnitude 

for the HF [36] if we're looking at this [vibrational entropy data] slide and because it's always 
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positive, that alone is going to completely almost eliminate the possibility of it, wanting to have 

the proper energy value to spontaneously form the cubic. Whereas because these other 

[hydrogen-halides’] have negative [vibrational entropy] values, when you plug all of those back 

into the overall equation that then becomes a favorable [Gibbs] energy value to spontaneously 

form the cubic where HF can't. At least that’s how I interpreted it.” (Fremont) 

At this point, Fremont’s explanation construction established a cause for HF not changing 

phase like the other hydrogen-halides; the vibrational entropy did not favor a phase change. 

However, their explanation did not establish a cause for why the vibrational entropy did not 

favor a phase change, nor did it connect the intermolecular force data. Thus, Fremont was 

prompted to consider how the intermolecular force data affected the thermodynamic data.  

In response to this question, Fremont fixated on the HF 225 bar present in the 

intermolecular force data and pointed out that it was discrepant with their expectations from the 

previous analysis. Specifically, Fremont focused on the magnitude and value of the HF 225 bar, 

reasoning that because the HF 225 bar had a relatively similar magnitude to the HF 36 bar, the 

HF 225-structure must be present in the same relative abundance as HF 36.  

Fremont: “Okay. So yeah, this completely negates the 225 column for HF because if we 

were seeing this, if it was this preference like preferential, you'd expect a lot of the [HF] 225 to 

form. Because if you're trying to, if you lose, energy is dropping. That means it's more favored in 

the state it's in, correct?” 

Interviewer: “Mhm.” 

Fremont: “Yeah, so it should be a lot more, [HF 225] should be like almost equally 

favored. I mean not quite equal, but more or less equal to the orthorhombic. But that is not what 

we're seeing at all in the previous slide or by calculations. Like it shouldn't want to form the HF 
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225 the cubic form, but just based off of the initial computational calculations it looks like they 

should.” 

Here, Fremont seems to be reasoning that because the HF 225 bar is most similar in 

magnitude to the HF 36 bar and because it has such a negative value, the HF 225 should 

preferentially form. Fremont’s interpretation of the intermolecular force data here seems to have 

clashed with their other interpretations of the vibrational entropy and thermodynamic data sets, 

in that HF 225 should not have formed whatsoever.  

In response to this discrepancy between the intermolecular force interpretation and their 

other interpretations, Fremont dismissed the HF 225 bar in the intermolecular force data. 

Fremont: “So the experimental data kind of eliminates this [HF 225] column entirely, 

and it should not be there. I mean, it’s there, but it’s not going to be in the real-world 

application . . . [The experimental data] kind of negates that previous [intermolecular force] 

calculation, I think. 

Figure 4. 5: Fremont’s discrepancy involving data from Bodesheim et al. (2020). Fremont original reasoning 
from the experimental phase chart and thermodynamic data that concludes HF 225 should not form (orange). 
Fremont’s original reasoning from the intermolecular force data that HF 225 is favorable to form (blue). 



111 
 

Interviewer: “Okay. Can you remind me what computation you say was being 

negated?” 

Fremont: “So you said this was all computational data. Like they didn’t actually verify 

this, this was just theoretical. So based off whatever they used to calculate this, it should be 

almost like fairly equally favored for the HF 36 and the HF 225 to form. Like not quite as close 

as the others, but they’re still within, like reasonable, like intensities and magnitude of each 

other. But then, if you go on to the actual, like looking at the individual [thermodynamic] 

components of the data for like ΔG, ΔH, TΔS, you don’t see that distribution at all. Like [HF] 

225 never shows up. So the, if you’re looking at this [intermolecular force] calculation, this 

[data] is an outlier.”  

After explaining why this data feature should be dismissed, Fremont stopped their 

analysis and ended the interview. This prevented them from identifying a deeper cause for the 

thermodynamic and vibrational entropy data (i.e., why HF 36 had more vibrational entropy), 

which can only be explained by using the intermolecular force data. Specifically, Fremont did 

not consider the proportions of van der Waal and non-van der Waal contributions in the 

intermolecular force data, and they also did not seem to consider the difference in intermolecular 

force energy between the HF 225 and HF 36 structures either. These details were important in 

establishing causes for why HF favored HF the 36 structure vibrationally and consequently, why 

HF 36 was lower in Gibbs free energy than HF 225. Through dismissing the discrepant 

intermolecular force data feature, Fremont seemed to stop analyzing the intermolecular force 

data set entirely. This prevented them from connecting the intermolecular force data to other data 
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sets and from identifying any further causes for the chemical phenomenon. Thus, this response 

limited some of the sensemaking Fremont could engage in to explain why HF did not change 

phase. 

 In some instances, preserving one’s frame could contribute toward more productive 

sensemaking. When students encountered data that they did not expect, it took time and 

cognitive effort to make sense of the data. In some instances, it may have been important to 

engage in further analysis of the discrepant data feature if, for example, it helped students to 

fulfill the goals of the analysis (i.e., establish connections, identify underlying causes), such as 

with Fremont. However, there were some contexts in which the discrepant data feature did not 

help students’ sensemaking accomplish the goals of their analysis. In these times, it was more 

appropriate for students to preserve their reasoning and move ahead to analyzing other data 

features. 

Figure 4. 6: Graphic illustrating Fremont’s discrepancy, response, and sensemaking. Upper left: Fremont’s 
discrepancy between their reasoning from both the other data sets (orange) and the intermolecular force data set 
(blue). Upper right: Fremont preserved their frame (darker pink). Bottom half: Fremont preserved their original 
reasoning (orange) by using reasoning that dismissed the discrepant data (lighter pink). 
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 For example, Gibbon attempted to relate the vibrational entropy values of the different 

hydrogen-halides to their total entropy values in the thermodynamic data. During this time, 

Gibbon noticed that HI’s total entropy in the thermodynamic data behaved very similarly to HCl 

and HBr’s total entropies. However, when considering the vibrational data, Gibbon noticed that 

at lower frequencies, HI’s vibrational entropy behaved differently from that of HCl and HBr; 

from around 0 THz to 5 THz, HI’s vibrational entropy stayed negative or was at zero, whereas 

HCl and HBr’s vibrational entropy had peaks with positive values. Gibbon did not seem to 

expect HI’s vibrational entropy to differ from the two other hydrogen-halides and voiced that the 

two data sets misaligned: 

“And so that [the total entropy data] doesn’t really line up with what I was talking about 

here [in the vibrational entropy data], where HI kind of looks different from the HCl and HBr. I 

guess that could mean that the [vibrational entropy] contributions from the really low frequency 

Figure 4. 7: Gibbon’s discrepancy involving thermodynamic line graph and vibrational entropy data from 
Bodesheim et al. (2020). Gibbon noticed that a pattern between HCl, HBr, and HI entropy lines in the 
thermodynamic line graphs (orange) was not replicated in the vibrational entropy data set (blue). 
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are less important. So maybe the overall [vibrational entropy] term is negative, and then these 

little components *moves cursor over first HCl bump in vibrational entropy chart* maybe don’t 

matter as much. And so that could be why the, like overall the [total entropy] sum looks really 

the same for all three.” (Gibbon)  

After Gibbon noticed that HI’s resemblance to HCl and HBr was different between the 

thermodynamic data and part of the vibrational data, they responded by proposing that the 

discrepant data features in the vibrational entropy data were less important. This helped Gibbon 

to dismiss the discrepant vibrational entropy data and progress their analysis to make claims on 

how the other hydrogen-halides’ vibrational entropy contributed to their total entropy. Preserving 

their frame in this way helped Gibbon to further engage in productive sensemaking, as it helped 

Gibbon to advance forward in connecting the vibrational entropy values to the total entropy 

values, which was one of the goals of the analysis.  

Figure 4. 8: Graphic illustrating Gibbon’s discrepancy, response, and sensemaking. Upper left: Gibbon’s 
discrepancy involving a pattern of the other hydrogen-halides in the thermodynamic line graphs (orange) not being 
replicated in the vibrational entropy data (blue). Upper right: Gibbon preserved their frame (darker pink oval). 
Bottom half: Gibbon preserved their original reasoning (orange) by reasoning that the discrepant data was less 
important (lighter pink). 
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Elaborating the Frame 

Many students responded to discrepant data by elaborating their frames. In this, students 

extended upon their original reasoning; however, students did not dismiss and replace any of 

their initial observations of the data or any existing parts of their frame. Students who elaborated 

their frame worked towards incorporating the discrepant data into their explanation to fill the gap 

in their understanding. 

 Once students had identified the inconsistency between their frame and the data they 

observed, students altered their reasoning. Students may have searched and accounted for new 

data features, such as identifying labels on data features or specific numerical values in the 

graph. Additionally, students may have incorporated mathematical relationships and 

mathematical information, usually to identify how different thermodynamic and entropic 

variables affected each other. Students may also have incorporated new content knowledge or 

background experimental information into their frame, such as recalling knowledge relating to 

intermolecular forces or using the visual representations of the crystal structures. Using any of 

these sensemaking moves helped students to add to their original reasoning and potentially fill 

gaps in their understanding. For instance, consider Gretna attempting to relate the positive 

vibrational entropy for HF to its total entropy in the thermodynamic data. 

Gretna: “[HF’s] ΔS [vibrational] was positive, this [ -TΔS line] should be negative, but 

it’s positive to neutral. Tells me, I guess, the overall the total ΔS [value] would be negative. 

Okay, okay, we can do this.” 

Interviewer: “Yeah, I can say one thing is that ΔS conformational should be is [sic] 

negative for every one of them, and it’s the same across all the acids.” 
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Gretna: “It’s just a bigger change compared to the vibrational then, which would make 

ΔS total negative overall.” 

Gretna started by predicting that HF’s vibrational entropy value should have produced a -

TΔS value that was negative to reflect HF’s positive vibrational entropy contribution. They also 

noted that the -TΔS values that they observed for HF were “positive to neutral” which signified a 

negative value for its total entropy. Gretna responded by taking up new mathematical 

information from the interviewer, specifically that there was an additional entropy contributor 

that had a negative value. This allowed Gretna to compare the magnitudes of both entropy 

contributors and recognize that HF’s negative conformational entropy value must have been 

larger than the value of its positive vibrational entropy so that the sum produced a negative total 

entropy. Gretna did not need to alter their prior observation of HF’s total entropy value, nor did 

they need to alter their prediction that HF’s positive vibrational entropy should contribute 

positively towards the total. Instead, all they needed to do was incorporate information on the 

other contributor, so that they could mathematically connect the values of HF’s vibrational 

entropy to that of its total entropy. Gretna’s frame elaboration led to more productive 

sensemaking, as it helped them to accomplish the goals outlined for their analysis. Gretna’s 

Figure 4. 9: Gretna’s discrepancy involving vibrational entropy data and thermodynamic line graph from 
Bodesheim et al. (2020). Gretna’s discrepancy involves their prediction that HF’s vibrational entropy positively 
contributing to the total entropy (orange) and their observation that HF’s total entropy is negative in value (blue). 
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frame elaboration helped to establish connections across the entropic data sets and identify a 

cause for why HF’s total entropy was near zero in value. 

Elaborating one’s frame did not always contribute toward the most productive 

sensemaking of discrepant data. Consider Valentine’s sensemaking of the intermolecular force 

data and the vibrational entropy data. When considering the intermolecular force data, Valentine 

noticed that HF had more non-van der Waals forces. Using this data, they claimed that HF had 

stronger dipole-dipole forces that caused HF molecules to be held more “tightly” together.  

“Because right now, my understanding is sort of like, okay, hydrofluoric acid behaves 

differently because there’s a stronger dipole-dipole force, and potentially also it’s just a stronger 

bond. So there’s like, it’s like very tight kind of thing close together.” (Valentine) 

Figure 4. 10: Graphic illustrating Gretna’s discrepancy, response, and sensemaking. Upper left: Gretna’s 
discrepancy between their prediction from the vibrational entropy data (orange) and observation of the total entropy 
(blue). Upper right: Gretna elaborated their frame (darker purple oval). Bottom half: Gretna elaborated on their 
original reasoning (orange) by incorporating new reasoning (lighter purple), and this helped them to support their 
other original observation (blue). 
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When considering the vibrational entropy data, Valentine also observed that HF 36 had a 

higher vibrational entropy, which they reasoned meant that in the 36-phase the HF molecules 

occupied more vibrational states than the 225-phase, and overall exhibited more vibrations.  

“If it’s here, okay, if it’s a positive number that means that the [HF 36] state has a higher 

[vibrational] entropy, which means that this can occupy more [vibrational] states. So I guess the 

[36 vibrational] state for the hydrofluoric acid just lets it occupy more regions in space with its 

vibrations, whereas the 225-state would have fewer regions.” (Valentine) 

 In considering these two data sets and their resulting interpretations apart, Valentine did 

not seem to encounter any discrepancies. However, when asked how the intermolecular force 

data and the vibrational entropy data related, Valentine seemed to recognize that their reasoning 

from each data set was misaligned. 

“[HF’s vibrational entropy data] It’s saying that in the 36-state, there is more possible 

different, like vibrations that each thing could have. So I don’t really feel like I have a 

Figure 4. 11: Valentine’s discrepancy involving intermolecular force data and vibrational entropy data from 
Bodesheim et al. (2020). Valentine’s reasoning of the intermolecular force data that molecules are “held” in place 
in the 36-structure (orange) conflicts with their reasoning from the vibrational entropy data that molecules are 
moving (blue). 
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justification for that because, like the forces are stronger there, so it seems like it should be like 

stopping it from vibrate – like holding things down in place more.” (Valentine) 

 Here, Valentine seemed to encounter a discrepancy between their interpretations of HF’s 

intermolecular force data and its vibrational entropy data. They stated that HF’s stronger forces 

would predict that the HF molecules should not have vibrated or displayed more vibrations in the 

36-state; however, they observed that HF had more vibrational entropy, which meant that HF had 

more vibrations overall. This discrepancy between interpretations seemed to represent a conflict 

in their frame. This conflict specifically existed between the frame components “stronger 

interactions restrict molecules” and “more vibrational entropy means occupying more vibrational 

states.” At this point, it did not make sense to Valentine why something that had strong 

interactions holding it in place could also vibrate and occupy different vibrational states. In 

response, Valentine turned to the visual representations of the crystal structures to elaborate their 

frame and explain why the HF exhibit could have more vibrational entropy in the 36-state rather 

than the 225-state: 

“Okay, here, here’s my hypothesis. Oh, overall like because the 225 is like a cube-like – 

Well, it’s more rigid in more different directions, whereas the 36 is like rigid like in this direction 

*gestures with hands in x-direction* and probably there’s like some, you were mentioned like, 

the up and down thing . . . That’s, maybe that’s why there’s more vibrations because of like that 

difference.” (Valentine) 

Valentine seemed to incorporate the visual representation into their frame which seemed 

to have activated a new frame component, specifically that “structural rigidity impedes 

movement.” This seemed to guide Valentine’s new reasoning, in that the 36-structure’s lesser 

rigidity allowed for more vibrations. This new reasoning allowed Valentine to identify an 
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underlying cause for why they observed more vibrational entropy in HF 36 than in HF 225. 

Though Valentine’s frame elaboration did seem to help to progress their sensemaking to attempt 

to identify an underlying cause for the vibrational entropy data, the discrepancy remained. Their 

new reasoning could not address why HF 36 could access more vibrational states when the 

molecules also had strong intermolecular forces “holding” them in place. By not addressing the 

source of the discrepancy (the frame conflict), Valentine could not engage in reasoning that 

could establish connections between the intermolecular force data and the vibrational entropy 

data. These connections were necessary, as they helped to identify that the stronger 

intermolecular forces in HF 36 caused its greater vibrational entropy. Thus, Valentine’s frame 

elaboration led to a limited explanation that did attempt to identify an underlying cause, but it did 

not account for how the different data sets connected together. This meant that Valentine’s 

sensemaking partially achieved the goals for the analysis. 

Figure 4. 12: Graphic illustrating Valentine’s discrepancy, response, and sensemaking. Upper left: Valentine’s 
discrepancy between their original reasoning of the intermolecular force data (orange) and the vibrational entropy 
data (blue). Upper right: Valentine elaborated their frame (darker purple oval). Bottom half: Valentine elaborated 
their frame by incorporating new reasoning (purple) that helped to support some of their original reasoning (blue). 
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Reframing 

Lastly, some students reframed their reasoning after encountering discrepant data. 

Students who reframed stopped using some component (such as content knowledge or 

assumptions) or product of their frame (like a prediction) involved in their discrepancy. After 

this, students worked towards adopting a new perspective to make sense of the discrepancy they 

had encountered. This new perspective allowed students to start sensemaking with a “blank 

slate” that could better align with the discrepant data that they encountered. 

 Once students had identified the inconsistency between the data and their reasoning, they 

proceeded to question, reconsider, and, in most cases, explicitly dismiss the reasoning involved 

in the discrepancy. This seemed to indicate that students recognized the limitations of their 

reasoning, which helped them to recognize why they could not make sense of the data. In doing 

this, students could then proceed to construct a new explanation that aligned more closely with 

the discrepant data. Consider Wilber: 

During Wilber’s explanation construction for the phenomenon, they briefly reviewed the 

intermolecular force data and pointed out that HF primarily consisted of non-van der Waal 

forces: 

“And what they find is that there is this very large contribution, this very large energetic 

contribution of non-van der Waals forces.” (Wilber) 

 Wilber also reviewed the vibrational entropy data for HF and explained that its 

vibrational entropy caused it to favor the 36-phase over the 225, preventing a phase change from 

occurring.  

“But anyway, I think [the vibrational data] seems to be showing that the major difference 

between the HF versus the other halides is this very large contribution of the vibrational entropy. 
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And so, it's likely the ability of the molecules in the lattice to vibrate in the orthorhombic phase 

that is stabilizing it at higher temperatures.” (Wilber) 

At this point in Wilber’s sensemaking, their explanation identified some causes for why 

HF did not change phase. They identified that HF’s intermolecular forces mostly consisted of 

non-van der Waals forces, but they did not explicitly relate this to any of the other data sets. 

Additionally, Wilber identified that HF’s vibrational entropy was larger in the 36-phase, and they 

reasoned that this larger vibrational entropy contributed to its stable energy, even at higher 

temperatures. Because Wilber did not explicitly attempt to establish any connections between 

these two data sets, they were prompted to consider how the intermolecular data they had 

reviewed related to the vibrational entropy data. Wilber seemed to immediately encounter a 

discrepancy at this point. They stated that they would expect something with increased 

vibrational entropy to be associated with more van der Waals forces but dismissed this prediction 

immediately. 

Interviewer: “Yeah, how do you think this vibrational entropy is relating to that 

intermolecular force data that you saw?” 

Wilber: “Okay, so let’s go back and take a look at this [intermolecular force data]. So… 

it would, hmmm, interesting. Because my first thought would have been that [vibrational 

entropy] would have increased the van der Waals contribution, but that does not seem to be the 

case.” 
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 Wilber’s discrepancy between their prediction and the data was similar in nature to 

Valentine’s (and many other students’) discrepancy. Their frame seemed to anticipate that a 

substance’s strong intermolecular interactions would impede movement and vibration or 

conversely, that a substance capable of vibrational movement would have weaker intermolecular 

forces holding the molecules together in a solid. As soon as Wilber voiced their prediction, they 

immediately stated that it did not align with what they observed in the data. This could 

demonstrate Wilber dismissing the component of their frame that shaped their prediction. By 

dismissing this expectation of what should be in the data, they essentially could start attempting 

to construct a new explanation that was more closely aligned with the different data sets. 

“And so... you know, it could just be if these [molecules] are vibrating, they're moving 

around in space a little bit. I guess these would be vibrating, and so [the vibrations] would 

change kind of this hydrogen bond interaction as well. And it would change, you know, the 

Figure 4. 13: Wilber’s discrepancy involving vibrational entropy data and intermolecular force data from 
Bodesheim et al. (2020). Wilber’s discrepancy involved their prediction from the vibrational entropy data, that 
molecules that moved more should have more van der Waals forces (orange), not being what they observed in the 
intermolecular force data (blue). 
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dipole forces that would be occurring, so that would be changing the magnitude of those [dipole 

forces].” (Wilber) 

After dismissing their prediction and the parts of their frame that shaped that prediction, 

Wilber adopted a new perspective and attempted to make sense of how the vibrational entropy 

HF experienced in the 36-phase affected its intermolecular forces. They specifically reasoned 

that the vibrational movement affected the magnitude of intermolecular forces. Then Wilber 

went on to consider how the intermolecular forces might have conversely affected the vibrational 

entropy.  

“I mean, it could also be that there, these hydrogen, it could kind of be the other direction 

as well. In that, the hydrogen bonds and the dipole interactions are kind of maybe stretching 

these bond lengths to some extent or causing them to be in a, in sort of an unusual state, maybe 

stretched or compressed, or whatever. And that could be increasing the amount of vibrations that 

are required, or that occur as a result of that. And so, it could actually be that the vibrational 

entropy is sort of a result of these dipole interactions or the [hydrogen] bonds.” (Wilber) 

Here, Wilber established connections between the intermolecular force and vibrational 

entropy data sets and integrated their findings into a causal explanation. They reasoned that the 

intermolecular interactions might have caused the vibrational entropy they observed, specifically 

pointing out that the intermolecular interactions between molecules might have also caused the 

intramolecular bonds to stretch. In turn, this would have caused the atoms to move, which would 

be associated with the vibrational entropy data. In adopting this new perspective, Wilber could 

effectively establish connections between the vibrational entropy and intermolecular force data 



125 
 

sets and identify an underlying cause for HF’s vibrational entropy. Thus, Wilber’s reframing 

contributed towards productive sensemaking that fulfilled the goals of the analysis. 

Discussion 

The current study explores how different chemistry graduate students respond to and 

make sense of data that they do not expect to observe. The analysis identified three distinct 

responses that students gave while analyzing multiple data sets to construct an explanation for a 

chemical phenomenon. These responses differed to the extent that students altered their 

reasoning and incorporated the discrepant data into their explanations. Students who did not alter 

their reasoning preserved their frame. Students who elaborated their frame did alter their 

reasoning by expanding upon it in some way. Lastly, students who reframed their reasoning 

dismissed some parts of their reasoning and adopted a new perspective to account for the 

discrepant data. 

Figure 4. 14: Graphic illustrating Wilber’s discrepancy, response, and sensemaking. Upper left: Wilber’s 
discrepancy between their prediction that HF 36 should have more non-vdW forces (orange) and their observation of 
the intermolecular force data (blue). Upper right: Wilber reframed (darker green oval). Bottom half: Wilber 
reframed and adopted entirely new reasoning (lighter green).  
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 This work provides evidence that there is not necessarily one “correct” response to 

discrepant data. The same response could lead to explanations of varying productivity, such as 

what can be observed when considering both Fremont and Gibbon’s frame preservations.  

When Fremont preserved their frame, it seemed to stop from engaging further with the 

intermolecular force data set. By dismissing the HF 225 intermolecular force data, Fremont 

limited what data they could use to establish a causal explanation. This led to Fremont 

constructing a partial causal explanation that only considered the vibrational entropy and 

thermodynamic data. In this way, Fremont’s response to preserve their frame seemed to 

contribute towards less productive sensemaking, as they did not attempt to connect any of the 

intermolecular force data to other data sets, nor did they identify any underlying causes for what 

they had observed in the other data sets.  

Conversely, when Gibbon preserved their frame, it seemed to help them to move on to 

establish how the thermodynamic and vibrational entropy data sets related. In preserving their 

frame, Gibbon spent less time scrutinizing a data feature that did not seem relevant to advancing 

the goals of the analysis. Gibbon could then return to analyzing other data features that helped 

them to establish connections between the vibrational entropy and thermodynamic data.  

Both Fremont and Gibbon responded to discrepant data features by preserving their 

frame, but they used their frame preservation in differing ways. Fremont stopped engaging with 

the whole intermolecular force data set and stopped their sensemaking entirely, whereas Gibbon 

stopped engaging with the specific data feature and continued establishing connections between 

different data sets. Given this, one’s response to discrepant data is best used when it helps to 

align one’s sensemaking activities (i.e., what one does with their reasoning) with the specific 

goals of one’s analysis. 
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 Additionally, this study showed that students who encountered the same or similar 

discrepancy sometimes often used different responses that progressed their sensemaking in 

different ways. Both Valentine and Wilber experienced similar discrepancies when asked how 

the intermolecular force data related to the vibrational entropy data. Both students experienced 

some sort of discrepancy between their interpretations of the two data sets, which likely resulted 

from a conflict with the components of their frames. Valentine responded to their discrepancy by 

expanding upon their reasoning by using the visual representations of the structures to identify a 

cause for why the HF 36 had more vibrational entropy. Although this elaboration did help them 

to identify a cause for HF 36’s larger vibrational entropy, their explanation could not account for 

how the intermolecular force data affected or related to the vibrational entropy data. This could 

be because the elaboration did not address the underlying conflict within their frame, it could 

only “add on” to existing reasoning. In contrast, Wilber’s response to the discrepancy was to 

reframe their reasoning by dismissing their prediction and constructing an explanation that could 

relate the two data sets together. By dismissing their expectation for what they believe the data 

should have been, Wilber could essentially construct a new frame that could fully account for 

both the vibrational entropy and intermolecular force data. This response to the discrepancy 

helped progress Wilber towards more productive sensemaking, as it actually helped to establish a 

relationship between the two data sets. 

Conclusions 

From this study, graduate students had three responses to discrepant data they 

encountered while analyzing multiple data sets to explain a chemical phenomenon: preserving 

the frame, elaborating the frame, and reframing. For descriptions of each response, see Table 4.1. 

When students preserved their frame in response to the discrepant data, they made no changes to 
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their reasoning. Some students went so far as to dismiss the discrepant data feature involved in 

their discrepancy. Students who elaborated their frame in response to the discrepancy did change 

their reasoning, but the changes came from incorporating new conceptual knowledge or 

background experimental information, searching for more data, or using mathematical 

information. Elaborating their frame in this way expanded students’ reasoning, but it did not 

replace any existing components of their frame or any initial observations. Finally, students who 

reframed in response to their discrepancy dismissed some aspects of their frame, which allowed 

them to start constructing an explanation that more closely aligned with the discrepant data. 

All three responses had varied effects on students’ sensemaking. This meant that there 

was no one “correct” response to discrepant data. Instead, responses that were more productive 

for sensemaking were responses used to fulfill the goals of the analysis. For this task specifically, 

responses were most productive when they helped students to identify underlying causes for the 

chemical phenomenon or establish connections between the data sets. All three responses to 

discrepant data were capable of progressing students’ sensemaking to accomplish these goals; 

however, some responses were more appropriate depending on what was involved in the 

discrepancy (e.g., what data features, frame components, etc.). 

Table 4.1: Description of different graduate student responses to discrepant data 

Type of Response to 
Discrepancy 

Description of Response 

Preserving the Frame After identifying the discrepancy, students preserve their reasoning 
in some way. To do this, students might stay “stuck” or simply 
move on to analyzing other data features. Some students explicitly 
dismissed the discrepant data feature.  

Elaborating the Frame Once students identify the discrepancy, students incorporate new 
elements into their reasoning. Students may search for more data 
features, use mathematical information, or incorporate new content 
knowledge or background experimental information. In this way, 
students’ reasoning could be expanded upon, but their original 
frame components remained intact. Students also did not replace 
any previous observations made of the data. 
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Reframing In response to the discrepancy, students dismiss a component of 
their frame. This gives students a “blank slate” to build a new 
explanation that more closely aligns with the discrepant data 
feature. 

 

Implications for Practice 

The findings indicate that graduate students respond to unexpected data in a variety of 

ways when analyzing multiple data sets to construct an explanation for a chemical phenomenon. 

Additionally, all three responses were capable of progressing students toward more productive 

sensemaking, but they did not always do so. Given this, it stands to reason that chemistry 

graduate students could use guidance in learning when and how to use the different responses to 

unexpected data. Graduate advisors play a critical role in their graduate students’ success 

(Mason, 2012). Researchers have also suggested that advisors can help their graduate students 

develop autonomy by establishing explicit expectations for students (Barnard & Shultz, 2020). 

One way in which advisors can do this is by helping their graduate students learn the different 

ways to respond to discrepant data and identifying when different responses may be most 

appropriate to use.  

To start, advisors can help students identify the purpose of their data analysis and identify 

what goals must be achieved to fulfill the purpose. Goals could include identifying underlying 

causes for a phenomenon, using data to determine optimal experimental conditions, etc. In 

setting goals for their analyses, students establish guidelines to use when making decisions in 

their analysis. 

Additionally, advisors can outline a mental schema to help guide students through a 

series of steps when deciding how to respond to discrepant data. This schema could take the 

form of a conversation with the student, or it could even take the form of a written handout for 

students to keep while analyzing data. 
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As a first step, students can consider if engaging further with the discrepant data is 

necessary to fulfill the purpose of their sensemaking. In other words, students should decide if 

time could be better spent moving on to analyze other data features or other data sets. In some 

instances, it could be more productive for students to preserve their reasoning if the discrepant 

data is not needed to meet the criteria of their analysis. 

If students decide that the discrepant data is important to fulfill the goals of their data 

analysis, students can consider if they are missing any details in their sensemaking. They can 

attempt to elaborate their frame by searching for and incorporating other data features that they 

may have missed, incorporating any relevant content knowledge that may assist in making sense 

of the data, or considering information such as mathematical equations or other experimental 

information. Elaborating their frame in this way can fill “gaps” in students’ reasoning, which 

may lead to more productive sensemaking when students’ initial reasoning might have missed a 

detail in the data or background information. 

In cases where students have attempted to elaborate their frame and still have not fulfilled 

their goals for the analysis, students can consider reframing their reasoning. Here, students can 

explicitly identify what aspect of their reasoning is discrepant with the data, and search for 

alternative frames that could be used to make sense of the data. This would entail adopting an 

alternative perspective that could be used to more productively account for and make sense of 

the discrepant data. This step is far more exploratory in nature and could require more time and 

cognitive energy to fully make sense of the discrepant data. Thus, reframing should be 

considered as a response to discrepant data only when students have deemed the discrepant data 

necessary to make sense of and they have exhausted their ability to build off their original 

reasoning. 
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Limitations 

The findings from this study are specific to the design of the task, the research methods 

used, and the analytic choices made. 

 First, the task utilized different visual representations of data, mainly in the form of 

graphs, from a recent publication in a physical chemistry journal (Bodesheim et al., 2020). It 

should be noted that the publication features “clean” published data that is not representative of 

most research contexts where students collect raw data that is far messier in nature. Analysts are 

likely to encounter a plethora of different discrepant data when collecting and making sense of 

raw data, and they may require different responses to fully make sense of the data. Some studies 

within physics education and science education have investigated this within the context of 

undergraduate laboratories (Adams, 2023; Crujeiras-Pérez & Jiménez-Aleixandre, 2019; May et 

al., 2020, 2022). However, these studies are contextualized in introductory undergraduate 

courses that use scaffolded experimental procedures for students to follow. Graduate students 

must often modify or construct their own experimental procedures for their research, which is 

likely not captured in the previous studies. I suggest future studies explore how the sensemaking 

of experimental data is influenced by how graduate students plan and carry out investigations of 

chemical phenomena. 

 The study’s methods also employed semi-structured interviews in which graduate 

students primarily worked alone. It is more likely than not that graduate student researchers 

analyze and make sense of data in accompaniment with others, such as fellow student 

researchers, postdoctoral researchers, and research advisors. The teaching interview format 

captured some ways in which students, such as Gretna, took up information provided by the 

interviewer to alter their reasoning in some way. Additionally, previous work identified that 
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some undergraduate students altered their reasoning of data when exposed to other perspectives, 

such as through peer review (Berg & Moon, 2023). Although the findings are specific to 

undergraduates, it is still possible that making sense of data in accompaniment with others would 

expose graduate student researchers to alternative perspectives that they might consider in their 

analysis. Thus, future research should consider this additional social dimension when graduate 

students make sense of data with others. 

Finally, one of the analytic decisions was to carefully select episodes in which graduate 

students voiced their discrepancies aloud during their data analysis. There are likely moments in 

which participants did not voice their discrepancy and engaged with it internally, which cannot 

be captured in the think-aloud interview format. There were also moments in which students did 

not seem to recognize that their reasoning was not aligning with the data. I chose to omit these 

moments from our analysis, as the goal was to capture how students respond when they notice 

that their reasoning is discrepant with data. This necessitated some step of identifying an 

inconsistency that omitted episodes did not contain. 
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CHAPTER 5 

CONCLUSIONS 

Chemistry and science educators have long called for undergraduate STEM courses to 

incorporate more opportunities for students to engage in science practices (Cooper et al., 2015; 

National Research Council, 2012; Sharon & Baram-Tsabari, 2020; Talanquer & Pollard, 2010). 

At the center of all eight science practices is empirical evidence, which means students need to 

develop competency in engaging with and making sense of empirical data. However, there are 

several challenges that students experience with handling data (Becker et al., 2017; Bolger et al., 

2021; Heisterkamp & Talanquer, 2015; Kanari & Millar, 2004; May et al., 2022; Meister et al., 

2021; Phillips et al., 2021; Zagallo et al., 2016), and there are limited classroom activities 

designed to help students develop their competencies (Bolger et al., 2021; Zagallo et al., 2016). 

To that end, this dissertation seeks to characterize how undergraduate and graduate chemistry 

students engage in data analysis and investigate how peer review can be used as a classroom 

activity to help undergraduate students develop their data analysis competency. I conducted a 

total of three qualitative studies in which I interviewed undergraduate and graduate chemistry 

students as they engaged in different data analysis activities, with the main findings highlighted 

below: 

1. Prior knowledge and experiences help to shape undergraduate students’ frames 

when making sense of data. 

Graph comprehension and data analysis are both vastly influenced by one’s prior 

knowledge and experiences (Becker et al., 2017; Carpenter & Shah, 1998; Heisterkamp & 

Talanquer, 2015; Pinker & Feedle, 1990; Shah & Carpenter, 1995; Shah & Hoeffner, 2002). 

Given that students must engage with empirical data, often in the form of graphs, there is a need 
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to understand how prior knowledge and experiences interact with their engagement in science 

practices with graphical data. My study in Chapter 2 characterized how undergraduate students 

activate and use their prior knowledge as they make sense of data.  

I first interviewed undergraduate students as they analyzed a graph to determine optimal 

experimental conditions and then compared their responses to alternative viewpoints through a 

simulated peer review. I then deconstructed students’ analyses using Data-Frame Theory to 

identify what prior knowledge and experiences students used and characterized how it was used 

throughout the students’ analysis. My findings suggest that students first engage in making sense 

of data by establishing a frame, which may be composed of prior knowledge or experiences. This 

frame then helps students to filter what data they notice and interact with. There are several ways 

in which the data and frame interact, such as when the frame is used to evaluate the data or when 

the data causes a shift in frame. Some students’ frames also changed when students considered 

alternative perspectives in a simulated peer review.  

My work suggests how data analysis tasks are written and scaffolded can prompt students 

to activate prior knowledge and experiences that can be productive in framing students’ data 

analysis. Additionally, students’ frames may change when considering others’ perspectives 

through activities such as peer review. 

2. Social comparisons against sample responses can serve as a vehicle to prompt 

undergraduate students’ self-evaluation and help students generate internal 

feedback about their performance. 

Data analysis is a difficult competency to develop within the undergraduate chemistry 

classroom, and there are a limited number of documented classroom interventions that have been 

designed to advance students’ competencies (Bolger et al., 2021; Zagallo et al., 2016). To 
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address this, the study in Chapter 3 investigated how using a simulated peer review could prompt 

undergraduate students to self-evaluate their data analyses and generate internal feedback for 

themselves.  

I interviewed general chemistry students as they compared and evaluated their data 

analyses from a task against pre-constructed sample responses. Using these interviews, I applied 

social comparison theory and internal feedback theory to generate a model to document how 

students evaluated their analyses and explain why they may have chosen to revise their work. 

The model shows that the comparison against a sample response could prompt students to self-

evaluate their work and generate internal feedback. Depending on the presence and nature of the 

internal feedback, students might choose to revise or maintain their work. Critical internal 

feedback informed students that their work did not fully meet the criteria for success for the task, 

and the feedback motivated students to make revisions of some kind in response. Whereas a lack 

of critical internal feedback validated students’ work and informed students that they met the 

criteria for success, and they did not feel the need to revise. 

My work suggests that simulated peer review or comparisons more generally (such as 

against a rubric or exemplar) can be used to help undergraduate students self-evaluate and 

generate internal feedback for their work. Instructors can use preconstructed responses to 

communicate criteria or more nuanced ideas for students to tease out and incorporate into their 

work. This could be especially useful for large-enrollment classrooms in which instructors may 

not be able to give individual feedback on students’ work. 

3. Graduate students respond to discrepant data in a variety of ways, some responses 

may be more appropriate than others depending on the context in which they are 

used. 
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As part of their training and education, graduate students must develop to become 

competent and independent researchers who contribute new knowledge to their field (National 

Academies of Sciences, 2018; The American Chemical Society, 2012). As a part of advancing 

the knowledge of their field, students must engage with uncertainty and learn when and how to 

best engage with data that is discrepant with their expectations (Grolemund & Wickham, 2014). 

Though this is important, it is not known how graduate students respond to data that is discrepant 

with their expectations.  

Thus, I interviewed chemistry graduate students as they analyzed multiple data sets to 

explain a chemical phenomenon. I identified the various moments in which students encountered 

data that they were not expecting to see (i.e., discrepant data). I characterized both the 

components involved in students’ encounters with discrepant data (e.g., what data was involved, 

what knowledge was involved, etc.), characterized how the students made sense of the discrepant 

data, and evaluated how students’ responses affected their sensemaking that followed. The 

results of my analysis in Chapter 4 suggest that chemistry graduate students respond to 

discrepant data in three different ways. Additionally, all three responses could contribute towards 

productive sensemaking for the student, if they were used to help students meet the goals of the 

analysis. However, my findings also suggest that graduate students may need additional guidance 

in learning how to respond to discrepant data to best meet their goals. 

Future Directions for Research 

My work on generating internal feedback is highly contextualized in the students’ social 

comparisons against sample responses in a simulated peer review. The processes characterized 

could also be present in contexts in which students compare their work to rubrics or exemplars. 

Nicol recently identified similar processes of internal feedback when undergraduate students 
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compared their written work to exemplars (Nicol & Kushwah, 2023); however, more research is 

needed to investigate if internal feedback is generated when comparing to rubrics. Additionally, 

other contexts likely generate internal feedback, such as receiving feedback from others. This is 

an especially important context to consider, as students will encounter this form of feedback in 

academic environments and the world beyond. Future research should explore how internal 

feedback is generated when students receive feedback from others. 

 Next, the results of my research are primarily grounded in how students interact with 

chemical data in the form of graphs. I chose to use graphs because chemistry students are more 

than likely to have interacted with graphs before, and students possess very rich graphical 

schemas that help them navigate their graph interpretations; however, there are many other forms 

of data that chemistry students will interact with, such as data collected from spectroscopy or 

chromatography. These forms of data require specialized knowledge; thus, students may interact 

with the spectra and chromatographs in different ways than graphs. There is some research on 

how students make sense of certain spectroscopies (Cartrette & Bodner, 2010; Connor et al., 

2021; Connor & Shultz, 2021), but many of these studies tend to disconnect the use of 

spectroscopy from data analysis as a science practice. That is, the studies focus on how students 

use their conceptual knowledge to read spectroscopy, but they do not explicitly consider how 

students use the data to generate claims or construct explanations, which is a necessary aspect of 

practicing science. Thus, future research is needed to explore how students engage in data 

analysis with other common forms of chemical data. 

 Additionally, the tasks that I developed have only used published chemical data to 

investigate how students generate claims or explanations from the data. In using published data 

for the tasks and focusing on claim generation, I could not investigate how collecting and using 
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raw experimental data affected students’ analyses. It is more likely than not that collecting and 

engaging with raw experimental data will elicit different sensemaking processes that my studies 

could not capture. Several studies in science education, physics education, and biology education 

have implemented this facet of data analysis into their studies (Adams, 2023; Bolger et al., 2021; 

Crujeiras-Pérez & Jiménez-Aleixandre, 2019; May et al., 2022), but there remains a need to also 

investigate this within the context of chemistry. The studies outside of chemistry cannot account 

for students analyzing discipline-specific sources of experimental data, such as chromatography 

and spectroscopy, which require some sort of conceptual knowledge to make sense of.  

 Finally, the findings from Chapters 2 and 3 suggest that some students may alter their 

reasoning when exposed to others’ perspectives. It is possible that this could also occur in social 

contexts other than peer review, such as working with peers in a chemistry laboratory course or 

working with a mentor. In working with others, students may need to consider different priorities 

in the analysis (e.g., considering others’ priorities when making a decision from evidence) or 

consider others’ prior knowledge and experiences with chemical data. How students consider 

these alternative viewpoints is very likely influenced by different social and interpersonal 

factors, such as power dynamics between those involved in analyzing the data, how students 

respond to others’ contributions to analysis, etc. Future research should investigate how this 

additional social dimension shapes how students may make sense of data with others, whether in 

groups of peers or with mentors. 
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APPENDIX A: INTERVIEW PROTOCOL FOR CHAPTERS 2 AND 3 AND SAMPLE 

RESPONSES 

We are going to do this interview in two parts. In the first part, you will look at a graph 

with a question and make some claims about it. In the second part, you will evaluate other 

students’ arguments about that graph. In the second part of the task, the student will evaluate 

three sample arguments. 

There is no right or wrong answer here, we want to understand how you are thinking. So, 

though it may feel awkward, try to do all your thinking out loud so we can understand. We will 

also prompt you for more thinking throughout.   

Part one: 

Screenshare document with student. Scroll up for student to read the task. At any point 

that the student pauses for long periods of time or seems confused, remind them that they can 

reread the task. 

Check to make sure that they can see the graph clearly. 

I. Graphing warmup  

a. Look at the x-axis. What is shown on the x-axis? 

i. What’s changing?  

b. Look at the y-axis. What is shown on the y-axis? 

i. What’s changing? 

II. Chemistry context warmup 

a. What are you noticing with the graph? Annotate the screen to mark the parts that 

you noticed 

i. Ask about slopes, peaks, points, etc. 
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III. Between 0 M, 2 M, and 4 M, what concentration would you recommend using? 

IV. What information helped you reach your answer? 

a. What kinds of data did you use from the graph? (Slope, points, ratios, peaks, line 

trends, etc.) 

b. What specific data did you need to use from the graph? 

c. What details from the task did you need to help you make a decision? 

d. What information on the graph did you not use? 

V. How does the information you used support your conclusion? 

a. Why was this information important for you to use? 

b. What choices did you have to make to come to your conclusion? 

c. How would the waste affect the extraction? 

d. How would your choice of concentration pan out in an extraction compared to 

another concentration? 

VI. Write the argument/response in the chat and summarize what you’ve said out loud. 

Include the details that you think are relevant to convince the scientists behind the 

project. 

Part two: Scroll down and show the empty graph and prompt on the screen. Remind students that 

they don’t have to make a graph right away and that the experiment they propose is completely 

up to them. 

VII. How would you design an experiment to consider the role time plays? 

a. What variables would you need to consider? 

b. What would you assess with this experiment? 
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VIII. What information would you try to get from this test that would support your choice of 

HCl concentration? (show the empty graph and test on screen) 

a. What are some of the advantages of the test? 

b. What information could this test give to support your answer? 

c. How would that information support your answer? 

IX. Draw an outcome of the experimental information you would obtain if you performed the 

test. Be sure to label the axes 

a. What’s happening in the graph? 

b. Walk me through what you’re showing in the graph 

Part three: Copy and paste the responses one at a time in the chat. Ask them to read it and give a 

thumbs up when they’re done reading it. 

I. What are some things that you’re noticing with this response? 

a. What information did they pull from the graph? 

b. What information did they leave out of their response? 

II. How convincing do you find this response? 

a. What are some strengths of the response? 

b. What are some weaknesses of the response? 

c. What changes would you suggest for the response? 

III. How does this response compare to yours? 

a. In what ways does their response affect your own thinking? 

b. What is your confidence in your own response now? Why? 

IV. Out of the three responses we’ve shown you, which one do you find the strongest? Why? 
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Below are the three sample responses that students evaluated during the peer review stage: 

4 M sample response 

Starting at 0 M HCl, Au is only 65% extracted. As the concentration of HCl increases, so 

does the percent extraction of Au. The percent extraction of Au at 4 M HCl has reached its 

maximum and is 95% extracted. Because there is a large percent of Au in the organic layer at 4 

M, the best concentration of HCl to use is 4 M. 

0 M sample response 

The best concentration of HCl to use is 0 M HCl. The percent of waste extracted 

increases as the concentration of HCl is increased. Because the waste extracted is not minimal at 

2 M or 4 M, 0 M is a better option. 0 M HCl also has 65% Au extracted, so there is a large 

amount of Au that can be gathered with no waste present. 

2 M sample response 

From 0 M to 4 M HCl, both Au and waste extraction increase as the concentration of HCl 

increases. Therefore, the best concentration of HCl to use is 2 M HCl. The increase in Au 

extraction from 2 M to 4 M does not justify the increase in waste. But the increase in Au 

extraction from 0 M to 2 M does justify the increase in waste. 
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APPENDIX B: CHAPTER 4 INTERVIEW PROTOCOL AND WALKTHROUGH 

OF GRADUATE STUDENT TASK 

I. Slide I 

For this study, you’ve consented to participate in a think-aloud interview. This 

means that you will need to say what’s on your mind when you’re reasoning through this 

task. This could feel a little awkward, but I will be asking questions to help you do this. 

The key to this is that if a thought or idea pops up, I want you to verbalize it. If any of my 

questions don’t make sense or you need to hear them again, please let me know. 

The goal of this study is to see how you make sense of and use data to construct 

an explanation. You’re going to be seeing four different datasets today from a recent 

ACS publication, and we will be going through all of them. You are not being assessed 

on your explanation at all. What I am trying to see is how you go through the data and 

reason with it, not whether you produce the same explanation as the authors. We can also 

go over the author’s explanation, but during the interview I want you to do your best to 

use your knowledge and reasoning. 

During the interview, you are going to be in control of the screen and slides. That 

means that you get to go back and forth on slides if you want, and you can draw on the 

screen to take notes or mark certain things. In fact, we’re going to strongly encourage you 

to mark and annotate the screen as you go, so I can have a reference for what you’re 

seeing when I analyze the interviews. 

What questions do you have for me before we start? 

Press record 
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II. Let’s practice thinking out loud with a question really quick: What do you research? 

What does your research focus on? 

In past interviews, many students have found it helpful to be taking notes as they 

go through the task. We recognize this is a bit harder to do via Zoom, so we want you to 

take notes that you need on some separate software or app that you can share with us 

later. We would like you to take notes and write down things as needed. If you have a 

tablet and want to draw on the screen, that is totally fine as well. 

III. Slide II 

So today we’re going to be talking about a phase change in four different binary 

acids. These binary acids are HF, HCl, HBr, and HF. At lower temperatures, these acids 

tend to take an orthorhombic crystal structure. The orthorhombic crystal structure is 

Figure A on the left. Here the small atom represents the hydrogen, and the larger atom 

represents the halogen. The black and white in this figure represent the three-dimensional 

orientation. So the black rows stack on top of each other, and the white row sits behind 

the black rows. What questions do you have about this structure? 

As temperatures increase, the binary acids can undergo a phase change. You 

might be more familiar with phase changes like solid to liquid, but we can also have 

phase changes where the crystal structure of a solid changes. The new crystal structure 

that the acids form is a cubic crystal structure, which we can see in Figure B. The black 

atoms represent the halogen and the white atoms represent the hydrogens. What questions 

do you have about the phase change or cubic structure? 
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IV. In this paper that we’re using data from, a group of physical chemists experimentally 

documented the orthorhombic and cubic crystal structures of the four binary acids across 

a specific temperature range. We still have the two crystal structures at the top of the 

screen, and then below that we have a bar graph of the different structures. Just above the 

HF bar, there is a legend to help with the color coding.  

What are some of the things that you’re noticing in this bar chart? 

a. What crystal structures are present for each of the acids? 

b. What phase changes are happening for the acids? 

c. What are some interesting things you can see in this bar chart? 

d. What do you think warrants investigating further? 

e. Optional: What are some “big-picture” or “bird’s eye view” conclusions you can 

make from seeing this bar chart? 

V. To investigate this further, the physical chemists decided to simulate the acids in two 

structures. So from now on, when you see the 36, it refers to the orthorhombic structure. 

And if you see the 225, it refers to the cubic structure. While controlling for the acids’ 

structures, the chemists performed a few different computations. In this first one, we’re 

going to see the energy associated with each acid for the different acids. 

They characterized the kind of intermolecular force in two ways: van der Waals 

and non-van der Waals. So the white “with vdW” means van der Waals forces’ 

contributions. And the black “non vdW” represents other types of intermolecular forces’ 

contributions. 

What are some of the things that you’re noticing in this bar chart? 

a. What is on the x-axis? 
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b. What is on the y-axis? 

c. What other types of intermolecular forces do you think are present? 

d. How are the energies of the acids comparing across the chart? 

e. What are the contributions of the vdW forces for each acid? 

f. What are the contributions of the hydrogen bonding for each acid? 

g. What do you find interesting about what you’re seeing in the bar chart?  

VI. Now we’re going to cover a simulated phase change from the 225 cubic to the 36 

orthorhombic. The physical chemists simulated this phase change across a range of 

temperatures and found the thermodynamic values associated with the change. What 

you’re seeing plotted on the graph is the change in a thermodynamic value because we’re 

dealing with a phase change. And remember that in thermodynamics, we denote a change 

mathematically as the final state minus the initial state. 

What are some of the things that you’re noticing with the line graphs? 

a. What colors are you seeing for each graph? What do they mean? 

b. What are you noticing with the black lines for each acid? What does it represent? 

c. What are you seeing with the blue lines for each acid? What do they represent? 

d. What are you noticing with the red lines for each acid? What do they represent? 

e. How are the slopes comparing for the ΔG lines? 

f. How are the slopes comparing for the ΔH lines? 

g. How are the slopes comparing for the -TΔS lines? 

h. How do the different lines relate to each other? 

i. What information do you think the line graphs are telling you about the phase 

change from 225 to 36? 
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j. What are some interesting or unique things that you’re finding from the line 

graph?  

VII. Something that the physical chemists wanted to investigate further was the entropy 

associated with the phase change. How we commonly think of entropy is through the idea 

of “disorder.” This type of entropy is known as conformational entropy, and it is one kind 

of entropy that we know contributes to the phase change. Because all of the acids are 

undergoing the same phase change from 225 to 36, they are experiencing the same 

change in conformational entropy. We also have another form of entropy that contributes 

to the total entropy change called vibrational entropy. We’ll go over what it entails in the 

next slide, but all you have to know now is that it’s another source of entropy. How are 

you thinking about the total entropy change now that you know that there are two sources 

of entropy? 

a. Why do you think that the different acids’ ΔS slopes are different from each 

other? 

b. What do you think is making them different?  

VIII. Vibrational entropy is probably a new concept, so we’ll cover the basics of it before we 

start considering the data here. 

Vibrational entropy is a form of entropy that can be encountered in a lot of solid-

state materials. As we know, atoms are always vibrating because they have thermal 

energy. The idea behind vibrational entropy is that the atoms in the solid structure will 

vibrate and through these vibrations, they will explore the space around them. The more 

space that is being explored, the stronger the vibrational entropy. So then when we’re 

measuring a change, we’re looking at the difference in the space explored via vibrations. 
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To solve for the vibrational ΔS, we have to do a series of calculations for the 

phonon density of states or pDoS. That’s what the black line represents. We are going to 

ignore the black and green lines on this chart, and just focus on the blue line for this 

chart. The phase change was simulated at 300 K, and then the physical chemists looked 

for the strength of the vibrational entropy contributions across different frequencies of 

vibrations. 

What are you noticing in this chart? 

a. What is happening for each of the acids? 

b. What are some interesting/unique things happening in the vibrational entropy 

chart? 

c. What do you think the strength of the vibrational entropy is for each acid? 

d. How are you thinking about the change in total entropy now? 

e. How do you think the vibrational entropy change contributes to the total entropy 

change for each acid? 

f. How do you think the vibrational entropy contributes to the change in Gibbs Free 

Energy? 

IX. Now that we’ve gone through the four datasets to explore the crystal structures for the 

acids, I want you to explain why the HF does not take a cubic structure in this 

temperature range like the other acids do. You can use whatever data you think is 

necessary and you are encouraged to revisit some of the old slides to refresh. Why do you 

think that the HF only stays in the orthorhombic phase? 
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a. If they only bring up thermodynamic data, why do you think these 

thermodynamic values are supporting that orthorhombic state? What is it making 

it favor that state? 

b. If they only bring up IMFs, how does that relate to the thermodynamic data you 

saw? 

c. How does the data support your explanation?  

Once the student is finished, end the recording 

Description of Task 

The first data set included a calculation of the energy involved in the different non-

covalent interactions (i.e., intermolecular forces) of the two structures of the hydrogen-halides. 

The data depicted the energies of both the van der Waal forces and non-van der Waal forces of 

each structure of the hydrogen-halides. From this data set, the author concluded that HF’s 

intermolecular interactions were dominated by hydrogen bonding, with significantly more 

hydrogen bonding occurring in the 36-phase. In contrast, the other hydrogen-halides’ 

intermolecular forces were much weaker in comparison and were predominantly made up of van 

der Waal forces. 

In the next data set, the authors’ computations compare the thermodynamic states of each 

structure for the different hydrogen-halides. This involved calculating the difference in three 

thermodynamic states across different temperatures: the Gibbs free energy, the enthalpy, and the 

entropy. In this data set, HF consistently shows lower Gibbs free energy and enthalpy in the 36-

structure, and relatively no difference in the entropy for the two states. Although the other 

hydrogen-halides do favor the 36-structure at lower temperatures, they all reach points at which 

the 225-state is favored both entropically and enthalpically, causing the Gibbs energy to disfavor 
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the 36-state. From this, the authors concluded that HF favored the 36-phase thermodynamically, 

with the HF enthalpy causing its Gibbs energy to be lower without the entropy favoring either 

state. The authors were particularly intrigued by HF entropically favoring neither state, so they 

decided to further investigate why this was so. 

The entropy measured in the previous data set is made up of two contributors: 

conformational and vibrational entropy. The conformational entropy was the same for all four 

hydrogen-halides as they were modeled in the same structures, and the conformational entropy 

for all favored the 225-structure. This could explain why the other hydrogen-halides favored the 

225-state at some point, but it could not explain why HF favored neither state. Thus, the authors 

decided to examine the vibrational entropy to see how it impacted the system.  

In the final data set chosen for the task, the authors measured the difference in vibrational 

entropy between the 36- and 225-state. Vibrational entropy, which is the space that atoms explore 

in their solid phase as they vibrate, behaved quite differently for HF compared to the other 

hydrogen-halides (Fultz, 2010). HF seems to exhibit significantly more vibrational entropy in the 

36-structure compared to the 225, which means that it can explore more space in its 36-state 

compared to the 225-state. Whereas the other hydrogen-halides seemed to exhibit a preference 

for neither state vibrationally. From this, the authors concluded that HF’s vibrational preference 

for the 36-state and its conformational preference for the 225-state were roughly the same 

magnitude and counteracted each other, which caused HF’s total entropy to have a near zero 

value that favored neither state. 

The authors argued that the lack of phase change for HF was due to enthalpy favoring the 

36-state and a near-zero entropy that cannot counteract it, resulting in a negative Gibbs value 

favoring the 36-state. The near-zero entropy observed was caused by HF’s conformational 
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entropy and vibrational entropy canceling each other out. The authors argue that HF’s vibrational 

entropy favors the 36-structure due to its hydrogen bonding flexing and stretching within the 

structure. There is a larger magnitude of hydrogen bonding present in the 36-phase for HF, which 

results in more flexing and stretching of the hydrogen bonds, ultimately causing the atoms to 

move more within their phase space. 
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